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i 

ABSTRACT 

Deep space exploration is key to understand the origin of our Solar System and 

address the Earth impact risk. Space Trajectory Design (STD) has evolved and 

incremented in complexity due to the interest within the space community to 

explore multiple celestial bodies in a single mission. This thesis focuses on an 

Asteroid Tour Trajectory in the context of the CASTAway mission. CASTAway 

is a mission proposal for European Space Agency’s 5th call of medium-size 

missions to explore the Asteroid Main Belt. 

The objective is not to find the global optima but find feasible sequences of 

asteroid fly-bys, as per feasible tours of 12 asteroids of a total ∆v of less than 

9 km/s is meant. The complexity of the problem is given by the large number of 

possible permutations of 12-asteroid tour solutions – even with a reduced 

catalogue of 158 asteroids – and because of being a Mixed-Integer Non-Linear 

Programming (MINLP) problem. Because of this, metaheuristics are used to 

tackle the problem. A novel problem modelling that achieves uniqueness on the 

cost paths of the Search Space and a novel ACO solver is presented, with the 

general objective for the whole CASTPath project of finding a robust low 

computational heuristic. Due to the scientific interest on having diversity in the 

sequences, a similarity measurement tool is also developed. 

Several test cases with different ACO tuning parameters are run on a High 

Performance Computer. Results show that this algorithm outperforms the 

previous heuristics on CASTPath obtaining the lowest ∆v (7.27 km/s) achieved 

by an heuristic and finding multiple feasible sequences (97 in 1 h). Moreover, 

the new problem modelling has allowed within the research group, to find the 

global optima (6.98 km/s) for this asteroid catalogue by Dynamic Programming. 
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1 INTRODUCTION 

1.1 Space Trajectory Design 

In the recent years, there has been a considerable growth on the research and 

development of missions for the deep space exploration. These missions are of 

great interest for the scientific community to understand the origin of our Solar 

System, essential for the human survival in the sense of analysing Earth 

asteroid impact risk, and necessary for future interplanetary travels. 

Space Trajectory Design (STD) has evolved and incremented in complexity due 

to the interest within the space community to explore multiple celestial bodies in 

a single mission. A mission with a single target is normally optimised by 

minimising the mass of propellant and/or the Time of Flight (ToF). A multiple-

body tour is more challenging considering the dynamics of the celestial bodies, 

and variability depending on the launch dates and transfer times. 

Some examples of the different types of problems that exist within the STD field 

are Active Debris Removal (ADR), targeting various dead satellites to capture in 

the trajectory; Multiple-gravity Assist (MGA) that includes several swing-bys of 

planets to gain energy towards the goal destination; and asteroid exploration. 

This thesis focuses on this last STD type problem in the context of the 

CASTAway mission. 

1.2 CASTAway asteroid tour mission 

CASTAway is a mission proposal for European Space Agency’s (ESA) 5th call 

of M-class, medium-size, missions (M5) to explore Solar System’s Asteroid 

Main Belt (AMB) [1]. CASTAway stands for Comet and Asteroid Space 

Telescope - Away [in the AMB], which is a small telescope to be launched by 

2029+. The telescope maps variations in composition and size distribution of 

several thousands of point source objects (at long-range scale), while 

performing a minimum of ten asteroid flybys (doubling the number of asteroids 

that a single mission has been capable to fly by) to detect small celestial objects 
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(~10 m). This mission aims to provide comprehensive data on the AMB for the 

study of Solar System evolution theories [1], [2]. 

The CASTPath project was born under the CASTAway feasibility study for the 

mission trajectory design. Sánchez et al. [2] successfully demonstrated the 

feasibility of the mission, but noted that further improvements could be done in 

the trajectory design optimisation. 

1.3 Optimisation and Metaheuristic techniques 

The CASTAway trajectory design is a combinatorial problem, where the best 

sequence of asteroids from a given number of combinations is sought. 

Considering the large amount of asteroids within the AMB, the number of 

possible combinations is extremely large to be tackled in an analytical 

conservative way. This is why the use of heuristic and even more, metaheuristic 

algorithms to solve STD projects is spread even though much research needs 

to be done on this field. 

The choice of the optimisation problem solver depends on the problem nature 

itself. Metaheuristic techniques and analytical solvers should be compared for a 

problem in particular. Apart from that, one can have an idea of which solvers will 

perform better than others, but it is always necessary to perform some analysis 

and comparison among the solvers and within one solver itself among different 

tuning parameters. This is the reason why the CASTPath project aims to 

compare different heuristics and analytical solvers for the STD [3]. 

1.4 Objectives and Scope of the Thesis 

This thesis focuses on the development of a novel solver with the general 

objective for the whole CASTPath project of finding a robust low computational 

cost CASTAway trajectory design solver. Following the reasoning presented in 

1.3. Optimisation and Metaheuristic techniques, the thesis will also analyse and 

compare different metaheuristic algorithms and approaches of previous work in 

CASTPath to solve the problem. The objective is not to find the global optima 
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but find feasible sequences of asteroids. As per feasible sequences of 12 

asteroids of a total ∆v of less than 9 km/s is meant. 

A filtered database of 158 asteroids of Minimum Orbital Intersection Distance 

MOID ≤ 0.05 AU will be used for all the simulations, which was created by 

previous researchers in CASTPath project. The Ant Colony Optimisation 

metaheuristic will be used following the best results on CASTPath so far. Thus, 

the scope of the thesis comprises the following specific objectives: 

• A new more exact and unique problem formulation that avoids the 

splitting of the problem into an approximated search and an optimal 

refinement, reducing the computational time of the solver 

• The development of a robust solver for CASTPath 

• A novel implementation of the Ant Colony Optimisation metaheuristic 

algorithm on CASTPath 

• The development of a comparison tool to measure the diversity of the 

solutions encountered by each solver in CASTPath 

• The comparison of heuristic and deterministic algorithms for CASTPath 

1.5 Structure of the Thesis 

This thesis is structured as follows: Sections 2 and 3 present a state-of-the-art 

review on first, multi-body trajectory design (2.1) and optimisation and 

metaheuristic techniques (2.2), and second, on previous work on the trajectory 

design CASTPath (2.3) and CASTAway problem (3.1). Section 3 also includes 

the problem baseline (3.2), drivers and constraints (0) derived from the 

state-of-the-art of CASTPath and a justification on the use of metaheuristics to 

solve the problem (3.3). The ACO standard definition is given later in the 

document (4.5.1) along with the proposed ACO approach (4.5.2, 4.5.3) for the 

ease of read. 

Section 4 presents the proposed approach for the modelling of the Search 

Space (4.1), the Score Matrix definition (4.2) and pruning (4.3), and a definition 
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of a Similarity Measure score (4.4). Section 4 ends with the Ant Colony 

Optimisation algorithm used to solve the CASTPath problem (4.5). 

Section 5 presents the simulations approach. The different cases parameters 

set-up is discussed and justified in 5.1. The different test cases whose results 

will be shown in section 5 are summarised in section 5.2. Before the results, the 

different analysis tools are defined in 5.3, and the computational tools used are 

specified in 5.4. 

Section 6 presents the results for all the test cases and an individual analysis is 

done per test case. Section 7 gives a further discussion on first, a global 

analysis of the results (7.1) and second, a comparison with previous work in 

CASTPath (7.2). The thesis ends with conclusions and future work in section 8. 

Finally, appendices include a table with the definition and value of the variables 

used within all the report (Appendix A8.2Appendix A) and the ACO backtrack 

algorithm diagram (Appendix B). 
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2 MULTI-BODY SPACE TRAJECTORY DESIGN 

This section aims on analysing the type of problem in hand based on the state-

of-the-art on multi-body Space Trajectory Design, to continue with a review on 

the possible optimisation techniques found on the literature to tackle this type of 

problems. The section finishes with a summary on the different solvers used on 

previous work on the CASTPath project. 

2.1 Asteroid Tour Trajectory Design 

Up to date, a total of 14 asteroids have been successfully visited in a total of 10 

missions [4]. Several propositions on asteroid tours have been submitted in the 

Global Trajectory Optimization Competition (GTOC) [5] as [6], [7]; other 

examples of asteroid tour mission design can be found in [1] (for the 

CASTAway trajectory design) or [8], [9]. An important consideration for this 

problem is that an asteroid tour, referring to a space trajectory that flies by not 

one but multiple celestial bodies, implies a high level of optimisation complexity. 

This section analyses the two types of problem an asteroid tour trajectory 

design is: a Combinatorial Problem (CP) and a Mixed-Integer Non-Linear 

Programming (MINLP) problem. 

2.1.1 Travelling Salesman Problem (TSP) 

Combinatorial Problems are often modelled with a Search Space which is a grid 

of connected nodes. A very common example of CP is the Travelling Salesman 

Problem (TSP) that is about a salesperson that has to visit a given number of 

cities, which will be the nodes, that are connected by roads or paths of a given 

length. For a better ilustration of the problem, the MATLAB TSP example code 

available in [10]. Figure 2-1 shows the cities to be visited as blue dots within the 

Search Space (US in this example, limited in red) and the starting point or 

hometown of the saleperson in yellow. 
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Figure 2-1. TSP: Cities or nodes to visit (in blue) in the Search Space limited by 

the US region (in red) [10] 

The length of each path can be related to the fuel consumption of the 

salesperon’s car, or the time to travel, which will be the cost of the path. The 

salesperson has to start from his hometown, visit each city once and return 

back home. As an optimisation problem, the cheapest (in fuel consumption) or 

shortest (in time of travel) path or tour wants to be found. 

The high complexity of the problem can be appreciated when one starts listing 

all the possible combinations of paths to find the cheapest tour. Figure 2-2 

shows the solution to the problem. There exist many techniques to solve the 

TSP, a description of the optimisation techniques is given in 2.2. Optimisation 

techniques on Asteroid Tour Trajectory Design. 
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Figure 2-2. TSP: Lowest cost tour [10] 

Moving the TSP example to the problem in hand, the cities are the asteroids 

that will be the nodes of the Search Space or Search Grid. Each combination of 

asteroids will have a cost which can be the Δv or the Time of Flight (ToF) which 

normally wants to be minimised. The cost can be calculated by a given function 

which will be the objective function or fitness function to be minimised. The 

objective function of CASTPath will be further explained in 3.2.2. Objective 

function: ∆v. 

2.1.2 Mixed-Integer Non-Linear Programming (MINLP) Problems 

As introduced in this section, multiple fly-by trajectory design problems are high 

complexity optimisation problems. In concrete, an asteroid tour trajectory design 

is a Mixed-Integer Non-Linear Programming (MINLP) problem, also known as 

Hybrid Optimisation Control Problems (HOPC). MINLP problems are one of the 

most general modelling paradigms in the mathematics field. It combines the 

difficulties of Mixed-Integer Linear Programming (MILP), containing both 

discrete and continuous variables, and of Non-Linear Programming (NLP), 
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which are non-linear in the objective function and/or in its constraints [11]. 

MINLP problems are mathematically defined as follows [11], [12]: 

min     𝑓(𝒙, 𝒚) ∀ {
𝒙 ∈ 𝒳 ⊆ ℝ𝑛

𝒚 ∈ 𝒴 ⊆ ℤ𝑛
} , 

 

subject to                     
𝑐𝑖(𝒙, 𝒚) = 0  ∀𝑖 ∈ [1,𝑚]

𝑐𝑖(𝒙, 𝒚) ≤ 0  ∀𝑖 ∈ (𝑚, 𝑝]

 (2-1) 

Where 𝑓 and 𝑐𝑖 are continuosly differentiable functions, being 𝑓 the objective 

function to be minimised and 𝑐𝑖 the constraint functions of the problem,           

𝑐𝑖 ∶ ℝ
𝑛 → ℝ. 𝒙 and 𝒚 are the continuous and discrete variables contained in the 

sets 𝒳 and 𝒴, respectively. The equality contraint subset has a cardinality of 𝑚 

and the inequality constraint subset has a cardinality of 𝑝 −𝑚, (𝑚, 𝑝) ∈ ℕ.    

𝒳 ⊆ ℝ𝑛 is a bounded polyhedral set1 and 𝒴 ⊆ ℤ𝑛 is the set of integer variables. 

Lower and upper bounds 𝑙 ≤ 𝑐𝑖(𝒙, 𝒚) ≤ 𝑢 or maximisation functions can also be 

included [11]. 

MINLP has a wide range of applications, within which Space Trajectory Design 

(MINLP-STD) stands out for the CASTPath project. The complexity of the 

problem has led to deep analysis on MINLP solvers on the research community. 

Schlueter [13] proposes MIDACO, a MINLP with ACO and Oracle Penalty 

Method for challenging space problems. Shlueter et al. [14] applied the solver, 

among other space applications, to ESA Advanced Concept Team global 

trajectory optimisation problems and to an interplanetary space mission design 

to Jupiter. Other space trajectory design modelling by MINLTP can be seen in 

Bellome et al. [15], where the application is Multiple-gravity assist (MGA) 

trajectories of planet fly-bys, or Chai et al. [16], for the optimisation of a 

constrained trajectory of space manouvre vehicles. 

 

1 A set in ℝ𝑛 is said to be polyhedral if it is the intersection of a finite number of closed half 

spaces [44]. 
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2.2 Optimisation techniques on Asteroid Tour Trajectory 

Design 

After analysing the types of problem of an asteroid tour trajectory design, this 

section presents the different optimisation techniques in the literature and 

studies the possible implementation of different types of solvers. 

2.2.1 Deterministic and stochastic solvers 

MINLP problems are solved by optimisation algorithms. Optimisation algorithms 

can be classified into three main branches (see Figure 2-3): exact methods (or 

deterministic), heuristic methods and metaheuristic methods (these last two are 

stochastic).  

Deterministic or exact methods are “determined” to find a unique solution or 

output to the problem given a certain number of known inputs, if an only if the 

problem itself is deterministic [17]. As a very simple example, a deterministic 

solver can be the sum of two input variables say, 𝑥 and 𝑦, which give the output 

𝑧. Given 𝑥 = 5 and 𝑦 = 20, the output 𝑧 is determined to be 25, 𝑧 = 𝑥 + 𝑦 = 25. 

Stochastic or probabilistic methods, on the contrary, do not give a determined 

output as one or more of their elements are random. Thus, for the given inputs, 

the solver can output several different results [17]. Following the previous 

example, take that the solver now, instead of a simple sum, is the sum of a 

random number between 0 and 1 and the two inputs: 𝑧 = 𝑟𝑎𝑛𝑑 + 𝑥 + 𝑦. For the 

previous fixed given inputs, this solver now can give many numbers between 25 

and 26, being non-deterministic. 

It is important to note that there exist several randomness distributions, the 

most common one being the normal distribution. The randomness applied to the 

stochastic solver should follow the statistical distribution of the nature of the 

problem. Types of different statistical distributions can be seen in [18]. 

For this thesis, due to the high complexity of the problem, metaheuristic 

techniques will be used. However, both deterministic and stochastic techniques 

have been used to solve MINLP [19]. Some examples of deterministic 
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techniques are Outer Approximation (OA) [20], [21], Branch and Bound (BB) 

[22], [23], and Generalised Benders Decomposition (GBD) [24]. 

Stochastic solvers are used to solve MINLP because of the non-linearity on the 

fitness function (the function that gives a score to the possible solution) decision 

variables [11]. The most common ones are Genetic Algorithms (GA) [25] or Ant 

Colony Optimisation (ACO) [26] and Particle Swarm Optimisation (PSO) [27], 

which both come inside the category of Swarm Intelligence (SI). 

2.2.2 Metaheuristic algorithms 

A definition of heuristic by Kenny et al. [28] is given as “the algorithm designed 

to solve a problem in a faster and more efficient fashion than traditional 

methods by sacrificing optimality, accuracy, precision, or completeness for 

speed”. Metaheuristics can be seen as solvers that go beyond the heuristic, to 

solve problems for which there does not exist the best or most efficient solver. 

While heuristics are designed to solve a specific problem type, metaheuristics 

can be adapted and solve any problem. Heuristics (where metaheuristics can 

be included) in general do not guarantee global optima, but they find sufficiently 

good solutions for cases when the complexity of the problem is very high, there 

are not enough inputs, or the computational time wants to be limited. 

Most of metaheuristic algorithms are inspired by nature: swarms or social 

animals like ant colonies in ACO, fireflies’ communication in Firefly Algorithm 

(FA) or general swarm behaviour in PSO; evolution strategies as genetic 

evolution in GA, the obligate parasitism of cuckoo birds in Cuckoo Search (CS) 

or Coral Reefs Optimisation (CRO), etc. The algorithms imitate the intelligence 

of nature to apply it as an optimisation solver of many types of problems. Figure 

2-3 shows a full classification of several metaheuristic algorithms, inside the 

3-branch classification of optimisation algorithms. This thesis will use the Ant 

Colony Optimisation, which is one of the principal solvers used to solve TSP. 

The algorithm is introduced later in the document, in 4.5. Ant Colony 

Optimisation metaheuristic, followed by the proposed novel ACO solver for 

asteroid tour trajectory design. 
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Figure 2-3. Classification of Optimisation algorithms, Metaheuristics 
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Other types of heuristics considered to tackle the CASTAway tour problem are: 

• Multitasking: Multiform optimisation uses multitasking to solve one 

problem by defining different formulations [29]. For CASTPath, each 

formulation could be the different asteroid sequences, being used to 

solve one problem as different problems reducing computational time. 

• Multimodal optimisation: This optimisation technique is used to seek 

multiple solutions, or local minima [30], [31], which is interesting for the 

problem in hand to give several asteroid sequences solutions to the 

scientific researchers. 

• Novelty search: As the name describes, this algorithm aims for novelty or 

diversity in its search while evaluating the solutions based on their 

k-nearest neighbours [32]. This is again, interesting for providing not only 

feasible but diverse solutions. 

• Multi/Many objective optimisation: These algorithms evaluate the 

solutions considering more than one objective. This approach was 

considered to solve the problem that Tena predicted in his thesis [33] on 

the prompt selection of very distanced asteroids. This problem will be 

further discussed with the chosen metaheuristic in 4.5.3. Multiobjective 

formulation of ACO. 

2.3 Previous work on CASTPath 

Within the CASTPath project for the mission analysis of the CASTAway 

mission, a toolbox on MATLAB was developed which has been longer extended 

in this thesis. The mission trajectory proposal by OHB System AG and Dr 

Joan-Pau Sánchez Cuartielles stablished the baseline for the toolbox, that was 

further developed by Curzi [34] and later, by Tena [33] and Bellome et al. [3]. 

Curzi [34] provided a filter of the asteroid database based on Minimum Orbital 

Distance (MOID) time of the asteroids that is longer presented in 3.2.1. Filtering 

by MOID and baseline Earth-Mars leg.  
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Sánchez et al. [2] implemented a standard GA using the MATLAB bult-in 

function to choose among different transfer strategies to reach to the AMB. The 

best transfer was chosen to be an Earth-Mars sequence (one Mars gravity 

assist) that was further investigated later by Tena [33] to choose a concrete 

Earth-Mars leg, the details on this will be presented in 3.2. Problem Baseline. 

In the same work, Sánchez et al. [2] analysed multiple fly-by asteroid 

sequences options by splitting the problem into two subproblems: 

• P1: A discrete combinatorial problem, solved with a Branch and Bound 

deterministic technique, to find feasible sequences of 10 asteroids fly-bys 

• P2: A continuous optimisation problem that aims on minimising the Δv of 

P1 sequence outputs by choosing the best dates for each fly-by. 

Tena [33] took the same problem structure approach and solved the problem 

with a MOID filter of 0.05 AU asteroid database and looking for sequences of 12 

asteroids. His thesis was focused on analysing different heuristics for the P1 

subproblem, given an approximation of the asteroid legs Δv that was then 

refined by the P2. The heuristics compared were: GA, ACO, ACO with Tabu of 

legs of more than 1 km/s, ACO with the Tabu and GA. He obtained the best 

results on CASTPath till the moment for the last solver case2 for an execution 

time of 1 h in Cranfield University’s HPC of 7.6962 km/s. 

Tena [33] also explained the strong dependency of the Δv between asteroids 

and the possibility of constructing a score matrix. This was disregarded because 

of the dependency of the previous asteroids and therefore, the non-uniqueness 

of the cost of the asteroid legs. However, this possibility was further analysed in 

this thesis where a construction of a Score Matrix is achieved, which will be 

presented in section 4.2. 

Finally, Bellome et al. [3] found the global optimum to the problems for different 

MOID thresholds, based on Dynamic programming. This data will be used to 

analyse the solutions found in this thesis with the proposed solver. 

 

2 Note that there is a typo in the ACO Tabu score in [33]. The best Δv of this solver is 7.84 km/s. 
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3 PROBLEM STATEMENT 

This section provides the background and baseline of the problem being 

analysed. Section 3.1 defines the CASTAway asteroid tour optimisation 

problem and its specific objectives. 3.2. Problem Baseline, enunciates all the 

assumptions, details the baseline Earth-Mars transfer and defines the objective 

function. Section 3.3. Combinatorial Problem aims at demonstrating the 

reasoning behind the use of metaheuristics to solve the STD problem and the 

last section 0 explains the main drivers and constraints to tackle the problem. 

3.1 CASTAway asteroid tour optimisation problem 

CASTPath is a computational tool for Mission Analysis and Trajectory Design 

project that aims on studying the feasibility of CASTAway mission. The toolbox, 

coded in MATLAB, consists of several astrodynamics and mission analysis 

functions that analyse different possibilities of multiple asteroid fly-bys, aiming to 

obtain several attractive tour options for the CASTAway mission: low-energy 

multiple fly-by asteroid tours of low Time of Flight (ToF). 

The asteroid database used is called CATABC by Curzi [34] that contains 

information about 101,993 asteroids of the Asteroid Main Belt. CATABC is a 

pruned asteroid-belt database from the initial 600,000 asteroids in the online 

available HORIZON catalogue in the JPL Small-Body Database [35]. The 

database is pruned by a threshold of 2 km/s for the fly-by relative velocity. For 

more details on the CATABC database refer to Curzi [34]. 

3.2 Problem Baseline 

In order to analyse as many celestial bodies as possible, the CASTAway 

trajectory needs to be designed as to maximise the time the telescope spends 

within the AMB, so maximising the ToF within the AMB. However, at the same 

time, the total ToF and the ∆v are aimed to be minimised. Thus, the ∆v will be 

minimised and the ToF will be limited by an upper threshold. Previous work on 

CASTAway tour design [2] show that an Earth-Mars leg helps increasing the 
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time spent within the AMB, as the Mars swing-by is used to increase the 

spacecraft energy. 

A multiple asteroid tour problem is a MINLP (introduced in 2.1.2. Mixed-Integer 

Non-Linear Programming (MINLP) Problems), that can be modelled therefore 

as to minimise the cost function of the fly-bys’ total ∆v ∆𝑣𝑡𝑜𝑡 with an upper 

bound constraint in the ToF of 𝑇𝑜𝐹𝑚𝑎𝑥. The discrete variables correspond to the 

asteroid targets 𝐴𝑘 for the fly-bys of the spacecraft (where 𝑘 is the MOID time 

index) and the continuous variables 𝒕 are the ToF of each tour leg. The non-

linearity of the problem is due to the motion of the spacecraft and the targets 

with respect to the Sun, being a two-body gravitational problem.  

Following the general MINLP definition (2-1), the MINLP-STD problem can be 

defined as: 

min     ∆𝑣𝑡𝑜𝑡 = 𝑓(𝑨, 𝒕) ∀ {𝑨 ∈ ℤ
𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 +1 

𝒕 ∈ ℝ𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 +1

} 

where 𝑨 = {𝐴0, 𝐴1, … , 𝐴𝑚, … , 𝐴𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡

},

                           𝐴𝑚 = 𝐴𝑘 ∈ ℤ
𝑛𝑎𝑠𝑡,𝑡𝑜𝑡+1 | 𝑘 ∈ [0, 𝑛𝑎𝑠𝑡,𝑡𝑜𝑡]

          𝒕 = {𝑡0, 𝑇𝑜𝐹1, … , 𝑇𝑜𝐹𝐿𝑡𝑜𝑢𝑟𝑎𝑠𝑡 }

subject to         ∑ 𝑇𝑜𝐹𝑖
𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡

𝑖=1
≤ 𝑇𝑜𝐹𝑚𝑎𝑥

 (3-1) 

Where 𝑨 is the set of asteroids of a tour of length 𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 , where the first element 

is always Earth, 𝐴0 = 𝐴0 (and the rest of elements are ordered by the sequence 

index 𝑚. 

However, it needs to be highlighted that the aim of CASTPath is not to find the 

global minimum, but to find a set of feasible tour solutions to the 

CASTAway problem. In this way, the scientific community can choose an 

interesting set of asteroids among different low-cost fast asteroid tour 

trajectories, making a trade-off between the scientific interest and the STD 

optimality. Therefore, this problem can be better seen as a Constraint 

Satisfaction Problem than as a Global Optimisation Problem, with the 

constraints that will be presented in 0.   
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Drivers and constraints. 

As mentioned in 2.1.2. Mixed-Integer Non-Linear Programming (MINLP) 

Problems, MINLP-STD are very challenging problems to solve. In the next 

subsections some assumptions are made so that the problem is simplified. 

3.2.1 Filtering by MOID and baseline Earth-Mars leg 

The ∆𝑣 is the difference in velocity the spacecraft needs to achieve in order to 

change its trajectory at a certain instance to intersect the target asteroid orbit at 

its Minimum Orbital Intersection Distance (MOID) time. The MOID is the 

minimum distance between the nearest two points of two different orbits [36]. 

For a given inclined asteroid orbit, the MOID would be more particularly defined 

as the distance between the point at which the asteroid orbit intersects the 

orbital plane of the initial trajectory of the spacecraft, and the closest point on 

the spacecraft’s orbit. 

Following previous work on CASTPath by Tena, and in order to compare the 

results, the same threshold of 𝐌𝐎𝐈𝐃 ≤ 𝟎. 𝟎𝟓 𝐀𝐔 is chosen (see Tena [33] for 

more details). However, other thresholds can be applied in the filtering prior to 

the solver as future work. This pruning lowers the number of asteroids from the 

initial 101,993 to 𝒏𝒂𝒔𝒕 = 𝟏𝟓𝟖 asteroids. Thus, the baseline Earth-Mars leg is the 

following: 

Table 3-1. Baseline Earth-Mars leg from [33] 

Launch date Time of Flight (ToF) Wet Mass 

24/12/2030 12:00 GMT 
(11,315 MJD2000)  

800 days  1,827 kg  

The MOID time 𝑡𝑀𝑂𝐼𝐷 is defined in this project as the epoch at which the 

asteroid reaches its MOID. It is assumed that the MOID time is the best epoch 

to fly-by the asteroid. Following this reasoning, all the asteroid encounters 

will be analysed at their corresponding MOID time within the 𝐌𝐎𝐈𝐃 ≤

𝟎. 𝟎𝟓 𝐀𝐔 threshold. All the asteroids in the catalogue will be ordered in MOID 

time and the MOID time index will be defined as the ascending chronological 
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order resulting indices. Asteroid 0 will be Earth, the departing point for all the 

possible tour sequences, asteroid 1 will be the asteroid with the lowest MOID 

time and asteroid 158 the asteroid with the highest MOID time. 

3.2.2 Objective function: ∆v 

With this structure of the problem, where a threshold of the ToF is applied, the 

objective function can be reduced to minimise the total ∆v: ∆𝑣𝑡𝑜𝑡. Each leg is a 

Lambert Arc whose cost will be the required change in velocity ∆v to follow it: 

the norm of the difference between the velocity vector at the arrival of the 

asteroid and the velocity vector of departure at this point, i.e., at its MOID time. 

Figure 3-1 illustrates the spacecraft trajectory in 2D between to asteroids of 

MOID time indices 𝑗 and 𝑘 with the arrival vector �⃗�𝑗,𝑎𝑟𝑟𝑖𝑣𝑎𝑙 and departure vector 

�⃗�𝑗,𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 from asteroid 𝑗 and the ∆v of the leg given by: 

∆𝑣𝑙𝑒𝑔 (𝑗,𝑘) = |�⃗�𝑗,𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 − �⃗�𝑗,𝑎𝑟𝑟𝑖𝑣𝑎𝑙| (3-2) 

 

Figure 3-1. 2D sketch of the s/c trajectory and ∆v between asteroid j and k 

After the MOID filtering, and knowing that each asteroid 𝐴𝑘 has a unique MOID 

time, the objective function of the MINPL-STD problem is simplified to the 

following expression: 

min     ∆𝑣𝑡𝑜𝑡 = 𝑓(𝐴𝑘), ∀𝐴𝑘 ∈ 𝒢 ⊆ ℤ
𝑛𝑎𝑠𝑡+1 | 𝑘 ∈ [0, 𝑛𝑎𝑠𝑡] (3-3) 
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3.3 Combinatorial Problem 

As introduced in 2.1. Asteroid Tour Trajectory Design, the problem in matter is a 

Combinatorial Problem, where the solutions are combinations of the different 

elements of the Search Space, i.e., combinations of asteroids. As the asteroids 

are ordered in MOID times, the order of the combinations matter, being the tour 

sequences non-repeated permutations of the list of asteroids. The number of 

non-repeated permutations of 𝑛 elements (asteroids) for 𝑘 long sequences (or 

number of visited asteroids) is given by:  

𝑃(𝑛, 𝑘) =
𝑛!

(𝑛 − 𝑘)!
 (3-4) 

The provided catalogue contains a total of 101,993 asteroids in the AMB. 

Aiming for a tour of 𝑘 = 𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 = 12 asteroids, the total number of permutations 

with 𝑛 = 𝑛𝑎𝑠𝑡,𝑡𝑜𝑡 = 101,993 is 𝑃(𝑛𝑎𝑠𝑡,𝑡𝑜𝑡, 𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 ) ≈ 1.27 × 1060. If solving 12 

Lambert-Arcs and one Mars swing-by, i.e, one tour sequence, takes 1 ms [33], 

it would take 4.02 × 1015 years for a full exploration of all the possible 

sequences in the catalogue. As an example for comparison, the universe is 

nearly 1.4 × 1010 years old. Therefore, a full exploration by means of an 

exact method is not feasible. 

As introduced in the previous section 3.2, filtering the asteroids with a MOID 

bigger than 0.05 AU reduces the database to 158 asteroids. For a sequence of 

𝑛 = 𝑛𝑎𝑠𝑡 = 158 and 𝑘 = 𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 = 12 there exist a total of 𝑃(𝑛𝑎𝑠𝑡 , 𝐿𝑡𝑜𝑢𝑟

𝑎𝑠𝑡 ) ≈

1.58 × 1026 possible permutations, which is still, a too large number of 

evaluations. Thus, even if the problem definition has been simplified as (3-3), 

still it is a very complex MINTP problem to solve. 
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3.4 Drivers and constraints 

The numbers shown in the previous section 3.3 illustrate the complexity of the 

problem and justify the use of metaheuristics, introduced in 1.3. Optimisation 

and Metaheuristic techniques, to solve the CASTAway trajectory design. 

Therefore, the focus of CASTPath has been extended to the comparison of 

different solvers to achieve the most robust, low computational cost algorithm 

to find several local optima to the problem. Note that heuristics do not 

guarantee finding the global optimum [37]. 

As already stated in 1.4. Objectives and Scope of the Thesis, this thesis has the 

main objective of developing a solver to compare and, ideally, improve previous 

work in CASTPath. Bearing this in mind, the two requirements or constraints for 

the project are: 

REQ-001 Sequences shall contain 12 asteroids of increasing MOID 

REQ-002 The total ∆v cost of the tour shall be of 9 km/s as maximum 

Even if the requirement for CASTAway mission is to find sequences of at least 

10 asteroids, REQ-001 sets it to 12 asteroids following Tena’s work on 

CASTPath [33]. REQ-002 is set at a threshold of 9 km/s based on previous 

work on CASTPath by Mohd [38] and Tena [33] who also apply this threshold. 

Both requirements are set for the sake of comparison with previous analysis on 

CASTPath. In this thesis, when referring to feasible solutions or tours, it means 

those tours comply with both of the requirements presented. 
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4 PROPOSED APPROACH 

In this section the proposed approach is presented. Section 4.1. Search Space, 

introduces a new formulation of the Search Space that makes the nodes paths 

unique, making possible the construction of a score matrix presented in 

4.2. Score Matrix. A pruning based on the project requirements is presented in 

4.3. Cleaning of Search Space. The following section 4.4. Similarity Measure, 

presents a score tool for quantifying the diversity of the solutions. Finally, 

section 4.5. Ant Colony Optimisation metaheuristic explains the standard ACO 

algorithm and defines the proposed or implemented ACO. 

4.1 Search Space 

Consider the leg composed by asteroids 𝐴18
2  and 𝐴31

3  that correspond to the 2nd 

and 3rd asteroids in a candidate solution sequence. The ∆v required for the 

spacecraft to follow the Lambert Arc that connects asteroid 18 with asteroid 31 

is dependent on the previous asteroid, the 1st asteroid in the sequence. The ∆v 

of a leg (𝐴𝑗
𝑚−1, 𝐴𝑘

𝑚) subject to previous visited asteroid 𝐴𝑖
𝑚−2 is notated as ∆𝑣𝑗,𝑘

𝑖 . 

Figure 4-1 shows two different cases of possible tours, changing the first 

asteroid in the sequence. Note that the drawing is a 2D sketch with made-up 

indices for the sake of illustration, which does not correspond to the real 

trajectories of the numbered asteroids. 

The angle between the tangent at 𝐴18
2  of (𝐴𝟏𝟎

1 , 𝐴18
2 ) leg Lambert Arc and the one 

of (𝐴18
2 , 𝐴31

3 ) leg Lambert Arc is smaller than the angle between the tangent at 

𝐴18
2  of (𝐴𝟔

1 , 𝐴18
2 ) leg Lambert Arc and the one of (𝐴18

2 , 𝐴31
3 ) leg Lambert Arc. In 

other words, the spacecraft needs to deviate less its trajectory to flyby asteroid 

18 when coming from asteroid 10 than 6. Thus, ∆𝑣18,31
10 < ∆𝑣18,31

6  and it is 

concluded that the ∆v of a leg is dependent on the asteroid prior to that leg. 
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Figure 4-1. Comparison of a leg ∆v changing prior asteroid in a 2D sketch 

(example with not real asteroid indices) 

Because of this tri-dependency, the Search Space is a tree search that can be 

modelled as a multi-dimensional space of connected subspaces, being the 

Search Space a Search Grid 𝒢. These subspaces 𝑆𝑖 ⊆ 𝒢 contain nodes which 

are pairs of asteroids. The initial subspace 𝑆0 contains all the pairs of asteroids 

(𝐴0, 𝐴𝑖) ∀𝑖 ∈ ℕ | 1 < 𝑖 ≤ 𝑛𝑎𝑠𝑡. 𝑆0 is connected to a set of subspaces 𝑆𝑖 ∀𝑖 ∈

ℕ | 0 < 𝑖 ≤ 𝑛𝑎𝑠𝑡 each of which are again connected to a set of subspaces 

𝑆𝑗   ∀𝑗 ∈ ℕ | 𝑖 < 𝑗 ≤ 𝑛𝑎𝑠𝑡 and so on. The total number of subspaces in 𝒢 is 𝑛𝑎𝑠𝑡 as 

the last subspace is 𝑆𝑛𝑎𝑠𝑡−1 containing node (𝐴𝑛𝑎𝑠𝑡−1, 𝐴𝑛𝑎𝑠𝑡). 

Figure 4-2 shows an example of a chosen path in the Search Space 𝒢. When 

choosing a node, the first asteroid in the node will be equal to the second 

asteroid in the previous node (linked by the same colour in the figure). This is 

how the subsets are connected among themselves. In this space, the cost of 

the paths between the nodes are unique, which is the main advantage of 

modelling the Search Space in this way. 



Proposed Approach  Maria Carrillo Barrenechea 

 

 

22 

 

Figure 4-2. Schematic diagram of the Search Grid modelled by subsets and pairs of nodes, an example of a chosen path 
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4.2 Score Matrix 

As explained in the previous section 4.1, the cost of a tour leg is given by the ∆v 

of going from asteroid 𝐴𝑚−1 to asteroid 𝐴𝑚 subject to having passed by asteroid 

𝐴𝑚−2, so for the triplet (𝐴𝑖
𝑚−2, 𝐴𝑗

𝑚−1, 𝐴𝑘
𝑚): ∆𝑣𝑗,𝑘

𝑖 . Being the ∆v a tri-asteroid 

dependent cost, unique for each of the legs of the Search Space, a Score 

Matrix (SM) with the following characteristics was created for this research: 

• Tri-structured: the matrix relates the pair of nodes of departure in rows 

with the asteroids of arrival in columns. 

• Unique: All the costs contained within the matrix are constant due to its 

structure. 

• Strictly upper triangular form pattern repetition: If the Score Matrix 

was asteroid-to-asteroid the matrix would be a strictly upper triangular 

one (all the main diagonal and lower diagonal are non-feasible paths). As 

the rows of the matrix are pairs of nodes, this pattern is repeated 

downwards through the matrix. 

Table 4-1 represents the Score Matrix. All the entries marked with an ‘x’ are 

non-feasible paths, as the asteroid indices can only increase in the sequence of 

the tour, neither decrease nor be equal. 
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Table 4-1. Score Matrix (SM) 

 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 ⋯ 𝐴156 𝐴157 𝐴158 

(𝐴0, 𝐴1) x ∆𝑣1,2
0  ∆𝑣1,3

0  ∆𝑣1,4
0  ∆𝑣1,5

0  ⋯ ∆𝑣1,156
0  ∆𝑣1,157

0  ∆𝑣1,158
0  

(𝐴0, 𝐴2) x x ∆𝑣2,3
0  ∆𝑣2,4

0  ∆𝑣2,5
0  ⋯ ∆𝑣2,156

0  ∆𝑣2,157
0  ∆𝑣2,158

0  

(𝐴0, 𝐴3) x x x ∆𝑣3,4
0  ∆𝑣3,5

0  ⋯ ∆𝑣3,156
0  ∆𝑣3,157

0  ∆𝑣3,158
0  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴0, 𝐴156) x x x x x ⋯ x ∆𝑣156,157
0  ∆𝑣156,158

0  

(𝐴0, 𝐴157) x x x x x ⋯ x x ∆𝑣157,158
0  

(𝐴0, 𝐴158) x x x x x ⋯ x x x 

(𝐴1, 𝐴2) x x ∆𝑣2,3
1  ∆𝑣2,4

1  ∆𝑣2,5
1  ⋯ ∆𝑣2,156

1  ∆𝑣2,157
1  ∆𝑣2,158

1  

(𝐴1, 𝐴3) x x x ∆𝑣3,4
1  ∆𝑣3,5

1  ⋯ ∆𝑣3,156
1  ∆𝑣3,157

1  ∆𝑣3,158
1  

(𝐴1, 𝐴4) x x x x ∆𝑣4,5
1  ⋯ ∆𝑣4,156

1  ∆𝑣4,157
1  ∆𝑣4,158

1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴2, 𝐴3) x x x ∆𝑣3,4
2  ∆𝑣3,5

2  ⋯ ∆𝑣3,156
2  ∆𝑣3,157

2  ∆𝑣3,158
2  

(𝐴2, 𝐴4) x x x x ∆𝑣4,5
2  ⋯ ∆𝑣4,156

2  ∆𝑣4,157
2  ∆𝑣4,158

2  

(𝐴2, 𝐴5) x x x x x ⋯ ∆𝑣5,156
2  ∆𝑣5,157

2  ∆𝑣5,158
2  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴156, 𝐴157) x x x x x ⋯ x x ∆𝑣157,158
156  

(𝐴157, 𝐴158) x x x x x ⋯ x x x 

4.3 Cleaning of Search Space 

Let 𝑁 be the set of feasible solutions within the whole Search Space grid 𝒢. 

With the aim of reducing the computational cost of the search, a reduction in the 

Search Space dimensions is done by removing all the elements that are not 

included in 𝑁. The new cleaned Search Space is notated as 𝒢𝑐. 

From 
To 
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The cleaning of non-feasible solutions of the Search Space is done considering 

the next two constraints of the problem (see 0.   
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Drivers and constraints): 

• Sequences shall contain 12 asteroids of increasing MOID (REQ-001) 

• The total ∆v cost of the tour shall be of 9 km/s as maximum (REQ-002) 

The first constraint REQ-001 implies some asteroids cannot be solutions of the 

sequence depending on their position 𝑚 in the sequence. Thus, the feasible 

solutions set considering both constraints is given by (4-1): 

𝑁 = {{𝐴0 𝐴1  ⋯ 𝐴𝑚⋯ 𝐴𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡

} ∈ ℕ |
 𝐴𝑚 ≤ 𝑛𝑎𝑠𝑡 − (𝑚 + 𝐿𝑡𝑜𝑢𝑟

𝑎𝑠𝑡 )
∆𝑣𝑡𝑜𝑡 ≤ ∆𝑣𝑚𝑎𝑥

  } (4-1) 

Where ∆𝑣𝑡𝑜𝑡 is the sum of the ∆v of all the legs that compose the 12-asteroid 

sequence, adding Earth-first asteroid Lambert Arc cost ∆𝑣𝐴0,𝐴1. 

∆𝑣𝑡𝑜𝑡 = ∆𝑣𝐴0,𝐴1 + ∑ ∆𝑣𝐴𝑚−1,𝐴𝑚
𝐴𝑚−2

𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡

𝑚=2

 
(4-2) 

However, as the Search Space nodes are modelled as pairs of asteroids, the 

only pre-cleaning that can be done for the solver is given by (4-3), that does not 

consider the position of the asteroid in the sequence for the first constraint. For 

the second constraint, REQ-002, it is ensured that feasible solutions are not 

removed from the cleaned Search Space 𝒢𝑐 by marking as non-feasible the 

asteroid legs with a ∆v ≥ 9 km/s. If none of the possible triplets from a pair 

(𝐴𝑖 , 𝐴𝑗) comply this criterion, the pair is removed from 𝒢𝑐. 

𝒢𝑐 = {(𝐴𝑖 , 𝐴𝑗) ∈ ℕ |
 𝑗 ≤ 𝑛𝑎𝑠𝑡 − (𝑖 + 𝐿𝑡𝑜𝑢𝑟

𝑎𝑠𝑡 )

∆𝑣𝑗,𝑘
𝑖 ≱ ∆𝑣𝑚𝑎𝑥  ∀𝑘 ∈ ℕ|{𝑗 + 1, 𝑛𝑎𝑠𝑡}

} (4-3) 

Imposing these two constraints of the problem into the Score Matrix some ∆v 

are removed, leaving some pairs and triplets as non-feasible solution of the 

Search Space. The cleaning of the Score Matrix is shown in Table 4-2, where 

the removed rows (i.e., pairs) are due to the first constraint, and the red crosses 

are due to the second constraint. 
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Table 4-2. Score Matrix (SM) Cleaning 

 𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 ⋯ 𝐴156 𝐴157 𝐴158 

(𝐴0, 𝐴1) x x ∆𝑣1,3
0  ∆𝑣1,4

0  ∆𝑣1,5
0  ⋯ ∆𝑣1,156

0  ∆𝑣1,157
0  ∆𝑣1,158

0  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴0, 𝐴146) x x x x x ⋯ x ∆𝑣146,157
0  ∆𝑣146,158

0  

(𝐴0, 𝐴147) x x x x x ⋯ x ∆𝑣147,157
0  ∆𝑣147,158

0  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴1, 𝐴2) x x x ∆𝑣2,4
1  ∆𝑣2,5

1  ⋯ ∆𝑣2,156
1  ∆𝑣2,157

1  ∆𝑣2,158
1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴1, 𝐴147) x x x x x ⋯ ∆𝑣147,156
1  ∆𝑣147,157

1  ∆𝑣147,158
1  

(𝐴1, 𝐴148) x x x x x ⋯ ∆𝑣148,156
1  ∆𝑣148,157

1  ∆𝑣148,158
1  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴10, 𝐴11) x x x x x ⋯ ∆𝑣11,156
10  ∆𝑣11,157

10  ∆𝑣11,158
10  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴10, 𝐴156) x x x x x ⋯ x x ∆𝑣156,158
10  

(𝐴10, 𝐴157) x x x x x ⋯ x x ∆𝑣157,158
10  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴11, 𝐴12) x x x x x ⋯ ∆𝑣12,156
11  ∆𝑣12,157

11  ∆𝑣12,158
11  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

(𝐴11, 𝐴157) x x x x x ⋯ x x ∆𝑣157,158
11  

(𝐴11, 𝐴158) x x x x x ⋯ x x x 

(𝐴156, 𝐴157) x x x x x ⋯ x x ∆𝑣157,158
156  

(𝐴156, 𝐴158) x x x x x ⋯ x x x 

(𝐴157, 𝐴158) x x x x x ⋯ x x x 

From 
To 
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With this pruning, the total number of pairs of nodes is reduced a 5% from 

12,561 to 11,890 (11,889 pairs of nodes “from”), and the total number of 

feasible triplets is reduced an 8%, from 657,359 to 604,292. Thus, the Score 

Matrix 𝑆𝑀 is a matrix containing ∆v of dimensions 11,889 x 158: 

𝑆𝑀 = [∆𝑣]𝑛𝑝𝑎𝑖𝑟𝑠,𝑓𝑟𝑜𝑚×𝑛𝑎𝑠𝑡 = [∆𝑣]11,889×158 (4-4) 

4.4 Similarity Measure 

A Similarity Measure tool has been developed for the comparison of solutions 

encountered by the different algorithms used to solve the CASTAway problem. 

However, as future work, this tool can also be used within the solver to increase 

the diversity of the solutions encountered. 

Consider the two sequences (Seq) depicted in Figure 4-3. The Similarity 

Measure considers two possible similarities between the asteroid sequence 

solutions: 

• Asteroid-by-asteroid similarity score(in grey and green): 𝜓𝑎𝑠𝑡 

• Subsequences similarity score (in blue and orange): 𝜓𝑠𝑢𝑏 

 

Figure 4-3. Similarity Measure example 

As it can be seen, Earth (asteroid 0) and Mars are not considered in the 

similarity measure as all the sequences pass through these planets. The 

asteroid-by-asteroid score is the result of adding a unit each time an asteroid is 

repeated (no matter the position in the sequence); while the subsequences 

score is the result of adding a unit every 2 equal subsequent asteroids. In the 

example, 𝜓𝑎𝑠𝑡 = 5 and  𝜓𝑠𝑢𝑏 = 3. This scoring is done one independent of each 

other. In this way, the presence of subsequences adds more similarity: In the 

example, because of having an equal subsequence of 4 elements, the total 

score with unitary weights would be 7 for that part. 
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Each of the scores are pondered by a different weight and a total similarity 

score is given by: 

Ψ = 𝑤𝑎𝑠𝑡 ∙ 𝜓𝑎𝑠𝑡 + 𝑤𝑠𝑢𝑏 ∙ 𝜓𝑠𝑢𝑏 (4-5) 

Thus, considering unitary weights, the maximum similarity score for 2 equal 

sequences of 12 asteroids would be of Ψ = 1 ∙ 12 + 1 ∙ 11 = 23. 

4.5 Ant Colony Optimisation metaheuristic 

ACO stands for Ant Colony Optimisation. It is a metaheuristic algorithm that 

based on ant colonies behaviour, solves complex combinatorial problems, 

finding local optima. Although nowadays there exist many variants, this 

algorithm was first proposed in the literature by [39]. In section 4.5.1, this first 

ACO algorithm called Ant System will be explained. Other variants found in the 

literature are the Ant Colony System by [40] or the MAX-MIN ant system 

introduced by [41]. 

After its definition, a comparison of the implemented ACO with the standard one 

is made and the proposed ACO solver model is formulated in sections 4.5.2 and 

4.5.3. Note that the equations are directly formulated for a Search Space where 

the nodes are pair of elements, as for the problem analysed in this thesis.  

4.5.1 ACO algorithm definition 

The principle behind the solver is that ants, when looking for food, pass 

information to the rest of the colony in an indirect way: by laying a trail of a 

chemical substance called pheromone. The rest of the ants detect this 

pheromone making a path more attractive to them, and the colony finds an 

optimum way from their nest to the food in a collaborative and efficient way. 

In ACO, some agents called artificial ants construct candidate solutions in a 

discrete graph, whose nodes are equivalent to the cities in the TSP (see section 

2.1.1). The construction of a candidate solution for each ant is stochastic and 

guided by the pheromone laid by other previous ants in the graph. The 

pheromone 𝜏 is analogous to a reward associated to each path in the graph. 
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The discrete combinatorial problem is solved iteratively by populations of ants. 

A pseudocode of the algorithm is shown in Algorithm 4-1. 

Algorithm 4-1. Ant Colony Optimisation pseudocode 

The pheromone is initialised to be equally distributed over the whole search 

space. The first population of ants starts then constructing its candidate 

solutions through the graph. 

The candidate solution is a sequence of selected nodes of the Search 

Graph 𝒢𝑐. Each ant in the population starts with an empty candidate solution 

tour 𝜉 = ∅. At each step (𝑖, 𝑗), the ant selects the next node (𝑗, 𝑘) from the 

feasible solutions of the Search Graph, 𝑁(𝜉) ⊆ 𝒢𝑐, on the construction of its 

candidate selection based on the probability 𝑃(𝑖,𝑗),𝑘. 

The probability of an ant selecting a node (𝑗, 𝑘) depends on two parameters: 

• the pheromone 𝜏(𝑖,𝑗),𝑘 value weighted by an exponent parameter 𝛼 and 

• an heuristic parameter 𝜂(𝑖,𝑗),𝑘 weighted by an exponent parameter 𝛽, 

procedure Ant Colony Optimisation 

 Initialisation  

1: Set parameters  

2: Initialise pheromone  

 Graph exploration  

3: WHILE (termination criteria [graph exploration] not met) DO  

 Let population explore  

4: FOR each ant in the population  

 Construct a candidate solution  

5: WHILE (termination criteria [candidate solution] not met) DO  

6: Calculate probability of choosing next node Equation (4-6) 

7: Select next node based on probability  

8: ENDWHILE  

9: ENDFOR  

10: Daemon actions (optional)  

 Update pheromone  

11: Update pheromone trails with population explorations Equation (4-7) 

12: ENDWHILE  
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both associated to the path between the two nodes (𝑖, 𝑗), (𝑗, 𝑘), so to the triplet 

(𝑖, 𝑗, 𝑘). 

𝑃(𝑖,𝑗),𝑘 =
𝜏(𝑖,𝑗),𝑘

𝛼 ∙ 𝜂(𝑖,𝑗),𝑘
𝛽

∑ 𝜏(𝑖,𝑗),𝑙𝛼 ∙ 𝜂(𝑖,𝑗),𝑙𝛽(𝐴𝑖
𝑚−2,𝐴𝑗

𝑚−1,𝐴𝑙
𝑚)

 ∀(𝐴𝑖
𝑚−2, 𝐴𝑗

𝑚−1, 𝐴𝑘
𝑚) ∈ 𝑁(𝜉) (4-6) 

The ant stops searching more nodes when the termination criteria for the 

candidate solution has been met. This process is iterated for all the 𝑛_𝑎𝑛𝑡 ants 

in the population. 

Before updating the pheromone, some daemon actions can be undertaken as 

part of the specific problem resolution. Daemon actions are for instance, local 

search routines that ants cannot undergo to move the solutions to local optima. 

The pheromone 𝜏 is updated after the exploration of the whole population, 

considering an evaporation rate 𝜌 ∈ (0,1] applied to the whole graph 

pheromone and how many ants pass though those paths. This can be seen in 

equation (4-7) where the pheromone 𝜏 of the path from node (𝑖, 𝑗) to node (𝑗, 𝑘) 

(so for the triplet (𝑖, 𝑗, 𝑘)) is evaporated and the new pheromone trail 𝛥𝜏(𝑖,𝑗),𝑘
𝑎  is 

added. 

𝜏(𝑖,𝑗),𝑘 ← (1 − 𝜌) ∙ 𝜏(𝑖,𝑗),𝑘 + ∑ Δ𝜏(𝑖,𝑗),𝑘
𝑎

𝑛_𝑎𝑛𝑡

𝑎=1

 (4-7) 

The new pheromone trail of each node is given by the inverse of the total cost ℒ 

of ant 𝑎 tour 𝜉 (being the same for all the nodes of that tour): 

𝛥𝜏(𝑖,𝑗),𝑘
𝑎 = {

1

ℒ𝜉
𝑎 𝑖𝑓 𝑎𝑛𝑡 𝑎 ℎ𝑎𝑠 𝑔𝑜𝑛𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ ((𝑖, 𝑗), 𝑘) 𝑖𝑛 𝑖𝑡𝑠 𝑡𝑜𝑢𝑟 𝜉

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4-8) 

The next population of ants repeats this process with more information than the 

previous one. The termination criteria for the graph exploration can be fixed by 

a maximum number of populations, by a maximum computational time, or a 

criterion related to the problem. 
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4.5.2 Implemented ACO algorithm 

Algorithm 4-2 represents the implemented ACO algorithm main flowchart and 

Algorithm 4-3 represents the subprocess of selecting next node in the ACO. 

The main difference of the implemented algorithm with the standard one are the 

following: 

• Backtracking: when an ant has selected a node that will not lead to a 

12-asteroid sequence (REQ-001), the last asteroid is removed from the 

tour. A maximum of 𝑛𝑏𝑡,𝑚𝑎𝑥 backtracks is let per ant, if this number of 

removed asteroids is reached, the ant takes the longest tour encountered 

so far. For more details refer to  

• Avoid Tours: all the candidate solutions found by the ants that are non-

feasible because of REQ-002 are kept in each iteration and considered 

in the pheromone update. 

• Select next node: for the selection of the next node, only feasible nodes 

in the cleaned Search Space 𝒢𝑐 are considered at each step. 

• Calculate Cost: the algorithm uses the Score Matrix 𝑆𝑀 to reduce 

computational cost. 

• Pheromone parameter: The pheromone is initialised null in all the non-

feasible entries. In each iteration the pheromone of the nodes contained 

in Avoid Tours is decreased.  
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Algorithm 4-2. Implemented ACO 
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Algorithm 4-3. Implemented ACO: Select next node 
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4.5.2.1 Initialise parameters 

The pheromone 𝜏 and the heuristic parameter 𝜂 have the same dimensions as 

the Score Matrix 𝑆𝑀, that relates the paths of all the Search Graph 𝒢𝑐 (see 

4.2. Score Matrix). Recalling equation (4-4): 

𝜏 = [𝜏]𝑛𝑝𝑎𝑖𝑟𝑠,𝑓𝑟𝑜𝑚×𝑛𝑎𝑠𝑡 (4-9) 

𝜂 = [𝜂]𝑛𝑝𝑎𝑖𝑟𝑠,𝑓𝑟𝑜𝑚×𝑛𝑎𝑠𝑡 (4-10) 

Due to the cleaning of the Search Space prior to calling the solver, the non-

feasible solutions in the Score Matrix are translated into the pheromone 

initialisation as a 0-pheromone path. For the feasible candidates, the 

pheromone initialisation is set to the inverse of the mean average of the Score 

Matrix feasible entries, uniformly distributing the probability of choosing one 

node for the start of the solver. 

𝜏(𝑖,𝑗),𝑘 = {
1
𝑆𝑀̅̅ ̅̅
⁄ 𝑖𝑓 ∃ 𝑆𝑀(𝑖,𝑗),𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4-11) 

The heuristic parameter is a constant matrix, whose entries are the inverse of 

the Score Matrix value for each asteroid triplet. 

𝜂(𝑖,𝑗),𝑘 = {
1
𝑆𝑀(𝑖,𝑗),𝑘
⁄ 𝑖𝑓 ∃ 𝑆𝑀(𝑖,𝑗),𝑘

∄ 𝜂(𝑖,𝑗),𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4-12) 

𝜂(𝑖,𝑗),𝑘 =

{
 

 
1

𝜈
𝑆𝑀(𝑖,𝑗),𝑘

∆𝑣𝑙𝑒𝑔,𝑚𝑎𝑥
+ 𝜄

∆𝑖𝑛𝑑𝑗𝑘
∆𝑖𝑛𝑑𝑚𝑎𝑥

𝑖𝑓 ∃ 𝑆𝑀(𝑖,𝑗),𝑘

∄ 𝜂(𝑖,𝑗),𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

4.5.2.2 Initialise population 

The first population (i.e., iteration) candidate solutions of the algorithm are 

generated randomly. For the selection of each node (𝑗, 𝑘) a list of possible 

feasible asteroids 𝑘 from the previous node (𝑖, 𝑗) is generated first. The selected 

asteroid is a uniformly distributed pseudorandom integer 𝑘. Backtracking is 
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implemented to ensure a sequence of 12 asteroids is completed and therefore, 

only feasible solutions are chosen from the Search Grid, 𝑁(𝜉) ⊆ 𝒢𝑐. 

After the selection of the 𝑛𝑎𝑛𝑡 candidate solutions or tours 𝜉𝑎, the cost of each 

tour is summed up by accessing to each leg cost in the Score Matrix. The 

pheromone is updated then as per (4-7). 

4.5.2.3 Let population explore – Initialisation 

After the first population has randomly explored and deposited the information 

about the chosen tours, the rest of the populations are guided by the following 

steps. 

Recalling Figure 4-2, it can be seen that all the candidate solutions start at the 

same point, 𝐴0
0, that corresponds to Earth. The first node is selected apart in the 

algorithm because the structure of it is of different dimensions, but the search of 

the node and the cost calculation follow the same steps as for the choice of the 

rest of the asteroids. 

4.5.2.4 Let population explore – Construct a candidate solution 

Once the first asteroid 𝐴1 has been selected, the Score Matrix is accessed at 

the row corresponding to the previous node (𝐴0, 𝐴1) and all the feasible next 

asteroids 𝐴2 are kept in the variable 𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑜𝑑𝑒𝑠. 

The following process is repeated till the length of the tour is the desired one 

(12 asteroids 𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡  + Earth) or till a maximum number of backtrackings  

(𝑛𝑏𝑡,𝑚𝑎𝑥). At position 𝑚 of the sequence, the next asteroid 𝐴𝑚 is searched, i.e., 

node (𝐴𝑚−1, 𝐴𝑚). The selection of the next node is explained in detail in 4.5.2.6. 

Construct a candidate solution: Select next node. The cost of the path is given 

by the entry ((𝑖, 𝑗), 𝑘) of the Score Matrix 𝑆𝑀 corresponding to the triplet 

((𝐴𝑖
𝑚−2, 𝐴𝑗

𝑚−1), 𝐴𝑘
𝑚). The next feasible nodes 𝐴𝑚+1 are searched and kept in 

𝑛𝑒𝑥𝑡_𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒_𝑛𝑜𝑑𝑒𝑠 and the best (lowest cost) tour so far is kept. 
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4.5.2.5 Pheromone update 

The pheromone is updated after all the ants in the population have explored the 

Search Grid. The update is done as for (4-7) where Δ𝜏(𝑖,𝑗),𝑘
𝑎  for this problem is 

given by (4-8), where the cost of the tour (length ℒ𝜉
𝑎) is given by the sum of the 

∆v of all the legs that compose the tour of ant 𝑎 (analogue to equation (4-2)): 

ℒ𝜉
𝑎 = ∆𝑣𝐴0,𝐴1 + ∑ ∆𝑣

𝐴𝑗
𝑚−1,𝐴𝑘

𝑚

𝐴𝑖
𝑚−2

𝐿𝜉
𝑎

𝑚=2

 
(4-13) 

The pheromone is initialised 0 where the triplets are non-feasible, but during the 

running of the solver, some tours are kept as tours to avoid (see ). After the 

pheromone has been updated, all the tours to avoid 𝜉𝑎𝑣𝑜𝑖𝑑 ∉ 𝑁 (AvoidTours in 

the flowcharts Algorithm 4-2 and Algorithm 4-3) are checked. If the length of the 

tour is 1 (only contains first asteroid) the pheromone is set to 0. Otherwise, the 

pheromone of each node in 𝜉𝑎𝑣𝑜𝑖𝑑 is decreased in a distributed way along the 

tour. 

𝜏(𝑖,𝑗),𝑘 = 0 

𝜏(𝑖,𝑗),𝑘 ←
𝜏(𝑖,𝑗),𝑘

𝑚
∙
𝐿𝜉𝑎𝑣𝑜𝑖𝑑
𝑎

𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡

}  ∀((𝑖, 𝑗), 𝑘) ∈ 𝜉𝑎𝑣𝑜𝑖𝑑    𝑤𝑖𝑡ℎ  {
𝐿𝜉𝑎𝑣𝑜𝑖𝑑
𝑎 = 1

𝐿𝜉𝑎𝑣𝑜𝑖𝑑
𝑎 > 1

   (4-14) 

The division of the length of the tour 𝐿𝜉𝑎𝑣𝑜𝑖𝑑
𝑎  divided by the maximum length of 

tour (𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 = 12) makes the factor 

𝐿𝜉𝑎𝑣𝑜𝑖𝑑
𝑎

𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 ∈ (0,1] a reduction factor. This makes 

the reduction of pheromone of shorter tours bigger. Moreover, the division by 

the position in the sequence 𝑚, makes the percentage of reduction bigger for 

the nodes at the end of the tour than at the beginning of it. Both factors allow to 

reduce the probability of an ant choosing a shorter tour or a further node 

too promptly. 

4.5.2.6 Construct a candidate solution: Select next node 

In order to select the next node, the ant is given the information about the next 

possible nodes and chooses one with a probability given by (4-6). Consider the 

ant has built the next sequence of asteroids: 
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(𝐴0
0, 𝐴2

1 , 𝐴9
2, 𝐴23

3 , 𝐴56
4  ) 

The next possible nodes are all a pair that starts with previous asteroid, i.e., 

asteroid 56. The information is taken from the Score Matrix row corresponding 

to the previous pair of asteroids (𝐴23, 𝐴56) (underlined in blue in the sequence).  

For each of these asteroids, REQ-001 satisfaction is also checked by the 

following expression (from (4-1)): 

𝐴𝑚 ≤ 𝑛𝑎𝑠𝑡 − (𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 −𝑚) (4-15) 

This condition would ensure reaching a sequence of 12 asteroids if the Search 

Space was complete. However, as it is filtered the application of this condition 

does not ensure the ants reaching to a 12-asteroid sequence. 

Thus, for the pair (𝐴23
3 , 𝐴56

4 ), the next possible nodes are from asteroid 60 

(because 57 to 59 do not comply with the ∆v constraint REQ-001) to 

asteroid 150: 

158 − (12 − 4) = 150 

Table 4-3. Next possible nodes selection from SM. Example for pair (A23, A56) 

 𝐴1 ⋯ 𝐴60 𝐴61 ⋯ 𝐴150 𝐴151 ⋯ 𝐴158 

(𝐴23, 𝐴56) x ⋯ x ∆𝑣56,61
23  ⋯ ∆𝑣56,150

23  ∆𝑣56,151
23  ⋯ ∆𝑣56,158

23  

The roulette wheel or fitness proportionate selection method is used for 

selecting the following asteroid. It is based on a roulette wheel of the shape of a 

pie chart, whose areas are proportional to the relative fitness of each candidate, 

which corresponds to the dividend of the probability expression (4-6): 

𝑓(𝑖,𝑗),𝑘 = 𝜏(𝑖,𝑗),𝑘
𝛼 ∙ 𝜂(𝑖,𝑗),𝑘

𝛽 (4-16) 

The divisor of the probability expression is the sum of the relative fitness of all 

the candidate nodes: 

From 
To 
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𝐹(𝑖,𝑗) = ∑ 𝜏(𝑖,𝑗),𝑙
𝛼 ∙ 𝜂(𝑖,𝑗),𝑙

𝛽

(𝐴𝑖
𝑚−2,𝐴𝑗

𝑚−1,𝐴𝑙
𝑚)

 (4-17) 

A uniformly distributed random number 𝑟 ∈ [0, 𝐹(𝑖,𝑗)) is generated. Then, the 

candidates are ordered in ascending relative fitness. The cumulative sum 

sequence 𝑠(𝑖,𝑗),𝑙 is calculated, and the first candidate 𝑘 with a bigger relative 

fitness 𝑠(𝑖,𝑗),𝑘 > 𝑟 is selected. Thus, the node (𝑗, 𝑘) would be selected. A node 

with higher relative fitness occupies more area in the roulette wheel and thus, 

has a higher probability to get selected. 

4.5.3 Multiobjective formulation of ACO 

Multiobjective algorithms are used to build Pareto forms in problems with more 

than one confronted objective. In the analysed problem, a tendency of the ants 

towards the prompt selection of asteroids with higher MOID time indices was 

perceived. These asteroids have a smaller cost and thus, are more attracted 

by the ants. In order to counter balance this tendency, and the ants be able to 

reach a 12-asteroid sequence, the difference between asteroid MOID time 

indices needs to be taken into account. Thus, the confronted objectives in this 

case would be: 

• ∆v: Cost of the leg, related to REQ-002 

• ∆ind: Difference between MOID time index of current asteroid and 

previous asteroid, related to REQ-001 

However, to elaborate a bi-objective approach, an exhaustive enumeration of all 

the possible paths would be needed. With the aim of avoiding this, the algorithm 

is formulated as a unique objective algorithm but with an alternative 

weighted pheromone calculation that considers the two objectives. 

4.5.3.1 ACO with index reward 

Let the new cost of the node be the following weighted sum of individual 

objective costs: 
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ℒ(𝑖,𝑗),𝑘
𝑎 = 𝜈

ℒ𝜉
𝑎

∆𝑣𝑚𝑎𝑥
+ 𝜄

∆𝑖𝑛𝑑𝑗𝑘

∆𝑖𝑛𝑑𝑚𝑎𝑥
 (4-18) 

where ℒ𝜉
𝑎 is the cost of the tour for the ∆v objective given by (4-13) and 

∆𝑖𝑛𝑑𝑗𝑘 = 𝑘 − 𝑗 is the cost for the ∆ind objective. Both costs are weighted by the 

parameters 𝜈 and 𝜄 respectively. Leaving it as a function of ∆v the following 

expression in obtained: 

ℒ(𝑖,𝑗),𝑘
𝑎 = 𝜈

∆𝑣𝐴0,𝐴1 + ∑ ∆𝑣
𝐴𝑗
𝑚−1,𝐴𝑘

𝑚

𝐴𝑖
𝑚−2𝐿𝜉

𝑎

𝑚=2

∆𝑣𝑚𝑎𝑥
+ 𝜄

∆𝑖𝑛𝑑𝑗𝑘

∆𝑖𝑛𝑑𝑚𝑎𝑥
 

(4-19) 

Note that now the cost is different for each node in the tour. Both terms are 

normalised with respect to the maximum value each objective cost can obtain. 

As well as the cost, related to the pheromone, the heuristic parameter is also 

changed to balance both objectives using the following expression: 

𝜂(𝑖,𝑗),𝑘 =

{
 

 
1

𝜈
𝑆𝑀(𝑖,𝑗),𝑘

∆𝑣𝑚𝑎𝑥
+ 𝜄

∆𝑖𝑛𝑑𝑗𝑘
∆𝑖𝑛𝑑𝑚𝑎𝑥

𝑖𝑓 ∃ 𝑆𝑀(𝑖,𝑗),𝑘

∄ 𝜂(𝑖,𝑗),𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4-20) 

The maximum value of the ∆v-cost of a tour is: 

ℒ𝜉
𝑎 ≤ ∆𝑣𝑚𝑎𝑥 = 𝐿𝑡𝑜𝑢𝑟

𝑎𝑠𝑡 ∙ ∆𝑣𝑙𝑒𝑔,𝑚𝑎𝑥 = 12 ∙ 9 𝑘𝑚/𝑠 = 108 𝑘𝑚/𝑠 →  ℒ𝑚𝑎𝑥 = 108 𝑘𝑚/𝑠 

∆𝑣𝑚𝑎𝑥 = 108 𝑘𝑚/𝑠 

The maximum value of the ∆ind-cost of a node is: 

∆𝑖𝑛𝑑𝑚𝑎𝑥 = 𝑛𝑎𝑠𝑡 − 𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡 = 146 

Giving the same weight to both objectives, the maximum ∆v-cost is divided. 

Being the ∆v-cost weight: 

𝜈 =
ℒ𝑚𝑎𝑥
2

= 54 
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For the weight tuning, 𝑛𝑎𝑠𝑡/𝐿𝑡𝑜𝑢𝑟
𝑜𝑏𝑗 = 158/12 ≃  13 can be taken as an average 

value of ∆𝑖𝑛𝑑𝑖𝑗. As the ants’ tendency is to “jump” promptly to higher MOID time 

indices, more significance wants to be given to this term. Thus, 𝜄 is calculated 

taking into account the average value of ∆𝑖𝑛𝑑𝑖𝑗, so that in average, the second 

summing term will equal 
ℒ𝑚𝑎𝑥

2⁄  (but can be higher than this value): 

𝜄
13

∆𝑖𝑛𝑑𝑚𝑎𝑥
=
ℒ𝑚𝑎𝑥
2

 

𝜄
13

147
= 54 → 𝜄 ≃ 611 
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5 SIMULATIONS 

This section explains the approaches set-up parameters and test cases are 

presented, then the results analysis tools are explained and the computational 

tools to run the test cases are specified. 

5.1 Approaches set-up 

This section presents the different parameters set-up for comparison and best 

tuning of the solver. A table summary with all the values used can be seen in 

(ref). All the parameters that are not mentioned in this section have been tuned 

that proved to give to the best results of Tena and are considered to be 

sufficiently validated in his thesis [33]. 

5.1.1 Execution time and number of runs or rounds 

In order to compare the performance of different solvers and configurations, all 

the solvers are limited to a maximum time of execution. It would be a better 

approach to limit the number of evaluations of each solver. However, due to the 

different nature of the heuristics and analytical tools, a fair comparison of the 

number of evaluations of the solvers is not possible. Thus, the solvers are 

limited in execution time. 

Following Tena’s previous work, each of the test cases are simulated in a total 

of 10 independent runs for each execution time of 10, 30 and 60 minutes [33]. 

5.1.2 Score Matrix cleaning threshold 

As mentioned in 4.3. Cleaning of Search Space, the Score Matrix is cleaned, 

and therefore the Search Space pruned, by applying a threshold at each leg of 

9 km/s. However, the best solver encountered so far in CASTPath was the 

called ACO taboo search, where the ant’s last tour leg had a cost bigger than 

1 km/s, the tour was completed by adding very high cost nodes, not allowing it 

to be a candidate solution (see Tena [33] for more information). 

It has been reasoned that the cleaning threshold is set at the one imposed by 

the total ∆v requirement REQ-002 to avoid the omission of feasible solutions 
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with a total ∆v smaller than 9 km/s which could have one leg of high cost and 

the other 10 legs of significantly low ∆v. Therefore, it seems reasonable to test 

the solver with: 

• No filtering: use of the Search Grid 𝒢 to prove the importance of pruning 

the Search Space prior to the solver execution, 

• A filter implemented by a leg cost threshold of 9 km/s: the Search 

Space will be reduced to the cleaned Search Grid denoted as 𝒢𝑐,9, and 

• A filter implemented by a leg cost threshold of 1 km/s: the Search 

Space will be even more reduced to the cleaned Search Grid denoted as 

𝒢𝑐,1, in order to compare with previous CASTPath-ACO approaches. 

5.1.3 ACO parameters 

The different test cases will be run with different ACO parameters to tune the 

solver with the best parameters. This tuning will also allow to understand the 

nature of the Search Space, which will be discussed in 7. Discussion. 

5.1.3.1 Heuristic importance and trail dependency 

Previous ACO CASTPath analysis has proven that the more weight is given to 

the heuristic parameter 𝜂 (with exponential weight 𝛽) compared to the 

pheromone 𝜏 weight (exponential weight 𝛼) in the expression (4-6), the better 

the ACO solver performs [33]. A sensitivity analysis is repeated in this thesis for 

the  and  parameters in order to validate this theory independently of the ACO 

approach. 

A sensitivity analysis with the following cases will be tested: 

• 𝛼 = 1 and 𝛽 = 1 

• 𝛼 = 1 and 𝛽 = 4 

• 𝛼 = 1 and 𝛽 = 5 

• 𝛼 = 0 and 𝛽 = 1 

The first two cases were implemented by Tena, for the analysis of the 

intermediate cases see his thesis [33]. The last two are extreme cases to verify 
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the importance of the heuristic parameter over the pheromone. Finally, 

comparing 𝛽 = 4 (Tena’s best solution tuning) with 𝛽 = 5 (not tested by Tena), 

aims to give an idea of how much the solutions change by a unitary increment 

of this parameter. 

5.1.3.2 Bi-objective cost: index reward 

After some tests run with the implementation described in 4.5.2. Implemented 

ACO algorithm, a prompt selection of asteroids of high MOID time ID was 

detected. The ants struggled to find feasible solutions that complied with REQ-

001 (12-asteroid tours) giving solutions of 9 asteroids as most. This is the 

reason why the bi-objective approach applied to the pheromone and heuristic 

was modelled (see 4.5.3. Multiobjective formulation of ACO). 

The cost weight parameters are tuned so that it is given more importance to the 

∆ind objective than the ∆v. In order to understand the objectives influence, the 

test cases will be the tuned parameters and equalling the parameters: 

• 𝜈 = 54 and 𝜄 = 611 (tuned parameters) 

• 𝜈 = 54 and 𝜄 = 54 

Note that the case 𝜈 = 54 and 𝜄 = 0 has already been implemented in the test 

runs prior to the bi-objective cost approach. 

5.1.3.3 Backtracking 

A maximum number of 50 backtracks per ant has been implemented as stop 

criterium after balancing the execution time of the solver and the solutions 

encountered. This number had to be tuned while running the solver for the ants 

to not to get lost in the Search Grid when no more feasible nodes can be found. 

5.2 Test cases 

After analysing the approaches set-up, the test cases will be the following: 

1. Score Matrix (SM) validation test 

2. Whole Search: SM not pruned 

a. 𝛽 = 1 
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b. 𝛽 = 5 

3. Score Matrix filtered at 9 km/s: 𝑆𝑀 ≤ 9 𝑘𝑚/𝑠 

a. 𝜄 = 54 

b. 𝜄 = 611 

4. Score Matrix filtered at 1 km/s: 𝑆𝑀 ≤ 1 𝑘𝑚/𝑠 

a. 𝛽 = 4 (𝜄 = 54) 

b. 𝛽 = 5 (𝜄 = 54) 

c. 𝛼 = 0 

d. 𝜄 = 611 (𝛽 = 5) 

5.3 Analysis tools 

Ten independent runs for each test case will be executed and statistically 

analysed by the tools presented in this section. Boxplots and stacked bar 

graphs will be used to analyse the quantity of feasible asteroid sequences 

encountered and the quality (score) of those solutions. The quality of the 

solutions is even more analysed in terms of diversity as for the different 

asteroids included in the solutions by means of the similarity measure tool 

developed in this thesis. 

5.3.1 Box and Whiskers Plot 

Boxplots are standardised statistical distribution graphs for groups of data that 

give information about the variability of the data. A boxplot consists of a box 

with an Interquartile Range (IQR) containing three quartiles: lower or first 

quartile (Q1), median or second quartile (Q2), upper or third quartile (Q3). It can 

also include whiskers, two lines outside the box that indicate the dispersion of 

the data outside the IQR, with the “minimum” (Q0) and “maximum” (Q4) values. 

Note that these values are not really the global maximum and minimum values 

of the data set, which will be called highest and lowest data points instead. In 

summary, the elements of a box and whiskers plot are [42]: 

• “Minimum” (Q0 or 0th percentile): the lowest value excluding outliers, 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑄1 − 1.5 ∙ 𝐼𝑄𝑅. 
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• Lower quartile (Q1 or 25th percentile): the middle number between the 

lowest value (not the “minimum”) and the median of the dataset. 

• Median or second quartile (Q2 or 50th percentile): the middle value of the 

dataset. 

• Upper quartile (Q3 or 75th percentile): the middle value between the 

median and the highest value (not the “maximum”) of the dataset. 

• “Maximum” (Q4 or 100th percentile): the highest value excluding outliers, 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑄3 + 1.5 ∙ 𝐼𝑄𝑅. 

• Outliers: 0.7% of the data, in a normal distribution, the 0.35% at both 

edges of the plot, that include the lowest and highest data points in the 

dataset. 

• Interquartile Range (IQR): 25th to the 75th percentile. 𝐼𝑄𝑅 = 𝑄3 − 𝑄1 

• Whiskers: data dispersion outside the IQR between the “minimum” and 

“maximum” (not the lowest and highest values). 

In this thesis, the built-in MATLAB function boxplot will be used for the 

analysis of the different runs for each test case. This plot will allow to analyse 

whether the solutions obtained have been obtained by chance or the algorithm 

is robust within the 10 different simulations. The diagrams include the total 

number of sequences below a certain threshold in the right-hand vertical axis 

illustrated by the symbol ◁ in the graph. 

5.3.2 Stacked Bar Graph 

A stacked bar graph is a graph used to compare different series of data. A bar 

per series is used, divided into different sub-elements to show the fraction of 

each on the total of the series (the bar). In the problem in hand, it will be used to 

compare 3 series: 10 min, 30 min and 60 min execution times, each of those 

being fractioned into four different thresholds. Each fraction will include the 

number of sequences in percentage that fall in that range. Note that some of the 

cases, as in the Whole Search and 𝑆𝑀 ≤ 9𝑘𝑚/𝑠 the y axis is in logarithmic 

scale as the fractions are two small to be seen at linear scale. 

The chosen thresholds (except for the Whole Search case) are: 
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 ∆𝑣 ≤ 8𝑘𝑚/𝑠 exceeds REQ-002 

 8 < ∆𝑣 ≤ 9𝑘𝑚/𝑠 meets REQ-002 

 9 < ∆𝑣 ≤ 12𝑘𝑚/𝑠 does not meet REQ-002 

 ∆𝑣 > 12𝑘𝑚/𝑠 does not meet REQ-002 

Where the first two will be represented in blue as they fulfil REQ-002, and the 

last two in red as these are not feasible solutions because of the  

∆𝑣𝑚𝑎𝑥 constraints imposed. The intermediate threshold of 12 km/s is chosen for 

the non-feasible solutions because there seem to be several solutions in the 

third threshold. 

5.3.3 Similarity analysis 

The previous both tools are common statistical graphs used within the 

mathematics and statistics community. However, a tool to understand and 

measure the diversity in the solutions is needed as per the scientific interest on 

the CASTAway asteroid tour. The Similarity measure tool developed and 

introduced in 4.4. Similarity Measure can be used to first, analyse the diversity 

the proposed ACO solver gives within its solutions and evaluate the goodness 

of the set of the solutions by their variability; and second, to compare the 

easiness of the heuristic to search more broadly within the Search Space, 

compared to other solvers used in CASTPath. 

5.4 Computational tools 

All the small tests and analysis of the data were executed on an Intel ® Core™ 

i7-8565U CPU @ 1.80GHz, windows 10 Home 64 bit (10.0) and no 

multitasking. For the full-scale run cases, Cranfield University’s Crescent High 

Performance Computer Cluster, or HPC, has been used. In particular, the 

simulations were run in two Intel E5-2660 (Sandy Bridge) CPUs giving 16 CPU 

cores and 64GB of shared memory. Instructions on how to use this Cranfield 

University service can be found on the University’s intranet or more in detail, in 

Tena [33]. 
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6 RESULTS 

This section presents the results, analysis and discussion of the developed 

solver through different test cases summarised in 5.2. Test cases. A further 

discussion on the results can be found in the next section 7. Discussion. 

6.1 Score Matrix validation test 

Table 6-1 presents a test performed to prove the cost uniqueness by the 

proposed modelling of the Search Space. 10 different sequences were 

generated randomly (same function as the first colony uses in ACO, see section 

4.5.2.2) and their total costs were calculated by accessing triplet by triplet to the 

Score Matrix (∆𝑣𝑆𝑀) and by calling the function in the CASTPath Toolbox 

wrapper_combina_CASTPath_MARSSW.m (∆𝑣𝑓𝑢𝑛). Results show the values 

obtained are exactly the same and therefore it can be said that the uniqueness 

of the paths cost in the Search Space 𝒢 has been proved. Note that all the 

decimals given by MATLAB are shown to prove null error. 

 

Table 6-1. Test to prove the cost uniqueness with the implementation of the SM 

and comparison on computational time for using the SM and the wrapper 

function tool 

10 randomly generated asteroid sequences 
(𝑺𝑴 ≤ 𝟗𝒌𝒎/𝒔) 

∆𝒗𝑺𝑴 ∆𝒗𝒇𝒖𝒏 

0 11 22 41 61 71 83 92 101 119 127 139 158 13.06614441 13.06614441 

0 11 24 39 61 83 97 109 121 127 139 152 158 13.22455344 13.22455344 

0 2 17 36 50 86 106 118 129 135 141 152 158 10.14910253 10.14910253 

0 2 26 46 54 73 92 97 106 120 131 141 154 11.55330089 11.55330089 

0 10 35 51 57 85 92 109 120 135 141 152 158 10.68620602 10.68620602 

0 13 22 36 41 56 74 97 106 117 122 134 148 12.93202176 12.93202176 

0 5 10 17 35 61 86 97 106 129 135 141 157 11.28897666 11.28897666 

0 2 13 31 44 59 72 92 110 115 135 141 158 11.78296788 11.78296788 

0 8 27 64 80 94 105 118 121 127 139 152 158 12.73494301 12.73494301 

0 9 19 35 51 62 92 106 118 129 141 152 158 11.60452448 11.60452448 
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6.2 Whole Search 

For the whole search case, the ∆ind objective weight was set as null, 𝜄 = 0, as 

in this case the Search Space is so extended that the ants do not struggle to 

find sequences of 12 asteroids. For the same reason, the backtracking is not 

implemented as the ants always have nodes to continue their sequence. The 

solver is initialised by a first random colony that gives 12 asteroid sequences 

whose legs have a cost of less than 9 km/s (𝑆𝑀 ≤ 9 𝑘𝑚/𝑠 is used). 

Figure 6-1 shows the best ∆v at each iteration for the 10 rounds of 30 minutes 

and 60 minutes, for the following two cases of the heuristic parameter weight: 

𝛽 = 1 and 𝛽 = 5. It can be appreciated that, in general, the solver’s best 

solutions are the ones of the first colony. 

For the case of 10 minutes, the solver does not have enough time to improve 

the best ∆v given by the first colony. For the case of 30 minutes round 3 

achieves to improve the best ∆v, and for the case of 60 minutes round 3 and 7 

also achieve an improvement from the 1st colony. It is remarkable the 

improvement in the case of round 7 (in red) that decreases the best ∆v from 

29.7118 km/s to 24.3152 km/s. However, this is the round that also starts with 

the highest best ∆v. 

Comparing the two cases of β, the number of iterations for both cases seem to 

remain the same. The improvements on the best ∆v are the three for the case 

of 𝛽 = 1. However, these are isolated cases and the boxplots (Figure 6-2 for 

𝛽 = 1 and Figure 6-3 for 𝛽 = 5) and stacked bar graph (Figure 6-4) need to be 

analysed to compare properly the heuristic parameter influence. Note that, as 

an exception for the rest of the results presented in the following sections, the 

right axis in the boxplots indicate the number of solutions below a threshold of 

30 km/s (instead of 9 km/s) and the stacked bar graphs thresholds are also 

changed by higher values (all of them do not meet REQ-002). This is done 

because the Whole Search case, as expected, gives very high values of ∆v. 
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Figure 6-1. Best ∆v achieved so far in each iteration in the Whole Search for 10 mins, 30 mins and 60 mins, for β = 1 

and β = 5



Results  Maria Carrillo Barrenechea 

 

 

51 

In general, the median and “minimum” values of the 𝛽 = 5 boxplot are lower 

than the ones of 𝛽 = 1. It is also noticed that in the case of  𝛽 = 5, the ants find 

more lower outliers, achieving better best-Δv in each series. The execution time 

does not seem to improve much the values in both cases. In fact, the best-Δv in 

the case of  𝛽 = 5 is achieved for the 10 min execution time series. Moreover, 

the number of sequences encountered with a maximum threshold of 30 km/s (in 

orange) does not seem to be related to the execution time or the 𝛽 value. 

The stacked bar graph shows that almost 100% of all the solutions are above 

the 40 km/s threshold. Note that because of this, the plot’s y axis is in 

logarithmic scale. This was expected as the Score Matrix is not pruned and 

there exist very high Δv in the Search Space. All of this implies that the 

performance of the solver in the Whole Search case is strongly dependent 

on the goodness of the first random colony solutions. 

 

 

Figure 6-2. Boxplot of results of ACO for Whole Search and β = 1 
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Figure 6-3. Boxplot of results of ACO for Whole Search and β = 5
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Figure 6-4. Stacked Bar Graph of results of ACO for Whole Search, β = 1 (left) and β = 5 (right) 
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Table 6-2 and Table 6-3 show the best results for the Whole Search case for 

𝛽 = 1 and 𝛽 = 5, respectively. Bear in mind that these best solutions seem to 

be strongly dependent on the goodness of the score of the first random colony. 

Nevertheless, it seems that as Tena already proved, a higher heuristic 

parameter weight 𝛽 tuned ACO performs better for the CASTAway problem. 

This fact will be more analysed in 6.4.1. Comparison of β = 4 and β = 5 

implementing a Score Matrix cleaning. 

Table 6-2. Parameters and results of ACO solver for Whole Search and β = 1 

Score Matrix threshold None (Whole Search) 

Execution time 60 min (best) 30 min 10 min 

ACO parameters 𝛼 = 1, 𝜷 = 𝟏, 𝜈 = 54, 𝜄 = 0 

Number of feasible solutions - - - 

Best tour cost ∆v 24.3152 km/s 

Best tour sequence 

(MOID time IDs) 
[3 9 62 92 107 111 126 137
 142 147 152 158] 

Best tour sequence 

(Asteroid IDs) 
[75773 54602 81229 4876 65326 80662 42999
 90769 77579 58896 72195 85792] 

Table 6-3. Parameters and results of ACO solver for Whole Search and β = 5 

Score Matrix threshold None (Whole Search) 

Execution time 60 min 30 min 10 min (best) 

ACO parameters 𝛼 = 1, 𝜷 = 𝟓, 𝜈 = 54, 𝜄 = 0 

Number of feasible solutions - - - 

Best tour cost ∆v 19.5448 km/s 

Best tour sequence 

(MOID time IDs) 
[14 39 63 83 97 116 118 131
 137 142 147 155] 

Best tour sequence 

(Asteroid IDs) 
[39775 15032 95771 25689 50239 92672 7758
 44231 90769 77579 58896 29113] 
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6.3 Score Matrix filtered at 9 km/s 

Figure 6-5 presents the best Δv found by the ants so far at each iteration for the 

three different execution times (run in 10 independent rounds each) and for the 

two test cases of 𝜄 = 54 and 𝜄 = 611. Note that this diagram is presented to 

show the tendency of the solver to improve the best Δv, to see concrete values 

refer to the boxplot, Figure 6-6. 

It can be seen that in all the cases, the initial Δv costs are higher, while in the 

case of 𝜄 = 611, not only the costs start at a lower value but the tendency to 

improve the best Δv is also quicker. The number of iterations are higher 

when the Δind cost weight 𝜾 is bigger, which means that the ants need to 

backtrack less times, finding more easily solutions of 12 asteroids. 

The case of 𝜄 = 54 achieves a better best Δv. However, the boxplots (in Figure 

6-6 for 𝜄 = 54 and in Figure 6-7 for 𝜄 = 611) reveal this value is an outlier, and 

the quartiles are higher in the case of 𝜄 = 54 than in the case of 𝜄 = 611. 

Looking into detail the boxplot for 𝜄 = 54, a tendency to find some good outliers 

below the “minimum” is seen. In fact this case achieves a lower Δv than 𝜄 = 611. 

This is probably because the ants can still find good solutions even if the Δind is 

higher, which can mean that increasing the Δind importance gives penalty 

to differentiated indices that can give good results and still lead to 12 

asteroid sequences. However, it is clearly more difficult for them to find higher 

amounts of feasible solutions with a lower 𝜄. With 𝜄 = 54 only for 60 min 

execution time 2 feasible sequences are found (null in the other two series), 

while with 𝜄 = 611 5, 19 and 56 feasible solutions are encountered for each 

series of 10, 30 and 60 minutes respectively.  

Analysing the stacked bar graph for both cases in Figure 6-8 (note that the y 

axis in again in logarithmic scale), it can be seen that a higher 𝜾 gives a higher 

percentage of feasible sequences (∆𝑣 ≤ 9 𝑘𝑚/𝑠, in blue) and a lower 

percentage of the worst threshold rage of ∆𝑣 > 12 𝑘𝑚/𝑠. 
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Figure 6-5. Best ∆v achieved so far in each iteration of ACO with SM ≤ 9 km/s for 10 mins, 30 mins and 60 mins, 

for ι = 54 and ι = 611
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Figure 6-6. Boxplot of results of ACO with SM ≤ 9 km/s and ι = 54 

 

Figure 6-7. Boxplot of results of ACO with SM ≤ 9 km/s and ι = 611
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Figure 6-8. Stacked Bar Graph of results of ACO with SM ≤ 9 km/s and ι = 54 (left) and ι = 611 (right). Note that the 

y axis is in logarithmic scale. 
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Table 6-4 and Table 6-5 present a summary of the best Δv achieved in all the 

runs for the proposed ACO solver with 𝑆𝑀 ≤ 9𝑘𝑚/𝑠 and 𝜄 = 54 and 𝜄 = 611, 

respectively. There is need to highlight that even if the best tour cost is 

achieved by 𝜄 = 54, 𝜄 = 611 achieves many more feasible solutions. 

 

Table 6-4. Parameters and results of ACO solver with SM ≤ 9 km/s and ι = 54 

Score Matrix threshold 9 km/s 

Execution time 60 min (best) 30 min 10 min 

ACO parameters 𝛼 = 1, 𝛽 = 5, 𝜈 = 54, 𝜾 = 𝟓𝟒 

Number of feasible solutions 2 - - 

Best tour cost ∆v 7.5902 km/s 

Best tour sequence 

(MOID time IDs) 
[6 10 17 35 43 53 99 118
 129 135 141 152] 

Best tour sequence 

(Asteroid IDs) 
[37079 7080 56848 42460 79766 29568 60318
 7758 80319 88041 82192 72195] 

Table 6-5. Parameters and results of ACO solver with SM ≤ 9 km/s and ι = 611 

Score Matrix threshold 9 km/s 

Execution time 60 min 30 min (best) 10 min 

ACO parameters 𝛼 = 1, 𝛽 = 5, 𝜈 = 54, 𝜾 = 𝟔𝟏𝟏 

Number of feasible solutions 56 19 5 

Best tour cost ∆v 7.8715 km/s 

Best tour sequence 

(MOID time IDs) 
[6 10 17 25 33 62 75 102
 129 135 141 154] 

Best tour sequence 

(Asteroid IDs) 
[37079 7080 56848 70155 5233 81229 69928 46
 80319 88041 82192 59305] 
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6.4 Score Matrix filtered at 1 km/s 

AS introduced in 5.1.2. Score Matrix cleaning threshold, the last pruning of the 

Search Space is done for a 𝑆𝑀 ≤ 1𝑘𝑚/𝑠 following the work done by Tena on 

his ACO-Taboo solver [33]. First, in 6.4.1. Comparison of β = 4 and β = 5 a 

comparison of the heuristic parameter weight 𝛽 is done by applying Tena’s best 

tuning parameter (𝛽 = 4) and increasing this value by one unit (𝛽 = 5). The rest 

of the parameters are 𝛼 = 1, 𝜈 = 54 and 𝜄 = 54. 

As presented in the next section and seen in the Whole Search tests, a higher 𝛽 

performs better. Because of this observation, the trail-dependency of the tour of 

asteroids (the effectiveness of the pheromone) wants to be checked by 

removing completely the contribution of the pheromone making 𝛼 = 0. The rest 

of parameters will be 𝛽 = 1 (increasing here 𝛽 makes no improvement as the 

heuristic parameter will be the only one contributing to the probability, see 

(4-6)), 𝜈 = 54 and 𝜄 = 54. 

Finally, as the tests with a 𝑆𝑀 ≤ 9𝑘𝑚/𝑠 comparing 𝜄 = 54 and 𝜄 = 611 show that 

a higher weight of the Δind cost objective performs better, a test with 𝜄 = 611 

with the best 𝛽 = 5 is done, being the rest of parameters 𝛼 = 1 and 𝜈 = 54. 

6.4.1 Comparison of β = 4 and β = 5 

Figure 6-9 and Figure 6-10 show the boxplots of the results of Δv (in the left 

axis) of the proposed ACO solver with 𝑆𝑀 ≤ 1𝑘𝑚/𝑠 for 𝛽 = 4 and 𝛽 = 5, 

respectively, along with the number of feasible (as per REQ-002) sequences (in 

the right axis, in orange, represented by ◁). 

The first observation made to both plots is that the tendency of the medians (in 

red) is to increase from 10 min to 30 min execution time, and then decrease 

from 30 min to 60 min but with a higher value compared to the median of the 

10 min series in both cases. It seems that the ants start with very good solutions 

thanks to the heuristic parameter information (as the pheromone is initialised 

equally throughout all the Search Space) even if a random first colony is not 

executed in this case. Then, the ants explore more widely within the Search 
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Space encountering a wide range of solutions with better and worse Δv (30 min) 

and need a bit more of time to finally find several feasible solutions with lower 

Δv costs (60 min).  

In both configurations, the ants can find feasible solutions rapidly in 10 min (7 

for 𝛽 = 4 and 12 for 𝛽 = 5), and the growth of the feasible solutions increases 

rapidly with the execution time as it achieves more than the double or even 

more than the triple, x2.35 in the case of 𝛽 = 4, and x3.46 in the case of 𝛽 = 5, 

of feasible results in the double of time (60 and 30 mins). This fact leads to think 

that the ants learn more when the heuristic parameter importance is higher. 

Comparing both boxplots, it can be seen that the higher heuristic parameter 

weight 𝛽 = 5 gives better lower quartile values (lower Δv costs) and is able to 

find 2.43 times more feasible solutions (in 60 mins) than the case with 𝛽 = 4. In 

this vein, the stacked bar graph in Figure 6-11 shows that the 𝛽 = 5 case gives 

more feasible solutions not only in quantity but also in fraction with respect to 

the non-feasible ones (in red). It needs to be highlighted that more than the 

half of 𝜷 = 𝟓 solutions for 10 and 60 minutes of execution time are feasible 

(57.14% and 56.73% respectively). 

It is also worth mentioning that for both cases, and only for one series in each of 

them, only a 1.33% of the solutions scores are higher than 12 km/s. Even if the 

Score Matrix threshold is stablished in 1 km/s per leg, so for 12 asteroids the 

maximum would be 12 km/s, the first 𝐴0, 𝐴1 leg (Earth-first asteroid) also needs 

to be considered which adds an average of 4.5544 km/s (the maximum value is 

6.2889 km/s for leg 𝐴0
0, 𝐴7

1). Thus, the maximum possible value of the tour for 

𝑆𝑀 ≤ 1𝑘𝑚/𝑠 is theoretically 18.2889 km/s.  
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Figure 6-9. Boxplot of results of ACO with SM ≤ 1 km/s and β = 4 

 

Figure 6-10. Boxplot of results of ACO with SM ≤ 1 km/s and β = 5 
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Figure 6-11. Stacked Bar Graph of results of ACO with SM ≤ 1 km/s and β = 4 (left) and β = 5 (right) 
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Table 6-6 presents the configuration, number of feasible solutions and best 

solution for the ACO solver with 𝑆𝑀 ≤ 1𝑘𝑚/𝑠 and 𝛽 = 4. Table 6-7 presents the 

configuration, number of feasible solutions and best solution for the ACO solver 

with 𝑆𝑀 ≤ 1𝑘𝑚/𝑠 and 𝛽 = 5, which corresponds to the best solution with a Δv 

of 7.2741 km/s encountered with the presented approach and by any heuristics 

used within CASTPath in 1h of execution time (best previous solution by Tena 

of 7.6962 km/s using a hybrid solver of ACO with Tabu Search and GA [33]). 

Table 6-6. Parameters and results of ACO solver with SM ≤ 1 km/s and β = 4 

Score Matrix threshold 1 km/s 

Execution time 60 min (best) 30 min 10 min 

Number of feasible solutions 40 17 7 

ACO parameters 𝛼 = 1, 𝜷 = 𝟒, 𝜈 = 54, 𝜄 = 54 

Best tour cost ∆v 7.6056 km/s 

Best tour sequence 

(MOID time IDs) 
[2 14 17 43 54 87 94 103
 118 135 141 152] 

Best tour sequence 

(Asteroid IDs) 
[79285 39775 56848 79766 58905 83559 88535
 80332 7758 88041 82192 72195] 

Table 6-7. Parameters and results of ACO solver with SM ≤ 1 km/s and β = 5. Best 

solution encountered by heuristics in CASTPath 

Parameters 1 km/s 

Execution time 60 min (best) 30 min 10 min 

Number of feasible solutions 97 28 12 

ACO parameters 𝛼 = 1, 𝜷 = 𝟓, 𝜈 = 54, 𝜄 = 54 

Best tour cost ∆v (best 
overall) 

7.2741 km/s 

Best tour sequence 

(MOID time IDs) 
[2 14 17 33 57 85 102 118
 129 135 141 152] 

Best tour sequence 

(Asteroid IDs) 
[79285 39775 56848 5233 17646 26797 46
 7758 80319 88041 82192 72195] 
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6.4.2 Removing the pheromone contribution, α = 0 

Given the good tendency in all the cases studied of performing better when 

increasing the heuristic parameter weight, an extreme test was performed 

removing the pheromone (𝛼 = 0) maintaining the same Δind cost weight as in 

the previous test cases (𝜄 = 54). Figure 6-12 shows the boxplot result. The 

results were not the expected ones, as non-feasible sequences were found by 

the ants. Moreover, in 10 minutes of execution the solver is not even capable of 

finding any 12-asteroid tour. In 30 minutes, a total of 2 12-asteroid solutions are 

encountered in rounds 1 and 10, null in the rest of the rounds. In 60 minutes, a 

total of 3 are found, 2 for round 4 and 1 for round 9. Thus, the boxplot is 

presented to have a visual representation of this case, but it is not 

representative of the solver performance. It can be concluded that without the 

pheromone contribution (𝜶 = 𝟎), the solver is not able to find feasible 

solutions as per REQ-001 (12-asteroid tour) and thus, there exists trail-

dependency in the problem. 

 

Figure 6-12 Boxplot of results of ACO with SM ≤ 1 km/s and α = 0. Note that only 

2 solutions exist for 30 min and 4 solutions for 60 min 
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6.4.3 Comparison of ι = 54 and ι = 611 

Finally, a test taking the best parameters of each test case was performed: 

ACO solver with 𝑆𝑀 ≤ 1𝑘𝑚/𝑠, 𝛼 = 1, 𝛽 = 5, 𝜈 = 54 and 𝜄 = 611. The boxplot of 

the results is presented in Figure 6-13. This configuration leads to expect better 

results than the same configuration with 𝜄 = 54 because previous test have 

performed better with 𝜄 = 611. However, the results are quite poor as the solver 

is not able to find solutions that satisfy REQ-002 (∆𝑣 ≤ 9𝑘𝑚/𝑠) and many 

solutions are close to the theoretical maximum for this SM set-up 

(18.2889 km/s, explained in section 6.4.1, note that the real maximum is lower). 

Moreover, on the contrary for the previous test cases, the three series present 

several higher and lower outliers which implies that the ants seem a bit lost in 

the Search Space. It can be concluded that, as anticipated in 6.3. Score Matrix 

filtered at 9 km/s, increasing the Δind importance gives penalty to differentiated 

indices that can give good results, which can be a bigger penalty in a more 

reduced Search Space as the one analysed here. 

 

Figure 6-13. Boxplot of results of ACO with SM ≤ 1 km/s, β = 5 and ι = 611
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7 DISCUSSION 

This section provides a further discussion of the results presented in the 

previous section 6. Results.  

7.1 Comparison of the different set-ups 

In this section, a general comparison of the results is made about the index 

reward, the smoothness of the Search Space and the trail dependency of the 

nodes. 

7.1.1 Index reward 

The difficulty of the ants to find feasible solutions as per REQ-001 (obtaining 

12-asteroid sequences) has been noticed when dealing with pruned spaces in 

the tri-structured Search Grid. This has been solved by applying the bi-objective 

weighted cost approach presented in 4.5.3.1. ACO with index reward. This is 

due to the “wholes” left in the Search Grid when the pruning of the SM is done. 

When the SM threshold was lower, and therefore the Search Grid reduced, the 

ants backtracked more times (for the same setting of parameters). Bear in mind 

that backtracking was done when the ant detected that there were no possible 

next nodes to continue with the search, i.e., it had entered or was about to enter 

a whole in the grid (see Algorithm 0-1 for further details). 

However, increasing the index reward weight (𝜄) does not seem to improve the 

results scores as much as increasing the heuristic parameter weight (𝛽). In fact, 

special care has to be taken when tuning these two parameters as it has been 

seen that a too high index reward weight gives penalty to feasible solutions and 

there is a point when increasing 𝛽 in which it is better  to not to increase 𝜄. 

7.1.2 Smoothness of the Search Space 

By smoothness of a search space, the difference in cost in the neighbourhood 

of the nodes is meant. This is, if an ant is on a node whose leg has a very good 

cost but when moving not very far away from that node, all the surroundings 
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have a very different worse cost (and this is repeated in various spots of the 

grid) it can be said that the search space is very sharp. 

The results shown in 6.2. Whole Search, where the solutions were very 

dependent on the first iterations, lead to think that the space is sharp. Not only 

this, but the struggle of the ACO solver before implementing the index reward 

also could be related. It is true though, that ACO algorithms perform better 

when the Search Space is not very constrained [43]. 

If this is true, when filtering the Score Matrix even more, the Search Space 

would be being smoothened as the curve is flattened and thus, this would be 

the reason why it is easier for the ants to find feasible solutions in the Search 

Grid 𝒢𝑐,1 than in 𝒢𝑐,9. 

This is a hypothesis that could be tested by creating a plot of the Δv values of a 

sequence, and then removing just one node, swapping it by another one 

calculate its Δv and swapping it again by another one, till all the neighbourhood 

has been swapped. If this plot presents many changes in the surroundings it 

would mean that the space is not smooth. 

7.1.3 Trail dependency of the nodes in the Search Grid 

As it has been seen, a higher heuristic weighted ACO (higher 𝛽) performs 

better. This means giving less importance to the pheromone, that is equally laid 

on a tour instead of node-by-node. This can mean that the Search Grid nodes 

are not dependent which makes sense if one thinks about the uniqueness of the 

paths demonstrated when modelling the nodes as pairs of asteroids. 

As described in 4.1. Search Space, the tour cost is a tri-dependency of the prior 

asteroid, the current asteroid and the next one. Thus, it is not necessary to fly 

by asteroid 10 to reach asteroid triplets 24-132-149, and the cost of the leg 

132-149 prior to have visited asteroid 24 will not change because of having 

visited or not asteroid 10 before. In the same way, it is clear asteroid 24 will not 

be visited if the leg 10-132 is chosen and therefore, there should exist a small 

trail dependency. 
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In this vein, note also that the pheromone update with the novel implementation 

of the Avoid Tours (see 4.5.2.5. Pheromone update) translates this problem into 

the Search Graph pheromone deposition. Continuing with the previous 

example, if the leg x-10-132 is promptly chosen, the ant will probably end up 

with an Avoid Tour, resulting on a punishment of the leg x-10-132 by 

evaporating more of its pheromone. Following this reasoning, the bad results 

when nulling the pheromone (𝛼 = 0) make sense. 

7.2 Comparison with previous work 

Previous work on CASTPath has been presented in 2.3. Previous work on 

CASTPath. This section makes a comparison of the presented approach with 

the previous results and solvers used in the project. 

7.2.1 Use of Score Matrix 

The use of a Score Matrix is possible thanks to the novel modelling of the 

Search Space by triplets of asteroids (pairs of asteroids as nodes) introduced in 

4.1. Search Space. In CASTPath previous work the ∆v was priorly 

approximated, P1 was executed and then a optimisation and refinement was 

done with P2, which implies high computation times and repeated evaluations. 

This method, while it is not exact and can lead to inaccurate solutions, is a good 

way of avoiding a high number of evaluations while the solver is running. 

However, it has the disadvantage of having to run a second analytical solver 

that computes the real ∆v costs of the solution tours. 

By modelling the Search Grid in a way that its paths have unique costs, the 

solver has the real information about the costs of all the asteroid legs and thus, 

is given a better tool to find better solutions. Moreover, the run of a second 

analytical solver is not necessary, reducing the total computational time. These 

both facts have been proven in the results shown in Table 6-1. 

It is worth highlighting the importance of balancing between how much the 

space search is filtered and the amount of feasible solutions that wants to be 

obtained. The implemented solver finds several solutions when the Search 
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Space is pruned below a 1 km/s threshold, but this is probably removing some 

feasible solutions from the Search Space. 

7.2.2 ACO Tabu Search 

From the different test cases performed by Tena, the ACO Tabu search is 

comparable due to the approximation of the approach. In fact, the solver 

proposed in this thesis is inspired by the results and discussion of Tena. Note 

that this is not the best solution he finds, as already mentioned in section 

2.3. Previous work on CASTPath. Figure 7-1 has been constructed from the 

data provided by Tena [33] on the ACO Tabu search test case with 𝛼 = 1 and 

𝛽 = 4. It can be seen that the number of feasible sequences found is not very 

high and the best score is an outlier, measing that the algorithm is not very 

robust. This is probably due to the approximation on the cost of the legs as the 

algorithm basis is very similar. The Search Space was not constructed based 

on the triple-dependency of the asteroids and thus, the information the ACO 

solver has in Tena’s case is way lower than in the Search Space used in this 

thesis. This proves that ACO is able to perform much better when it is given 

more information on the problem. 
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Figure 7-1. ACO Tabu Search results boxplot. Plot made from the data results of 

Tena [33] 

7.2.3 Dynamic Programming 

In Bellome et al. [3], a global optimisation solver based on Dynamic 

Programming was created at the same time as this thesis was developed. 

Dynamic programming involves the compliance of Bellman’s principle of 

optimality: an optimal policy is independent from the initial decisions (or initial 

state), i.e., the optimal policy would be the same even if found from intermediate 

states. Applied to CASTPath, on which it has been demonstrated there exists a 

trail dependency but only triplet by triplet, this principle holds when working with 

a Search Space of nodes composed by pair of asteroids. Thus, the trail 

dependency discussed in 7.1.3. Trail dependency of the nodes in the Search 

Grid is true for the ACO solver as the ants construct their solutions node by 

node, ordered in increasing MOID times, but the problem itself is not trail 

dependant if modelled in pairs, and can be tackled from any node in the Grid.  
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Bellome et al. presented in [3] the global optimum for MOID 0.05 of 

6.9772 km/s with an execution time of 4.7 h. Compared with the best solution 

encountered by the proposed ACO algorithm in 1 h of 7.2741 km/s, and taking 

into account that heuristics do not guarantee global optimality, it can be 

concluded that the proposed ACO solver is efficient, robust and gives significant 

good results. 
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8 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

This thesis has proposed a novel metaheuristic solver with ACO for the 

CASTAway asteroid tour trajectory optimisation problem. A new modelling of 

the Search Space has been implemented achieving a graph model with unique 

path costs, due to the triplet dependency and modelling the nodes as pairs of 

asteroids. 

This achievement has made possible the use of a Score Matrix with unique 

exact information about the leg costs, which is accessible during the solver and, 

thus, reduces the computational time. Moreover, this achievement deletes the 

need of dividing the problem into a subproblem P1 with estimated Δv values to 

find feasible sequences and an analytical subproblem P2 to optimise and give 

the real Δv values. Instead, a unique problem is solved with exact information 

about the Δv costs. 

Given the importance of finding diverse solutions because of the scientific 

interest of the CASTAway mission, a similarity measure tool has also been 

developed. This tool scores the asteroid-by-asteroid and subsequences 

similarity among the solutions.  

The heuristic has been successful on first, fulfilling the two requirements 

imposed of finding 12-asteroid sequences of a total Δv of 9 km/s as maximum. 

Second, on tuning the parameters to obtain a total of 97 feasible solutions in 10 

independent runs of 1 h with a best score of 7.2741 km/s. And third, on 

improving the results encountered by a heuristic in CASTPath, so far. It can be 

concluded that ACO performs better and learns faster when more information is 

given a priori. 

Finally, the finding of the modelling of the Search Space with unique cost paths 

has enabled the use of Dynamic Programming to find global optima for a given 

MOID threshold, as the Bellman’s principle with this Search Space model is 

fulfilled. The difference of the best cost by the proposed ACO and the global 
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optima is just below 0.3 km/s. Thus, it can be concluded that the proposed ACO 

solver is efficient, robust and gives significant good results. 

8.2 Future Work 

This work has answered many questions about CASTPath but has opened 

many others too, enabling many tasks as future work to improve the 

performance of the solvers or to understand better the nature of the problem (of 

the Search Space). 

As stated in 2.2.2. Metaheuristic algorithms, other heuristics were researched 

before deciding on focusing the thesis on improving the ACO solver. From the 

listed ones, the multimodal optimisation looks promising for this project as it can 

find many local minima and if it finds lots of them, the diversity on the asteroids 

would be more ensured. 

The second interesting heuristic to explore is the multi-objective one. In this 

work, it can be said (even if it is not strictly the same mathematical approach as 

the standard one) that a bi-objective approach has been applied to ACO (with 

the objectives of Δv and Δind, see 4.5.3. Multiobjective formulation of ACO). But 

apart from this approach, an interesting application of the similarity measure 

would be to use it while the solver is running to increase the diversity of the 

solutions. GA tends to give similar results, a bi-objective approach can be used 

with GA, so using NSGA (normally NSGA-II is used, Non-dominated Sorting 

Genetic Algorithm II), with the objectives of minimising the Δv and minimising 

the similarity score. 

All the heuristics and deterministic solvers used in CASTPath can be tested 

using the Score Matrix too. 

Finally, the smoothness of the Search Space can be further analysed by 

creating the plot described in 7.1.2. Smoothness of the Search Space. 
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APPENDICES 

Appendix A Variables definition 

Table A-1. List of variables, values and definition 

Variable Value  Definition 

∆𝑣 - Difference in velocity 

𝑡𝑀𝑂𝐼𝐷 - MOID time 

𝐴𝑘
𝑚 - 

Asteroid with MOID ID 𝑘 in position 𝑚 of the asteroid 
sequence 

(𝐴𝑖
𝑚−2, 𝐴𝑗

𝑚−1, 𝐴𝑘
𝑚) - Asteroid triplet with MOID ordered indices 𝑖, 𝑗, 𝑘 

∆𝑣𝑗,𝑘
𝑖  - 

∆v required for the spacecraft to fly by asteroid 𝑘 from 
asteroid 𝑗 flyby, coming from asteroid 𝑖 

𝒢 - Search Grid 

𝒢𝑐 - Cleaned Search Grid (input to the solver) 

𝑆𝑖 - 
Subspace containing all the feasible pairs of asteroids 
beginning by 𝑆𝑖 

𝑛𝑎𝑠𝑡 158 
Number of different asteroids in the Search Space (for 
MOID ≤ 0.05 AU) 

𝑆𝑀 -  

𝑁 - Feasible set of solutions to the problem 

𝐿𝑡𝑜𝑢𝑟
𝑎𝑠𝑡  12 

Length of the tour sequence of asteroids (not 
considering Earth or Mars) 

∆𝑣𝑡𝑜𝑡 - Total ∆v of a tour, including Earth - 1st asteroid leg 

∆𝑣𝑚𝑎𝑥 9 km/s Maximum ∆v imposed for the tour 

𝑛𝑝𝑎𝑖𝑟𝑠,𝑓𝑟𝑜𝑚 11,889 Number of pairs of asteroids  

Similarity Measure 

Ψ - Total similarity score 

𝜓
𝑎𝑠𝑡

 - Asteroid-by-asteroid similarity score 

𝑤𝑎𝑠𝑡 1 Asteroid-by-asteroid similarity score weight 
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𝜓
𝑠𝑢𝑏

 - Subsequences similarity score 

𝑤𝑠𝑢𝑏 1 Subsequences similarity score weight 

ACO solver 

𝜉 - Candidate solution tour 

𝑃 - Probability of choosing next node 

𝜏 - Pheromone parameter 

𝜂 - Heuristic parameter 

𝛼 1 Exponent weight to pheromone 

𝛽 4 Exponent weight to heuristic parameter 

𝜌 0.5 Pheromone evaporation rate 

𝑛𝑏𝑡 - Backtracking counter 

𝑛𝑏𝑡,𝑚𝑎𝑥 50 Maximum number of backtrackings allowed 

𝑡𝑒𝑥𝑒𝑐  Execution time 

𝑓(𝑖,𝑗),𝑘 - Relative fitness of triplet (𝑖, 𝑗, 𝑘) 

𝐹(𝑖,𝑗) - 
Sum of the relative fitness of all the candidate nodes 
from node (𝑖, 𝑗) 

𝑠(𝑖,𝑗),𝑙 - Cumulative sum of relative fitnesses till asteroid 𝑙 

∆𝑖𝑛𝑑𝑗𝑘 - Difference between MOID time IDs (𝑘 − 𝑗) 

𝜈 54 Weight of ∆v objective in the cost 

𝜄 611 Weight of ∆ind objective in the cost 
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Appendix B Backtrack 

Algorithm 0-1. Implemented ACO: Backtrack 
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