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ABSTRACT: Hydrazones derived from cycloalkenones undergo an
enantioselective transannular formal (3 + 2) cycloaddition catalyzed
by a chiral phosphoric acid. The reaction provides high yields and
excellent stereocontrol in the formation of complex adducts with one
or two α-tertiary amine moieties at the ring fusion, and these can be
converted into very versatile stereodefined decalin- or octahydro-1H-
indene-derived 1,3-diamines through simple reductive N−N
cleavage.

Transannular reactions, in which two reacting sites are
connected to each other as part of a medium- or large-

size cyclic starting material, represent an unconventional
strategic decision in organic synthesis that enables the rapid
construction of complex polycyclic molecular scaffolds.1 In
fact, there are many reports of elegant total syntheses that
make use of transannular reactions to build up the key
structural framework of the final target,2 including several
examples of biomimetic approaches that show that this type of
reactivity is also operating as part of the portfolio of chemical
reactions in the secondary metabolism of living cells. Despite
all of the advances in the area, the majority of the reports still
rely on the use of chiral cyclic substrates as starting materials,
therefore involving the diastereoselective generation of new
stereogenic centers during the transannular process.2 This
implies that the stereochemical outcome of the reaction is
strictly under substrate control, and consequently, it is largely
conditioned by the innate asymmetric induction profile of the
chiral starting material. In contrast, enantioselective versions of
transannular reactions have received very little attention, and
only a few limited reports can be found in the literature that
comprise a couple of examples in which stoichiometric
amounts of a chiral ligand or promoter are used in transannular
aldol3 or Rauhult−Currier reactions.4 Catalytic and enantio-
selective transannular reactions are limited to three cases of
transformations under Lewis acid catalysis, such as trans-
annular Diels−Alder,5 ketone-ene,6 and Claisen rearrange-
ment,7 and to one example of a transannular aldol reaction
under enamine catalysis.8 On the contrary, and very recently,
we also demonstrated the excellent performance of catalytic
transannular reactions in the enantioselective synthesis of
complex polycyclic systems with the development of a
transannular Morita−Baylis−Hillman reaction under chiral
phosphine catalysis,9 a Michael-initiated cascade reaction
under bifunctional tertiary amine/squaramide catalysis,10 and

a copper-catalyzed transannular borylative ring-closing proc-
ess.11

We present herein the use of hydrazones derived from
cycloalkenones as substrates that undergo enantioselective
transannular (3 + 2) cycloaddition12 under catalysis by a
BINOL-based chiral Brønsted acid (Scheme 1, bottom).
In comparison with the only existing literature precedent of

an enantioselective transannular cycloaddition (the trans-
annular Diels−Alder cycloaddition developed by Jacobsen
and coworkers shown in Scheme 1, top),5 this new reaction
leads to tricyclic scaffolds with a bridging hydrazine moiety,

Received: September 20, 2021
Published: November 2, 2021

Scheme 1. Enantioselective Transannular Diels-Alder
Reaction and the Brønsted-Acid-Catalyzed Transannular (3
+ 2) Cycloaddition of Cycloalkenone Hydrazones
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therefore providing a direct alternative entry to compounds
whose structures resemble the type of adducts that can be
accessed through type-II intramolecular cycloadditions.13

Remarkably, the adducts obtained through this transannular
(3 + 2) cycloaddition are direct precursors to orthogonal and
stereodefined bicyclic 1,3-diamines, which are key structural
motifs in many natural products and also serve as highly
versatile chiral building blocks in synthetic organic chemistry.14

Finally, it should also be pointed out that the number of
examples of catalytic and enantioselective (3 + 2) cyclo-
additions between hydrazones and alkenes is very scarce, in
most cases involving electron-poor N-acyl hydrazones together
with electronically biased alkenes as dipolarophiles, such as
enol ethers and thioethers, styrenes, or cyclopentadiene.15

We first started our work by evaluating the viability of the
reaction using ketone 1a as a model substrate and phenyl-
hydrazine, envisaging the in situ formation of the hydrazine
intermediate that would subsequently undergo the trans-
annular (3 + 2) cycloaddition (Table 1).

As can be seen in this table, the reaction using
diphenylphosphoric acid as the catalyst at room temperature
(r.t.) was unsuccessful (entry 1), but heating the mixture to 50
°C resulted in the complete conversion of the starting material
and a good isolated yield of the desired cycloaddition product
(entry 2). We next moved to the archetypical chiral BINOL-
based phosphoric acid TRIP,16 which also was demonstrated

to be a good catalyst for the transformation of 1a into 2a, the
latter being formed with 85% e.e. (entry 3). We also surveyed
the corresponding N-Tf sulfonamide 3b as a more acidic and
potentially more active catalyst but with poorer results (entry
4). Next, phosphoric acid catalysts with different substituents
at the 3- and 3′-positions of the BINOL core were surveyed
(entries 5−10).17 We observed that placing extended aryl
moieties led to a significant decrease in the enantioselectivity
(entries 5−7), whereas moving to the SiPh3-containing catalyst
3f resulted in the formation of adduct 2a with a high 88% e.e.
(entry 8). Improved enantioselectivity was obtained using
either the bulkier analogue of TRIP (catalyst 3g, entry 9) or its
partially hydrogenated version (catalyst 3h, entry 10). We
observed the best result with the former. We also tested the
reaction with this catalyst at lower temperature, verifying the
need for 50 °C for quantitative cycloaddition (entry 11).
Finally, we also observed that the reaction performed
excellently using a 5 mol % catalyst loading (entry 12).
With a robust experimental protocol in hand, we next

focused on studying the scope and limitations of the reaction,
starting with the role played by the nature of the hydrazine
substituent (Table 2).

Arylhydrazines with electron-withdrawing substituents per-
formed excellently, providing the transannular cycloaddition
products 2a−e in excellent yields with excellent enantiose-
lectivities (entries 1−5), with the only exception being the use
of meta-bis-CF3-substituted hydrazine (entry 5), which
provided adduct 2e with somewhat lower e.e. When
tolylhydrazine was used, the reaction also took place very
efficiently (entry 6), but when the more electron-donating
para-methoxyphenylhydrazine was tested, the reaction was
completely suppressed, isolating the hydrazone formed upon
condensation of the hydrazide with the starting material (entry
7). N-Benzoylhydrazine was also tested, and we observed a
remarkably fast reaction and the quantitative conversion to the
cycloaddition product 2h, albeit as a completely racemic

Table 1. Optimization of the Reactiona

entry catalyst T (°C) conv (%)b e.e. (%)c

1 (PhO)2P(O)OH r.t. <5d

2 (PhO)2P(O)OH 50 99 (72)
3 3a 50 99 85
4 3b 50 55 25
5 3c 50 99 33
6 3d 50 99 23
7 3e 50 99 17
8 3f 50 99 (92) 88
9 3g 50 99 (99) 98
10 3h 50 99 (90) 90
11 3g r.t. <5d n.d.
12e 3g 50 99 (99) 96

aReactions were performed with 0.15 mmol of 1a, NH2NHPh (1.2
equiv), catalyst (10 mol %), and toluene (0.1 M) as the solvent.
bConversion was calculated by 1H NMR using 1,3,5-trimethox-
ybenzene as the internal standard. Isolated yield after flash column
chromatography purification is given in parentheses. ce.e. was
calculated by HPLC in the chiral stationary phase after derivatization
into the corresponding benzoyl hydrazide. (See the Supporting
Information.) n.d., not determined. dStarting material was recovered
as the corresponding hydrazone. e5 mol % of catalyst was used.

Table 2. Scope of the Reaction: Hydrazine Componenta

entry R yield (%)b e.e. (%)c

1 C6H5 (2a) 99 96
2 C6F5 (2b) 96 90
3 4-CF3C6H4 (2c) 95 83
4 4-BrC6H4 (2d) 84 96
5 3,5-(CF3)2C6H3 (2e) 90 72
6 4-MeC6H4 (2f) 99 94
7 4-MeOC6H4 (2g) <5d n.d.
8 C(O)C6H5 (2h) 85 0
9e C(O)C6H5 (2h) 40 0
10e Ts <5 n.d.
11 Bn <5d n.d.

aReactions were performed with 0.15 mmol of 1a, NH2NHR (1.2
equiv), 3g (5 mol %), and toluene (0.1 M) at 50 °C. bIsolated yield
after flash column chromatography purification. ce.e. was calculated by
HPLC in the chiral stationary phase after derivatization into the
corresponding benzoyl or acetyl hydrazide. (See the Supporting
Information.) dStarting material was recovered as the corresponding
hydrazone. eReaction carried out at r.t.
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material (entry 8). We tested the reaction at a lower
temperature to favor the enantioselective pathway but without
any improvement and with a remarkable drop in the yield
(entry 9). Alkyl hydrazones were also unreactive under these
conditions. (See one example in entry 10.)
Several cycloalkenones were also surveyed in the trans-

formation in combination with phenylhydrazine (Table 3).

Initially, we tested the reaction on a higher 1.0 mmol scale of
model substrate 1a to guarantee its viability for preparative
purposes. As can be seen in Table 3, adduct 2a was obtained in
good yield (83%) and with the same enantioselectivity (96%
e.e.) as before. We also evaluated cycloalkenones 1a−f with
different sizes and substitution patterns. As can also be seen in
Table 3, in all cases, the reaction provided the corresponding
tricyclic adducts in excellent yields with excellent enantiose-
lectivities. This transformation enables the preparation of
adducts with an octahydro-2H-1,4a-epidiazanonaphthalene
core, including the possibility of incorporating different
substituents at the carbon scaffold (compounds 2a, 2i, 2j,
and 2k). Moreover, the reaction leading to adducts with an
octahydro-3a,7-epidiazanoindene core (compounds 2l and
2m) was also very efficient. Remarkably, this transformation
also allows the generation of challenging structures such 2k
and 2m, in which two α-tertiary hydrazine stereogenic centers
are simultaneously generated in excellent yield with high
stereocontrol.
The absolute configuration of 2j was determined by X-ray

analysis of the corresponding N-benzoyl derivative (see the
Supporting Information for details), and the configurations of
all other adducts 2a−m were established based on mechanistic
analogy. This configuration is also in agreement with the
reported stereochemical model for the intermolecular addition
of activated alkenes to hydrazones under phosphoric acid
catalysis.15a

We also evaluated the performance of chiral substrate 1g to
get further insight into the natural reactivity trend of this type
of cycloalkenones toward the transannular cycloaddition
reaction (Scheme 2). In fact, the reaction of 1g under

activation by the achiral catalyst diphenylphosphoric acid
cleanly furnished adduct 2n as a single diastereosiomer,
although in a rather low yield, even after a prolonged reaction
time. On the contrary, the reaction catalyzed by 3g proceeded
smoothly to form the same compound in a much higher yield,
whereas the reaction performed using its enantiomer (R)-3g as
a catalyst also provided the same diastereoisomer but, again, in
a much lower yield. These experiments indicate a strong
stereochemical bias exerted by the chiral information of the
starting material, although with a very important matched/
mismatched situation when incorporating a chiral Brønsted
acid to promote the reaction.
Finally, we decided to unmask the latent 1,3-diamine

functionality present on adducts 2, which are obtained through
the enantioselective transannular cycloaddition process (Table
4). The particular arrangement of nitrogen atoms in these
adducts would lead to the formation of compounds with a
decaline or octahydro-1H-indene molecular architecture that
would contain two amine substituents located in pseudoaxial
positions, which is a molecular arrangement that is difficult to
obtain through conventional approaches. This was accom-
plished by carrying out the hydrogenolytic cleavage of the N−
N bond by reacting these adducts with hydrogen under Raney
nickel catalysis. We initially optimized the reaction conditions
using compound 2a as a model substrate and obtained diamine
4a in excellent yield when the reaction was carried out in
ethanol at 80 °C (entry 1). We also verified that there was no
loss of optical purity during the process by measuring the
enantiomeric excess of the final product 4a by high-
performance liquid chromatography (HPLC) on a chiral
stationary phase under conditions optimized for a racemic
standard. With the optimized reductive cleavage conditions in
hand, we generalized this reaction to the other adducts 2i−j,
obtaining in all cases the expected bicyclic 1,3-diamines 4b−g
in almost quantitative yields in most cases. As can be seen in
Table 4, this approach enables the synthesis of octahydronaph-
thalene-1,4a(2H)-diamines (entries 1−4 and 7) or octahydro-
3aH-indene-3a,7-diamines (entries 5 and 6) in excellent
overall yields and as highly enantioenriched materials. This
also includes the possibility of generating scaffolds containing
two α-tertiary amine moieties that are challenging structures
that cannot be accessed through conventional method-
ologies.18 In this case, these types of compounds were cleanly

Table 3. Scope of the Reaction: Cyclic Ketone Reagenta

aReactions were performed with 0.15 mmol of 1a−f, NH2NHPh (1.2
equiv), 3g (5 mol %), and toluene (0.1 M) at the indicated
temperature. Isolated yields after flash column chromatography
purification are given. e.e. was calculated by HPLC in the chiral
stationary phase after derivatization into the corresponding benzoyl or
acetyl hydrazide. (See the Supporting Information.)

Scheme 2. Use of Chiral Ketone 1g as the Substrate
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obtained from adducts 2k and 2m with high enantio- and
diastereocontrol. (See entries 4 and 6.)
In conclusion, we have demonstrated the ability of

hydrazones derived from cycloalkenones to undergo enantio-
selective transannular formal (3 + 2) cycloaddition under
catalysis by a chiral Brønsted acid derived from BINOL. This
simple reaction provides stereodefined tricyclic adducts in high
yields with high enantioselectivities, and these can be used as
an ideal platform for the preparation of decaline- or octahydro-
1H-indene- derived 1,3-diamines with great potential to be
used as synthetic intermediates or chiral ligands and that are
otherwise challenging compounds to access through conven-
tional methodologies. This type of enantioselective trans-
annular reactivity can be established as an alternative and less
conventional disconnection when planning the total synthesis
of complex molecules.
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