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• COVID-19 forecast models are critically
needed but highly uncertain.

• Retrospective analyses across different
countries/environments portray model
biases.

• Re-forecasts for different seasons and
pandemic states are explored in 10
countries.

• Probabilistic (ensemble) forecasts pro-
vide added value but must be further
explored.

• Ensemble forecasts show reasonable
skill 20 days ahead (20% relative errors).
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Mathematical models of different types and data intensities are highly used by researchers, epidemiologists, and
national authorities to explore the inherently unpredictable progression of COVID-19, including the effects of dif-
ferent non-pharmaceutical interventions. Regardless of model complexity, forecasts of future COVID-19 infec-
tions, deaths and hospitalization are associated with large uncertainties, and critically depend on the quality of
the training data, and in particular how well the recorded national or regional numbers of infections, deaths
and recoveries reflect the the actual situation. In turn, this depends on, e.g., local test and abatement strategies,
treatment capacities and available technologies. Other influencing factors including temperature and humidity,
which are suggested by several authors to affect the spread of COVID-19 in some countries, are generally only
considered by the most complex models and further serve to inflate the uncertainty. Here we use comparative
and retrospective analyses to illuminate the aggregated effect of these systematic biases on ensemble-based
model forecasts. We compare the actual progression of active infections across ten of themost affected countries
in the world until late November 2020 with “re-forecasts” produced by two of the most commonly used model
types: (i) a compartment-type, susceptible–infected–removed (SIR) model; and (ii) a statistical (Holt-Winters)
time series model. We specifically examine the sensitivity of the model parameters, estimated systematically
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fromdifferent subsets of the data and thereby different timewindows, to illustrate the associated implications for
short- to medium-term forecasting and for probabilistic projections based on (single) model ensembles as in-
spired by, e.g., weather forecasting and climate research. Our findings portray considerable variations in forecast-
ing skill in between the ten countries and demonstrate that individual model predictions are highly sensitive to
parameter assumptions. Significant skill is generally only confirmed for short-term forecasts (up to a fewweeks)
with some variation across locations and periods.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since the earliest days of the global COVID-19 pandemic, a wide
range ofmathematical and epidemiologicalmodels have been proposed
as means of exploring the transmission properties of the disease or as
instruments for delivering indicative forecasts of, e.g., total infections,
hospitalizations and mortalities, including forecast scenarios assuming
combinations of different non-pharmaceutical countermeasures
(Jewell et al., 2020; Li et al., 2020; Diaz-Quijano et al., 2020).Worldwide,
the latter is extensively used by local and national (health) authorities
to inform not only policies aimed at limiting the spread of COVID-19,
but also to helpmanage the implications for the rest of society, including
the economy. Variations of the “classical” compartmental-type models,
where the susceptible population is divided into different “compart-
ments” so far rank amongst the most used. This includes variants of
the susceptible-infectious-removed (SIR) model (Porter and Oleson,
2013, Biswas et al., 2020, Wangping et al., 2020) and the extended
susceptible-exposed-infectious-removed (SEIR) model (Sun et al.,
2020; Yang, 2020). Other authors have explored data-driven prediction
models of different complexities based on classical (e.g. curve fitting) as
well as advanced statistical and Bayesian approaches (Cássaro and Pires,
2020; Ceylan, 2020; Chatterjee et al., 2020; Petropoulos andMakridakis,
2020; Remuzzi and Remuzzi, 2020; Singh et al., 2020a; Singh et al.,
2020b; Tomar and Gupta, 2020; Verity et al., 2020), geographically-
based transmission models (Wu et al., 2019), stochastic transmission
models (Kucharski et al., 2020; Bi et al., 2020), agent-based models
(Koo et al., 2020) and hybrid model types utilizing artificial intelligence
techniques (Tiwari et al., 2021; Yang, 2020; Zheng et al., 2020) asmeans
of providing forecasts of COVID-19 progression. In most of these re-
ferred cases, the domain focus is regional or national. Some of the ex-
ceptions include Wu et al., 2019, who in the early phase of the
pandemic (based on flight bookings and human mobility) predicted
the geographic pattern of COVID-19 spread originating from Wuhan
and surrounding cities, both inside China and internationally, using a
compartment model trained using a Markov Chain Monte Carlo tech-
nique; Singh et al. (2020b), who applied an autoregressive integrated
moving average (ARIMA) model to time series data drawn from the
“top 15” countries in terms of cumulative infections; and Ceylan
(2020), who estimated the COVID-19 prevalence in Italy, Spain, and
France also using ARIMA models.

As recently proposed by several authors, including Castro et al.
(2020), andWilke and Bergstrom (2020), COVID-19 forecasts are inher-
ently associated with large uncertainties that particularly prevent reli-
able prediction of intermediate and long-term COVID-19 trajectories
(IHME, 2020; Scudellari, 2020). For example, a common denominator
in all of these varied modelling efforts (and the countless more not re-
ferred here) is that the large uncertainties associated with model struc-
ture and estimated model parameters effectively propagate to the
predictions. This is regardless of the modelling philosophy and com-
plexity of the models used, and includes amongst other factors hypoth-
esized (and typically non-modelled) correlations with atmospheric
conditions such as temperature, precipitation and humidity and their
potential influence on the local incidence of the disease (Bashir, 2020;
Briz-Redón and Serrano-Aroca, 2020; Gupta et al., 2020; Menebo,
2020; Runkle et al., 2020; Şahin, 2020). As an alternative, Castro et al.
(2020) promotes probabilistic forecasts similar to the ones used by
2

weather forecasters. The COVID-19 ensemble forecasts for the United
States (US) produced by the Centers for Disease Control and Prevention
(CDC - Centers for Disease Control and Prevention, 2020), which are
based on contributions from more than 30 expert modelling groups, is
arguably the premier example of such an approach. Wilke and
Bergstrom (2020) identifies the way that the many different sources
of uncertainties compound as the fundamental problem for COVID-19
prediction and adds that (quoting) “predicting the trajectory of a
novel emerging pathogen is like waking in the middle of the night and
finding yourself in motion—but not knowing where you are headed,
how fast you are traveling, how far you have come, or even what man-
ner of vehicle conveys you into the darkness”. Or, expressed differently,
that there are still many questions about the new coronavirus that re-
main largely unresolved, and that mathematical-epidemological
modellers are not different from anyone else - we are presently all
learning as we go.

This study does not claim to have solved these challenges. Rather, we
hypothesize that there are important lessons to be learned from system-
atic analysis of the retrospective performance of COVID-19 forecast
models in different (e.g., natural) environments. This is in line with
the multi-model comparison collaboration suggested by the Center for
Global Development already in late May 2020 (Chalkidou et al., 2020).
It is also yet another reference to weather forecasters (Castro et al.,
2020). Or even more to regional climate modellers, who until recently
(when this practicewas replaced by large collaborativemulti-model in-
tercomparison experiments (Gutowski et al., 2016))would often evalu-
ate (and subsequently improve) in-house regional models on the basis
of lessons learned from dedicated experiments within climatic domains
other than the “native” ones (Refsgaard et al., 2014). Transferring this
analogy to COVID-19modelling, this paper analyses the results of a sys-
tematic and intercomparable modelling effort, where we explore the
properties of an ensemble of retrospective forecasts (“re-forecasts”) of
the COVID-19 development until late November 2020 across ten of
the most highly infected countries in the world and compare them to
real-life records reported by, e.g., the Johns Hopkins Corona Virus
Resource Centre (Johns Hopkins 2020). The ten countries are the US,
India, Brazil, Russia, France, United Kingdom (UK), Italy, Spain,
Argentina and Colombia. COVID-19 took hold in these countries at
different times, and so they conceptually represent slightly different
phases of the pandemic. Inherently, each of these records represent
the “sum” of the local circumstances, with the sampled countries
spanning multiple continents, environmental and climatic condi-
tions, developed as well as developing countries, economic and tech-
nological capacities, cultures, different interventional strategies, etc.
Accordingly, the observed numbers could be expected to show dis-
tinct features that - ideally - might be attributed to different key fac-
tors, including, if this is applicable, environmental influences. In this
paper, we assert that such features could be used to uniquely sample
the properties and biases of general forecast model types from a
more principal perspective. Here, we exclude data from 2021,
where the widespread but unevenly distributed emergence of phar-
maceutical interventions have significantly affected COVID-19 tra-
jectories in some countries.

In the following, we consider two very simple forecast models – one
epidemiological and one statistical: the most basic form of the SIR
model (Rodrigues, 2016; Liu et al., 1987) and a Holt-Winters triple

http://creativecommons.org/licenses/by/4.0/


Table 1
The five time windows analysed in Figs. 2–4 and S1–S2 (Supplementary Material) using
the scheme outlined in Fig. 1. The date in the third column indicates the first day of the
Holt-Winters forecast, which is also the first day of the analysis (cross-validation) period
(Fig. 1) considering the entire “mini-ensemble”.

No. Time window Holt-Winters 60 d forecast Analysis

1 1 May–9 August 11 June Fig. 2
2 1 June–8 September 11 July Fig. 3
3 30 June–8 October 10 August Fig. S1
4 1 August–11 November 9 September Fig. S2
5 1 September–28 November 30 September Fig. 4
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exponential smoothing model (Holt, 1957; Winters, 1960). Both test
models are first trained on samples of observed numbers of active
COVID-19 infections, and forecasts are subsequently tested against in-
dependent samples of the data. The Holt-Winters model is drawn
from classical time series analysis and as implied by its name, a triple ex-
ponential smoothing procedure is applied to derive parameters corre-
sponding to the level, trend and seasonality of the time series, which
subsequently are used to make statistical forecasts (Singh et al.,
2020a). The reason for working with such minimal models is threefold.
Firstly, asmentioned above, epidemic forecastmodels rely on uncertain
parameters and cannot in general provide exact COVID-19 predictions.
As noted above they could however be used to provide ranges of trajec-
tories.With our choice of test models, we implicitly assume that predic-
tive skill is principally related to the estimated parameters and not to
the form of themodel. Secondly, andwithin this framework, we explore
the potential of probabilistic forecasting as proposed by several authors.
Compared to the large number of studies focusing on specific forecast
models, probabilistic approaches remain relatively unexplored. In this
paper, we pursue the concept of an “initial condition, single-model en-
semble” from the geosciences, where it is used by, e.g., weather fore-
casters and climate scientists (Haughton et al., 2014). Essentially, we
create a small ensemble of COVID-19 forecast models by sampling dif-
ferent training periods, yielding a set of forecasts that are intrinsically
linked to local phases of the pandemic and to local country conditions
(i.e., fully exploiting our multi-country approach). To our knowledge,
this is the first attempt at using specifically this kind of methodology
for COVID-19 analysis. Using our ensemble-based approach, we quan-
tify the predictive skill of COVID-19 forecasts across the range of under-
lying conditions implicitly represented by the ten countries. In
particular, we put numbers onwhat is defined in the scientific literature
as the “limited short-term forecasting skill” of COVID-19models (Castro
et al., 2020; Wilke and Bergstrom, 2020), quantitatively assessing the
forecasting skill as a function of the number of forecasted days ahead.
Thirdly, we suggest that simplicity goes a long way towards ensuring
that results for the different countries are replicable and
intercomparable. This comes with the significant caveat that at best
our simple models are only likely to be applicable at shorter time scales
as real-life trajectories of COVID-19 progression do not follow simple
paths. Applying them even at intermediate time scales however allows
us to examine how poorly performing ensemble members could influ-
ence, e.g., central estimates based on the full model ensemble. The latter
is an entirely realistic situation often found, e.g., within weather fore-
casting and climate modelling.

In practice, the capacity to model COVID-19 varies between coun-
tries - including the ten countries, we are studying – and existing
models are for obvious reasons optimized for local conditions. Given
the assumed differences in COVID-19 trajectories across our suite of
countries, our choice of models denote general approaches that would
be equally applicable in all environments, model parameters are readily
interpretable, and the two models represent typical modelling philoso-
phies (epidemiological and statistical) currently used for COVID-19 pre-
dictions all over the world.

2. Materials and methods

2.1. Data

The COVID-19 data used in this study was retrieved from the Johns
Hopkins Coronavirus Resource Centre (Johns Hopkins 2020) and from
the Worldometer (Worldometer, 2020) and describes the number of
active infections reported by ten different countries (US, India, Brazil,
Russia, France, United Kingdom (UK), Italy, Spain, Argentina and
Colombia). The data extracted span the period from 22 January 2020
to 28 November 2020.

Population totals for each of the ten countries was extracted from
the World Bank database (https://data.worldbank.org).
3

2.2. Fitting test models to COVID-19 data

To illustrate the performance of our two test models, forecasts were
initially compared with COVID-19 observations within five overlapping
time windows as indicated in Table 1.

The outline of our analysis scheme is shown in Fig. 1. For each time
window, a corresponding Holt-Winters model was first trained on a
120-day subset of the data (reaching beyond the analysed time win-
dows) and subsequently used to provide a 60-day forecast, which was
compared to an independent sample of the data. Analogously, we esti-
mated theparameters for an ensemble of 25 SIRmodels based on sliding
and relatively tightmonthly subsets of the data (see Table S1 in the Sup-
plementary Material). The first SIR model was trained on data from 1
May – 31 May, which were consecutively shifted by one-week (i.e., 8
May – 7 June) when used for training the second SIR model, etc. The
last model was trained on data from 16 October – 15 November. For
each of the five time windows, six of the associated SIR model forecasts
as well as an ensemble mean were compared with independent obser-
vations and with the Holt-Winters forecasts as indicated in Fig. 1.

As shown in Fig. 1, the SIR models considered within each overlap-
ping 60-day analysis period differ with respect to “age”, i.e., the
“newest” model is trained on observed COVID-19 records immediately
preceding the cross-validation period, whereas the “oldest” SIR model
is trained on data that is five weeks behind (and thereby not expected
to capture the most current developments unless the situation would
be stationary). The consideration of gradually “older models” here
serves as means of sampling uncertainty and demonstrating the poten-
tial robustness of our ensemble approach. Evidently, the individual
model performance is dependent on what strategy we use to train and
validate the models. In our study, the use of independent samples en-
sures that our test results are comparable, however, one could easily
make the case for a variant approach for training and validation.

2.3. Holt-Winters modelling

The Holt-Winters method (Holt, 1957; Winters, 1960) comprises a
forecast equation and three smoothing equations — one for the level l,
one for the trend t and one for the seasonal time series component s
with corresponding smoothing parameters α, β and γ. The model pa-
rameters are estimated from observed time series data using,
e.g., least-squares fitting. The Holt-Winters method distinguishes be-
tween two kinds of seasonality: an additive formulation is used when
the seasonal variations are roughly constant through the time series,
whilst a multiplicative formulation is used when seasonal variations
are changing proportionally with the level of the time series. We used
the implementation of the Holt-Winters method provided by the fore-
cast software package (Hyndman and Khandakar, 2008) made for the
R statistical programming environment (R Core Team, 2013). In all the
five cases illustrated on Figs. 2–4, S1–S2we used a 120-day training pe-
riod as the basis for fitting a Holt-Winters model in R, which was then
subsequently used to provide a 60-day forecast (Table 1). We opted
for a 120-day trainingperiod for two reasons: (i) to achieve a reasonable
ratio between the training and evaluation periods of 2/3 to 1/3, and (ii)
to have it long enough that the Holt-Winters model would pick up any

https://data.worldbank.org
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“seasonal” (periodic) components. Periodic components were however
not found, leaving our Holt-Wintersmodels a function only of the level l
and trend t. The confidence intervals (80%, 95%) on the figures below
and in the Supplementary Material reproduce the diagnostics produced
by the R implementation.

2.4. SIR modelling

The SIR modelling discussed above was implemented in R. In this
study we use the basic formulation of the susceptible-infectious-
removed (SIR) compartment model (Rodrigues, 2016; Liu et al., 1987).
In this form, the development of an infectious disease (here: COVID-
19) is expressed by three differential equations:

dS
dt

¼ −
βIS
N

dI
dt

¼ βIS
N

−γI

dR
dt

¼ γI

where N indicates the total population, S is the number of individuals
susceptible to the disease (or alternatively the proportion of the total
population), I is the number of infected individuals and R is the number
of individuals removed from the model. That is, they are no longer sus-
ceptible to infection due to recovery/ immunization or death. In the ba-
sic form used here, the SIR model considers the population to be
homogenous, and that infection of susceptible individuals occurs simul-
taneously (Wu and McGoogan, 2020). We further assumed that the
number of deaths (and births) is negligible with respect to the total
population, and that N was equal to the total country population. The
transmission parameter β represents the transition rate from the
infected to susceptible individuals. Theoretically, β is a function
of the average number of contacts per person per time, multiplied
by the probability of disease transmission in a contact between a
susceptible and an infectious subject. Accordingly SI/N2 is the
fraction of contacts between infectious and susceptible individuals
that result in the susceptible becoming infected. The “recovery”
parameter γ represents the transition rate between I and R
and can be assumed proportional to the number of infectious indi-
viduals (equivalently, the probability of an infectious individual
Fig. 1.Analysis scheme. The blue colors indicate the Holt-Wintersmodel and the green colors th
blue) preceding the beginning of the 60-day forecast period (darker blue). The SIRmodels are tr
green) and then used to forecast the situation 200-days ahead (darker green). An ensemble me
periods overlapping the Holt-Winters forecast (dark green). (For interpretation of the referenc
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recovering during any time interval dt is γ times dt). If an individual
is infectious for an average time period D then γ = 1/D.

For each of the ten countries, we derived 25 SIRmodels (β,γ) using a
least-squares optimization, based on monthly-long training periods
representing a sliding one-week time window starting on 1 May 2020
(see Table S1 in the Supplementary Material, which includes the esti-
matedβ,γ for all countries and allmodels). The relatively shortmonthly
time windows ensure that the SIR models (β, γ) developed directly re-
lates to the current epidemic situation at specific times including the ef-
fects of time-varying interventions. Trial attempts at using shorter
training periods (2–3 weeks) were also carried out (results not
shown). In most cases, observed improvements in short-term forecast
skill were found to be marginal, and it often proved more difficult to
achieve a stable convergence of the least-squares optimization. We
also investigated the use of sliding two-week time windows as means
of generating ensemble members. This was found to produce signifi-
cantly worse results for the ensemble as a whole (not shown). Using
the model parameters derived from the least-squares fits, 200 future
days were simulated for each SIR model.

2.5. Ensemble forecasts

To study the feasibility of a probabilistic, ensemble-based approach,
we calculated an ensemble mean based on forecasted values from the
SIR model ensemble (Table S1). Iteratively, for each week, starting
from July 2020, we average five SIRmodels as indicated in Fig. 1. This re-
sults in a rolling ensemblemean, where for eachweek we add forecasts
from the SIR model that was trained on data up to but excluding that
week, while the “oldest” model drops out. Since the five averaged SIR
models differ only in the (β, γ) parameters, which are estimated from
different training periods, our mini-ensembles are similar to “initial
condition” ensembles (Haughton et al., 2014).

To assess the skill of our (short-term) probabilistic forecast, for each
weekly “mini-ensemble” (five SIR models), we calculated the relative

prediction errors ( prediction−observedj j
observed ) of the ensemble mean forecasts up

to 35 days ahead (Fig. 6).

3. Results

Figs. 1 through 3 compare the performance of our testmodelswithin
three of the time windows mentioned above (see also S1 and S2 in the
e (6) SIRmodels. The Holt-Wintersmodel is trained on the 120-days of observations (light
ained on onemonth of COVID-19 observations based onone-week “slidingwindows” (light
an is calculated based on the average of the SIR models for the 60-day part of the forecast
es to colour in this figure legend, the reader is referred to the web version of this article.)



Fig. 2. Retrospective analyses of 60-day forecasts of COVID-19 progression across ten countries (US = United States of America) from June to August 2020. The red curves indicate the
recorded number of active cases in each country (“observations”). The dark blue curves display the Holt-Winters forecasts with associated 80% (blue) and 95% (light blue) confidence in-
tervals. The dark green curves show the ensemble mean of six SIR models (Fig. 1), whereas the dashed green curves depict the individual SIR model forecasts. The vertical dashed line
indicates the first day of the Holt-Winters forecast and defines the analysis period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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SupplementaryMaterial). The red curves indicate the observed number
of active daily COVID-19 records in the ten different countries
(Section 2.1); the blue curves are the associated predictions from the
Holt-Winters model (with the shaded areas indicating the estimated
80% and 95% confidence intervals respectively; Section 2.3); while the
remaining curves show predictions obtained using the basic SIR model
with parameters estimated from slidingmonthly data sets (Section 2.4).

Considering the first time window (Fig. 2), in six out of ten cases
(Brazil, Russia, UK, France, Italy and Spain) and also partially in the
case of India, the re-forecasts using the time series model fall within
the estimated 80% confidence intervals and in a few instances almost
overlap the observations. The equivalent SIR predictions including the
ensemble mean (dark green curves) in most of these cases compare
less convincingly to the observed behavior or deviate all together
(Brazil, UK). For Brazil, this is partially explained by the observed data
(and hence the training data used for the SIR models) being noisier
than in the other cases. Conversely, Argentina and Colombia the pre-
dicted trends and levels using the Holt-Winters method clearly fail to
capture the observed (near-term) changes in COVID-19 transmission
rates in these countries, as these abrupt changes are not reflected in
the training data, while the ensemble mean of the fitted SIR models
rightly captures the trend. For the US, the Holt-Winters and the
“newest” of the individual SIR forecasts agree reasonably well with the
observations but only for the initial two week period, after which nei-
ther of the individual SIR models, the SIR model ensemble mean or
the time seriest models demonstrate any skill. Again, this can be attrib-
uted to the fact that knowing the “past” trend alone is not enough to
forecast future trends. In general, the ensemble mean seems to perform
better than individual SIR models in reproducing the observed COVID-
19 trajectories.

Fig. 3 shows the equivalent results for the second time window. Ex-
cept for Columbia (where this only holds for the first ~30 days),
5

essentially all of the observations now largely lie within the 80% (US,
Russia, UK, Italy) or 95% (Argentina, Brazil, Italy and Spain) confidence in-
tervals associated the Holt-Winters forecasts - or forecasts are at least
trending the same way (India). For all countries the situation thereby
seems to have been relatively stable in spite of national trends being
very different. The SIR ensemble forecasts generally agrees with the
time series forecasts though with a tendency of underestimating slightly.
Notable exceptions are Brazil (where the noisiness of the training data
leads to highly varying SIR model fits, but where the ensemble mean ac-
tually performs better than the Holt-Winters model); Argentina (where
both the ensemblemean and ensemblemembers follow the observations
well until the number of actives suddenly drop dramatically to a lower
level in early August and then start to rise again; this is probably linked
to changes in the way data was collected in Argentina); and Colombia
where two out of six SIR models correctly predict the right shape of the
curve despite a sharp drop in August (the ensemble mean does not).

The onset of the second wave of COVID-19 infections in Europe is
clearly depicted in the third time window (Fig. 4). For the UK, Italy,
and Russia both the Holt-Winters forecasts and the SIR-based forecasts
clearly underestimate the sudden and highly rising numbers of infec-
tions in these countries. For Spain and France, the observed trend is
clearly captured by both individual SIR models and reflected in the SIR
ensemble mean, albeit in the latter case the observed forecasts eventu-
ally underestimate the observed behavior same as the Holt-Winters
models. For India and Argentina, the agreement with observations for
the Holt-Winters model is fair (close to observations or within the
80% confidence interval) for most of the evaluation period, whereas
SIR (medium- as well as short-term) forecasts are generally completely
off. The same is generally found also for the US, except that here the
Holt-Winters forecasts only keep pace with observed COVID-19 in-
stances for the first few weeks. For Brazil and Columbia it is evident
that variations and potential deficiencies in the training data impact



Fig. 3. Same as Fig. 2, except for July to September.
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the performance of both types of test models. That said, for Columbia
the SIR ensemble mean (and most of the individual models) still ade-
quately captures the observed trend, whereas for Brazil it mimicks the
Holt-Winters forecast.
Fig. 4. Same as Fig. 2, except for October to late November. Note the

6

As expected, we see that larger prediction errors are typically associ-
ated with observed instances of abrupt change (e.g., autumn 2020),
where a curve-fitting approach naturally fails. Overall, the test results
found for France, Italy and Spain exhibit the samegeneral characteristics
shift of the y-axes for several countries compared to Figs. 2–3.
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(Figs. 2–4, S1–S2). However, since all three neighbouring countries
stem from the same (South-Eastern) European region and resemble
each other in many different ways, this is perhaps not surprising. Anal-
ogous similarities are found in the (rather negative) test results from the
UK and US, where individual SIR models as well as the ensemble mean
predictors do not in general account well for the observed rates of
change, and the Holt-Winters forecasts perform only slightly better.
Conversely, for the South American countries Brazil, Argentina and Co-
lumbia our simple testmodels are found todescribe the observed trends
reasonably well between them despite challenges with the observed
COVID-19 data. Roughly the same conclusion applies to India, whereas
in the case of Russia a fairly good agreement in the first and second
time window (Figs. 2 and 3) is replaced by very poor agreement in
the third timewindow (Fig. 4). It is tempting to suggest – specultatively
- that perhaps the abovementioned differences could be attributed to
the difference between developed and developing countries (e.g.
Argentina, Brazil, Colombia and India) and/or to cultural and regional
differences (South America/Asia vs. Western). To validate such a hy-
pothesis, however, is beyond the scope of this paper and would require
a much more comprehensive analysis.

Interestingly, for nearly all countries and all timewindows there are
always at least a fewof the “re-forecasts” using either of the two types of
testmodels,whichdemonstrate some level of skill evenwithin a full 60-
day time horizon, whereas other models completely fail to capture the
right trend. This includes the ensemble average of six SIR models
(Fig. 1), which generally seems to be a decent predictor. On this back-
ground, Fig. 5 compares the results from a generalized rolling ensemble
forecast (dark blue curves with 80% and 95% confidence intervals indi-
cated by blue and light blue colors, respectively) based on five SIR
models (Section 2.5) with observations (red curves). In all ten cases
(Fig. 5) the ensemble mean largely reproduces the observations,
whereas the varyingwidths of the confidence intervals are easily attrib-
uted to, for example the observed inconsistencies in the COVID-19 time
series used for training the forecast models (e.g. Brazil, Argentina,
Fig. 5. Ensemble forecasts of COVID-19 progression from mid-July 2020 to late-November 202
ensemble averages over five models, whereas the colored ribbons are the associated 80% (blue
of active cases in each country (“observations”). (For interpretation of the references to colour
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Columbia). That said, using a rolling ensemblemean in our setup clearly
optimizes short-term forecasting. Hence, the collective results shown in
Fig. 5 seems to indicate that our ensemble-based approach yields decent
and robust short-term forecasting skill.

Fig. 6 shows the relative prediction errors (including the associated
80% confidence intervals) when comparing the rolling ensemble
mean forecasts (Fig. 5) with the observed COVID-19 incidences
(Section 2.5). If one considers a forecast 20-days ahead, the relative
error of the ensemble mean is found to be less than about 20% (plus or
minus about 10%) for six of the ten countries: US, India, Russia, UK,
France, and Spain. For the US, UK and France the relative error of the en-
semblemean stays under 20% even up to 30-days aheadwhile the asso-
ciated uncertainty increases. In India, Russia and Spain on the other
hand both the relative error of the ensemblemean (30–40%) and the as-
sociated uncertainty increase, indicating that forecasting 30-days ahead
has virtually no skill. For Brazil and Colombia the relative error for a
forecast 20-days ahead is about 25–30% with an associated uncertainty
that is slightly higher than for the six countries just mentioned. For Italy
and Argentina, it is higher still and approaches 40–50%. The poor perfor-
mance for these two countries can, however, be explained by Figs. 3–4.
In both analyses, the SIR ensemble mean clearly fails to capture the
COVID-19 trajectories in Argentina due in no small part to inconsis-
tencies in the training data, whereas none of the test models come
close to representing the steeply increasing incidence in Italy in the au-
tumn of 2020 (Fig. 4).

4. Discussion and conclusions

While neither of the two test models explored in our comparative
analyses (Figs. 2–4, S1–S2) demonstrate superior skill in re-forecasting
observed trends and variability across all ten countries, our numerical
experiments, and in particular our trial ensemble forecasts, clearly sug-
gest that COVID-19 predictions can be consistently skillful (Figs. 5–6).
Unsurprisingly, the statistical extrapolation is found to be best suited
0 based on our SIR model ensemble (Section 2.5). The dark blue lines indicate the rolling
) and 95% (dark blue) confidence intervals. The red curves indicate the recorded number
in this figure legend, the reader is referred to the web version of this article.)



Fig. 6. Relative forecast errors as a function of the number of days predicted ahead. The dark blue curves indicate the relative prediction errors ( prediction−observedj j
observed ) of the ensemble means

shown in Fig. 5 as a function of thenumber of dayspredicted ahead. The light blue shading is the associated 80% confidence interval inferred from the relative prediction errors of individual
ensemble members. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for situations, where the transmission rates of the coronavirus do not
change abruptly as was the case in Europe in the last months of 2020.
Thus, in periods where there is abrupt and non-stationary growth in
the number of active COVID-19 cases that cannot be attributed to “sea-
sonal” components, Holt-Winters, ARIMA, and similar statistical curve
fitting approaches should generally exhibit very poor performance
until the new trend and a more stationary situation is picked up.

That said, in spite of the simplicity and evident limitations of the un-
derlying model formulation, our initial condition single-model ensem-
ble forecasts are found systematically to reproduce approx. the right
levels and trends, and they generally outperform any of the individual
model forecasts (except for a few cases where the ensemblemean is ac-
tually not strictly the best overall predictor). This confirms the potential
of probabilistic COVID-19 forecasting schemes in a quantitative sense -
whether based on single or multiple models – as means of coping
with the inherently large and compounding uncertainties (Wilke and
Bergstrom, 2020). It is quite possible that this conclusion is mainly a re-
sult of the way, we construct our test ensemble. However, emphasis on
the ensemble mean is known from other key research areas, in particu-
lar climate science, where it is commonly noted that the ensemblemean
(i.e., global mean surface temperature) is found to perform better than
any ensemble member in comparison to observations (i.e., observed
global mean surface temperature) (Annan and Hargreaves, 2011). In
this view, the current study could serve to remind us that in terms of
providing the most robust model-based information on COVID-19 pro-
gression, there is arguably a lot of potential but also a lot of research and
learning to be done on how to construct optimal probabilistic forecasts;
and that knowledge from other disciplines could help.

Due to the inherently stochastic and constantly changing dynamics
of COVID-19 transmissions at local levels, which is compounded by a
lot of different factors including the nature of non-pharmaceutical inter-
ventions, several authors including Castro et al. (2020) propose that
8

only short-term predictions can be reasonable accurate - generally
without providing quantitive numbers on what that means, since this
is likely to be model-dependent and situational. Short-term forecasting
is arguably amatter of extrapolation and trend detection, which is what
simple, parametric models excel at. In this view, our study suggest
(Fig. 6) that about 20 days may not be an unreasonable definition of
“short term”, although we do see individual examples of comparable
performance up to 30–35 days, and also instances where the predictive
skill is less than 2 weeks amongst our cohort of numerical experiments.
This is asserting a ~20% relative prediction error, which seems to be in
line with what is found from the recent modelling studies cited above
using both simple and highly complex models. This is not meant to
imply that simple models are superior to more complex, epidemiologi-
calmodels on these time scales! On the contrary, it is important to point
out that our simple test models and equivalent parametric forecast
models comewith significantweaknesses; including that they don't ex-
plicitly take into account the effect of known developments or planned
interventions thatmight affect future transmission dynamics and hence
the outcome in terms of estimated numbers of new COVID infection.
This is obviously a severe limitation of their use as decision-support
tools. Rather, it is probably more reasonable to consider simpler models
as means of exploring the overarching issue of predictability – as in the
current paper - and for benchmarking (more realistic) COVID-19 fore-
cast models used operationally or academically.

The fact that we have replicated the same retrospective model anal-
yses across ten different countries representing different climates, sea-
sonality and in slightly different phases of the COVID-19 pandemic
grant us a unique possibility to study the skill of COVID-19 forecasting
in a multi-variate perspective, including aspects of data availability,
data quality, the different temporal evolution of the spread of COVID-
19 under the compound influence of a variety of environmental and
local factors, etc. While the test modelling performed in our study
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obviously cannot stand alone, further studies along this direction – in-
cluding detailed attribution of the different drivers, which has so far
been primarily done from a univariate perspective, e.g., for select envi-
ronmental parameters like temperature, could provide important in-
sights to improve – if not prediction models directly – then our
understanding of the uncertainties involved and contribute to the de-
velopment of new robust and probabilistic methodologies and tools
for projecting the continued development of COVID-19 infections.

5. Perspectives

As of March 2021, the expected “second” (Xu and Li, 2020) and
“third waves” of the COVID-19 pandemic were still lingering on or on
the rise, in particular in some European countries, driven by new and
more infectious COVID-19 variants, including B.1.1.7 (discovered in
United Kingdom in the autumn of 2020) and B.1.351 (discovered in
South Africa in October 2020). Meanwhile, pharmaceutical interven-
tions became increasingly available. Looking at recorded numbers
across the ten countries addressed in our study tell an intriguing story
of how the pandemic continues to manifest in quite different ways
whether one is looking at, say, Europe, South America, North America
or India, e.g., as affected by seasonal variations, policies and different
levels of pharmaceutical and non-pharmaceutical interventions. In the
end, even considering the widespread application of vaccines, implica-
tions are that theworld (and theworld economy)will still for consider-
able timehave to account for and copewith a coronavirus – and the new
variants thereof - thatmay be strongly present in some countries and/or
parts of the world and under control in others. Hence, increased future
international collaboration on developing and evaluating improved
COVID-19 modelling and forecasting techniques, e.g., collaborative
model intercomparison studies, could be of the outmost importance to
help us cope with the current pandemic - and those to come.
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