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Abstract: The complex physical transformations of polymers upon external thermodynamic changes
are related to the molecular length of the polymer and its associated multifaceted energetic bal-
ance. The understanding of subtle transitions or multistep phase transformation requires real-time
phenomenological studies using a multi-technique approach that covers several length-scales and
chemical states. A combination of X-ray scattering techniques with Raman spectroscopy and Differen-
tial Scanning Calorimetry was conducted to correlate the structural changes from the conformational
chain to the polymer crystal and mesoscale organization. Current research applications and the exper-
imental combination of Raman spectroscopy with simultaneous SAXS/WAXS measurements coupled
to a DSC is discussed. In particular, we show that in order to obtain the maximum benefit from
simultaneously obtained high-quality data sets from different techniques, one should look beyond
traditional analysis techniques and instead apply multivariate analysis. Data mining strategies can
be applied to develop methods to control polymer processing in an industrial context. Crystallization
studies of a PVDF blend with a fluoroelastomer, known to feature complex phase transitions, were
used to validate the combined approach and further analyzed by MVA.

Keywords: polymer; X-ray scattering; Raman spectroscopy; combined techniques; multivariate analysis

1. Introduction

Time-resolved small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering
(WAXS) are [1] routine structural characterization techniques in the synchrotron radiation
community. Furthermore, through a combination of improvements in X-ray generators,
optics and detectors, SAXS laboratory experiments have entered the time-resolved domain.
With these technical advances, a novel approach to the analysis of complex data sets might
be required to reap the full benefits of such a multimodal approach.

At present, there is a significant number of multi-purpose synchrotron radiation
SAXS/WAXS beamlines, in which a plethora of materials science experiments in combina-
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tion with sophisticated sample environments can be carried out to monitor the nanostruc-
ture development upon external stimuli [2–5].

In particular, polymer science under extreme conditions has been largely studied by
simultaneous SAXS/WAXS experiments [6] in combination with sophisticated sample
environments that reproduce specific processing thermodynamic conditions or replicate
pilot plants in the manufacturing field [7]. The emphasis on combined techniques has been
proven to be very beneficial for the elucidation of polymer nanostructure formation (mainly
crystallization) under processing-relevant conditions that mimic industrial environments,
such as fast quenching [8,9], solid-state films drawability [10], 2D stretching [10], thin film
formation by spin coating [11–13] or polymerization under sc-CO2 [14–17] and, recently,
3D printing [18,19] and laser sintering [20]. Substantial efforts have been dedicated to the
understanding of the interplay of the different flow fields [21–26] and thermal treatments [1]
that replicate the industrial conditions at which polymers are subjected in processing, such
as extrusion, injection moulding [27], blow moulding [28,29], fibre spinning, drop-casting,
filament deposition modelling and inkjet printing on crystallization.

Experimental strategies to perform simultaneous SAXS-WAXS experiments in combi-
nation with non-X-ray based techniques with different sensitivities have been extensively
discussed [30], as well as the design of appropriate sample environments. The simultane-
ous multiple techniques approach offers the major advantage that there are no time- or
thermodynamic condition shifts (thermal herein) between the different data sets and, thus,
identical kinetics are monitored by each technique when influenced by the X-ray interaction.
In particular, the combination of vibrational spectroscopy technics (FTIR, Raman Scattering)
with X-ray scattering [9,31] and more recent work using SAXS, Ultraviolet-visible (UV-
Vis) [32], as well as Raman spectroscopy [33], extends the structural analysis by probing
the chemical environment and its fundamental arrangement nature (interactions, chain
conformation, secondary structure). Likewise, the combination of scattering techniques
with vibrational techniques enables to cover the structural transformations at different
length scales and to establish the driving force between the morphological transitions and
the chemical conversions.

However, the technical requirements for conducting the widely used Fourier-transform
infrared spectroscopy (FTIR) hamper the combination with other techniques and specific
complex sample environments have to be designed to be coupled for each experiment
requirement. By contrast, Raman spectroscopy has been widely used in combination with
multiple techniques, in particular for polymer characterization in the industrial field [34,35]
such as monitoring of in situ polymerization by Raman spectroscopy [36–38] as well as
rheo-Raman [39] and Raman-DSC [40], due to its simple implementation, improvement of
the time resolution and experimental advantages [41]. Furthermore, Raman spectroscopy
is a non-destructive technique that can be applied to different media (bulk, fibres, solution,
gels and films), specifically aqueous solution without special experimental preparations,
and requires small quantities of sample to be studied [41,42]. In addition, Raman spec-
troscopy is a key complementary technique to X-ray scattering as Raman scattering probes
the covalent nature of the polymeric backbone, particularly the frequent unsaturated bonds
as well as the chain stereoregularity [43]. Besides, the technical ease to perform polarized
Raman spectroscopy, the scattering nature of the Raman spectroscopy enables it to be
sensible to phase transitions related to the laser wavelength, thus extending the length
scale range under investigation. In addition, the low-frequency spectral range correlates
with the collective motion associated with the transition time to identify and relate the
chemical conformation to the structure of nanomaterials, which is especially beneficial for
polymer characterization. Moreover, the detailed description of the nanostructure compo-
sition by SAXS experiments benefits from correlations with quantitative Raman analysis
to optimize the parameters of the SAXS-derived correlation function, particularly at crys-
tallinities around 50%, where electronic contrasts hamper the phase assignment by SAXS.
In particular, Raman spectroscopy has been coupled to several X-ray-based techniques
across the synchrotron community for both scattering areas, such as micro-X-ray Diffrac-
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tion (XRD) [44], high resolution [45] XRD or spectroscopic techniques, including UV-vis
X-ray absorption fine structure (XAFS) [46] and sequential combinations of both as X-ray
absorption near edge spectroscopy (XANES)–XRD [47]. Moreover, Raman spectroscopy is
beneficially associated with SAXS-WAXS techniques to analyze the nano-structural evolu-
tion of polymeric systems upon external stimuli while obtaining concurrently kinetic data,
as well as identifying potential X-ray beam damage [48,49]. Simultaneous Raman spec-
troscopy with high time resolution (2 s) on backscattering mode using an optical fiber probe
with time-resolved SAXS-WAXS measurements [31] has been applied to follow in situ the
phase transition of high-density polyethylene upon thermal treatment, in combination with
a Linkam calorimeter stage [50] that has been recently expanded to X-ray lab machines [51].
However, the quality of the spectroscopy data due to experimental limitations, as well as
the interpretation of the large amount of data generated, has restricted its routine use.

In addition to experimental issues such as differences in the required acquisition time
between the different techniques, there is also the challenge of obtaining the sometimes
subtle correlations between the different data sets to correlate these with structural changes.

The correlation of the variables of a complex system that define the structural trans-
formations obtained from multiple techniques [52], particularly in this study, which used
WAXS, SAXS and Raman spectroscopy as a function of temperature, is crucial to relate
ambiguous or/and unclear correlations among the crystallinity (Xc), long period (Lp),
conformational changes and phase transition of a dynamic structural evolution upon cool-
ing. Generally, data analysis so far has focused on an area of interest of the spectra, in
which evident changes are observed and compared to other techniques data. However,
as we show in this study, data sets can contain less obvious cross-correlations that are
difficult to perceive. Raman spectra analysis typically consists of the decomposition to
a Voigt function [47,48] of the Raman band (Lorentz-Gaussian outline) pre-processed by
correcting the raw data with a baseline, smoothing and then normalizing the spectra to
an independent band of the process under study. However, subjectivity introduced into
the analysis on the normalization and deconvolution inaccuracy of superimposed Raman
bands generally involves data treatment and previous knowledge about the Raman modes.

Chemometrics [53] uses statistical methods, such as Multivariate analysis (MVA),
to study complex sets of chemical data that contain more than one variable, particularly
by using Principal Component Analysis (PCA). MVA and PCA can extract additional
information from data, especially in the case of complicated phenomena and/or small
changes. MVA has found widespread use in spectroscopy data analysis. [54] However,
so far, it has only been applied in a few instances in combination with X-ray scattering
techniques such as inverse gas chromatographic [55], SAXS/UV-vis [33,56], SAXS and
high-performance anion-exchange chromatography using pulsed amperometric detection
(HPAEC-PAD) [57]. Furthermore, chemometrics models have been exploited to analyze
polymer crystallization transitions under processing conditions [58].

Before applying MVA methods, the spectral data pre-treatment to correct the exper-
imental artefacts has been shown to be important and was [59] evaluated for different
material states (melt state to semi-crystalline solid state) and polymer postprocessing pro-
cedures (cooling down, heating up, etc.) in the applied chemometrics model (PCA, partial
least squares (PLS)).

The choice of a suitable Raman spectral range of interest to apply the chemometric
model is crucial to observe small but important variations that otherwise go unnoticed
if the data sets are analyzed separately. In particular, the crystallization mechanism at
quiescent conditions of molten poly(3-hydroxybutyrate) (PHB) has been analyzed in detail
by Multivariate Curve Resolution (MCR), as well as both homospectral (both spectra from
the same technique) and heterospectral (spectra from different techniques) Two Dimension
Correlation Spectroscopy (2DCOS), to reveal the sequential order of the multistep crystal-
lization process [60]. However, the scrutiny of multiple (more than two) datasets by data
fusion strategies in polymer crystallization offers the possibility to understand the hidden
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exchanges and time correlations between different complementary techniques probing the
same phenomena.

Herein, we describe a simultaneous time-resolved SAXS/WAXS experimental set-
up in combination with both Differential Scanning Calorimetry (DSC) as well as Raman
spectroscopy that renders information-rich data sets that allow MVA techniques to be
applied. The versatile designed set-up features accurate temperature control; the different
techniques were controlled by a single data acquisition system generated a multiple dataset
that was grouped by data fusion approaches, and further analyzed by MVA.

The chemometrics models were applied to the data fusion database to enrich the
analysis of the single techniques by uncovering the correlations between the different
techniques variable components. This enables to retrieve slight data variance and recognize
unclear variable assignments and their time evolutions.

Multi-technique simultaneous analysis was applied to the complex crystallization
mechanism upon cooling from the melt to a fluoroelatomer/PVDF blend to reveal the
hidden correlations between weak signals of controversial PVDF transitions in previous
studies. In particular, the multidataset combined analysis helped us to learn the iden-
tification of the barely discernible Raman vibration modes of both the amorphous and
crystalline PVDF phases, which, in turn, were used to associate the higher-sensibility
Raman components at the faint transitions.

2. Experimental Section
2.1. Materials

All the materials were supplied by Arkema and used without further treatment. The
PVDF homopolymer featured a melt flow index (MFI) of 2 g/10 min at 230 ◦C. The fluoroe-
lastomer consisted of vinylidene fluoride-hexafluoropropylene (VF2/HFP) copolymer, with
a melt viscosity of 4000 Pa·s at 230 ◦C under 100 s−1. The PVDF/fluoroelastomer blend
(25 weight per cent) was blended in the melt by extrusion. The samples were supplied
as 4 mm thick compression molded sheets. Holes were punched in the DSC pans and
subsequently covered with mica windows to allow the Raman laser and scattering to pass
through the DSC sample pans.

2.2. Raman Spectroscopy Combined with Simultaneous SAXS/WAXS Coupled to DSC

Time-resolved simultaneous SAXS and WAXS experiments (DUBBLE, BM26, at Euro-
pean Synchrotron Radiation Facility, Grenoble, France) coupled to a Linkam calorimeter
(LINKAM SCIENTIFIC INSTRUMENTS LTD, Tadworth, United Kingdom)stage have
become a routine technique in the synchrotron light community; however, herein a de-
tailed description of the experimental alternatives is presented in order to benefit from the
advantages of the data acquired by in situ Raman spectroscopy.

Raman scattering (RXN1 spectrometer from Kaiser Optical Systems, Ann Arbor, MI,
USA) was conducted in the reflection mode fitted with focusing optics by placing the probe
under an angle to avoid blocking the X-rays and to minimize air scattering (Figure 1) while
the DSC stage allowed X-ray scattering in transmission mode.

The synchronization of the different techniques was achieved using a Multipurpose
Unit for Synchronization, Sequencing and Triggering (MUSST) electronic module as a
central unit. The MUSST unit is fitted with an internal timer that is independent and flexible
for triggering and synchronizing different beamline components and user hardware. The
MUSST built-in data storage capacity can be used as a general data acquisition unit for
combined techniques. Moreover, the MUSST unit offers asynchronous periodic polling over
an extended period. In a typical experiment, a configuration file with the thermal protocol
has to be created to send synchronization triggers to the different detector systems [61].
The system writes the corresponding thermal data, as well as a file containing the DSC
data to avoid temporal mismatches, into the header of each SAXS/WAXS frame.

The experimental procedure allows the future inclusion of additional sample environ-
ments or auxiliary experimental techniques.
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Figure 1. The simultaneous SAXS/WAXS combined with both Linkam DSC and Raman spectroscopy
setup at the Dutch-Belgian Beamline (DUBBLE, BM26) at the European Synchrotron Radiation
Facility (ESRF).

The Raman laser wavelength and power must be selected depending on the sample
characteristic to enhance the response while minimizing sample damage. The Raman
spectrometer used allows the selection of laser wavelengths that enables to tune the Raman
response (532 nm lasers for higher sensitivity or resonance enhancement, 633 nm lasers for
efficiency and low fluorescence, 785 nm lasers for sample fluorescence suppression) as well
as the laser power (100–400 mW).

For our experiments, a 785 nm laser wavelength with a 150 mW output was selected
to minimize the material fluorescence and laser heat transfer. The positioning of the laser
beam focus on the sample also enables to control the illuminated sample volume, as
well as the laser light penetration (Gaussian-shaped beam), depending on the experiment
requirements. The selected focal distance of 5 cm corresponds to a focal point waist
dimension [62] of 2W0 = 20 µm and 2ZR = 2.1 mm, obtained by the following equation:

2W0 =
4λ f
πφ

(1)

2ZR =
16λn f 2

πφ2
(2)

with W0 as the diameter of the convergent lens, λ as the wavelength of the laser (785 nm), f
as the focal distance (5 cm), φ as the output laser beam diameter (2.6 mm) [63,64], ZR as the
convergent lens distance and n as the refractive index (1.42 for neat PVDF, 1.30 for HFP
and ca 1.40 for the 75/25% PVDF/VF2/HFP blend). The sample thickness was 0.8 mm. In
addition, the absorption of laser light induces sample heating (photothermal effect) when
the energetic excitation rate of the material is slower than the thermalization time [65].
Typically, polymers are characterized in the lower part of the thermalization times, in the
order of 10−6 s. Heating due to X-ray absorption was negligible in our experiments, as well
as the radiation damage produced by the X-ray doses that we used [66,67]. The incident
laser beam of our spectrometer was synchronized with the shutter aperture to obtain a
better signal/noise ratio by avoiding parasitical light. However, an oscillating Linkam DSC
signal with a frequency associated with the opening laser shutter period was observed (see
Figure 2A) due to the laser intermittently impinging on the sample while the deactivation
of the laser shutter yielded a constant Linkam DSC signal (see Figure 2B); and thus, it was
kept open during our experiments.

The calibration of the sample temperature in the coupled techniques experiment was
conducted (see Figure S1; the figures designed as SX are available in the supplementary
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material document) to correct both the X-ray [67] and laser beam (785 nm) effects on the
DSC thermocouple reading. The maximum deviation of the set temperature was 2 ◦C.
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Figure 2. Linkam DSC profile of the cooling and second heating ramps of the PVDF sample during
the simultaneous SAXS/WAXS coupled to the Linkam DSC combined with the Raman spectrometer
with the activated laser shutter (A) and with the deactivated laser shutter (B).

The quality of the in situ Raman spectra acquired in this combined experiment was
compared with the data obtained by a standard standalone DSC combined with a Raman
spectrometer (see Figure S2A) [68] to evaluate the adequacy of the Raman spectra to assign
transitions. Similar spectral data quality was obtained in both Raman setups, apart from
the smoother profile recorded in the DSC standalone Raman spectra due to the lower
background (see Figure S2B).

A thermal protocol with identical ramp parameters was applied to the PVDF/VF2-HFP
blend by using three different experimental setups to validate the temperature acquisition
routine. The temperature reading of the in situ Linkam DSC combined with both Raman
spectroscopy and X-ray scattering techniques, with the combined DSC standalone-Raman
using a Q200 TA Instrument (New Castle, DE, USA) [68] and the Q200 TA Instrument DSC
as a reference, were compared. A slight temperature deviation was found even after correc-
tion for laser and beam thermal influence (see Figure 3) for the crystallization temperature
(138.7 ◦C, 138.1 ◦C and 139.5 ◦C, respectively, for in situ Linkam DSC, DSC_Raman and
Simple_DSC). The temperature differences between the three crystallization temperatures
were systematic and not statistical errors.
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Figure 3. Comparison of the thermograms obtained by the Linkam DSC600 setup (X-rays and Raman
laser on), the Q200 TA DSC-Raman setup (Figure S2A available in the supplementary material
document) and a single Q200 TA DSC profile. Slight discrepancies in the crystallization temperature
were observed, as well as a slight drift in the baseline.
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2.3. Multivariate Analysis

The multivariate data analysis was conducted using PLS_Toolbox (version 8.8. Eigen-
vector Research, MA, USA) to perform the SUM-PCA [69] and the MCR-ALS toolbox,
available at (http://www.mcrals.info/, 28 November 2021) [70], was used to perform
the multiblock-MCR. Both toolboxes worked under Matlab environment (version 2019b,
The Mathworks, Natick, MA, USA). A detailed description of the methodology applied is
available in the Supplementary Materials (Section S2 in the Supplementary Materials).

3. Results and Discussion
3.1. Combined Analysis

The crystallization PVDF mechanism involved several polymorphic semi-crystalline
structures (namely α (TGTG’), β (TTTT), and γ (TTTGTTTG’) phases). Therefore, it was
selected as the candidate to highlight the impact of the crystallization conditions in the
final nanostructure by chemometric analysis of the multiprobe-acquired data. PVDF
at moderate quenching temperatures crystallizes from the melt, mainly in the α phase,
while high quenching temperatures, blending with other polymers such as PMMA [71,72],
PA6 [73] and ionic liquid [74], or stretching forces are required to obtain the β phase (which
is electroactive) [75,76].

The multi-technique approach to monitoring the PVDF/fluoroelastomer blend crys-
tallization can resolve several ambiguous assignments that would otherwise result from
applying a single technique. For instance, the β-phase quantification of PVDF at low
contents is difficult to quantify by WAXS alone due to the broad profile of the reflections
and the superposition with the amorphous phase. Likewise, Raman spectroscopy cannot
rigorously quantify and identify the amorphous phase due to the overlap with the α-phase
(the amorphous phase of PVDF is convoluted with the band of the α-phase at 796 cm−1)
but is very sensitive to the β phase instead.

Similarly, the crystallization mechanism from the melt (200 ◦C) of PVDF is known to be
complex. In particular, the wide crystallization temperature range of the PVDF/fluoroelastomer
blend shown by Modulated Differential Scanning Calorimetry (MDSC), where, after a fast-
narrow endotherm, an asymmetric upward return extended for a large temperature range
with a monotonous low energetic profile was evident, suggests a continuous crystallization
process that is invisible by standard DSC (Figure 4A,B).
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and zoom in of DSC/MDSC thermogram corresponding to the controversial weak thermal transitions
of the rigid amorphous phase densification (Trga) and of a secondary crystallization (Tc2) (B).

Furthermore, the effect of the addition of fluoroelastomer on the crystallization of
PVDF has not yet been investigated. The typical head-to-tail configuration of PVDF,
as well as the related head-to-head and tail-to-tail chain defects, have been identified
to allow complex nanostructures identifiable by weak thermal transitions and different
chain mobilities domains. Moreover, upon further cooling, a subsequent weak structural
transition was observed at 70 ◦C; that was previously controversially assigned [77–80] either

http://www.mcrals.info/
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to the rigid amorphous phase densification (Trga) or the onset of a secondary crystallization
(Tc2) (B) (Figure 4B).

The detailed structural analysis, long period evolution and degree of crystallinity
were monitored simultaneously by SAXS (Figure 5A) and WAXS (Figure 5B) respectively.
The growth of the WAXS reflections showed the transformation from the amorphous to the
α-PVDF phase.
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Figure 5. Three-dimensional plots of the time-resolved SAXS (A) and WAXS (B) pattern (100), (020),
(110) and (021) (hkl) planes of the monoclinic PVDF phase (pseudo-orthorhombic) [81] and Raman
spectra (C), obtained using in situ Raman spectroscopy combined with SAXS/WAXS coupled to a
Linkam DSC setup, during the cooling step from the melt to room temperature (RT) of the blend
PVDF/fluoroelastomer sample. (D) Correlation function derived from the SAXS data of the PVDF
blend derivative upon cooling.

The absence of diffraction peaks associated with the β-phase during crystallization
could have resulted from either the low phase sensitivity or the crystallinity threshold
detection limit of the experimental technique (WAXS), which is 1–3% in polymer study [82].

Likewise, Raman spectroscopy is known to be sensitive to the phase variation of PVDF
(α/β ratio) [68]. In particular, the vibrational bands at 796 and 840 cm−1 (see Figure 5C)
of the α-phase [83–85] correspond to the rocking vibration mode r (CH2)-νs. (CF2) and
r (CF3) [86], respectively, were monitored as a function of temperature (see Figure 6) to
follow the PVDF crystallization by Raman. Initially, at the melt (200 ◦C) a broader band
was found that was slightly shifted to the α-phase, centred at 799 cm−1, corresponding to
the rocking vibration mode of the amorphous phase of the PVDF (see Figure 5C).

However, as the temperature decreased, the bandwidth decreased due to the standstill
of the vibration group r (CH2)-νs. (CF2) related to the amorphous to crystalline phase
transition. Furthermore, the α-phase band of the blend (PVDF/fluoroelastomer) associ-
ated with the chain conformation

(
TGTG

)
of the crystalline monoclinic phase (pseudo-

orthorhombic) remained unchanged during the crystallization, confirming the β-phase
absence revealed by the WAXS. Moreover, the integrated value of the characteristic α-
vibration band (785–815 cm−1) was normalized with the offline DSC-Raman data (see
Figure S3) to assign apparent crystallinity content to the Raman spectra, independently
from the X-rays experiments. The nanostructure parameters of the two-phase lamellar
system with diffuse boundaries was evaluated using the correlation function (see Fig-
ure 5D) to understand the mechanism of crystallization from the scattering data. The
evolution of the long period, crystallinity content, lamellar thickness and molecular confor-
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mation as a function of temperature during the crystallization from the melt of the blend
PVDF/fluoroelastomer was determined (see Figure 6).
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Figure 6. Porod invariant (Q), crystallinity (Xc) and long period (Lp) evolution as a function of
temperature during crystallization from the melt (200 ◦C) of PVDF derivative. The dashed line
(≈145 ◦C) indicates the onset of crystallization transition (Tc) and the dashed line (≈65 ◦C) the
transition of the secondary crystallization/rigid amorphous compaction (Tt2).

The slow increase in the α-vibration band before Tc, which was not evident in any of
the parameters derived from the X-ray techniques (Lp, Q and Xc), suggested the previous
arrangement of the molecular chain to induce the crystallization. In addition, the thermal
behaviour of the Raman reference band for spectra intensity normalization (centred at
1430 cm−1) was assessed to correlate with macroscopic phase changes. The Raman reference
band should be constant upon thermal changes as belongs to a vibration band of a molecular
group unrelated to the main polymeric chain backbone of the amorphous region. Likewise,
the integration of the band centred at 1430 cm−1 was sensitive to the phase changes as a
result of the scattering nature of Raman spectroscopy. Indeed, the dramatic increase during
the first crystallization and the subsequent stabilization indicated the rapid crystalline
formation across the sample upon cooling at different length-scales (see Figure 6).
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Moreover, the crystallization temperature observed by Raman spectroscopy (changes
in the 796 cm−1 band) was approximately 139± ◦C, confirming the value detected by the
Linkam DSC (138.7± ◦C) (see Figure 6).

Furthermore, the SAXS analysis of the isotropic two-phase system [87], as an approxi-
mate system for the blend PVDF/fluoroelastomer (amorphous and crystalline phase) was
achieved by using the Porod invariant, Q, (Equation (S4) in Supplementary Materials) [88].

The invariant evolution as a function of temperature (see Figure 6) shows the phase
transition at 140 ◦C that corresponds to PVDF crystallization. At the moment of crystal-
lization, a two-phase system was formed; the amorphous part of the solidified material
featured approximately the same electron density, but the electron density of the crystalline
phase was higher. The maximum indicated that 50% of the material was in the crystalline
phase. However, there was a discrepancy between the crystallinity detected at the inflexion
point as well as the end of the crystallization process by both Raman and WAXS. More-
over, a discrepancy in the crystallinity content was found by Raman (calibrated by the
DSC-Raman) and WAXS, which was potentially associated with an underestimation of the
fitting of the crystalline portion.

Besides the final crystallinity content, the measured crystallization kinetics showed
different trends between the three techniques, reflecting the different experimental sen-
sitivities. The sudden drop of the invariant right after the crystallization onset, together
with the decrease of the Lp, contradicted the continuous slow crystallization increase upon
cooling observed by WAXS, indicating the formation of intra-lamellar structures, assuming
a two-phase model with fixed electron densities. Similarly, a further decrease in both the
invariant and the Lp at around 65 ◦C (inflexion point determined by derivative), together
with the negligible increase in crystallinity (see Xc from WAXS in Figure 6), suggested the
onset of a secondary crystallization or rigid amorphous compaction (designed as transition
temperature 2, Tt2, in Figure 6).

3.2. Correlation Data: Chemometrics

The data mining was facilitated by chemometrics methods, especially the employment
of a data fusion/multiblock analysis approach to correlate the simultaneously acquired
data. The large amount of data generated (see Figure S4) with subtle changes via a
multi-transition of the structured system generally observed by indirect methods required
extensive analysis by mathematical tools to highlight slight data changes. The PCA is a
reduction method of the original data using an orthogonal transformation to convert the
data into linearly uncorrelated data, the so-called principal component (PC) to represent the
largest variance possible [89]. A great advantage of PCA analysis is the ability that offers
to extract data separately from noise. The signal extraction can even be achieved with data
with increased signal-to-noise levels, which is quite often the case with time-resolved data,
where the evolution of the system determines the time-frame length instead of allowing
to collect every individual frame long enough to achieve high data quality. Furthermore,
the application of the PCA to the multidataset fused by a SUM-PCA [69] permitted us to
transform the different measured variables into a combined data matrix that contained
all the relationships between crystallinity, long period and chain conformation, which is
related to the vibrational mode, as a function of temperature (see Figure S5).

The data matrix was analyzed by either standard PCA or the SUM-PCA to obtain the
scores (i.e., the time evolution of different principal components) and loadings (i.e., the
spectral/scattering profiles differences of each principal component) of each data set or the
block-normalized combined data, respectively. The scores correspond to the weights of the
spectra/scattering profiles in the different dimensions (PC), while the loadings represented
the coefficients of the linear combination of the initial variables (herein, the Raman band,
or the scattering vector q), as well as indicating the variance percentage attributed to each
PC. Both PCA and SUM-PCA (see Figure 7 for SUM-PCA to show the correlation between
the techniques) were applied to the acquired data of every technique of the combined
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setup (Raman spectra, SAXS and WAXS) during the crystallization from the melt to room
temperature as the crystallization event covered the entire vector variance.
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Similarly, the scores represent the temperature evolution of each of the three processes
retrieved by the SUM-PCA that conveyed the phase transformation from the melt (see
Figure 7A). Besides, the loadings depicted the involved variables of each of the processes
that occurred during the phase transition analyzed in common. The PC was interpreted
by relatively associating the loading value and, thus, negative values of the score were
correlated with negative loading values; the same approach was used for the positive score
values with the corresponding positive loadings.

The SUM-PCA disclosed that the structural transformation was divided into three dif-
ferent processes related to different rates of crystallization and possibly different crystalline
domains. Likewise, the PC1 correspond to the most important process that described
80% of the variance and was related to the main amorphous-to-crystalline phase transfor-
mation (inflexion point at the crystallization temperature), whereas the PC2 indicated a
concomitant rearrangement of the polymeric chains, as well as the packing and growth of
the crystalline phase, following a trend similar to the invariant (see Figure 6). In addition,
the temperature evolution of the PC3 suggested an association with the weak transitions
that occurred at 100 ◦C and 60 ◦C weights (see Figure 6), which was in agreement with the
1.7% of the variance of the system transformation.

In particular, the loadings of the PCA highlighted the importance of slight changes,
such as the Raman vibration band at 840 cm−1 and characteristics of the vibration mode r
(CH2) that were correlated to the crystalline domains by other techniques, as well as the
association with the transition that occurred at 65 ◦C.

The MCR-ALS (Multivariate Resolution of Curves) was applied to decompose without
a priori assumptions to a set of data of the single components, herein the Raman spectra as
well as the scattering profiles (see Figure 8) [90]. The MCR-ALS is one of the only methods
with which it is possible to apply constraints, such as the non-negativity of spectra/profiles
and concentrations since the negative values of the WAXS profile, SAXS profile and Raman
spectrum are physically meaningless. The MCR can assist in the identification of ambiguous
or weak data, as well as data that are made difficult to assign by the structural complexity
of polymers. Similarly, the MCR manifested the importance of the Raman band centred
around 840 cm−1 associated with the organization of the head-to-head and tail-to-tail
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chain defects, as well as its concentration increase during the transition at 65 ◦C, which is
controversially identified in previous research.
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The variables components extracted by MCR-ALS manifested the packing of the
amorphous phase (C1 and C2) in the melt during the cooling step before the crystallization
onset (C3). The concentration evolution of C3 with temperature followed the same trend
that the SAXS invariant (see Figure 6). In addition, the C4 components related to the
crystalline phase, as well as the concentration tendency with temperature, indicated the
crystallization at a different rate of a different domain. Furthermore, the C5 represented
the phase transformation of a less defined crystalline domain, as shown by the SAXS and
WAXS components, which evolved with an inflexion point at the transition temperature of
weak phase transformation at 65 ◦C in agreement with PC3.

The chemometric analysis of the data set fusion of the multi-technique approach
enabled us to correlate both the correlations of the variables and their temporal evolutions
of more than two techniques compared to previous homospectral and heterospectral
2DCOS [58,60]. In particular, it allowed us to confirm the continuous broad crystallization
thermal range slightly observed by MDSC (low enthalpic transition) by the techniques
correlation, as well as to identify the chemical nature of the debated transition at 65 ◦C.
However, an in-depth discussion of the correlation between the different data sets and
the importance of subtle data changes is beyond the scope of this paper and further DSC
characterization will be performed to support our initial findings. This will be described in
a future publication.

4. Conclusions

The combination of Raman spectroscopy with simultaneous SAXS/WAXS experi-
ments was reviewed, emphasizing the experimental preventive measurements to match
thermodynamical conditions observed by each technique. In particular, by concomitantly
probing the phase transformations, the synergetic analysts enables us to discard likely detri-
mental X-ray side effects on the kinetics and chemical transformation of the material under
study. The impact of the selected technical elements on the data quality, as well as on the
chemical information accessible through the measurement conditions, was also discussed.
The enlargement of the length-scale under study by Raman spectroscopy uncovered the
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masked interrelationship of the hierarchical structural organization during the phase trans-
formation. In particular, low energetic phase transformations undetected by standard
DSC are associated with a weak structural reorganization that required more sensible
technics (MDSC) capable of distinguishing complex thermodynamic events. Moreover, the
multivariate analysis applied to the multidataset fusion could potentially unburden the
data analysis task of tedious data processing and fitting routines, as well as correlating
the variables under study. In particular, the study by chemometric analysis of fused multi-
datasets from different techniques (more than two) permits the interpretation of unclear
data variables by learning from the correlation with other variables of the combined setup
that enrich the overall explanation of the phenomena. Herein, the detection of the presence
of a low-intensity band in the Raman spectra by chemometric methods that was difficult to
be assigned and was previously correlated with the crystallization of the head-to-head and
tail-to-tail chain defects, was key to understanding the nature of the controversial slight
thermal transition that occurred around 65 ◦C.

The detailed analysis of the PCA and MCR methods of the phase transformations, as
well as their development, was found to extract similar information to the typical structural
analysis of the polymers by scattering techniques.

In particular, the “scores” (weighting coefficients) of PC1 and PC2 for each mea-
surement technique illustrated the weight of similar variations within the Raman spectra
and SAXS/WAXS profiles according to the definitions of the “loadings” or PCs. Interest-
ingly, the study of the trend of the score yielded an equivalent pattern evolution for each
technique in the new representation space, which was composed of PC1, PC2 and PC3,
although the techniques were sensitive to different structural parameters at different scales.
In addition, the MCR analysis enable us to decompose the main components of the system
and their individual evolutions, as well as the temporal correlation among them, without
a priori data knowledge. The application of chemometric analysis to the polymeric field
through multiple compatible techniques offers the possibility to learn the identification of
complex data that could potentially assist in the development of methods to transfer data
interpretation to techniques able to monitor polymer processing in industrial environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13234203/s1. Figure S1: Calibration curve obtained under the simultaneous influence of
both X-ray beam and Raman laser (785 nm) measured by the Linkam DSC600-stage. The straight
line indicates the measured data and the blue dotted curve is the ‘ideal’ line where no systematic
error would be present. Only a slight deviation at elevated temperatures is observed; Figure S2: DSC
standalone-Raman setup (A) and the acquired 3D plot Raman spectra obtained during the cooling
step from the melt to RT (B); Figure S3: Fitting of the Raman intensity acquired on the simultane-
ous SAXS/WAXS setup com-bined to both Linkam DSC and Raman spectroscopy techniques of
the deconvoluted vibrational bands. The Gaussian functions (G1, G2 and G3) correspond to the
amorphous phase whilst Lorentz function (lor) were selected to adjust the Raman bands associated
with the crystalline chains (A). The crystalline ratio was calculated from the Raman spectra (Rc) and
calibrated with the crystalline content obtained (Xc) by WAXS (B). First, the signal to noise ratio of the
two methods has been compared. Similar data quality was obtained apart from a smoother profile
in the DSC-Raman spectra due to the lower background. The lower background is related to the
com-pletely closed environment enabled by the smaller waist dimension of the laser spot size (2W0 =
5.8 µm and 2ZR = 0.19 mm) due to the shorter focal distance in the DSC-Raman setup (1.5 cm); Figure
S4: Raw data of the PVDF/fluorelastomer blend derivative for Raman (A), WAXS (B) and SAXS
(C) techniques upon crystallization from the melt; Figure S5: MVA matrix explanation: row-wise
arrangement (A), SUM-PCA (B) and MCR (C).
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