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A B S T R A C T   

Background: The urban environment may influence neurodevelopment from conception onwards, but there is no 
evaluation of the impact of multiple groups of exposures simultaneously. We investigated the association be
tween early-life urban environment and cognitive and motor function in children. 
Methods: We used data from 5403 mother–child pairs from four population-based birth-cohorts (UK, France, 
Spain, and Greece). We estimated thirteen urban home exposures during pregnancy and childhood, including: 
built environment, natural spaces, and air pollution. Verbal, non-verbal, gross motor, and fine motor functions 
were assessed using validated tests at five years old. We ran adjusted multi-exposure models using the Deletion- 
Substitution-Addition algorithm. 
Results: Higher greenness exposure within 300 m during pregnancy was associated with higher verbal abilities 
(1.5 points (95% confidence interval 0.4, 2.7) per 0.20 unit increase in greenness). Higher connectivity density 
within 100 m and land use diversity during pregnancy were related to lower verbal abilities. Childhood exposure 
to PM2.5 mediated 74% of the association between greenness during childhood and verbal abilities. Higher 
exposure to PM2.5 during pregnancy was related to lower fine motor function (-1.2 points (-2.1, -0.4) per 3.2 μg/ 
m3 increase in PM2.5). No associations were found with non-verbal abilities and gross motor function. 
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Discussion: This study suggests that built environment, greenness, and air pollution may impact child cognitive 
and motor function at five years old. This study adds evidence that well-designed urban planning may benefit 
children’s cognitive and motor development.   

1. Introduction 

In Europe, prevalence rates of mental disorders in children have 
increased by 6% in the last two decades. According to the global burden 
of diseases, in 2019, 7.75 per 1000 children were affected by mental 
disorders, and there is general concern on the possible implication of 
environmental factors in their onset (Grandjean and Landrigan, 2006; 
Institute for Health Metrics and Evaluation, 2019). Since the develop
ment of the nervous system is orchestrated from early gestation until 
adolescence, and the detoxification systems in prenatal and early- 
childhood are still immature, these periods are considered as critical 
windows of developmental vulnerability (Rice and Barone, 2000). 

The worldwide growing urbanization is increasing the number of 
people exposed to a more adverse urban environment (United Nations 
et al., 2019), including poorer air quality, less access to natural spaces, 
and higher building density areas. Several epidemiological studies have 
found that air pollution exposure during early-life was associated with 
lower cognitive or motor functions (Lopuszanska and Samardakiewicz, 
2020; Suades-González et al., 2015). Animal studies suggest that 
microglial activation and oxidative stress are potential cellular mecha
nisms of the effects of air pollution on the brain (Block et al., 2012). 
Epidemiological studies have reported that greenness exposure during 
early-life was associated with higher cognitive function in children (Asta 
et al., 2020; Dadvand et al., 2015; Liao et al., 2019). Although mecha
nisms of the effects of greenness exposure on the brain are poorly studied 
to date, some studies suggest that better air quality, increased physical 
activity, rising social contacts, and reduced stress may explain the 
observed positive effects (Nieuwenhuijsen et al., 2017). Then, some 
studies have reported that built environment factors (e.g., high popu
lation density, poor walkability) were associated with lower cognitive 
function in older adults, but to our knowledge, there are no studies in 
children (Besser et al., 2017; Gascon et al., 2016). 

In contrast with most previous studies that have assessed single 
groups of exposures of urban environment, such as air pollution or 
greenness, evaluating multiple groups of exposures simultaneously may 
help disentangling confounding by co-exposures. It may highlight the 
mediating effects of some groups of exposures that are in the association 
pathway. Also, it will help revealing which urban factors are the most 
associated with neurodevelopment. We therefore aimed to assess i) the 
association between multiple groups of exposures of the urban envi
ronment during pregnancy and early-childhood, including built envi
ronment, natural spaces, and air pollution, with cognitive and motor 
function in children, and ii) the potential mediation of air pollution on 
the association between built environment and natural spaces on 
cognitive and motor function. Based on previous finding, we hypothe
sized that air pollution is associated with lower cognitive and motor 
function. We postulated that surrounding greenness is associated with 
higher cognitive function. And regarding built environment, we posit 
that some indicators of connectivity are associated with higher cognitive 
and motor function, whereas some indicators of density are associated 
with lower cognitive and motor function (Gascon et al., 2016; Guxens 
and Sunyer, 2012; Nieuwenhuijsen et al., 2017). 

2. Material and methods 

2.1. Study population 

This study is based on the Human Early-life Exposome project 
(HELIX), a European consortium of six population-based birth cohorts 
(Maitre et al., 2018). Cohorts with neurodevelopmental assessment at 

four- to five-year-old were included in the present study restricting the 
study population to four cohorts: Born in Bradford (BiB; Bradford, UK) 
(Wright et al., 2013), Etude des Déterminants pré et postnatals du 
développement et de la santé de l’Enfant (EDEN; Nancy and Poitiers, 
France) (Heude et al., 2016), INfancia y Medio Ambiente (INMA; 
Gipuzkoa, Sabadell, and Valencia, Spain) (Guxens et al., 2012), and 
Mother and Child Cohort in Crete (RHEA; Heraklion, Greece) (Chatzi 
et al., 2017). In the Norwegian Mother and Child Cohort Study (MoBa) 
cohort, cognitive and motor function were assessed by parent’s reports 
of the Child Development Inventory, and were not comparable to the 
other cohorts (Magnus et al., 2016). Mother-child pairs were recruited 
from the general population from 2003 to 2010 at early prenatal care 
visit (during the first trimester for INMA and RHEA, during the first and 
second trimesters for EDEN, and during the second and third trimesters 
for BiB). Children were followed at similar ages from pregnancy through 
childhood. We included singleton children with urban exposure data 
available (13,954 children). We further excluded children who were 
missing for all cognitive or motor scores (from 26% for INMA to 61% in 
BiB) resulting in 5,403 children (Appendix, Figure S.1). Each cohort 
obtained approval from national ethics committees and all participating 
women provided informed written consent. 

2.2. Urban environment assessment 

Assessment of the urban environment (i.e. built environment, natural 
spaces, and air pollution) was conducted using a geographic information 
system (GIS)-based environmental model built for the whole HELIX 
study area. Exposures were assigned to the home addresses during 
pregnancy (from conception to birth) and for the year before the 
cognitive and motor assessment (hereafter referred as “childhood”). The 
detailed description of the exposure assessment can be found in Rob
inson et al. (2018). Sources of data for each exposure are summarized in 
Supplementary material, Table S1. 

Briefly, for built environment indicators, we obtained topological 
maps from local authorities or from Europe-wide sources. We calculated 
population density as the number of inhabitants per square kilometer at 
the home address (from 100 m × 100 m raster). We calculated building 
density within 100 and 300 m buffers by dividing the area of building 
cover (m2) by the area of buffer (km2). We considered facility density as 
the number of facilities present divided by the area of the 300 m buffer. 
We built a facility richness index as the number of different facility types 
present divided by the maximum potential number of facility types 
specified, in a buffer of 300 m, giving a score of 0 to 1. Types of facilities 
are described in Table S2. We took the land use Shannon’s Evenness 
Index as an indicator of land use diversity in urban areas, calculated as 
the proportional abundance of each land use type multiplied by that 
proportion, divided by the logarithm of the number of land use types, in 
a buffer of 300 m, giving a score of 0 to 1. A higher value indicates a 
more even distribution of land between the different types of land uses. 
Land uses from Urban Atlas are described in Table S3 (European Envi
ronment Agency, 2020). We defined connectivity density as the number 
of street intersections inside 100 and 300 m buffers, divided by the area 
(km2) of each buffer. We obtained bus public transport lines and stops 
from local authorities of each study area and from Open Street Maps 
when local layers were not available (Open street maps, n.d.). We 
calculated the density of public bus stops as the number of stops inside 
100, 300, and 500 m buffers, divided by the buffer area. We used an 
indicator of walkability, calculated as the mean of the deciles of popu
lation density, land use diversity within 300 m buffer, street connec
tivity density, and facility richness index, giving a walkability score 
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ranging from 0 to 1 (Duncan et al., 2014; Frank et al., 2006). 
For the natural spaces indicators, following the PHENOTYPE 

approach (Nieuwenhuijsen et al., 2014), we applied the Normalized 
Difference Vegetation Index (NDVI) derived from the Landsat 4–5 
Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus 
(ETM +), and Landsat 8 Operational Land Imager (OLI)/Thermal 
Infrared Sensor (TIRS) with 30 m × 30 m resolution (courtesy of the U.S. 
Geology Survey) to measure the surrounding greenness, i.e., trees, 
shrubs, and parkland (Weier and Herring, 2000). NDVI quantifies 
greenness by measuring the difference between near-infrared (which 
vegetation strongly reflects) and red light (which vegetation absorbs). 
NDVI values range from 0 to 1, with higher numbers indicating more 
greenness. To achieve maximum exposure contrast, we used available 
cloud-free Landsat images during the period between May and August 
for the years relevant to our period of study and calculated greenness 
within 100, 300, and 500 m buffers around each address. Furthermore, 
an indicator for residential proximity to major natural spaces was 
created, as it covers different aspects of natural space exposure, i.e., easy 
access to recreational space. We calculated access to major green spaces 
(parks or countryside) and major blue spaces (sea, lakes, fish ponds, 
rivers, canals) from topographical maps or local sources as the straight- 
line distance from the home to nearest green or blue space with an area 
greater than 5000 m2. 

For air pollutants, we assessed nitrogen dioxide (NO2) and particu
late matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) 
using land use regression (LUR) or dispersion models, temporally 
adjusted for measurements made in local background monitoring sta
tions and averaged over the periods of interest. In most cases, we used 
site-specific LUR models developed in the context of the European Study 
of Cohorts for Air Pollution Effects (ESCAPE) project (Beelen et al., 
2013; Eeftens et al., 2012). For BiB, assessment for PM2.5 was based on 
the ESCAPE LUR model developed in London/Oxford (UK) and adjusted 
for background PM2.5 levels from monitoring stations in Bradford 
(Schembari et al., 2015). For EDEN, the ESCAPE European-wide LUR 
model was applied for PM2.5 (Wang et al., 2014), and dispersion models 
were used to assess NO2 exposure (Rahmalia et al., 2012). 

2.3. Cognitive and motor function assessment 

Cognitive function (i.e., non-verbal and verbal abilities) and motor 
function (i.e., fine and gross motor) were assessed in each participating 
cohort using validated tests by a trained psychologist, when children 
were four- to five-year-old. Tests used were specific to each cohort 
(Table 1, and Appendix). Cognitive function was assessed with the 
British Picture Vocabulary Scale in the BiB cohort, with the Weschler 
Preschool and Primary Scale of Intelligence in the EDEN cohort, and 
with the McCarthy Scales of Children’s Abilities in the INMA and RHEA 
cohorts. Motor function was evaluated with the Clinical Kinematic 
Assessment Tool in the BiB cohort, with the Peg moving task for the 
EDEN cohort, and with the McCarthy Scales of Children’s Abilities in the 
INMA and RHEA cohorts. All raw scores were standardized for each 
study area to a mean of 100 and a standard deviation of 15 to homog
enize the scales, and scores below 50 or above 150 were truncated to 50 
and 150 respectively, to limit the influence of outliers (McDonald, 
2009). The truncation affected less than 1% of the scores. Higher scores 
represent better cognitive or motor function. 

2.4. Potential confounding variables 

We identified potential confounding variables a priori using Directed 
Acyclic Graph based on up-to-date knowledge of the scientific literature, 
on data availability in each cohort, and matched as best as possible 
across cohorts (Hernán et al., 2004). We included information on area of 
inclusion (Bradford, Nancy, Poitiers, Gipuzkoa, Sabadell, Valencia, 
Heraklion), parental country of birth (none or one in the country of 
inclusion, both), deprivation index at area level of the residence (less Ta
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deprived, deprived, most deprived), maternal age at recruitment (years), 
maternal educational level at recruitment (“lower than primary, pri
mary, and lower secondary”, “upper secondary, and post-secondary non- 
tertiary”, “tertiary”), maternal pre-pregnancy body mass index (kg/m2), 
parity (nulliparous, one, at least two children), maternal smoking during 
pregnancy (no, yes), paternal age at recruitment (years), paternal 
educational level at recruitment (“lower than primary, primary, and 
lower secondary”, “upper secondary, and post-secondary non-tertiary”, 
“tertiary”), paternal body mass index at recruitment (less than 25, 
25–29, ≥30 kg/m2), season of child birth (winter, spring, summer, 
autumn), child sex (female, male), and child age at assessment (days). 
Deprivation index at area level was described using deprivation indexes 
from each country, including income level, employment rate, educa
tional level, and categorized into tertiles. Details about data sources are 
provided in Table S4. 

2.5. Statistical analyses 

Continuous exposure variables with a non-normal distribution were 
transformed to approach normality using a Box-Cox power trans
formation approach. All continuous exposures were standardized by the 
interquartile range (IQR) to express all estimates as the mean change in 
outcome score for an IQR increase in exposure level. 

Missing data for all potential confounding variables and exposures 
among all participants with available data on at least one outcome 
variable were imputed using the chained equations method (Appendix, 
Table S5). We generated two sets of twenty imputed datasets, one for 
cognitive outcomes and one for motor outcomes, used in all of the an
alyses mentioned hereafter. Rubin’s rules were used to aggregate the 
results from the twenty imputed datasets (Little and Rubin, 2019). 

2.6. Single-exposure analysis 

We first performed single-exposure models using linear regressions 
for quantifying systematically the association between each exposure 
independently and each outcome, pooling the data of all areas and 
adjusting for area (i.e., mega-analysis). Models were adjusted for po
tential confounding variables described in the previous subsection. The 
assumptions of the linear regression models, including linearity between 
each exposure and each outcome, were fulfilled. 

2.7. Multi-exposure analysis 

Second, we applied multiple-exposure models with the outcomes 

that were associated with urban exposures, to correct for multiple 
testing while considering the correlation between co-exposures. We only 
included the indicators of built environment and natural spaces as we 
considered air pollution as a possible mediator. We built a separate 
multi-exposure model with air pollution (Fig. 1) using the Deletion- 
Substitution-Addition (DSA) algorithm (Appendix) (Agier et al., 2016). 
To assure the adjustment for all potential confounding variables in each 
model, we fixed the potential confounding variables, allowing only the 
urban exposure variables to participate in the selection process. As DSA 
is based on cross-validation, we ran DSA two hundred times to stabilize 
the results and we selected final models based on frequency of occur
rence (at least 10%). DSA is a selection method aiming to minimize root- 
mean-square error, it is possible that non-statistically significant expo
sures (i.e., p > 0.05) are kept in the models. When more than one 
exposure was selected by the DSA, we ran linear regression models that 
included all the selected exposures with a backward elimination method 
to only retain the exposures that were associated with the outcome (p <
0.05). When we observed associations between prenatal and childhood 
period for the same exposure, we put the two indicators in the same 
model to disentangle their effects unless they had a correlation greater 
than 0.8, to avoid collinearity. 

2.8. Mediation analysis 

Third, when we observed 1) associations of urban environment with 
air pollution, 2) of urban environment and air pollution with the same 
outcome, and 3) urban environment was not used to model air pollution 
(Beelen et al., 2013; Eeftens et al., 2012), we applied mediation analysis 
for estimating whether part of the urban environment effect was medi
ated by air pollution (Valeri and VanderWeele, 2013). We used linear 
regressions for both outcome regression and mediator regression models 
on the twentieth imputed dataset. Standard errors were calculated using 
bootstrapping. We estimated the natural direct effect, the natural indi
rect effect, and the total effect. We also calculated the proportion 
mediated as the natural indirect effect/total effect. 

All statistical data from all areas were pooled in a mega-analysis to 
increase statistical power, avoid assumptions of within-area normality 
and known within-area variance, and assuming homogeneity of the es
timates between areas. To confirm the validity of mega-analysis, for 
exposures included in the multi-exposure models, we analyzed associ
ations separately for each area, and area-specific effect estimates were 
combined using inverse variance-weighted random-effects meta- 
analyses with the Der Simonian-Laird estimator (Smith-Warner et al., 
2006). We assessed heterogeneity in the estimates using the I2 statistic. 

Fig. 1. Conceptual framework of analysis. Blue spaces: sea, lakes, fish ponds, rivers, canals. Green spaces: parks, countryside.  
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We did not interpret the associations of the mega-analysis in case of 
heterogeneity across areas. 

All analyses were performed with R statistical software (version 4.0; 
R Development Core Team), using the mice package for multiple 
imputation, DSA for the DSA algorithm, regmedint for mediation, and 
ggplot2 for drawing plots. 

3. Results 

3.1. Study population 

Urban environment, and socioeconomic characteristics overall and 
by area are described in Table 2 and Appendix, Table S6. Based on 
observed values, parents of participants were more likely to be born in 
the country of inclusion, were older, and with a higher educational level 
compared to parents of children that did not participate to the neuro- 
assessments (Appendix, Table S7). Levels of exposure during preg
nancy and childhood, together with their pairwise correlations, are 
presented in Table 3, and Appendix, Table S6, Figure S2, and Figure S3. 
Briefly, NDVI during pregnancy and childhood was negatively corre
lated with indicators of population density and air pollution (rho from 
-0.27 to -0.75). Land use diversity was positively correlated with 
building density, facility density, and density of public bus stops (rho 
from 0.31 to 0.73). Urban environment indicators during pregnancy vs 
childhood were all positively correlated (Appendix, Figure S4). 

3.2. Associations between urban environment and cognitive and motor 
scores 

During pregnancy, higher land use diversity, street connectivity 
density in a 100 m buffer, and walkability index were associated with 
lower verbal scores in the single-exposure models (Fig. 2, and Appendix 
Table S8). Also, higher NDVI in 300 and 500 m buffers during pregnancy 
were associated with higher verbal abilities. In the multi-exposure 
models, land use diversity, street connectivity density, and NDVI in a 
500 m buffer during pregnancy remained associated with verbal scores 
(-0.8 point (95% CI -1.4, -0.2), -0.9 point (95% CI -1.4, -0.3), and +1.5 
point (95 %CI 0.4, 2.7), respectively) (Table 4, and Appendix Table S9). 
Building density in the 100 m buffer was retained in the multi-exposure 
model and became statistically significant (+0.8 point (95% CI 0.1, 
1.5)). We found similar results in the meta-analysis, with no heteroge
neity between areas (Table 4, and Appendix, Figure S6). 

During childhood, higher levels of land use diversity and walkability 
index were associated with lower verbal scores in the single-exposure 
models (Fig. 2, and Appendix, Table S8). In the multi-exposure model, 
higher land use diversity during childhood remained associated with 
lower verbal scores, with a similar beta estimate (-0.6 point (95% CI 
-1.1, 0)) (Table 4, and Appendix, Table S9). We did not observe het
erogeneity between areas in the meta-analysis (Table 4, and Appendix, 
Figure S6). 

We did not perform mutual adjustment for pregnancy and childhood 
exposures to land use diversity due to high correlations between the two 
periods (rho = 1, Appendix, Figure S4). 

No associations were observed between urban environment in
dicators during pregnancy and childhood and non-verbal abilities, gross 
motor, and fine motor skills (Fig. 2, Fig. 3, and Appendix, Table S8). 

3.3. Associations between air pollution and cognitive and motor scores 

No association was observed between prenatal exposures and verbal 
abilities. Regarding childhood exposures, higher levels of PM2.5 during 
childhood were associated with lower verbal scores in the single- 
exposure models (-1.2 point (95% CI 95% CI -2.1, -0.4)) (Fig. 2, and 
Appendix, Table S7), which remained in the multi-exposure model 
(Table 4, and Appendix, Table S9). However, the overall estimate of that 
association was null in the meta-analysis (0 point (95% CI -1.7, 1.6)) 

Table 2 
Description of the socioeconomic and family variables included of the study 
population (n = 5,403 mother–child pairs).    

Distribution 

Parental characteristics 
Parents place of birth  

None or one in the country of 
inclusion 

1,707 
(31.8%)  

Both 3,654 
(68.2%) 

Deprivation index at area-level during pregnancy  
less deprived 1,397 

(29.1%)  
middle deprived 1,734 

(36.2%)  
most deprivedmost deprived 1,662 

(34.7%) 
Deprivation index at area-level at four- to five years old  

less deprived 1,521 
(31.8%)  

middle deprived 1,786 
(37.3%)  

most deprived 1,477 
(30.9%) 

Maternal age (years)  29.8 ± 5.2 
Maternal educational level  

lower than primary, primary, 
and lower secondary 

1,610 
(31.0%)  

upper secondary, and post- 
secondary non-tertiary 

1,695 
(32.7%)  

tertiary 1,884 
(36.3%) 

Maternal pre-pregnancy body 
mass index (kg/m2)  

25.4 ± 5.4 

Parity  
no child 2,328 

(44.2%)  
1 child 1,802 

(34.2%)  
≥ 2 children 1,140 

(21.6%) 
Maternal smoking during pregnancy  

no 4,094 
(78.3%)  

yes 1,133 
(21.7%) 

Paternal age (years)  33.5 ± 5.3 
Paternal educational level  

lower than primary, primary, 
and lower secondary 

1,568 
(33.0%)  

upper secondary, and post- 
secondary non-tertiary 

1,702 
(35.9%)  

tertiary 1,477 
(31.1%) 

Paternal body mass index  
less than 25 kg/m2 1,280 

(42.0%)  
25–29 kg/m2 1,354 

(44.4%)  
≥30 kg/m2 413 (13.6%) 

Child characteristics 
Season of birth  

winter 1316 (24.5%)  
spring 1369 (25.5%)  
summer 1320 (24.5%)  
autumn 1374 (25.5%)  
Child sex   
female 2615 (48.4%)  
male 2786 (51.6%) 

Values are mean ± sd for continuous variables and number (percentage) for 
categorical variables. Distribution is displayed over non-imputed, non-trans
formed values. 
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(Table 4, and Appendix, Figure S6). We observed heterogeneity between 
areas, with a negative association observed for the BiB cohort (-2.7 
points (95% CI -4.0, -1.4)) (Appendix, Figure S6), while no association 
was found for the other areas. 

Exposure to PM2.5 during pregnancy was associated with lower fine 
motor function in the single-exposure models (-1.2 point (95% CI -2.1, 
-0.4)) (Fig. 3, and Appendix, Table S8), which remained associated in 
the multi-exposure model and in the meta-analysis (Table 4, and Ap
pendix, Table S9, Figure S7). 

During childhood, higher levels of PM2.5 were associated with 
higher fine motor scores in the single-exposure models (+1.0 point (95% 
CI 0.7, 1.9)) (Fig. 3, and Appendix, Table S8) which remained in the 
multi-exposure models (Table 4, and Appendix, Table S9). However, this 
association disappeared in the meta-analysis (+0.1 point (95% CI − 1.3, 
1.6)) (Table 4, and Appendix, Figure S7). We observed slight hetero
geneity between areas, with a negative association observed for the 
EDEN-Nancy cohort (-6.2 points (95% CI -11.1, -1.3)) (Appendix, 
Figure S7), while no association was found for the other areas. 

No associations were observed between air pollution during preg
nancy and childhood and non-verbal abilities and gross motor function 
(Fig. 2, Fig. 3, and Appendix, Table S8). 

3.4. Mediation between urban environment, air pollution exposure, and 
cognitive and motor scores 

Since we only found that two urban environment indicators during 
childhood (i.e., NDVI in 300 m buffer and land use diversity) and 
exposure to PM2.5 during childhood were associated with verbal abili
ties in the BiB cohort (Appendix, Figure S6), we restricted our mediation 
analyses to this cohort. NDVI in 300 m buffer was associated with lower 

PM2.5 levels (-0.56 95% CI (-0.60, -0.52)). Land use diversity was 
associated with a slight increase of PM2.5 levels, but the association was 
not statistically significant (0.01 95% CI (-0.03, 0.05). Therefore, we 
conducted the mediation analysis only for NDVI. We observed that air 
pollution mediated 74% of the association between NDVI in 300 m 
buffer and verbal scores (natural indirect effect: 1.5 point (95% CI 0.6, 
2.4), total effect: 2.0 points (95% CI 0.5, 3.7)) (Fig. 4). 

4. Discussion 

In this large urban environment study, we observed that higher 
exposure to PM2.5 during pregnancy was associated with lower fine 
motor function. Also, higher street connectivity during pregnancy, and 
land use diversity during both pregnancy and childhood were associated 
with lower verbal abilities, and higher surrounding greenness during 
pregnancy was associated with higher verbal abilities. In analyses 
restricted to one cohort, childhood exposure to PM2.5 mediated almost 
75% of the association of surrounding greenness during childhood, with 
verbal abilities. 

Several studies have reported negative associations between air 
pollution and motor development in children, though some have also 
reported null effects (Guxens et al., 2014; Lertxundi et al., 2019; Lubc
zyńska et al., 2017; Zhang et al., 2020). In line with existing studies, we 
observed that higher PM2.5 levels during pregnancy were associated 
with lower fine motor scores. In particular, we found consistent results 
with a previous study that included some of the birth cohorts of our 
study at a younger age (EDEN, INMA, and RHEA) (Guxens et al., 2014). 
During pregnancy, the placenta and the blood–brain barriers are still 
immature defense systems and grant only partial protection to the fetus 
against environmental pollutants (Block et al., 2012). Fine particles may 
deposit in the respiratory tract of pregnant women and soluble compo
nents translocate into the circulation, generating systemic inflammation 
(US EPA, 2016). Both systemic inflammation and translocation of the air 
pollutants might directly affect fetal development by impairing 
placental function, decreasing transplacental oxygen and nutrient 
transport, and producing placental oxidative stress and epigenetics 
changes (Block et al., 2012). 

Growing evidence suggests that exposure to greenness is beneficial 
for cognitive abilities in children (Asta et al., 2020; Dadvand et al., 2015; 
Liao et al., 2019). Our results suggest that the positive effect of sur
rounding greenness on verbal abilities was mostly mediated by a 
reduction of air pollution levels, in line with previous findings in the 
literature (Asta et al., 2020; Dadvand et al., 2015; Liao et al., 2019; 
Markevych et al., 2017; Nieuwenhuijsen et al., 2017). For example, a 
study observed that 20 to 65% of the associations between school 
greenness and working memory at seven- to ten-year-old were mediated 
by elemental carbon exposure (Dadvand et al., 2015). In another study, 
prenatal exposure to PM2.5 mediated about 11% of the association be
tween residential exposure to greenness and mental development at 
twenty-four-month-old (Liao et al., 2019). Similarly, NO2 exposure 
mediated 35% of the association between residential exposure to 
greenness and arithmetic abilities at 7-year-old (Asta et al., 2020). 
Higher physical activity and frequency of social contacts may be also 
mediators of the effect of green spaces on human health (Nieu
wenhuijsen et al., 2017). Other possible mechanisms of the effects of 
green spaces on cognitive function include stress reduction and resto
ration (Nieuwenhuijsen et al., 2017). The Stress Reduction theory pro
poses psychophysiological pathways to explain the recovery from stress 
when exposed to natures, including positive changes in emotional state 
and physiological activity levels, and sustained attention/intake (Ulrich 
et al., 1991). Kaplan (1995) suggests in the Attention Restoration Theory 
how nature could act as a restorative environment for reducing fatigue 
of directed attention. Future studies should investigate the relationship 
between urban environment and allostatic load score in humans. 

This is the first study, to our knowledge, that showed a negative 
association between some built environment indicators (i.e., street 

Table 3 
Description of the urban environment variables of the study population 
(n = 5,403 mother–child pairs).   

Pregnancy 
period 

Childhood 
period 

Built environment 
Population density (inhabitants/km2) 6857 ± 8044 6337 ± 7721 
Building density (m2/km2)   
100-m buffer 248184 ± 148598 236218 ± 147718 
300-m buffer 208783 ± 127204 196929 ± 126199 
Facility density (facilities/km2, 300-m 

buffer) 
41.7 ± 60.5 35.7 ± 49.6 

Facility richness (facility types/km2, 
300-m buffer) 

0.1 ± 0.1 0.1 ± 0.1 

Land use diversity (300-m buffer) 0.5 ± 0.1 0.5 ± 0.1 
Connectivity density (intersections/ 

km2)   
100-m buffer 237.1 ± 147.3 224.3 ± 145.5 
300-m buffer 186.3 ± 95.3 174.0 ± 93.1 
Density of public bus stops (stops/km2)   
100-m buffer 28.6 ± 74.4 27.6 ± 80.0 
300-m buffer 25.8 ± 34.9 24.9 ± 35.1 
500-m buffer 22.4 ± 22.6 21.8 ± 22.9 
Walkability index (300-m buffer) 0.3 ± 0.1 0.3 ± 0.1 
Natural spaces 
NDVI 
100-m buffer 0.4 ± 0.1 0.4 ± 0.1 
300-m buffer 0.4 ± 0.1 0.4 ± 0.1 
500-m buffer 0.4 ± 0.1 0.4 ± 0.1 
Distance to nearest major green space 

(m) 
185 ± 160 170 ± 156 

Distance to nearest major blue space 
(m) 

1761 ± 1635 1772 ± 1634 

Air pollution 
NO2 (μg/m3) 21.7 ± 10.3 25.1 ± 11.6 
PM2.5 (μg/m3) 15.3 ± 3.3 15.1 ± 2.7 

NDVI, Normalized Difference Vegetation Index; NO2, nitrogen dioxide; PM2.5, 
particulate matter with an aerodynamic diameter of less than 2.5 μm. Values are 
mean ± sd. Distribution is displayed over non-imputed, non-transformed values. 
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connectivity density and land use diversity) and verbal abilities. Even if 
previous studies demonstrated that greenness is an important factor in 
the urban environment for human health (WHO Regional Office for 
Europe, 2016), in our study two other urban environment factors, con
nectivity density and land use diversity remained associated with lower 
verbal abilities after adjusting for greenness. Thus, our findings suggest 
that other urban characteristics beyond green spaces are important 
factors to consider when studying environmental exposures that may 
have an impact on children’s cognition. No published studies, to our 
knowledge, have investigated the effects of built design on cognitive 
development in children (Gascon et al., 2016). To date, most epidemi
ological studies about child development have considered individual 
family, and school environments, but little the neighborhood context. It 
may be difficult to disentangle the effects of built environment from 
socioeconomic status, as people from lower economic status are more 

likely to live in deprived neighborhood (Villanueva et al., 2016). 
Nevertheless, neighborhood may affect child’s development through 
social interaction and time spent outdoor. Neighborhood safety con
cerns may influence family practices. Low-density suburban neighbor
hood may be associated with desirable features (e.g., low crime, low 
noise and traffic) but less walkable areas and higher distances to 
essential services. This results in more time commuting and less time 
exploring and interacting with people and their environment, and may 
potentially negatively affect child health and development (Besser et al., 
2017; Robinson et al., 2018; Villanueva et al., 2016). Further in
vestigations are warranted to replicate our results and to better under
stand the effects of built design on child cognitive abilities. 

In the present study, we found no evidence of an association of built 
environment, green space, and air pollution indicators, either during 
pregnancy or childhood, with non-verbal abilities and gross motor 

Fig. 2. Single-exposure adjusted associations between urban environment during pregnancy and childhood and cognitive function (N ¼ 5,363 for verbal 
abilities, N ¼ 3,306 for non-verbal abilities). CI, Confidence interval; NDVI, Normalized Difference Vegetation Index; NO₂, nitrogen dioxide; PM2.5, particulate 
matter with an aerodynamic diameter of less than 2.5 μm; Pop, Population. Estimates are expressed as mean change for an interquartile range increase of exposure. 
Adjusted for area of inclusion, deprivation index at area level, season of birth, native parents of the country of recruitment, maternal and paternal age at recruitment, 
maternal smoking during pregnancy, maternal pre-pregnancy body mass index, paternal body mass index at recruitment, parity, maternal and paternal educational 
levels, child sex, and child age at assessment. 
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function. Previous studies on non-verbal abilities reported mostly null 
associations with early-life exposure to greenness and air pollution (Asta 
et al., 2020; Guxens et al., 2014; Lertxundi et al., 2019). Findings about 
gross motor function are more inconsistent: some studies have reported 
positive associations with early-life exposure to greenness and negative 
associations with air pollution exposure, but some studies found no as
sociation with air pollution (Guxens et al., 2014; Kabisch et al., 2019; 
Lertxundi et al., 2019; Liao et al., 2019; Lubczyńska et al., 2017). Non- 
verbal abilities and gross motor function were not assessed in some 
cohorts of our study, resulting in smaller sample sizes. We cannot 
discard the possibility that we lacked statistical power to find an asso
ciation with these two outcomes. 

The main strengths of this study include: i) its prospective multi
centric design with seven urban areas from four European countries, ii) 
the large range of urban factors evaluated at different time points from 
the prenatal period onwards with standardized and validated assess
ment methods, iii) the use of validated neuropsychological tests per
formed at homogeneous ages, iv) the simultaneous evaluation of 
multiple groups of exposures of the urban environment, v) the mediation 
analysis to disentangle the role of the urban environment and air 
pollution, and vi) the adjustment for various socioeconomic and lifestyle 
variables known to be potentially associated with the urban environ
ment during early-life and with cognitive and motor function in 
children. 

However, we acknowledge that this study has several limitations. 
First, the neuropsychological tests used differed across cohorts, due to 
the use of already collected data, which is likely to have introduced 
between-cohort heterogeneity. We have included tests assessing the 
same cognitive and motor functions to minimize that limitation, 
although moderate correlations between some tests might have intro
duced noise and decreased our chance to detect associations (Karr et al., 
1993). Second, while it is important to consider the entire urban envi
ronment, our analysis has methodological limits. Single-exposure asso
ciations should be interpreted with caution because they can be affected 
by type I error. Therefore, we applied a multi-exposure modeling, the 
DSA algorithm, to correct for multiple testing which takes into account 
the correlation between co-exposures. However, it has been previously 
shown that when two correlated variables are considered as predictors 
in a regression model, the variable estimated with less measurement 
error is selected even if the other variable is the one causally related to 
the outcome. Furthermore, the DSA algorithm is based on a cross- 
validation process which is subject to random variations. We ran each 
model 200 times and selected final models that occurred in at least 10% 
of the run. However, these results might not be completely robust and 
stable, and the percentage of times the variables were selected should be 

considered when interpreting the results. We were also not able to 
mutually adjust for prenatal and childhood exposure due to high cor
relation between the two periods. Third, the exposure assessment has 
limitations too. Air pollution was modeled to the individual level of 
home addresses of each participant using land use regression models 
based on validated measurements. However, a source of misclassifica
tion emerges when a participant spends time away from home (e.g., at 
work during pregnancy or at day care during early-childhood). Infor
mation about addresses where participants spent most of their time and 
commuting routes (in particular in the time of the day when air pollution 
levels are higher) is crucial for estimating total outdoor air pollution 
exposure. Our findings could be affected by non-differential misclassi
fication, resulting in a possible underestimation of the true association 
(Pollack et al., 2013). Fourth, participants of the study had a higher 
socio-economic status than non-participants, leading to potential se
lection bias. This selection bias due to attrition prevent us to generalize 
the results. Fifth, we cannot exclude residual confounding. Despite the 
wide range of exposures, we investigated, we may have missed some 
unmeasured urban environmental factors or confounding and mediating 
factors. In particular, we considered noise and heat exposure but were 
unable to include these due to poor or lack of measurement (e.g., noise 
assessments were available for only 52% of the children). In a previous 
HELIX study (Robinson et al., 2018), built environment and natural 
spaces indicators have been correlated with noise levels. It is likely that 
noise, such as air pollution, may be a mediator in the association be
tween urban environment and cognition and motor function. Further 
studies should consider noise when studying urban environmental fac
tors. Also, we missed information about parental mental health and 
intelligence status. Residual confounding could lead to biased estimates 
of the associations (Weisskopf et al., 2018). 

5. Conclusion 

This study highlights that early-life urban environment, in particular 
during pregnancy, may have adverse effects on cognitive and motor 
function in children. Specifically, early-life exposure to some built 
environment design factors, greenness, and air pollution were related to 
small alterations of child cognitive and motor function at five years old. 
The work has confirmed possible mediation effects by air pollution of 
the association between green space and verbal abilities. Most inter
estingly, the present study has provided new insights into the negative 
association of built environment indicators and cognitive function. This 
study adds evidence that well-designed urban planning may promote 
children’s cognitive and motor function. 

Table 4 
Multi-exposure adjusted association between pregnancy and childhood urban exposures and verbal abilities (N = 5,363) and fine motor function (N = 5,228).    

Pregnancy period Childhood period 

Mega-analysis Meta-analysis Mega-analysis Meta-analysis   

Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) Estimate (95% CI) 
Verbal abilities 
Urban environment Connectivity density in 100 m buffer (Δ192.2 intersections/km2) -0.8 (-1.4, -0.2) -0.8 (-1.4, -0.1) .. .. 

Land use diversity (Δ 0.1 units) -0.9 (-1.4, -0.3) -0.8 (-1.4, -0.3) -0.6 (-1.1, 0.0) -0.3 (-1.1, 0.4) 
NDVI in 500 m buffer (Δ 0.2 units) 1.5 (0.4, 2.7) 1.6 (-0.1, 3.4) .. .. 
Building density in 100 m buffer (Δ 131,637 m2/km2) 0.8 (0.1, 1.5) 0.6 (-0.2, 1.4)   

Air pollution PM2.5 (Δ 3.2 μg/m3) .. .. -1.2 (-2.1, -0.4) 0.0 (-1.7, 1.6) 
Fine motor function 
Air pollution PM2.5 (Δ 3.2 μg/m3) -1.2 (-2.1, -0.4) -0.9 (-2.2, 0.4) 1.0 (0.1, 1.9) 0.1 (-1.3, 1.6) 

CI, confidence interval; NDVI, Normalized Difference Vegetation Index; PM2.5, particulate matter with an aerodynamic diameter of less than 2.5 μm. The selection of 
exposures was determined by backward selection following the DSA (Deletion-Substitution-Addition) algorithm. DSA selections were performed separately for the 
prenatal and the childhood exposome, for urban environment and air pollution indicators, and for verbal abilities and fine motor function. Estimates are expressed as 
mean change for an interquartile range increase of exposure. Estimates adjusted for co-exposures (urban environment or air pollution), area of inclusion, deprivation 
index at area level, season of birth, native parents of the country of recruitment, maternal and paternal age at recruitment, maternal smoking during pregnancy, 
maternal pre-pregnancy body mass index, paternal body mass index at recruitment, parity, maternal and paternal educational levels, child sex, and child age at 
assessment. 
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Fig. 3. Single-exposure adjusted associations between urban environment during pregnancy and childhood and motor function (N ¼ 5,228 for fine motor, 
N ¼ 2,199 for gross motor). CI, Confidence interval; NDVI, Normalized Difference Vegetation Index; NO₂, nitrogen dioxide; PM2.5, particulate matter with an 
aerodynamic diameter of less than 2.5 μm; Pop, Population. Estimates are expressed as mean change for an interquartile range increase of exposure. Adjusted for area 
of inclusion, deprivation index at area level, season of birth, native parents of the country of recruitment, maternal and paternal age at recruitment, maternal smoking 
during pregnancy, maternal pre-pregnancy body mass index, paternal body mass index at recruitment, parity, maternal and paternal educational levels, child sex, and 
child age at assessment. 

Fig. 4. Mediation analyses between urban environment during childhood, air pollution exposure during childhood, and verbal scores at five-year-old in 
the BiB cohort (N ¼ 2,057). CI, Confidence interval; NDVI, Normalized Difference Vegetation Index; PM2.5, particulate matter with an aerodynamic diameter of less 
than 2.5 μm. Estimates are expressed as mean change for an interquartile range increase of exposure. Adjusted for deprivation index at area level, season of birth, 
native parents of the country of recruitment, maternal and paternal age at recruitment, maternal smoking during pregnancy, maternal pre-pregnancy body mass 
index, paternal body mass index at recruitment, parity, maternal and paternal educational levels, child sex, and child age at assessment. 
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González-Safont: Resources, Writing - review & editing. Marina 
Vafeiadi: Resources, Writing - review & editing. Johanna Lepeule: 
Resources, Writing - review & editing. Raquel Soler-Blasco: Resources, 
Writing - review & editing. Lucia Alonso: Data curation, Writing - re
view & editing. Mariza Kampouri: Resources, Writing - review & 
editing. Rosie Mceachan: Resources, Writing - review & editing. Loreto 
Santa-Marina: Resources, Writing - review & editing. John Wright: 
Resources, Writing - review & editing. Leda Chatzi: Resources, Writing - 
review & editing. Jordi Sunyer: Resources, Writing - review & editing. 
Claire Philippat: Resources, Writing - review & editing. Mark Nieu
wenhuijsen: Methodology, Writing - review & editing. Martine Vrij
heid: Funding acquisition , Writing - review & editing. Mònica Guxens: 
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Institute for Population Health Surveillance (InVS), French National 
Institute for Health Education (INPES), the European Union FP7 pro
grams (ESCAPE, ENRIECO, Medall projects), Diabetes National 
Research Program (through a collaboration with the French Association 
of Diabetic Patients (AFD)), French Agency for Environmental Health 
Safety and French National Agency for Food Security (now ANSES), 
Mutuelle Générale de l’Education Nationale a complementary health 
insurance (MGEN), French-speaking association for the study of diabetes 
and metabolism (ALFEDIAM). Core support for Born in Bradford is also 
provided by the Wellcome Trust (WT101597MA, UK). Born in Bradford 
(BiB) is only possible because of the enthusiasm and commitment of the 
children and parents in BiB. We are grateful to all the participants, 
health professionals, schools and researchers who have made BiB 
happen. BiB receives funding from the ESRC/MRC, the Wellcome Trust 
(WT101597MA) and the National Institute for Health Research York
shire and Humber ARC (reference: NIHR20016). M. Mon-Williams was 
supported by a Fellowship from the Alan Turing Institute. Additional 
funding from the National Institute of Environmental Health Science 
supported Dr Chatzi (R01ES030691, R01ES029944, R01ES030364, 
R21ES029681, and P30ES007048). The views expressed are those of the 
authors, and not necessarily those of the NHS or the NIHR. None of the 
funders were involved in designing the study, collecting the data, 
analyzing or interpreting the data, deciding to submit the article for 
publication, or the writing of the report. 

Data sharing statement 
The HELIX data warehouse has been established as an accessible 

resource for collaborative research involving researchers external to the 
project. Access to HELIX data is based on approval by the HELIX Project 
Executive Committee and by the individual cohorts. Further details on 
the content of the data warehouse (data catalogue) and procedures for 
external access are described on the project website (http://www.proj
ecthelix.eu/index.php/es/data-inventory). 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.envint.2021.106933. 

References 

Agier, L., Portengen, L., Chadeau-Hyam, M., Basagaña, X., Giorgis-Allemand, L., 
Siroux, V., Robinson, O., Vlaanderen, J., González, J.R., Nieuwenhuijsen, M.J., 
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