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Abstract: This study aims to evaluate different combinations of features and algorithms to be used
in the control of a prosthetic hand wherein both the configuration of the fingers and the gripping
forces can be controlled. This requires identifying machine learning algorithms and feature sets to
detect both intended force variation and hand gestures in EMG signals recorded from upper-limb
amputees. However, despite the decades of research into pattern recognition techniques, each new
problem requires researchers to find a suitable classification algorithm, as there is no such thing as a
universal ’best’ solution. Consideration of different techniques and data representation represents
a fundamental practice in order to achieve maximally effective results. To this end, we employ a
publicly-available database recorded from amputees to evaluate different combinations of features
and classifiers. Analysis of data from 9 different individuals shows that both for classic features
and for time-dependent power spectrum descriptors (TD-PSD) the proposed logarithmically scaled
version of the current window plus previous window achieves the highest classification accuracy.
Using linear discriminant analysis (LDA) as a classifier and applying a majority-voting strategy to
stabilize the individual window classification, we obtain 88% accuracy with classic features and 89%
with TD-PSD features.

Keywords: classification; force level variation; myoelectric control; pattern recognition; robustness;
surface electromyogram (sEMG); transradial amputees

1. Introduction

Paraphrasing the famous German philosopher Kant: “The hand is considered as an
extension of the human brain to the outside”, hence it has vital importance in daily life
activities. The human hand is a prehensile organ necessary to carry out working, recre-
ational and communicative activities in our daily lives. Therefore, upper limb amputees
experience many different obstacles in their lives.

Upper limb amputations are not only due to accidents. Diseases such as obesity,
diabetes, arthritis or vascular problems can lead to amputations, and because these dis-
eases are becoming more and more prevalent, the number of amputees has increased. In
numbers, around 30,000–40,000 amputations were performed in the U.S in 2019 and around
27,000 amputations were reported in England between the years 2015 and 2018 [1]. These
values demonstrate an increase in demand for arm prosthetics, the market for which was
valued at 697 million USD in 2019 and will reach 1408 million USD by the end of 2023,
growing at a magnificent CAGR (12.43%) [2].
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To overcome these adversities, prosthetic devices can be an effective solution. But as
with any other assistive device, natural interaction between the human and the machine is
essential. An ideal prosthetic hand should be intuitive to control and should quickly and
reliably detect the intended gesture of the user [3]. But even this is not enough. Imagine
carrying an egg in one hand and a glass bottle in the other. If we apply the same force on
the egg and on the bottle, one of them will break. A reliable prosthetic hand must not only
recognize intended hand posture, it must also successfully decode the user’s intended force
when grasping objects.

An attractive approach to controlling prosthetic devices is to command the device
through the activation of remaining muscles, but this is a challenging endeavour. As the
remaining muscles of the user’s forearm differ considerably among users, the generalization
of any decoding algorithm based on measured activation in remnant muscles is not trivial.
Machine learning techniques can be seen as the tool that will translate and adapt each
individual’s remaining muscle response into a concrete command [4,5]. Indeed, feeding
a time series of raw EMG directly to a classifier can be tempting, considering the Deep
Learning algorithms that are currently trending in the literature [6], but these techniques
require a large number of inputs to train a model. We therefore take the more traditional
route: sEMG signals arrive in windows or batches, features are extracted from those windows
and those features are used to train a conventional classifier.

As our goal is to control a self-contained prosthetic device, we have chosen to focus on
time-domain features, from amongst the wide variety features that have been proposed [7],
because the computational cost is lower than frequency domain features. We also con-
sider that good results in experiments with able-bodied subjects may nevertheless yield
poor results when transferred to amputees. Thus, we refer to the work of Campbell and
colleagues [8] who found that classic features (mean absolute value, root mean square,
zero crossing rate, slope sign changes and waveform length) and time-dependent power
spectrum descriptors proposed in [9,10] (TD-PSD) remain functionally coherent when
shifting from able-bodied participants to amputees. Thus, in our analysis we prioritize
these features over others proposed in [7].

Analogous to the best feature subset identification, there are also many works in the
literature comparing classifiers (see e.g., [11–13]), but few present a systematic quantita-
tive comparison of features [14] and only in [9,10] were the EMG signals obtained from
amputees. More importantly, detecting intended applied force has received little attention;
with most studies relying on subjects with intact limbs. We therefore set out to extend
the state-of-the-art by examining what machine-learning methodologies might be used to
control grip force.

We have therefore chosen to use the database created by [10] to compare decoding
strategies for gesture + force detection, this being, to our knowledge, the only publicly-
available database containing labelled data recorded from amputees containing different
force contraction levels. Although our study relies heavily on the previously published
works [9,10] we build on these studies in three significant ways: First and foremost,
although the original authors’ main objective was to improve recognition of different hand
gestures despite variations in the level of muscle activation, ours main goal is to allow the
user to voluntarily modulate gripping forces applied by the finger through EMG control in a
real life scenario. In pursuing that objective, we select a different set of features than those
chosen by [9,10], based on the analysis reported in Campbell et al. [8]. Finally, we propose
a novel look-back technique that logarithmically scales and concatenates two consecutive
windows to improve reliability.

This document is structured as follows: First, we present the database to be analysed.
Then, features and filters to be used are described. Finally, we show the results obtained
and we conclude with recommendations for applications and further work.
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2. Materials and Methods
2.1. EMG Database

For this investigation, we use the database collected by Al-Timemy et al. [10]. They
recruited nine trans-radial amputees with unilateral amputation to participate in their
study where six movements including different grip and finger movements were recorded.
The gestures available in this database are: thumb flexion, index flexion, fine pinch, tripod
grip, hook grip and spherical grip (Figure 1).

Figure 1. Hand gestures proposed by Al-Timemy et al. in [10].

Each of these gestures was performed at 3 different force levels by the users: low,
medium and high.

2.2. EMG Features

We use two different feature groups, which we call classic and TD-PSD features.

• Classic Features: We extracted the following classic state-of-the-art features from the
filtered data: Mean Absolute Value (MAV), Root Mean Square (RMS), Zero Crossing
Rate(ZC),Slope Sign Changes (SSC) and Waveform Length (WL). We refer the user
to [15] for a more extended description of these well known features.

• Time-dependent power spectrum descriptors: TD-PSD features are time domain
power spectral descriptors proposed by Khushaba et al. [9] and Al-Timemy et al. [10]
which include: Moments of the waveform and its first and second derivatives m0,
m2 and m4, Power Distribution (S), Irregularity Factor (irr), Waveform Length Ratio
(WLR). A single feature vector was constructed composed of the log of each of the
aforementioned features.

A single feature vector was constructed for each of these feature groups and used as
input to a classifier (described below) to identify the user’s intent.

2.3. Windowing and Look-Back Filtering

The selected features were extracted from small windows (150 ms) to simulate the
real life scenario where signals arrive in batches. We windowed each trial of the data with
overlaps of 50 ms. Instead of randomly associating each individual time window to either
the training or test sets, however, we assigned all windows from a given trial to one or the
other. This allows for specific processing of consecutive windows as would be the case
in real-life scenarios where the user must first train and then use the device. A novelty
of this investigation is that not only are the features extracted from the ‘current’ window
employed; a combination of present and past windows is also considered.
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For each feature set (classic and TD-PSD) we applied the classification algorithms to
the feature vectors computed from a combination of the current and previous windows
as follows:

• Present (P): Feature vector extracted from only the current EMG window n:

~vn =

v1
n
...

vK
n

 (1)

For the classic features we have K = 5 and

~vn =


MAV
RMS
ZC
SSC
WL

 (2)

While for the TD-PSD features we have K = 6 and

~vn =



log m0
log(m0 − m2)
log(m0 − m4)

log S
log Firr

log RWL

 (3)

• Log version of Present (PL): Logarithmically scaled version of the previous vector, i.e.,
log (x2):

~ln =

log[(v1
n)

2]
...

log[(vK
n )

2]

 (4)

• Present-Past (PPa): Feature vector from the current window combined with that
of the previous window. Values of the feature vector of the previous window are
concatenated with the current one as follows:

~bn =

[
~vn
~vn−1

]
(5)

• Log version of Past and Present (PPaL): Logarithmically scaled log (x2) version of the
previous vector:

~ln =

 log[(b1
n)

2]
...

log[(b2K
n )2]

 (6)

Whereas various techniques reported here have been used previously in other combi-
nations, to our knowledge combining log transformation with look-back (PPaL) is new.

2.3.1. Classifiers

Different machine learning classification algorithms were used in this systematic
comparison. They can be classified in 3 big groups:

• Linear Models (4): Logistic Regression (LR), Linear Discriminant Analysis (LDA),
Stochastic Gradient Descent(SGD) classifier and Passive Aggressive (PA) classifier.
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• Nonlinear Algorithms (5): Decision Trees (DT), Support Vector Machine(with linear
kernel) (SVMLinear), Support Vector Machine(with polynomial kernel)(SVMPoly),
Support Vector Machine(with rbf kernel)(SVMRbf), Naive Bayes (NB) classifier.

• Ensemble Algorithms (4): Ada Boost Classifier (AB), Bagged Decision Trees (BDT),
Random Forest (RF) and Extra Trees (ET) classifier.

All theses algorithms were used with their default hyper-parameter values, except the
Ensemble Algorithms for which we set the number of estimators to 100. In this state of the
research no hyper-parameter tuning was performed.

In addition to the filtering of the feature vectors as described above, we also imple-
mented a majority voting stabilizer that takes the last N = 20 outputs of the classifier in the
queue and provides the most repeated class as the output.

As stated earlier, each of the six gestures (shown in Figure 1) was performed at three
different force levels by the users: low, medium and high. The original authors’ main
objective was to improve performance of gesture recognition despite force/amplitude
variations EMG signals recorded from amputees. Our objective, however, is to allow the
user to voluntary modulate gripping forces applied by the fingers of a prosthetic device. We
therefore treated the six gestures × three force levels as if they were independent gestures,
i.e., as 18 classes. To ease comparison, we mimicked the train/test split used in [10], where
3 trials are used for training each gesture+force state, and the rest are used for testing. As
five to eight trials were recorded for each gesture+force condition, this means 54 trials were
used for training and from 42 to 99 trials were used for testing, depending on the user.
The database contains 1027 total trials (486 for training 541 for testing) and the minimum
number of windows a trial contains is 80.

2.3.2. Evaluation Methodology

Many measurements have been proposed in the literature to evaluate the ‘goodness’
of the results, the most popular being: accuracy rate, f-measure, ROC area under curve and
time spent for classification (see [16]). We use accuracy to directly compare our results with
other investigations. As the specifics of amputation for each participant is different and the
remaining muscular activity can be different, we analysed each user independently, as well
as through ensemble averages. We assembled the outcomes of the different combinations
of feature vector, classifier and filtering into tabular form and make initial assessments
through visual inspection. We then used multi-factor ANOVA to quantitatively compare
the efficacy of the most promising solutions.

3. Results

The tables in this section show the results obtained vy averaging the results of the
nine users for each independent feature group (classic or TD-PSD) and different filtering
methods before (S) and after applying the majority vote (MV) to stabilize the class obtained
for each individual window. For visibility purposes, mean values lower than 50% accuracy
are omitted. Values shown in color indicate accuracy equal to or above 85%. We further
illustrate the results from the most promising algorithms (the same for both feature groups)
as bar-plots overlayed with data points from individual users.

3.1. Classic Features

Table 1 summarizes the results obtained for the algorithms tested with classic features
and feature combinations and Figure 2 shows each user’s result around the mean for the
most promising algorithm-feature combination.

• Linear models: One can observe in Table 1 the number of blank cells presented in
the block of linear models of the table. It is remarkable that the Stochastic Gradient
Descent and Passive Aggressive do not achieve more than 50% accuracy for any of
the feature combinations as applied to this dataset. The Logistic Regression algorithm
achieves greater than 50% accuracy only after majority voting has been applied. Linear
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Discriminant Analysis appears to provide the best results out of all classifiers: 78%
accuracy for single window analysis; 88% with majority voting.

• Non-linear models: Neither Decision Trees, polynomic or RBF versions of Support
Vector Machines, nor the Naive Bayes classifier achieve 80% accuracy for the 18 classes.
Only the linear version of support vector machine reaches 82% accuracy after majority
voting with the PPaL feature combination. Accuracy is lower than with LDA in
all conditions.

• Ensemble models: The Ada Boost classifier does not provide results better than 50%
in any of its configuration. Although the other three proposed classifiers (Bagged
Decision Trees, Random Forest, Extra Trees) provide better results, none surpassed
73% even with majority voting.

Individual User Performance

In Figure 2 one can observe that User 5 manifests the poorest results in all the
algorithm-feature combinations (its general accuracy is lower than 60% even if the rest of
the users cluster around 80%). Additionally, one can observe that user 9 outperforms the
rest of the users in terms of accuracy almost achieving perfection with the LDA classifier
both for PL and PPaL feature combination with majority voting.

Table 1. Mean of 9 users, Algorithms vs Accuracy of CLASSIC features. 18 gestures without (S) and
with majority voting (MV) to stabilize the results.

P PL PPa PPaL

S MV S MV S MV S MV

Linear Models

Logistic Regression 0.58 0.59 0.61

Linear Discriminant Analysis 0.62 0.73 0.74 0.86 0.65 0.73 0.78 0.88
Stochastic Gradient Descent

Passive Aggressive

Non-Linear Models

Decision Tree 0.63 0.68 0.63 0.68

Support Vector Machine(’linear’) 0.58 0.67 0.65 0.79 0.60 0.68 0.70 0.82

Support Vector Machine(’poly’) 0.62 0.50 0.65

Support Vector Machine(’rbf’) 0.62 0.61

Gaussian Naive Bayes 0.57 0.53 0.62 0.52 0.57 0.56 0.65

Ensemble Models

Ada Boost

Bagged Decision Tree 0.58 0.67 0.59 0.73 0.59 0.66 0.62 0.72

Random Forest 0.59 0.68 0.61 0.73 0.61 0.67 0.63 0.72

Extra Trees 0.60 0.67 0.61 0.73 0.61 0.67 0.64 0.72
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Figure 2. Accuracy value distributions across users for the most promising combinations of Table 1.

3.2. TD-PSD Features

There is a small overall improvement of the obtained accuracies when using TD-PSD
features compared to the classic features (i.e., fewer white blocks in Table 2). We describe
the results for each algorithm block, as for the classic features above.

• Linear models: LDA classifier is once again the algorithm that outperforms the rest
of the models of this block. With the TD-PSD features, we can observe easily that the
PL and PPaL feature combinations demonstrate the highest accuracy (87% and 89%)
after majority voting, 72% and 77% respectively for individual windows.

• Non-Linear models: The tendency is similar in the non-linear models when using TD-
PSD features compared with classic features. Although in this case we obtain higher
general accuracies, only with the SVM with linear kernels is near the auto-imposed
85% percent threshold.

• Ensemble models: As in the case of classic features, Bagging Classifiers, Extra trees
and Random Forest are the ones providing higher accuracy results. Ada Boost again
failed to classify correctly more than half of the instances.

Individual User Performance

Similar tendencies are observed with user 5 and 9 with this feature group (Figure 3).
Again user 9 outperforms the rest of the users in terms of accuracy in most of the combina-
tions and user 5 goes below 60% in most of the combinations.
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Table 2. Mean of 9 users, Algorithms vs Accuracy of TD-PSD features. 18 gestures wuthout (S) and
with majority voting (MV) to stabilize the results.

P PL PPa PPaL

S MV S MV S MV S MV

Linear Models

Logistic Regression 0.54 0.64 0.55 0.79 0.57 0.65 0.62 0.82

Linear Discriminant Analysis 0.64 0.71 0.72 0.87 0.66 0.72 0.77 0.89

Stochastic Gradient Descent 0.52

Passive Aggressive

Non-Linear Models

Decision Tree 0.50 0.67 0.54 0.79 0.50 0.66 0.56 0.79

Support Vector Machine(’linear’) 0.60 0.70 0.54 0.74 0.63 0.71 0.65 0.82

Support Vector Machine(’poly’) 0.58 0.67 0.49 0.65 0.60 0.66 0.53 0.64

Support Vector Machine(’rbf’)

Gaussian Naive Bayes 0.53 0.62 0.61 0.79 0.54 0.61 0.66 0.79

Ensemble Models

Ada Boost

Bagged Decision Tree 0.60 0.72 0.66 0.83 0.63 0.72 0.73 0.85

Random Forest 0.62 0.71 0.69 0.84 0.64 0.71 0.73 0.84

Extra Trees 0.62 0.71 0.69 0.85 0.64 0.71 0.74 0.84

Figure 3. Accuracy value distributions across users for the most promising combinations of Table 2.

3.3. Statistical Comparison

To quantitatively compare methodologies we performed a five-factor ANOVA with
repeated measures, with accuracy as the sole dependent variable and with Feature Vector
(Classic or TD-PSD), Look-Back Filter Method (P, PPa), Transform (Linear or Log), Majority
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Voting (Simple or with MV) and Classifier (LDA, SVM, BAG and RF) as independent factors.
We choose to concentrate on these 4 classifiers as they appear to give more promising results
than the other options.

Figure 4 shows the relative performance between methods. ANOVA shows a marginally
significant main effect of the choice of feature vector (p < 0.019) and significant main effects
for the other four independent factors (p < 0.001), suggesting that (a) the TD-PSD performs
better than the Classic feature vector (NB see post-hoc analysis below), (b) LDA gives the
best performance amongst the different classifiers, (c) logarithmic transformation of feature
components has a significant positive effect on accuracy and (d) both look-back filtering
and majority voting generally increase performance.

Figure 4. Interaction of Feature Vector, Look-Back Filter Method and Classifier on prediction accuracy.

Applying Tukey’s HSD test to identify homogeneous groups, LDA coupled with the
log transformed combination of the present and past samples (PPaL) and majority voting
stands out as the best combination, with no significant difference between the choice of
feature vector (Classic or TD-PSD). Figure 5 showing the results for only the log-tranformed
feature elements illustrates this observation. Nevertheless, one can observe in Figure 6
that the accuracy rates appear to vary less across subjects (smaller range of values) for the
Classic vs. TD-PSD features.

Figure 5. Specific ANOVA analysis of LDA.
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Figure 6. Inter-subject variability for different filters. Smaller values indicate greater consistency in
performance across individual subjects.

4. Discussion

What novel insights can one draw from our analyses? First, despite showing an
advantage over all in the analysis (statistical main effect of Feature Vector), we find no
significant advantage of the TD-PSD feature vector over the more classical features when
looking specifically at the optimal combination of log transform, look-back and majority
voting is applied. This is not entirely surprising. The spectral moments m0, m2 and
m4 in the TD-PSD vector are related to the power (RMS), zero crossings (ZC) and slope
sign changes (SSC) of the Classic feature vector and both vectors include a measure of
waveform length (WV and RWL). The TD-PSD vector includes additional parameters
related to Sparseness (S) and Irregularity factor (Iirr), but since these two measures are
derived from m0, m2 and m4, they do not necessarily bring any new information that can
be exploited by the classifier. The TD-PSD features may nevertheless be attractive in a
practical case because they rely less on empirical constants (e.g., ε thresholds) that could
vary from user to user. Note nevertheless that the TD-PSD features include a λ factor that
is also empirical (see [9]). In terms of robustness, it would presumably be better if the
machine learning algorithm could find the optimal value for this parameter. With a new
database in hands, we would propose to perform a grid search for different λ values. This
could be done by methodically evaluating the accuracy changes using different λ values
and choosing the one that outperforms over users.

Second, our systematic comparison across different classifiers reveals that LDA is
reliably better than the three other methods subjected to our statistical analysis (and
presumably better than the others as well). One should note, however, that the SVM, BAG
and RF methods are not terribly far behind. If they are easier to compute, they could be
considered as well.

Third, combining the present and past sample (PPa) and applying majority voting
(MV) each individually improved performance, however, there is little improvement gained
by combining present and past when majority voting is applied. This makes sense, as both
of these methods represent a means to look further back in time. MV is another form of low-
pass filtering that will reject spurious classifications when neighbouring values converge to
a different categorization. Like low-pass filtering of continuous signals, however, PPa and
MV will add latency to the detection of actual state changes, in the MV case depending
on the number of values used in the voting. We use N = 20 which, for windowing at
150 ms with overlap of 50 ms, leads to a potential delay of up to 1 full second before a
state change in the intention of the user is output to the prosthetic device. For the state
of the art in which prostheses move slowly, this may be acceptable, but a more detailed
analysis of the optimal value for N is also warranted. And as for the PPa look-back filtering,
one might also ask if simply widening the time windows or low-pass filtering might also
improve accuracy without the added complexity of implementing a voting scheme. Which
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of theseto apply will probably also depend on the ease of implementation (PPa is easier to
compute than a moving majority vote) and on the desired response latency. Finally, one can
consider the consistency across subjects. Consistently lower accuracy rates are obtained
for one user than for all the others regardless of the methodology. Possible explanations
include low remaining muscle activity, thicker fat layer, incorrect electrode location, etc.
Removing this subject (see Figure 6) one might conclude that the Classic feature vector is
more robust with respect to inter-user differences, although the data reported here are far
to few to state this conclusion with confidence.

4.1. Comparison with Related Studies

The proposed experimental procedure in this investigation could be compared with
the experimental Scheme -3 of the creators of the database [10], i.e., training the classifiers
with all force levels and testing with single level of force at a time and with the results of
the feature fusion proposed in [9]. Al-Timemy et al. [10] report an average error rate when
testing with three forces of 17.42% with the LDA classifier, which means a mean accuracy
of 82.58%. They tried other classifiers but LDA is the one providing best results in their
case, too. In their case, they use the cosine similarity feature vector fi = −2aibi/(a2

i + b2
i )

being ai the TD-PSD of the ith window and bi the logarithmically scaled version of ai as
look back filtering instead of the PPaL proposed in this investigation. In [9] graphs suggest
an error rate of 18% which translates to 82% accuracy. With our majority voting approach
and the logarithmically scaled version of the current and past window (PPaL) combination
we achieve 88% accuracy for classic features and 89% for TD-PSD features, outperforming
previous attempts despite endeavouring to distinguish between different levels of muscular
effort, rather than trying to ignore those variations. This suggests that when the only goal is
to identify the gesture, independent of effort, it may nevertheless be more effective to treat
different effort/gesture combinations as separate cases in the training process, and then
collapse across efforts in the decoding phase, rather than expecting the decoder to ignore
variations in overall muscular effort. For our purposes, however, where we would like to
offer to the user the ability to control grip forces via changes in muscular effort, these results
indicate that this increased level of sophistication in EMG control is indeed achievable.

4.2. Result Transfer to Real World

The present study is a theoretical analysis performed on signals captured in a labora-
tory environment under favourable circumstances. When transferring the current results
to the real life scenario, one must take into account that:

• muscles act under the effects of the gravity due to the weight of the prosthetic device
and that interference should be quantified,

• the final user should place the prosthetic on his/her arm without specialized help
and this could lead to problems in the EMG readings that do not occur in controlled
laboratory conditions,

• the final trained model and the extracted features per window should be light enough
to be loaded and extracted on real time in a micro-controllers embedded in a prosthetic
hand, and

• the choice of N should be done according to desired latency the capabilities of the
EMG capturing system.

Our current investigation points the direction to follow, even if additional work is
needed before achieving a robust product.

5. Conclusions

In this paper we present a systematic approach to compare the effects of different
choices for feature sets, filtering and classifiers on the accuracy of hand-gesture detection
from surface EMG in amputees, where in contrast to most studies, detection of the
gripping force intended by the user is also to be decoded. For this objective, at least, Linear
Discriminant Analysis proved to be the best classifier compared to a number of linear and
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non-linear alternatives, although other classifying methods came in at a close second. We
find no clear advantage or disadvantage of using TD-PSD vs. more classical features to
characterize the incoming EMG signals so the choice for a given application may depend
more on factors not tested here, such as long-term stability and user-to-user variability.
Logarithmic scaling and filtering appears to improve accuracy of the classification, as
does a scheme of majority voting, albeit at the expense of increased latency to detect state
changes. These result show that simultaneous decoding of intended gesture and grip force
can be achieved with surface EMG signals from the remnant muscle of an amputated arm.
The comparison of feature vectors, classifier methods and filtering presented here provide
important insights that may be used to create effective, intuitive and robust control schemes
for to meet the needs of transradial amputees.
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