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Microplastics increase susceptibility 
of amphibian larvae to the chytrid 
fungus Batrachochytrium 
dendrobatidis
Jaime Bosch1,2,3*, Barbora Thumsová3,4, Naiara López‑Rojo5,6, Javier Pérez5, 
Alberto Alonso5, Matthew C. Fisher7 & Luz Boyero5,8

Microplastics (MPs), a new class of pollutants that pose a threat to aquatic biodiversity, are of 
increasing global concern. In tandem, the amphibian chytrid fungus Batrachochytrium dendrobatidis 
(Bd) causing the disease chytridiomycosis is emerging worldwide as a major stressor to amphibians. 
We here assess whether synergies exist between this infectious disease and MP pollution by 
mimicking natural contact of a highly susceptible species (midwife toads, Alytes obstetricans) with a 
Bd-infected reservoir species (fire salamanders, Salamandra salamandra) in the presence and absence 
of MPs. We found that MP ingestion increases the burden of infection by Bd in a dose-dependent 
manner. However, MPs accumulated to a greater extent in amphibians that were not exposed to 
Bd, likely due to Bd-damaged tadpole mouthparts interfering with MP ingestion. Our experimental 
approach showed compelling interactions between two emergent processes, chytridiomycosis and 
MP pollution, necessitating further research into potential synergies between these biotic and abiotic 
threats to amphibians.

Microplastics (MPs) are a widely emerging class of pollutants of global concern. They are plastic particles < 5 mm 
in size that originate either from primary (i.e., manufactured products) or secondary sources (i.e., fibres and 
fragments resulting from the breakdown of larger plastic items)1,2. Once in the environment, MPs accumulate 
due to their small size and resistance to biodegradation3. This class of pollutants are of growing concern due to 
their near ubiquity in marine4, freshwater5 and terrestrial ecosystems6 where they are increasingly being associ-
ated with negative health outcomes7. Despite mitigation strategies aimed at reducing plastic use and improving 
waste management, plastic pollution is becoming a major threat to the sustainability of our planet8.

The biological impacts of MPs are still poorly known, but evidence is accumulating that they interfere with 
core physiological processes including photosynthesis, food ingestion, metabolism, growth, and reproduction9–12. 
When external to the individual, MPs are known to interact with chemical pollutants, which could potentially 
increase the bioavailability of MPs or the organisms’ vulnerability to them10,13,14, as well as perhaps serving as 
physical vectors for the dispersal of pathogens15,16. However, despite their known impacts on biota, there is virtu-
ally no information about whether MPs influence the dynamics of infectious diseases in freshwater ecosystems17. 
This gap in our knowledge is especially relevant in the case of emerging infections of wildlife, where naïve hosts 
may have high susceptibility to new pathogens and for this reason require fully functioning anti-pathogen 
defences in order to survive.

A relevant system within which to explore potential interactions between infectious disease and MPs are 
amphibians and the aquatic chytrid fungus Batrachochytrium dendrobatidis (Bd). This fungus causes chytridi-
omycosis, a disease which is responsible for mass mortality and population declines of amphibians worldwide18,19. 
Bd likely originated in Asia in the early twentieth century, and the recent spread of its global pandemic lineage has 
been facilitated by humans20. As an ecological generalist pathogen, able to infect almost every amphibian species 
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and other freshwater invertebrates, Bd has now invaded most areas of the world that contain amphibians21. How-
ever, the occurrence and severity of chytridiomycosis is context-dependent and determined by a complex inter-
play between biotic and abiotic factors that modulate the prevalence and intensity of infection caused by Bd22,23. 
Environmental stressors can trigger outbreaks of chytridiomycosis; these include climate warming24 and the 
presence of elevated concentrations of several contaminants such as metals25, tropospheric ozone26, antibiotics27 
and pesticides28,29. Due to the growing burden of MPs in the water column, there is increasing potential for these 
pollutants to interact with Bd and its amphibian hosts in their aquatic environments to a greater or lesser extent. 
If interactions between the two do occur, then these synergies may alter the epidemiology of chytridiomycosis.

We examined the potential interaction between MP pollution and infection by Bd in the common midwife 
toad Alytes obstetricans. This species is broadly distributed across Europe and its tadpoles have long develop-
mental periods that can exist for up to several years at high altitudes. Therefore, the exposure of midwife toad 
tadpoles to freshwater contaminants such as MPs and waterborne pathogens as Bd can be significant. Relevantly, 
this species has suffered severe declines caused by chytridiomycosis in certain regions of Europe30,31, and a 
previous study showed that increasing MP concentration progressively impaired their larval growth and body 
condition32. Here, we use an experimental approach that mimics natural interspecific spillover of Bd to investigate 
whether a rapidly emerging class of aquatic pollutants, MPs, have the potential to influence the epidemiology of 
chytridiomycosis. We hypothesized that common midwife toad larvae would be more susceptible to Bd in the 
presence of MPs, with infection prevalence and load being higher at higher MP concentrations. This hypothesis 
was tested in a laboratory experiment whereby larvae were exposed to different MP concentrations and Bd using 
a live co-infection model mimicking natural exposure to the pathogen.

Results
Fourteen out of 64 individuals remained as tadpoles at the end of the experiment at day 229 and were excluded 
for further analyses because Bd and MP treatments did not influence whether an individual underwent metamor-
phosis (χ2 = 4.79, df = 3, p > 0.1876). Levels of fluorescence due to MP presence, Bd loads, and rates of mortality 
amongst treatments are shown in Fig. 1 (raw data in Supplementary Table S1). Time to Gosner stage 42–43 ranged 
from 22 to 146 days and to reach Gosner stage 45 ranged from 34 to 158, and did not differ among treatments 
in any case (p > 0.4785), neither did body condition at metamorphosis (p > 0.2878). Mass at metamorphosis was 
dictated by tadpole mass when exposed to Bd (F1,30 = 42.16, p < 0.0001), but did not differ among treatments in 
any case (p > 0.2572). Levels of fluorescence did not vary among MP treatments (F3,15 = 0.79, p = 0.5190), and did 
not relate with Bd load (F1,15 = 1.01, p = 0.3324), but were significantly higher for tadpoles not exposed to Bd than 
for those exposed (F1,15 = 5.89, p = 0.0294).

All negative-control animals (no Bd exposure) were uninfected throughout the experiment. The proportion 
of infected animals at Gosner 42–43 did not differ across MP concentrations (0 mL−1: 33.3, 18: 57.1, 180: 75.0, 
1800: 66.7%; χ2 = 2.78, df = 3, p = 0.4271) and was not influenced by tadpole body condition (χ2 = 0.48, df = 1, 
p = 0.4868). Bd load was not either influenced by tadpole body condition (F1,41 = 13.01, p = 0.0904). Bd load greatly 
differed between Bd treatments (F1,41 = 17.61, p = 0.0001) and also differed among MP treatments in a dose-
dependent manner (F3,41 = 3.25, p = 0.0314), with a significant interaction term observed between Bd exposure 
and MP concentration (F3,41 = 3.17, p = 0.0341).

No mortalities were observed in any Bd-negative groups, but they were observed for the group of tadpoles 
exposed to Bd at the time of metamorphosis, and were greatest for the highest MP concentration (40.0, 28.6, 
33.3 and 66.7% for 0, 18, 180, 1800 mL−1, respectively). However, the statistical model indicated that mortality 
was associated only with Bd load (χ2 = 4.19, df = 1, p = 0.0408), whereas the fixed factors and their interaction 
were not good predictors of mortality (p > 0.1416).

Discussion
The emergence of Bd and chytridiomycosis worldwide is emblematic of the potential for endemic hotspots of 
infection to become globalised through anthropogenic processes33. Following invasion of the pathogen, a com-
plex interplay among ecological factors determining disease outcome occurs including climate and altitude34,35, 
seasonality35–38, ultraviolet exposure23,39 and agrochemicals40 alongside numerous biotic modifiers33. These factors 
also include ecotoxicological influences, which include the emerging problem of microplastic (MP) pollution.

We took an in vivo experimental approach to measuring the accumulation of MPs through fluorescence. This 
showed that MPs accumulated to a greater extent in tadpoles that were not exposed to Bd. This finding could be 
explained by lower ingestion rates by tadpoles that were infected with Bd, given that tadpoles mainly ingest MPs 
when scraping on periphyton, where these particles are retained32. In tadpoles that were not exposed to Bd, MP 
ingestion increased up to concentrations of 180 part. mL−1 then exhibited a decrease, which is perhaps explained 
by high concentrations of MPs inhibiting feeding. This apparently non-linear effect was also seen when both Bd 
infection and MPs were combined, as ingestion appeared to also reduce feeding due to highly infected animals 
showing less MP accumulation that was accompanied by a slight loss of body condition. Here, the interaction 
may also have a component that is due to Bd-related damage to the tadpole mouthparts which may interfere 
with feeding41. Finally, it is also possible that MPs cause physical blockage or injury as has been shown for other 
organisms, leading to physiological changes in affected individuals42. These non-linear responses are likely eco-
logically relevant and further studies should focus on the physiological and mechanical consequences of MP 
accumulation and Bd infection on the feeding behaviour of A. obstetricans tadpoles.

For Bd exposed tadpoles, Bd load increased in line with MP concentration with only two values above 100 
GE. Despite small sample sizes, we found that pathogen burden was highest at the highest concentration of MPs 
(1800 part. mL−1), lowest when MPs were most diluted (18 part. mL−1), and intermediate at the intermediate 
concentration (180 part. mL−1). This observation suggests that MP ingestion enhanced infection by Bd in a 
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dose-dependent manner for a given level of exposure to the pathogen. Trends in mortality mirrored that of Bd 
load however were not significant and may be due again to the relatively small sample sizes used. At the time 
of writing, we do not know the causal relationship by which MPs lead to more intense Bd infections and atten-
dant mortality. Future work needs to focus on the physiological changes that are experienced when tadpoles 
are exposed to MPs that may synergise with the immunological and physiological consequences of Bd expo-
sure. For instance, infection by Bd in midwife toads is linked to changes in the glucocorticoid stress hormone, 
corticosterol43. If MPs cause generalised stress that increases levels of corticosterol, then this presents a pathway 
by which Bd infection could be linked to pollutant-exposure and can be explored.

We observed no mortality in animals in the Bd unexposed group indicating that MP exposure itself in this 
context was not lethal and no obvious losses in body condition were observed. This finding contrasts with a 
previous study showing high mortality in A. obstetricans tadpoles exposed to 1800 part. mL−132. These differences 
could be due to the different larval stage used in both experiments: Boyero et al.32 used recently-hatched animals 
in comparison to the much more mature Gosner stages 26–36 that we used in this study. Smaller tadpoles are 
known to be more sensitive to pollutants44 and their metabolism is faster so MP ingestion was most likely higher 
in relation to body size. Experimental conditions also differed, with the microcosms used being smaller in Boyero 
et al.32 compared to those in our study, and MPs were from a different commercial source. For this reason, our 
experimental findings are likely conservative, and longer-term exposure of tadpoles to MPs in synergy with Bd 
exposure may well result in more aggressive patterns of mortality as health-costs accrue through the animals’ 
development.

Figure 1.   (a) Mean ± SE of fluorescence levels per tadpole mg, (b) log-transformed Bd loads (horizontal 
lines depict medians, boxes represent interquartile ranges and whiskers extend to minima-maxima), and (c) 
proportional tadpole mortality for each MP concentration (0, 18, 180 and 1800 MP mL−1) and Bd exposition 
treatment (Bd unexposed and Bd exposed). Numbers below bars indicate the number of replicates for each 
group, and different letters indicate statistically significant differences after post hoc Tukey tests (p < 0.05).
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More widely, studies have shown that the joint effects of different stressors on biota in freshwater ecosystems 
are antagonistic45. Here, we have shown an interaction between two anthropogenically associated stressors, 
a pathogen and a pollutant, and argue that future work needs to explore more complex interactions between 
amphibian health and their changing environments. Importantly, amphibian larvae coexist with naturally occur-
ring micropredators, such as protists, rotifers and crustaceans. These plankton are not only capable of using 
Bd zoospores as a food source46 but may also sequester MPs from the water column. The extent to which this 
occurs, and whether it exacerbates or mitigates the burden of infection, is uncertain but deserves to be explored. 
Certainly, the influx of MPs into aquatic environments will perturb the structure of foodwebs, with expected, but 
unknown and currently unquantified knock-on effects on host–pathogen dynamics. Here, we have shown that 
an interaction between Bd and its amphibian host within the context of emerging MP pollution is an alarming 
aspect of these animals’ rapidly changing world.

Methods
Experimental procedure.  The experiment was conducted under biosecure conditions at the laborato-
ries of the Research and Management Center ‘Puente del Perdón’. This facility, located at the Sierra de Gua-
darrama National Park (Spain), maintains a colony of A. obstetricans for reintroduction purposes. Sixty-four 
42 × 30 × 10 cm tanks were filled with 2 L of well water and MPs at different concentrations. MPs were 10 μm 
green fluorescent (508/542 nm) polystyrene microspheres (Thermo Scientific™ Fluoro-Max™ Fluorescent beads) 
internally dyed to emit bright and intense colour when illuminated by fluorescent light (excitation/emission 
peaks of 468/508 nm), suspended in aqueous solution [1.8 × 107 particles mL−1, 1% solids, density = 1.05 g/cm3, 
refraction index = 1.59 @ 589 nm (25 °C), trace amount (< 0.05%) of the surfactant sodium azide]. Following 
Boyero et al.32, we used four dilutions of MP with final concentrations of 0, 18, 180 and 1800 part. mL−1. These 
concentrations are known to cover exposures that have effects on amphibian tadpoles that range from neutral 
through to highly deleterious32. Each solution was sonicated at 50 kHz for 5 min to suspend particles before 
being introduced to each tank.

We used 64 Bd-free tadpoles of A. obstetricans born in captivity at the above-mentioned facilities. Most tad-
poles (89%) were in development Gosner stages 26, whereas just seven animals differed in their Gosner stages 
(ranging from 32 to 36). Tadpoles were individually added to each tank containing final MP concentrations 
on the same day, where they were fed ad libitum with commercial spirulina tabs (SERA GmbH, Heinsberg, 
Germany) during the experiment. In order to obtain the two Bd treatments (Bd-positive and Bd-negative), we 
collected 30 overwintered Salamandra salamandra larvae from a permanent pond and 30 non-overwintered S. 
salamandra larvae from a temporary pond at the Sierra de Guadarrama National Park. Prevalence of Bd infec-
tion of overwintered salamander larvae from the permanent pond is known to approach 100% in early spring, 
whereas it is 0% at the temporary pond47. Salamander larvae from both locations were separately acclimated for 
48 h in two 20 L tanks at 16 °C. The bodies of 20 specimens of each group were swabbed following a standardized 
protocol48 to confirm their infection status by quantitative polymerase chain reaction (qPCR, see below). Eight 
A. obstetricans tadpoles of each experimental MP group were randomly assigned to the Bd-positive treatment 
group, whereas the remaining eight tadpoles were assigned to the Bd-negative treatment group. Starting at day 
78 of MP exposure, and for six consecutive days, tadpoles at the Bd-positive group received daily 500 μL of water 
from the Bd-positive salamander tank, whereas the other tadpoles received 500 μL of water from the Bd-negative 
salamander tank. Water from salamander tanks was pipetted directly onto the dorsum of each tadpole. Prior 
to the Bd exposure, all A. obstetricans tadpoles were individually measured (total length, precision of 0.01 mm) 
and weighed (precision of 0.01 g).

The experiment ran for 229 days, with medium replacement (i.e., water or MP solutions) every 14 days, and 
inspection for metamorphosis or potential mortality every second day. Average water temperature during the 
course of the experiment was 13.5 °C (± 2.7 SD), and animals were reared on a 12:12 h natural light cycle and fed 
ad libitum with spirulina (tadpoles) or with baby crickets (after metamorphosis). A toe-clip of each individual 
was taken and preserved in 70% ethanol when they reached Gosner 42–43 (i.e., forelimbs had emerged and 
mouthparts had been restructured for terrestrial foraging). At Gosner 45 (i.e., the tail had receded to a stub), 
the water in the tank was reduced by 90% and individuals were measured (snout-to-vent length, SVL), weighed 
and observed for lethal chytridiomycosis during the next 15 days. Dead individuals were collected, digested for a 
minimum of seven days in H2O2 (30% v/v) and processed for MP examination with fluorescence following Boy-
ero et al.32, adapted from Hu et al.49. When there was no mortality within an experimental group, two randomly 
selected individuals were euthanized (MS-222 100 mg L−1, 7.5 pH buffered with NaHCO3) for MP examination.

The animal experiment complied with the ARRIVE guidelines, was carried out in accordance with the EU 
Directive 2010/63/EU for animal experiments and was approved by ‘Comité de Ética del MNCN-CSIC’.

qPCR analyses.  DNA was extracted using PrepMan Ultra reagent, and extractions were diluted 1:10 before 
qPCR amplification per duplicate following Boyle et al.50 by using a myGo Pro qPCR machine. Negative controls 
and standards with known concentrations of Bd (0.1, 1, 10 and 100 genomic equivalents of zoospores, here 
referred to as GE) were used in each plate. Infection load of each sample was assessed directly by the machine 
software according to the reference function obtained with the standards of known concentration of zoospore. A 
sample was considered positive when its infection load was equal to or higher than 0.1 GE, and the amplification 
curve presented a robust sigmoidal shape.

Microplastic examination by fluorescence.  MP examination was performed by quantifying fluores-
cence of digested samples using a fluorimeter (GENios™ plate reader, TECAN; Durham, NC, USA) at an exci-
tation wavelength of 485 nm and emission wavelength of 535 nm. Digested samples were all filled to 12 mL 
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and sonicated (35  Hz, 3  min) before being transferred into a 96-well plate, which included all the samples 
(3 replicates each) and distilled water solutions with known MP concentrations (0, 180, 900, 1800, 9000 and 
18,000 part. mL−1; 4 replicates each). Fluorescence measures were corrected by tadpole weight at Gosner 45.

Data analyses.  ANOVA tests and post hoc Tukey tests were used to assess statistically significant differences 
among MP and Bd treatments for the following continuous independent variables after being log10(x + 1)-trans-
formed to reach normality: ‘time to reach Gosner stage 42–43’ and ‘time to reach Gosner 45’, ‘mass’, ‘body condi-
tion’ and ‘fluorescence levels at Gosner 45’, and ‘Bd loads at Gosner 42–43’. In all cases, MP concentration and 
Bd exposure were used as fixed factors, with their interaction included. ‘Tadpole body condition’, calculated 
following Peig and Green51, was introduced as a covariate in the ANOVA tests for ‘Bd load’ and ‘time to reach 
Gosner stage 42–43 and Gosner 45’. ‘Tadpole mass when exposed to Bd’ was introduced as a covariate in the 
ANOVA test for ‘mass at Gosner 45’. ‘Bd load at Gosner 42–43’ was introduced as a covariate in the ANOVA test 
for ‘fluorescence levels at Gosner 45’.

Generalized linear models with binomial errors were used for the binomial independent variables ‘Bd status’, 
‘mortality’ and ‘reached metamorphosis’ at the latest stages of the experiment to assess statistically significant 
differences among MP and Bd treatments. MP concentration and Bd exposure were used as fixed factors, with 
their interaction included, except for ‘Bd status at the end of the experiment’ because none of the non-Bd exposed 
individual tested positive for Bd. ‘Tadpole body condition’, and ‘Bd loads at Gosner 42–43’ were introduced as 
covariates to asses if MP and Bd treatments had any effect on whether an individual undergoes metamorphosis, 
or died at the end of the metamorphosis, respectively.

‘Development stage’ was not included as a covariate in the statistical models because preliminary analyses 
discarded any significant contribution of this variable in any case. All statistical analyses were performed with 
JMP Pro 12 (SAS Inc.).
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