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Unravelling the link between PGC1𝛂 and interferon signaling in 
prostate cancer. 
 

Graphical Abstract: 

 
 

 

Abstract: 

Prostate cancer (PCa) is the second most diagnosed cancer among males worldwide. Due to the current molecular 

markers used in clinic there is an overdiagnosis and patient overtreatment, revealing the need for biomarkers and 

gene signatures capable of stratifying patients, distinguishing aggressive prostate tumors from the indolent ones. 

Our laboratory has previously reported a master co-regulator of PCa metabolism capable of exerting a tumor and 

metastasis suppressive response: the peroxisome proliferator-activated receptor gamma co-activator 1 (PGC1α). 

PGC1α has been shown to prevent tumor growth, metastasis and invasion in PCa, associated with the 

downregulation of c-MYC. Given the unknown molecular mechanisms driving the biological effects of PGC1α and 

a recent RNA-sequencing experiment carried out in our laboratory, we hypothesize that the interferon transcriptional 

program upregulated by PGC1α drives its tumor suppressive activity. Interferons (IFNs) are cytokines greatly 

studied in cancer due to their ability to directly and/or indirectly modulate tumorigenesis. However, their role on 

PCa is not completely studied. In this context, we have characterized the PGC1α-driven phosphorylation of STAT1 

and the subsequent upregulation of the IFN transcriptional program in (i) PGC1α expressing and (ii) IFN-β treated 

PCa cells. Lastly, in co-cultures assays, we have approached the study of the anti-proliferative effect of the cell 

communication between PGC1α expressing and non-expressing PCa cells. Altogether, we consider the present work 

a first approach to studying the link between IFN pathway and the tumor suppressive properties of PGC1α in PCa 

cells, offering potential for new therapeutic targets and strategies. 

Image created using BioRender 
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1. Introduction 

Prostate cancer (PCa) is the second most frequent diagnosed cancer among males worldwide, with an estimated 

1,400,000 cases and 375,000 deaths in 2020. In developed countries, PCa shows the highest incidence among 

cancer types in men, representing the third cause of death by cancer in the gender1. Prostate-specific antigen 

(PSA) is the usual molecular marker used for the detection and monitoring of PCa. However, PSA screening 

has been highly controversial, due to the detection of inherently benign tumors and the fact that PSA levels 

can be influenced by other physiological factors. This results in an overdiagnosis and patient overtreatment, 

which questions the effectiveness of this biomarker by itself as an early detection tool2. 

PCa treatment ranges from active surveillance to a combination of surgery, radiotherapy, chemotherapy and/or 

androgen deprivation therapy (ADT). Low-risk cancers are usually handled by active surveillance, while high-

risk cancers (primary tumors) are managed with a more aggressive treatment, including surgery and 

radiotherapy. The major challenge comes to intermediate-risk tumors, due to the inability to differentiate 

between aggressive and non-aggressive cancers. A key feature of PCa is hormone responsiveness and the 

standard care for advanced PCa is ADT2,3. ADT can be approached by surgical castration, or more commonly, 

by chemical castration, with drugs targeting androgen receptor signaling. Although the majority of the patients 

respond well to ADT, resistance can develop, resulting in castration-resistant PCa. Considering that metastatic 

disease is the leading cause of death in PCa, research is focusing on the development of more accurate detection 

techniques and biomarkers that can effectively distinguish between aggressive and indolent forms of PCa in 

the earliest stages of the disease3. 

It is well accepted that the uncontrolled growth of tumors is not only supported by a deregulation of the cell 

proliferation mechanisms, but also by reprogramming the energy metabolism, an emerging hallmark of 

cancer4. Integrating computational biology, murine models and high throughput OMICs, our laboratory group 

has formerly reported that the peroxisome proliferator-activated receptor gamma co-activator 1 alpha 

(PGC1α), a master co-regulator of PCa metabolism, is central for the progression of the disease5. PGC1α is 

preferentially expressed in tissues with high oxidative capacities (such as skeletal muscle or brown adipose 

tissue) and interacts with a variety of transcription factors (TFs), serving as a pleiotropic regulator of the cell 

metabolism. The N-terminal of PGC1α contains several leucine-rich motifs (LXXLL), crucial for the 

interaction with the different TFs6. Some of these TFs include the estrogen-related receptor alpha (ERRα), 

retinoid receptors, nuclear respiratory factor-1 and -2 (NRF-1, NRF-2) or peroxisome proliferator-activated 

receptors (PPARα, PPARβ, PPARγ)7. PGC1α partnering with these TFs carries out its main biological 

functions: mitochondrial biogenesis, fatty acid oxidation and muscle fiber regeneration. The expression and 

activity of PGC1α is controlled by physiological and environmental stimuli, modulating the energy 

metabolism of the cell6, 7. Therefore, it comes as no surprise the implication of this co-regulator in cancer, since 

tumor cells continuously adapt their metabolism in response to their microenvironment.  

The role of PGC1α is tumor type and context-specific and can be discordant in different scenarios. In breast 

cancer, metastatic cells rely on PGC1α for metastatic dissemination, enhancing oxidative phosphorylation8. 

Moreover, PGC1α is overexpressed in breast cancer cells that metastasize to lung and bone9. Nonetheless, the 
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expression of PGC1α exerts an anti-proliferative effect in PCa, preventing tumor growth and metastatic 

dissemination5, 10.  

The loss of the expression of PGC1α in prostate cancer is associated with a metabolic rewiring, towards the 

activation of anabolism at the expense of a reduction in the catabolism. At the transcriptional level, the decrease 

in PGC1α expression defines a gene signature that is progressively downregulated in PCa primary tumors and 

metastasis, presenting prognostic potential for the stratification of patients5.  

The role of the oncogenic protein c-MYC has been widely studied in human tumors. Enhanced MYC 

expression has been shown to reprogram cellular metabolism, sustaining a high rate of proliferation in cancer 

cells11. In PCa murine models, the expression of human MYC has been shown to be an initiating event in the 

development of murine prostate tumors, highlighting the importance of this TF in the disease12. Furthermore, 

a recent study from our laboratory has demonstrated that the expression of PGC1α decreases invasive 

capacities in PCa cells through cytoskeletal remodeling, together with the inhibition of integrin β1, β4 and c-

MYC10. However, the exact molecular mechanisms driving the biological effects of PGC1α are still unknown. 

Interferons (IFNs) are pleiotropic cytokines that serve as a defense mechanism against viral infections13,14. 

Nonetheless, IFNs have been extensively studied in cancer, due to their ability to regulate tumorigenesis in a 

direct or indirect way. IFN type I molecules (IFN-α and IFN-β) signal through the IFNAR1-IFNAR2 receptor 

dimer. After the ligand has bound, the receptor-associated kinases JAK1 and TYK2 are phosphorylated. These 

phosphorylated kinases serve as a docking and activation platform for the recruitment and downstream 

phosphorylation of STAT proteins. The canonical signaling complex for IFN type I signaling is a STAT1-

STAT2-IRF9 complex (ISGF3 complex), which migrates to the nucleus and promotes the transcription of IFN-

response genes13. Deciphering the role of IFNs in PCa is important owing to their tumor suppressive properties. 

Previous studies have shown that IFN type I cytokines upregulate the inhibitor of cell cycle progression p2115 

and exert an invasion-suppressor activity in PCa cells16. Furthermore, PCa cells engineered to produce IFN-β 

have shown to suppress angiogenesis, growth and metastasis in mouse models in vivo17.  

In this context, a recent RNA Sequencing (RNA-Seq) experiment carried out in our laboratory revealed an 

upregulation of the IFN signaling transcriptional program in response to PGC1α re-expression in PCa cells. In 

line, previous data from the lab have shown an increase of IFN-β in the secretome of PGC1α expressing PCa 

cells and that this secretome has an anti-proliferative effect. Therefore, in this work we aim to further elucidate 

the role of these cytokines and their associated signaling pathway in PCa cells. 

2. Hypothesis and Objectives 

Taking into account the preliminary data of the lab and given the unknown molecular mechanisms driving the 

biological effects of PGC1α, we hypothesize that this IFN transcriptional program drives PGC1α’s tumor 

suppressive activity that ultimately could be transmitted in a paracrine manner to adjacent cancer cells. 

Therefore, in this work we ambitioned to: (i) characterize the PGC1α-driven IFN pathway in PCa cells,                   

(ii) confirm the tumor suppressive activity of IFN signaling in PCa cells, and (iii) approach the extrinsic tumor 

suppressive activity of PGC1α	in co-culture assays. 
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3. Materials and Methods 

3.1. Cell lines and culture conditions: 

Prostate cancer cell line PC3 was used in this work. These cells are epithelial cells derived from a bone 

metastasis of a grade IV prostatic adenocarcinoma from a Caucasian 62-year-old male. Previously in the lab, 

this cell line was modified to stably express the mouse Pgc1a gene with a doxycycline-inducible lentiviral 

vector (TRIPZ vector). This cell line, PC3 TRIPZ-HA-Pgc1a (from now on referred as PC3 PGC1α), in the 

presence of doxycycline in the medium overexpresses PGC1α. As control, PC3 cells transduced with TRIPZ 

empty vector (without the Pgc1a construct) were also used, PC3 TRIPZ. In the c-MYC exploratory 

experiments a third line was used, PC3 pLKO TetOn shMYC (PC3 shMYC), a modified PC3 cell line that in 

the presence of doxycycline expresses a validated shRNA against human MYC18. For the co-culture 

experiments a fourth cell line was used, PC3 TRIPZ-mCherry (PC3 mCherry), a modified PC3 cell line 

transduced with a TRIPZ vector containing the mCherry sequence, constitutively expressing the fluorescent 

protein mCherry.  

All cell lines were cultured using Dulbecco’s Modified Eagle Medium (1x) (DMEM) supplied with 10% 

inactivated Fetal Bovine Serum (FBS) (Gibco) and 1% Penicillin/Streptomycin (Gibco). Cell lines were grown 

at 37ºC in a humidified atmosphere of 5% CO2. Cells were regularly cultured in 100mm dishes and split every 

3-4 days, maintaining them below 80-90% density. For splitting and seeding, 0.25% trypsin-EDTA (1x) 

(Gibco) diluted 1:4 in Dulbecco’s Phosphate Saline Buffer (1x) (DPBS) was used. For splitting or cell 

counting, cells were detached from the plates by incubating with the trypsin-EDTA solution for 4 minutes at 

37ºC. Fresh DMEM was added for inactivation of the trypsin.  

For cell counting, the resuspended cells were diluted 1:2 in Trypan Blue Dye 0.4% and 10 µL were loaded in 

the Neubauer chamber. The viable cells (not stained with the dye) were counted by optical microscopy. Cell 

counting was performed at least twice for each sample to obtain a more accurate count. 

Co-cultures: For co-culture experiments different cell mixtures were prepared as represented in Table 1. The 

growth rate of each independent cell line was also measured.  

Table 1. The three different co-culture conditions prepared for the growth curve and flow cytometry assays. 

Co-culture condition PC3 mCherry (%) PC3 PGC1α or PC3 TRIPZ (%) 
80:20 80 % 20 % 
50:50 50 % 50 % 
20:80 20 % 80 % 

 

Doxycycline (Dox) was used at a final concentration of 0.5 µg/ml (Sigma #D9891). For the interferon 

experiments 3 different concentrations of human recombinant IFN-β (hIFN-β1a, Miltenyi Biotech) were used: 

25, 125 and 250 pM. All the experiments were performed after 3 days of pre-induction with Dox of the cells, 

with the exception of interferon experiments and time-course experiments. The composition of the buffers 

used is presented in Supplementary Table 1. 
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3.2. Cellular experiments: 

Cell growth analysis 

To monitor cell growth, 10K cells/well were seeded in triplicate in 12-well plates for days 0 (seeding control), 

3 and 6. In the interferon experiments, the day after seeding the medium was replaced with fresh medium with 

the different IFN-β concentrations. For fixation each well was washed with DPBS (1x) and 1 mL/well of 

formalin (10%) was added to the plates and stored at 4ºC until the end of experiment (day 6). For cell number 

quantification, formalin was discarded and cells were stained with crystal violet (0.1% in 20% methanol) for 

45 minutes. After rinsing with water and air drying the plates, the precipitate was solubilized in 10% acetic 

acid. Resolubilized crystal violet was transferred to a 96 well-plate and absorbance was measured at 570 nm 

using the PowerWave XS Microplate Spectrophotometer (BioTek). The absorbance measured at days 3 and 6 

was normalized by the absorbance at day 0, obtaining the growth fold-change relative to day 0. 

Flow cytometry assays 

In order to follow up the different cell percentages (%) in the co-culture conditions, 40K cells/well were seeded 

in duplicate in 6-well plates for days 0 (seeding control), 3, 6 and 9. On days 0, 3, 6 or 9, after medium was 

discarded, cells were washed with DPBS (1x), 250 µL of trypsin were added to each well and plates were 

incubated at 37ºC for 4 minutes. Cells were then resuspended with 1 mL DPBS (1x) and transferred to a 

separate Falcon 15 mL tube. Tubes were centrifuged (1500 rpm, 3 min, 4ºC) and the supernatant was discarded. 

Cell pellets were resuspended in 1 mL of DPBS (1x) and the centrifugation was repeated under the same 

conditions. The supernatants were removed, the cells were resuspended with 500 µL of DPBS (1x) and 

transferred to a flow cytometer tube that were kept on ice.  

Selection of the cell population of interest was done using the representation of the forward scattered light 

(FSC) vs. side scattered light (SSC). FSC intensity is proportional to the cell size, while SSC provides 

information about the internal complexity of cells. The cytometer data was analyzed using the Flowing (Turku 

Bioscience) software. The constitutively expressed mCherry protein in PC3 mCherry cells allowed to divide 

the cell population into two different subgroups attending to the emitted fluorescence. The % of each subgroup 

was calculated as the counts of cells in that subgroup divided by the total counts of the cell population.  

3.3. Molecular experiments: 

Gene expression analysis 

Between 75-100K cells/well were seeded in duplicate in 6-well plates and cells were collected after the 

indicated time points. Before RNA extraction, plates/wells were washes with DPBS (1x), snap-frozen in liquid 

N2 and stored at -80ºC. Once all experiments were collected, RNA was extracted using the NucleoSpin RNA 

isolation kit from Macherey-Nagel (ref: 740955.240C). Final RNA concentration was measured in a Biodrop 

spectrophotometer and samples were stored at -20ºC. For cDNA synthesis 1 µg of total RNA was 

retrotranscribed. The mix of retrotranscription contained RNA (1	µg), the enzyme Thermo Scientific Maxima 

H Minus cDNA synthesis Master mix (5x) and RNase free water (up to final volume, 10 µL). The samples 
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were placed in a thermocycler and the following program was used: 10 minutes at 25ºC, 15 minutes at 50ºC 

and lastly 5 minutes at 85ºC. The resultant cDNA was diluted 1:10 in distilled water and kept at -20ºC.  

Quantitative real-time PCR (qPCR) was performed in a QuantStudio 5 Real-Time PCR Instrument (384-Well 

Block) (Applied Biosystems). The program used for amplification was the following: 2 minutes at 50ºC and 

10 minutes at 95ºC, followed by 40 cycles of 15 seconds at 95ºC and 1 minute at 60ºC. Quantification was 

carried out using TaqMan probes (Applied Biosystems) or SYBR Green (Roche).  

TaqMan probes are specifically designed for the candidate gene and consist of a reporter and a quencher (which 

are attached to the 5’ and 3’ end of the probe, respectively). When these are released by the 5’-3’ exonuclease 

activity of the DNA polymerase, the reporter’s fluorescence is detected. SYBR Green is an intercalating dye 

that has a high binding affinity for double strand DNA (dsDNA). Once the dye binds to dsDNA its fluorescence 

increases and can be measured in the extension phase of each cycle. Given the nonspecificity of this last 

quantification method, a melting curve analysis is highly recommended. In both cases, the emitted fluorescence 

follows a sigmoidal increase and the threshold cycle (Ct) is used to calculate the initial DNA copy number19.  

For the TaqMan reaction, 3 µL of the diluted cDNA were mixed with 3 µL of the TaqMan Universal Master 

Mix II, with UNG (2x, Applied Biosystems), left and right primers at a final concentration of 200 nM and 

TaqMan probes at a concentration of 100 nM. For the SYBR Green reaction, 3 µL of the diluted cDNA were 

mixed with 3 µL of the FastStart Universal SYBR® Green Master (Roche) and left and right primers at a final 

concentration of 200 nM. All qPCR data presented were normalized using GAPDH (housekeeping gene) levels 

as reference. The primers used are presented in the Supplementary Table 2. 

Protein analysis 

Between 75-100K cells/well were seeded in duplicate in 6-well plates and cells were collected after the 

indicated time points. Before protein extraction, plates/wells were washes with DPBS (1x), snap-frozen in 

liquid N2 and stored at -80ºC. Once all experiments were collected, cells were lysed using 75 µL/well of RIPA 

buffer. Lysates were transferred to Eppendorf tubes, kept for 20 minutes on ice and vortexed every 5 minutes. 

Samples were then centrifuged (15 000 g, 15 min, 4ºC) and the supernatant was collected. Protein 

quantification was carried out using PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific, 23225). A 

calibration curve was prepared using different concentration of Bovine Serum Albumin (BSA, 0.5-8 mg/mL) 

and 1 µL of the protein samples was mixed with 9 µL of milli-Q water. In a 96-well plate BSA and protein 

samples were loaded in duplicate. 200  µL/well of the BCA Reagent was added and the plate was incubated at 

37ºC for 30 minutes. Absorbance was measured at 562 nm using the PowerWave XS Microplate 

Spectrophotometer (BioTek). The same protein concentration was achieved in all samples adding milli-Q 

water and Laemmli Loading buffer 5x. 

Protein lysates with Laemmli buffer 1x were boiled at 96ºC for 5 minutes for protein denaturation. The boiled 

samples were subjected to SDS-PAGE. The proteins were resolved either in homemade acrylamide gels or in 

CriterionTM XT Precast gels (4-12% acrylamide, 12+2 well comb). Homemade gels (stacking 5% and resolving 

10% acrylamide) were prepared as described in Table 2. 
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Table 2. Recipes used for preparing homemade acrylamide gels. 

 Running gel (10%) Stacking gel (5%) 
30% Acrylamide 10 % 5 % 

Tris (1.5 M, pH=8.8) 25 % 25 % 
10% SDS 1 % 1 % 
10% APS 1 % 1 % 
TEMED 0.04 % 0.04 % 

Milli-Q water Up to final volume Up to final volume 
 

In the case of homemade gels, the proteins were stacked at 90V for 15 minutes and resolved at 150V for 1 

hour and 15 minutes in Tris/Glycine buffer. In the case of precast gels, proteins were resolved at 180V for 1 

hour and 30 minutes in MOPS buffer. Pink pre-stained protein marker (Nippon MWP02, DDBiolab) was used 

as a protein weight marker. Then, proteins were transferred to nitrocellulose membranes at 100V during 1 hour 

(for homemade gels) or 80V during 1 hour and 30 minutes (precast gels) in transfer buffer. Membranes were 

blocked with 5% non-fat milk prepared in Tris-buffered saline solution containing 0.01% Tween-20 (TBST) 

for 1 hour. 

Primary antibodies were prepared in TBST with 0.002% sodium azide and incubated with the membranes 

overnight at 4ºC. All antibodies were used at a 1:1000 dilution, except β-Actin (1:2000). Membranes were 

then washed 3 times (10 minutes each) with TBST and were incubated with the secondary antibody diluted 

1:4000 in 5% non-fat milk for 1 hour at room temperature. After that, membranes were washed again 3 times 

with TBST and developed with ClarityTM Western ECL Substrate (Bio-Rad). Proteins were visualized using 

the Chemidoc Imaging system. The antibodies used are presented in Supplementary Table 3. 

3.4. Statistical analysis: 

GraphPad Prism 8 software was used for statistical analysis. In all experiments the confidence level used was 

95% (α =0.05). n values represent the number of independent experiments performed. One sample t test was 

applied for one-component comparisons with control (hypothetical value=1). In co-culture experiments, for 

the comparison expected and measured values multiple t tests were applied. One-tail statistical analysis was 

applied for validation of predicted results (hypothesis-driven experiments) and two-tailed statistical analysis 

was applied for experiment design without predicted result. In the figures presented mean ± standard error of 

the mean (SEM) is presented. 

4. Results 

4.1. Characterization of the interferon response on PCa cell line: 

The RNA-Seq analysis previously carried out in our laboratory showed an upregulation of the interferon (IFN) 

signaling transcriptional program in response PGC1α re-expression (Fig. 1A). In order to validate these results, 

the expression of some IFN-response genes was analyzed 6 days after PGC1α induction (Fig. 1B).  For the 

benefit of having a comprehensive view, the data previously obtained in the lab were also included in the 

figure. Our results confirm the upregulation of the IFN signaling previously observed, reassuring that PGC1α 

is capable of driving an interferon transcriptional response. 
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Next, we wondered if this IFN signaling was mediating the anti-proliferative effect of PGC1α. But first, we 

aimed to proof the biological effect of IFN treatment on PC3 cells. In order to do so, PC3 cells were treated 

with three different concentrations of human recombinant IFN-β (25, 125 and 250 pM). The growth of IFN-β 

treated PC3 cells was measured at days 3 and 6. Our results show that IFN-β has a significant anti-proliferative 

effect in a doses-dependent manner (Fig. 2A). Furthermore, the morphology of the cells was also evaluated in 

response to the drug treatment. Membrane prolongations appeared and stress granules became more apparent 

after 3 days of treatment (Fig. 2B). With these results we confirm the anti-proliferative effect of IFN-β on PC3 

cells and further supports our hypothesis that this could be one of the pathways through which PGC1α 

modulates cell proliferation. 

Once characterized the anti-proliferative effect, we asked if in addition to proliferation, IFN-β treatment could 

phenocopy PGC1α-induced transcriptional program. For gene expression analysis we used the intermediate 

concentration of IFN-β, 125 pM. We evaluated the gene expression changes induced by IFN-β at 8, 24 and 

72h of treatment in PC3 cells (Fig. 2C). IFN-β treatment upregulated the expression of IFN-response genes at 

early time-points (8 and 24h) and these transcriptional changes were not maintained over time (72h) (Fig. S1). 

The genes upregulated in the RNA-Seq analysis were also upregulated in treated cells, showing that IFN-β 

activates the same transcriptional program induced by PGC1α. Out of all the IFN-response genes analyzed, 

some of them were not upregulated, suggesting that the doses used were not enough for their overexpression 

or they are not responsive to IFN-β, but to other IFN type I cytokines. However, some genes such as MX1, 

ISG15 or OAS1 showed an early (8h) and significant upregulation in response to IFN-β, pointing out that these 

genes could be the earliest reporters of an IFN signaling activation in PC3 cells out of all of the IFN-response 

genes analyzed.   

 

Figure 1. PGC1α upregulates the IFN 

signaling transcriptional program in vitro 

in PC3 cells. (A) RNA-Seq enrichment 

analysis of the transcriptional program 

upregulated by PGC1α. (B) qRT-PCR 

gene expression analysis of IFN-

response genes and PGC1α after a 6 day 

Dox treatment (n=3). Data are 

represented as fold-change relative to -

Dox cells, depicted as a dotted line. The 

data represented in white dots were 

obtained previously in the lab.                                               

*: p-value < 0.05; **: p-value < 0.01. 
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4.2. Tracking the PGC1𝛂-driven molecular events over time: 

The phosphorylation and further dimerization of STAT1 and STAT2 leads to the formation of the ISGF3 

complex (together with IRF9), which migrates to the nucleus and activates the IFN response transcriptional 

program13. Therefore, we sought to interrogate whether the expression of PGC1α could trigger the 

phosphorylation of STAT1, and the subsequent activation of the IFN signaling program. In order to do so, 

phospho-STAT1 (P-STAT1) was analyzed 6 days after Dox treatment on PC3 PGC1α cells (Fig. 3A). Our 

results show a significative increase in P-STAT1 protein level, suggesting that PGC1α promotes the 

phosphorylation of STAT1. Aiming to track the different molecular events over time, a Dox treatment time-

course (16, 24 and 48h) was performed (Fig. 3B, C). 

Our results confirm the decrease in c-MYC protein level previously characterized10 and show an increase in 

P-STAT1 protein level at 16h after PGC1α overexpression, that is maintained at 24h and 48h. Although these 

results indicate that the phosphorylation of STAT1 occurs early in time, it is preceded by the downregulation 

of c-MYC, which occurs at a transcriptional level only 2h after PGC1α expression.  In order to study if this 

early activation of IFN pathway was accompanied by an activation of a transcriptional response, four IFN-

response genes were selected: STAT1, IRF1, MX1 and ISG15; these last two being considered early target 

genes as our previous results suggested. Although at 16 and 24h there was an uncertain MX1 upregulation, at 

48h this overexpression became significant. These data, together with the upregulation observed at 6 days after 

the expression of PGC1α, suggest that PGC1α is capable of driving an IFN response signaling mediated by 

the phosphorylation of STAT1, starting to activate this transcriptional program 48h after its re-expression.  

Figure 2. IFN-β modulates cell proliferation and activates IFN signaling transcriptional program in PC3 cells in vitro. 

(A) Effect of IFN-β (25, 125 and 250 pM) on the growth rate of PC3 cells at 3 and 6 days post-treatment relative to 

untreated cells (n=3). (B) Optical microscopy photographs representative of the changes in cell morphology 3 days after 

treatment. Bar scale: 100 μm. (C) qRT-PCR gene expression analysis of IFN-response genes at 8 and 24h after an IFN-

β treatment (125 pM) (n=3). Data are represented as fold-change relative to untreated cells, depicted as a dotted line. *: 

p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001. 
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4.3. Studying the connection between c-MYC and IFN pathway driven by PGC1𝛂: 

The decrease in c-MYC driven by PGC1α has previously been demonstrated to have tumor suppressive activity 

and the silencing of this transcription factor partly phenocopies the effect of PGC1α10. Once we demonstrated 

an upregulation of the IFN pathway driven by PGC1α, we wondered if the decrease in c-MYC (see Fig. 3B) 

could be mediating these transcriptional changes. In order to explore this possible connection, we studied the 

expression of three IFN-response genes in PC3 shMYC cells (Fig. 4). Our results showed an increase in the 

expression of these genes in response to the downregulation of MYC, although not statistically significant. 

These changes in the gene expression support the hypothesis that a PGC1α-driven downregulation of c-MYC 

positively modulates the IFN transcriptional program, as a part of its tumor suppressive activity. However, the 

data obtained are not enough to demonstrate a solid connection. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Silencing the transcription factor c-MYC 

upregulates an IFN signaling response 6 days after its 

downregulation in PC3 cells. qRT-PCR gene expression 

analysis of three IFN-response genes: MX1, ISG15 and 

OAS1 (n=3). Data are represented as fold-change relative to 

-Dox, depicted as a dotted line. *: p-value < 0.05. 

Figure 3. PGC1α activates IFN signaling response 48h after its re-expression in PC3 cells. (A) Representative Western 

blot analysis and quantification of the effect of PGC1α on STAT1 phosphorylation 6 days after its re-expression (n=3). 

(B) Representative Western blot analysis and quantification of the effect of PGC1α on STAT1 phosphorylation and               

c-MYC 16, 24 and 48h after its re-expression (n=3). (C) qRT-PCR gene expression analysis of IFN-response genes IRF1, 

STAT1, MX1 and ISG15 16, 24 and 48h after PGC1α induction (n=3). Data are represented as fold-change relative to               

-Dox, depicted as a dotted line. *: p-value < 0.05, **: p-value < 0.01. 
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4.4. Exploring the extrinsic biological effects of PGC1𝛂: 

Previous studies of our laboratory showed an anti-proliferative activity associated with the secretome produced 

by PGC1α expressing PC3 cells. Additional studies also demonstrated an increase of IFN-β in this secretome. 

In these experimental settings, secretome producer cells and recipient cells were never in contact. This idea 

led us to ask if this growth inhibitory response could be transmitted in a paracrine manner in a context closer 

to the physiological one. In order to further decipher the communication between aggressive (PGC1α-) and 

non-aggressive (PGC1α+) PCa cells, co-culture experiments were designed. PC3 mCherry was chosen as the 

aggressive cell line and PC3 PGC1α was chosen as the non-aggressive cell line. PC3 TRIPZ cells were used 

as a control, with the aim of ensuring that the outcome of the experiments could not be attributed to doxycycline 

treatment and/or the fact of mixing and culturing two different cell lines.  

Three different percentages of co-culture conditions (PC3 mCherry:PC3 PGC1α cells or PC3 TRIPZ cells) 

were studied (80:20, 50:50 and 20:80). Growth rates at days 3 and 6 were calculated as relative to day 0 for 

each condition (Fig. 5). In this first assay the overall growth of each co-culture condition was measured. The 

growth rate of each cell line was also determined in monocultures. Taking into account the growth rate of each 

cell line (monocultures) and the composition of each co-culture condition, expected growth rates were 

calculated for days 3 and 6. These expected growth rates represent the overall proliferation of each co-culture 

condition if cells grew independently, without any communication that could alter their proliferation. As 

anticipated, the overall growth rate decreases as the proportion of PC3 PGC1α cells increases, due to the slower 

growth rate of PC3 PGC1α cells (~3.5 times lower than PC3 mCherry cells at Day 6; not shown). In the case 

of PC3 TRIPZ co-cultures, the growth rate seems to be identical (n.s.) independent of the condition of study. 

The measured (real) growth rates were compared to the expected (calculated) ones. Results show no difference 

between the expected proliferation and the one measured in any of the different conditions. Therefore, these 

data suggest that the cell growth measured and the one expected if PC3 PGC1α  (PGC1α+) and PC3 mCherry 

(PGC1α-) cells grew independently is the same. 

 

 

 

 

 

Figure 5. Growth rate (fold-change) relative to Day 0 in different co-culture conditions. Growth evolution is shown for 

(A) the different co-cultures of PC3 mCherry and PC3 PGC1α cells and (B) the different co-cultures of PC3 mCherry 

and PC3 TRIPZ cells (n=4). Black dotted lines represent the expected growth rate for each co-culture condition, 

calculated from the growth rate of each cell line in monocultures. D0: Day 0; D3: Day 3; D6: Day 6.  
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Once studied the overall proliferation of the co-cultures, we were interested in following the percentage (%) 

of each cell population (PC3 mCherry and PC3 PGC1α) at the same time points previously studied (days 3 

and 6) and at day 9 as an exploratory approach (n=1). As did before, taking into account the growth rate of 

each cell line (monocultures) and the composition of each condition, the expected % of each population was 

calculated for days 3 and 6. These expected data were compared with the data obtained in the flow cytometry 

assays, representing the time evolution of the % PC3 mCherry cells in the time course of 9 days (Fig. 6A).  

The evolution of the % of PC3 mCherry cells in co-cultures reflects the growing tendency of this cell 

population. The growing behavior of these aggressive cells (and consequently of the non-aggressive ones) was 

different from the one expected. We distinguished two clear growing tendencies when compared the measured 

% PC3 mCherry and expected % PC3 mCherry cells (Fig. 6B). From D0 to D3, the percentage increase per 

day was significantly higher than expected; showing that during these first three days, the aggressive PCa cells 

proliferated more than expected if they grew in monoculture conditions. On the other hand, from D3 to D6, 

the percentage increase was significantly lower than the expected one; showing that during the following three 

days, the aggressive cells were proliferating slower than they would if they were in monoculture conditions.  

 

 

 

 

 

 

 

 

 

 

5. Discussion 

Interferons, which are cytokines not only produced by tumor cells but also by the microenvironment, have 

shown to be capable of exerting a direct tumor-suppressive effect on tumor cells by modulating proliferation, 

differentiation, migration and antigen presentation13,14. In PCa the role of these cytokines has not been 

completely studied. A previous study on 118 PCa patients has reported that low-score values for IFN-β in 

prostate tumors were significantly associated with biochemical recurrence and worse prognosis14. Furthermore, 

a study of Shou and colleagues demonstrated that IFN pathway is indeed suppressed when benign PCa cells 

become tumorigenic15. Altogether these studies highlight the relevance of unravelling the role of these 

Figure 6. (A) Measured time evolution of the % PC3 mCherry cells through the course of 9 days. The measured % 

PC3 mCherry cells is shown in solid color lines for the three different co-culture conditions, while the expected % is 

shown in black dotted lines (n=3). The evolution of each condition from D6-D9 was studied without changing the 

medium (color lines) or discarding the medium and adding fresh one on days 3 and 6 (black solid lines); exploratory 

(n=1). (B) Increase in the % PC3 mCherry cells per day. The increase measured is shown in color bars and the expected 

one in black bars, for the two different time zones: D0–D3 and D3–D6. *: p-value < 0.05; **: p-value < 0.01; ***: p-

value < 0.001. D0: Day 0; D3: Day 3; D6: Day 6.   

 



 13 

cytokines and their associated signaling pathway in prostate cancer, driven by the necessity of biomarkers and 

gene signatures capable of stratifying patients. 

In order to verify that IFN pathway activated by PGC1α drives its anti-proliferative effect, we first needed to 

assess the anti-proliferative effect of the cytokine itself in our cell system. When studied the IFN transcriptional 

program activated in response to IFN-β treatment, the upregulation was not the same for all the IFN-response 

genes analyzed. Three out of the nine canonical IFN type I genes studied were not upregulated (IRF1, IRF9 

and RNASEL). These data could be explained either because the concentration used was not enough for their 

overexpression or because they might not be responsive to IFN-β but to other IFN type I cytokines. 

Nevertheless, we consider the data obtained a good validation, demonstrating the link between IFN pathway 

and its growth inhibitory effect on PCa PC3 cells. Moreover, our results are in line with another study that has 

previously supported the tumor suppressive activity of IFN-β in PC3 cells at the same IFN-β doses tested16. 

Once studied the biological effect of IFN signaling and characterized the upregulation of IFN-response genes, 

both in treated cells and PGC1α-expressing cells, we aimed to track over time the molecular events triggered 

by the re-expression of PGC1α. The significant increase in P-STAT1 protein level 6 days after PGC1α 

induction was in line with our previous IFN-response genes expression data, which led us to propose that the 

IFN transcriptional program was driven by PGC1α possibly through the phosphorylation of STAT1, a novel 

molecular mechanism yet unknown. Nonetheless, in the results presented in Fig. 3A there is a decrease in total-

STAT1 in response to PGC1α expression. This result is inconsistent with the previously characterized 

upregulation of STAT1 at mRNA level. In previous Western blots carried out in our laboratory this result was 

not replicated. Therefore, we propose that this incoherence can be explained by a failed Western blot analysis. 

Although our results demonstrate a PGC1α-driven phosphorylation of STAT1 as early as at 16h, there was 

some uncertainty in the time-point at which an increase in P-STAT1 protein level occurs. Complementary to 

the time-course experiments presented, we performed a short time-course analyzing both gene and protein 

expression at 2, 4, 6 and 8h after PGC1α induction. The results were not conclusive, showing an increase in 

the phosphorylation of STAT1 at 8h in only two of the three experiments carried out. Together with the 

upregulation of MX1 at 48h after PGC1α re-expression, we propose this time-point as the beginning of the IFN 

transcriptional program observed at 6 days after PGC1α induction. 

Our data suggest that the PGC1α-driven STAT1 phosphorylation could trigger molecular events that induce 

the IFN transcriptional program and the subsequent growth inhibitory response observed. This molecular 

mechanism has not been previously reported in the literature, demonstrating the molecular complexity of the 

pathways modulated by the tumor-suppressor PGC1α in PCa. A previous study has uncovered a defective IFN-

JAK-STAT1 signaling pathway in PCa cells that was inactivated in a MYC-dependent manner20. Together, 

our preliminary data suggest that the tumor suppressive response of PGC1α is associated with the 

downregulation of c-MYC and the subsequent upregulation of the IFN pathway in PCa cells. A possible 

molecular mechanism for the activation of the IFN transcriptional program is a MYC-dependent activation of 

JAK or TYK kinases, mediating the phosphorylation of STAT1. 
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Through the co-culture experiments we aimed to study the biological effect of cell communication between 

PGC1α expressing and non-expressing PCa cells. The change in the growing tendency of PCa aggressive cells 

reflects an anti-proliferative response three days after seeding. According to previous studies of the lab and 

our last data, we hypothesize that during these first three days there is an upregulation of the characterized 

PGC1α-driven IFN pathway and a change in the secretome composition produced by PGC1α expressing cells. 

The accumulation of these secretome components in the culture medium during the first three days could be 

driving the growth inhibitory effect observed in aggressive cells in the following days. Moreover, striving to 

eliminate the secretome component, two different conditions were seeded and harvested on day 9. In the first 

one, the culture medium was replaced with fresh one every three days; while in the other one the medium was 

not changed. In the co-culture conditions where the medium was changed, a remarkable increase in the % of 

aggressive PCa cells was observed. Although additional experiments are required in order to provide consistent 

results, these preliminary results support our hypothesis, remarking the importance of the extrinsic effects of 

the re-expression of PGC1α. The pro-proliferative effect of PCa aggressive cells during the first three days 

was a novel and previously unexplored response. Additional controls using co-cultures of aggressive cells 

should be carried out. The pro-proliferative behavior of PCa aggressive cells in the first three days balances 

the anti-proliferative behavior of the next three days (see Fig. 6A at D6), explaining how there were no 

differences in the overall growth rate of the co-culture.  

Numerous studies have shown the ability of IFNs to modulate tumorigenesis in an paracrine manner exerting 

a tumor suppressive response and stimulating immune cytotoxic cells13,14. The extrinsic mechanisms of PGC1α 

contribute to its tumor suppressive activity and we hypothesize that IFN pathway can ultimately be transmitted 

in a paracrine manner, modulating the tumor microenvironment and opposing the progression of the disease.  

6. Future directions and Conclusions 

The molecular mechanism through which PGC1α promotes the phosphorylation of STAT1 and the activation 

of IFN transcriptional program is yet unknown. In order to explore this mechanism, it would be interesting to 

chemically inhibit the receptor associated kinases (JAK1 or TYK2) that drive the phosphorylation of STAT1 

or genetically silence IRF9, necessary for the formation of the ISGF3 complex. These experimental settings 

would allow us to better describe the role of PGC1α in the activation of this signaling pathway. In addition, 

we consider necessary to measure P-STAT2 protein level in response to PGC1α induction. Owing to the fact 

that some of the upregulated genes are exclusively modulated by IFN type I cytokines through the formation 

of the ISGF3 complex, we expect an increase in the phosphorylation of STAT2 driven by PGC1α. Studying 

the upregulated IFN type II (IFN-γ)-response genes would also be interesting, due to the plausible synergistic 

effects of IFN type I and II response genes involved in the tumor suppressive effect of PGC1α. 

The link between PGC1α-driven IFN pathway and the downregulation of c-MYC is an interesting novel 

mechanism that needs to be further studied. In order to statistically confirm the upregulation of IFN-response 

genes in response to MYC downregulation, a higher number of experiments is required. Although this approach 

is a good start, our hypothesis needs to be further supported by a downregulation of the IFN pathway in 

response to the rescue of MYC expression in PGC1α expressing PCa cells.  
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Related to the extrinsic mechanisms of PGC1α there are many aspects to shed light on. Although in this work 

we only characterized the biological effect of a paracrine communication between PGC1α expressing and non-

expressing PCa cells, we consider necessary to study the underlying molecular mechanisms. In order to do so, 

a Fluorescence-Activated Cell Sorting (FACS) experiment can be designed, in which aggressive (mCherry+) 

and non-aggressive cells could be separated. After doing so, we could study the IFN pathway with or without 

changing the culture medium in aggressive PCa cells at the different time-points analyzed.  

On the grounds of all these data, IFN-β and its associated signaling pathway are potent candidates for the 

development of antitumor drugs; however, recombinant IFN-β is too unstable to be used in therapy in vivo14. 

Moreover, clinical trials of immunotherapy for advanced PCa using IFN type I cytokines (IFN-α or IFN-β) 

have been shown not to be effective and in some cases, capable of inducing severe toxicity21. Therefore, new 

strategies need to be taken into account in order to present prognostic or clinical value. We consider the present 

work a first approach to studying the link between IFN pathway and the tumor-suppressive properties of 

PGC1α in PCa, offering potential for new therapeutic targets and strategies. 
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Supplementary Data: 

Supplementary T1. Composition of the buffers used. 

Buffer Composition 

RIPA buffer 

50 mM TrisHCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Nonidet 
P40, 1% sodium deoxycholate, 1 mM sodium fluoride, 1 mM sodium 

orthovanadate, 1 mM betaglycerophosphate and protease inhibitor cocktail 
(Roche) 

Laemmli Loading 
buffer 

10% SDS, 50 mM Tris pH 6.8, 10% H2O, 50% glycerol, 1% β-mercaptoethanol, 
10 mM DTT and 0.2 mg/mL of bromophenol blue 

Transfer buffer 200 mM glycine, 25 mM Tris, 20% ethanol and milli-Q water up to volume 
 

Supplementary T2. Information about the primer sequences. 

Gene Species Left primer sequence Right primer sequence 
Pgc1a Mouse GAAAGGGCCAAACAGAGAGA GTAAATCACACGGCGCTCTT 

GADPH Human ACATCGCTCAGACACCATG TGTAGTTGAGGTCAATGAAGGG 

MX1 Human GAAAGAGGCGAAGCGAGAG CCGTGACACTGGGATTCCT 

ISG15 Human CGAACTCATCTTTGCCAGTACA GCCTTCAGCTCTGACACC 

OAS1 Human GTGAGCTCCTGGATTCTGCT AGGGTACTCATGTGTTCCAATGT 

STAT1 Human GAGCTTCACTCCCTTAGTTTTGA CACAACGGGCAGAGAGGT 

STAT2 Human TGCAGTTCCTCTGTCACACC GGTTTGATTTGGGACTTTGGT 

IFNB1 Human CTTTGCTATTTTCAGACAAGATTCA GCCAGGAGGTTCTCAACAAT 

IRF1 Human GGCACATCCCAGTGGAAG CCCTTCCTCATCCTCATCTGT 

IRF9 Human AGCCTGGACAGCAACTCAG GAAACTGCCCACTCTCCACT 

RNASEL Human AGCAGTCTTCCAGGCTTTG CAACAGAGCAGCAGTATGAAGA 

MYC Human TCCTCGGATTCTCTGCTCTC TCTTCCTCATCTTCTTGTTCCTC 
 

Supplementary T3. Information about the antibodies used. 

Protein Source Isotype Reference UniProt 
ID 

Molecular 
weight (kDa) 

STAT1 Cell Signaling Technology Rabbit IgG D1K9Y 
P42224 84-91 

P-STAT1 (Tyr701) Cell Signaling Technology Rabbit IgG 58D6 
c-MYC Cell Signaling Technology Rabbit IgG D3N8F P01106 57-65 
𝛃-Actin Cell Signaling Technology Mouse IgG 8H10D10 P60709 45 
𝛂-Tubulin Sigma-Aldrich Mouse IgG DM1A P68366 50 

 

 

 

 

 

 

Figure S1. qRT-PCR gene expression analysis of 

IFN-response genes at 72h after an IFN-β treatment 

125 pM (n=3; independent experiments). Data are 

represented as fold-change relative to untreated cells, 

depicted as a dotted line.  


