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ABSTRACT

Increasingly, treatment decisions for cancer patients
are being made from next-generation sequencing
results generated from formalin-fixed and paraffin-
embedded (FFPE) biopsies. However, this material
is prone to sequence artefacts that cannot be easily
identified. In order to address this issue, we designed
a machine learning-based algorithm to identify these
artefacts using data from >1 600 000 variants from
27 paired FFPE and fresh-frozen breast cancer sam-
ples. Using these data, we assembled a series of
variant features and evaluated the classification per-
formance of five machine learning algorithms. Us-
ing leave-one-sample-out cross-validation, we found
that XGBoost (extreme gradient boosting) and ran-
dom forest obtained AUC (area under the receiver
operating characteristic curve) values >0.86. Perfor-
mance was further tested using two independent
datasets that resulted in AUC values of 0.96, whereas
a comparison with previously published tools re-
sulted in a maximum AUC value of 0.92. The most
discriminating features were read pair orientation
bias, genomic context and variant allele frequency.
In summary, our results show a promising future
for the use of these samples in molecular testing.
We built the algorithm into an R package called
Ideafix (DEAmination FIXing) that is freely available
at https://github.com/mmaitenat/ideafix.

INTRODUCTION

Next-generation sequencing (NGS) is rapidly being
adopted as the standard genetic diagnostic technique used
in clinics. NGS methods can be used to diagnose hereditary
disorders by germline mutation detection or increasingly to
detect one or more somatic mutations for cancer diagnosis.

Although fresh-frozen (FF) tissue is optimal for molecular
techniques, it is rarely routinely available in clinical settings
due to high storage costs and maintenance concerns.
Instead, most routine pathology laboratories process and
store tissue samples by formalin fixation and paraffin
embedding (FFPE), as this preserves tissue and cellular
morphology while allowing the samples to be stored at
room temperature. However, due to the fixation process
itself along with storage and extraction procedures, DNA
obtained from FFPE samples suffers from significant
levels of fragmentation, denaturation, cross-linking and
chemical modifications, all of which can contribute to
sequence artefacts. Even when such DNA is repaired using
enzymatic treatment, the levels of sequence artefacts in
NGS are much higher in FFPE than in FF material (1).
The presence of artefacts is particularly challenging in
cancer diagnosis, where the detection of single nucleotide
changes can dictate treatment choice.

One of the most prevalent artefacts in FFPE material is
deamination of cytosine residues to uracil, which, as a con-
sequence of successive PCR amplification rounds, results
in the C > T (or G > A antisense strand) variant (2,3).
As a consequence, the general consensus is to discard C:G
> T:A variants when the variant allele frequency (VAF) is
<5% or <10%, as FFPE-associated artefacts have been re-
ported to be present only at low levels (4–7). However, this
approach is suboptimal as it prevents the detection of po-
tentially clinically relevant low-frequency variants and lim-
its the use of samples with low tumour content (8). More-
over, FFPE-associated artefacts have also been observed at
frequencies >10% (9). There have been several attempts to
address this issue that have focused mainly on sample prepa-
ration and repair, and include pretreatment of samples with
uracil-DNA glycosylase (4), duplex sequencing (10), molec-
ular tagging (11) or the preferential use of some DNA ex-
traction kits over others (12). However, these approaches
are far from perfect and often require additional costs and
infrastructure beyond those available in most routine clini-
cal diagnostic libraries. Moreover, these approaches cannot
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be applied retrospectively to the wealth of FFPE NGS data
that already exist.

From a computational point of view, several strategies
have been employed to deal with FFPE-associated sequence
artefacts. Some authors have opted for rule-based systems
for filtering the initial set of candidate variants. For exam-
ple, Yost et al. controlled for formalin-induced deamina-
tions by testing the allele frequency of each variant against
the global nucleotide mismatch rate for that specific sub-
stitution using a binomial test, and then removing variants
with allele frequencies not significantly different from those
calculated (13). Similarly, Kerick et al. applied variant site-
sequencing depth cut-offs in their filtering approach (14).
The FIREVAT algorithm uses a series of filters including
VAF, mapping quality and reference and alternate allele
depths, to identify and remove artefacts. The cut-off values
of these filters are found through a genetic algorithm and
guided by mutational signatures (15).

In addition, some variant calling algorithms have been
developed to identify suspicious variants in low-quality or
FFPE sequencing data. The cisCall algorithm, for exam-
ple, applies successive filters, such as the removal of groups
of calls with extremely low VAFs and larger than expected
groups of errors occurring close to each other, in order to
identify different types of variants. All the filters are sup-
ported by statistical tests and internal controls (16). How-
ever, the performance is only evaluated on variants with a
VAF >5%. Frampton et al. developed a Bayesian variant
calling method that incorporates prior information about
specific mutations related to a particular cancer, in addi-
tion to applying common quality filters (17). However, this
tool is not publicly available and, in common with cis-
Call, the Frampton algorithm discards all variants with a
VAF <5%. Another algorithm, LoLoPicker, estimates site-
specific background error rates using a panel of control
FFPE samples, which it then incorporates into a hypothe-
sis test in order to identify variants (18), whereas the Pisces
variant caller includes a module to minimize thermal dam-
age and FFPE deaminations by recalibrating variant qual-
ity based on deviations from average mutation rate of each
possible mutation type (19).

FFPE-associated deaminations, in common with arte-
facts such as oxidative damage of DNA, occur on only one
strand of the original DNA template, resulting in an orien-
tation bias between the first and second reads when paired-
end sequencing is performed (20). This characteristic al-
lows for the generation of an imbalance metric to quantify
such damage. This metric is incorporated in several vari-
ant refinement tools, including GATK4, which contains the
FilterByOrientationBias and LearnReadOrientationModel
modules that filter out substitution artefacts that arise be-
fore the sequencing process on only one strand (21). How-
ever, the former has been kept as an experimental tool in
favour of LearnReadOrientationModel by the GATK4 de-
velopers. This tool uses a Bayesian probabilistic model of
single nucleotide substitutions occurring with orientation
bias for each trinucleotide. Strand orientation bias is also
used in the SOBDetector program, but instead of directly
filtering calls, it calculates this bias score for every variant
and adds the value to the variant calling (vcf) file for manual
screening (22).

All of the algorithms developed to date are univariate
methods. The Ideafix (deamination fixing) algorithm de-
scribed in this paper is the first to use machine learning
methods to tackle this problem. Using machine learning
multivariate methods has the advantage over univariate
methods that multiple descriptors can be tested simultane-
ously so that relationships between them can be exploited.

In this research, we assembled a collection of variant de-
scriptors and evaluated the performance of five supervised
learning algorithms for the classification of >1 600 000 vari-
ants, including both formalin-induced cytosine deamina-
tion artefacts and non-deamination variants, in order to ar-
rive at our final model, Ideafix. Furthermore, we used an in-
dependent validation set to compare the performance of the
Ideafix algorithm with three existing approaches and found
our approach to generate better results.

MATERIALS AND METHODS

Building datasets

Data retrieval. Exome-sequencing data (fastq files) from
27 matched FFPE and FF samples were retrieved from
the European Nucleotide Archive (accession number:
SRP044740). The samples came from 13 different tumour
specimens and were sequenced using Illumina technology.
These data were used for training the classification models.
In addition to this dataset, we used another two datasets
as independent validation datasets. The first one consisted
of whole exome sequencing (WES) data (fastq files) from
matched FFPE and FF samples biopsied from two colon
and two liver cancer samples and was downloaded from the
European Genome-Phenome Archive (accession number:
EGAD00001004066) (12). The second one corresponded to
WES data from 16 matched FFPE and FF samples from
gastro-oesophageal tumours and was downloaded from
the European Nucleotide Archive (accession number: PR-
JEB44073) (23).

Preprocessing and filtering. Sequencing reads were first
subjected to quality and adaptor sequence trimming us-
ing the Trimmomatic tool (24) and resulting reads were
aligned to the hg19 reference genome using the BWA aligner
(v0.7.17-r1188) (25). The Mutect2 (v4.0.8.1) variant calling
algorithm was subsequently run in two different modes (26):
first in tumour-only mode, i.e. individually on each FFPE
and FF sample, and second in tumour/normal mode, us-
ing each FFPE sample as the tumour sample and its corre-
sponding FF sample assigned as the normal sample. Single
nucleotide polymorphisms were annotated against dbSNP
database (v151) using SnpSift (v4.3t) (27,28) and variants
falling adjacent to, or inside, homopolymer regions were
annotated using VariantAnnotator-HomopolymerRun and
the vcfpolyx utility from Jvarkit, respectively (26,29). vcf
files were then filtered according to the following criteria:
(1) to be a C:G > T:A single nucleotide variant; (2) to ful-
fil the PASS filter of the Mutect2 algorithm; (3) not to be
supported only by unpaired reads; and (4) to display a VAF
<30%. The latter threshold was chosen as we observed that
>90% of deamination artefacts were lower than this value
(Figure 1).
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Figure 1. VAF distribution for deaminations and non-deaminations. While
non-deaminations are symmetrically distributed around 0.5, deaminations
are skewed towards low frequency values. Attending only to this feature,
0.3 is the threshold that would minimize the error in the identification and
thus we limited the classification to variants below that threshold.

Variant labelling. Each variant was classified as either
deamination if the variant was identified as a formalin-
induced cytosine deamination or a non-deamination if the
variant was germline, somatic or systematic sequencing
error that had not been correctly filtered. Variants were
considered to be non-deaminations if identified in both
matched FF and FFPE samples by the Mutect2 algorithm
running in tumour-only mode (30). This is so because any
variant present in the FF tissue will very unlikely be in
the same position as a formalin-induced deamination in
the FFPE sample. Variants identified in the FFPE sample
but not in the corresponding FF sample (tumour/normal
mode) were classified as deaminations (Supplementary Fig-
ure S2).

In order to assess the deamination labelling approach we
used, we compared with GATK’s LearnReadOrientation-
Model tool (21). It should be noted that this tool looks
for any read pair orientation bias and works in the absence
of a paired FF sample. As variants that pass all quality
filters and are present in more than one sample are more
than likely non-deaminations, we only considered deamina-
tions for this test. For the assessment, we specifically com-
pared variants labelled by us as deaminations with C:G
> T:A variants with VAFs <30% marked only with the
read orientation artifact filtermark by LearnReadOrienta-
tionModel tool.

Descriptors. Predicting variables used for model training
are described below and summarized in Table 1. These in-
clude a series of variables capturing formalin-induced cy-
tosine deamination mechanisms that have already been de-
scribed in the literature (4,5,20,31,32), and also others that
we hypothesized could result in differences between artefac-
tual deaminations and non-artefactual changes. These de-
scriptors are grouped according to their concept or mecha-
nism and are further described in the ‘Feature Descriptors’
section in the Supplementary Data.

Allele frequency. As deamination of cytosine to uracil only
occurs post-mortem, these artefacts are not naturally repli-
cated and are only amplified after being handled in the lab,
such as in the process of library preparation for sequenc-
ing. This results in such artefacts being commonly observed
at low frequencies (4,5), as opposed to real variants, which
are not limited to specific frequencies. Hence, we incorpo-
rated VAF-related descriptors in our model. As VAF val-
ues reported by Mutect2 are not raw values but instead cor-
respond to probabilistic guesses about the real frequency,
we assembled five related variant frequency descriptors: the
theoretical VAF reported by GATK, the total number of
alternate and reference bases observed at site and the ra-
tios between the number of alternate and reference bases
observed and the total reads at site. These latter ratios were
incorporated to aid in linear models non-capable of calcu-
lating such descriptors with potential to predict deamina-
tions.

Read pair orientation bias. Sequencing by Illumina paired-
end technology comprises a series of PCR amplification
steps that result in the sequence of the template strand al-
ways being output in the first read (R1), and its reverse com-
plement in the second read (R2). Mutations occurring in
vivo are transmitted through replication mechanisms when
dividing, so that in the case of C > T mutations, some
child cells will also carry C > T mutations, while others will
show G > A changes, depending on the strand used as the
template for cell replication. Then, the template to be se-
quenced could contain any of C > T or G > A changes, and
hence, the two changes would interchangeably be present
in R1 and R2. In turn, deaminations occur in dead tis-
sue, and due to the lack of active DNA replication mech-
anisms, they are only present on the DNA strand where the
change happened and do not propagate to G > A changes.
Hence, if C > T mutations occur in R1 and R2 only contains
G > A complement changes, they are likely to be caused
by deamination leading to orientation bias (Supplementary
Figure S1). We defined a metric, FDeamC (fraction of cy-
tosine deamination artefacts), based on the guanine oxida-
tion measure FoxoG (fraction of guanine to 8-oxoguanine
oxidation artefacts) defined by Costello et al. (33), as
follows:

FDeamC =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nF1R2
a

nF1R2
a + nF2R1

a
, if C > T

nF2R1
a

nF1R2
a + nF2R1

a
, if G > A

(1)

where

nF1R2
a = number of read pairs supporting the alternate

allele in which the first read in the pair aligns to the forward
strand (F1), and the second read to the reverse strand (R2)

nF2R1
a = number of read pairs supporting the alternate

allele in which the first read in the pair aligns to the reverse
strand (R1), and the second read to the forward strand (F2)
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Table 1. Variable descriptors included in the models and their source, grouped by their underlying concept or mechanism

Concept Descriptor Source

Allele frequency VAF Present in vcf file
Number of reference bases Present in vcf file
Normalized number of reference
bases

Present in vcf file

Number of alternate bases Present in vcf file
Normalized number of alternate
bases

Present in vcf file

Read pair orientation bias FDeamC Calculation shown in the ‘Feature Descriptors’ section
in the Supplementary Data

SOB Calculation shown in the ‘Feature Descriptors’ section
in the Supplementary Data

Genomic context and annotation
in population databases

Reference allele Extraction from reference genome using samtools

Base one position before Extraction from reference genome using samtools
Base two positions before Extraction from reference genome using samtools
Dinucleotide before Extraction from reference genome using samtools
Base one position after Extraction from reference genome using samtools
Base two positions after Extraction from reference genome using samtools
Dinucleotide after Extraction from reference genome using samtools
Homopolymer length Extraction from reference genome using

VariantAnnotator-HomopolymerRun and vcfpolyx
utility from Jvarkit

isSNP Presence checked in dbSNP using SnpSift

Fragment length Fragment length Present in vcf file

Median distance from end of read Median position from read end Present in vcf file
Normalized median position from
read end

Present in vcf file

Base and mapping quality Base quality Present in vcf file
Base quality fraction Present in vcf file
Mapping quality Present in vcf file

Strand bias (SB) SB-GATK Calculation shown in the ‘Feature Descriptors’ section
in the Supplementary Data

SB-GUO Calculation shown in the ‘Feature Descriptors’ section
in the Supplementary Data

We also used a similar but not equivalent metric to ac-
count for this bias, which was defined by Diossy et al. (22):

SOB = nF1R2
a − nF2R1

a

nF1R2
a + nF2R1

a
(2)

FDeamC is defined in the [0–1] range, whereas SOB score
lies in the [−1, 1] interval. It follows from both formulas
that formalin-induced deaminations will show in both cases
extreme values (close to 0 or 1 for FDeamC, 1 or −1 for
SOB), whereas naturally occurring variants will have values
close to 0.5 and 0 for FDeamC and SOB, respectively.

Genomic context and annotation in population databases.
We hypothesized that cytosine genomic context may be af-
fecting deamination probability and therefore created a de-
scriptor consisting of a pentanucleotide sequence with two
flanking bases on either side of the identified variant. We
also included the length of the homopolymer surrounding
the variant locus (0 for non-homopolymer, non-zero posi-
tive number when flanked by a homopolymer) and whether
the mutation had been annotated as being a polymorphism
in dbSNP database.

Median distance from end of read. Deaminations have
been shown to be enriched at the ends of molecules, due to

an increased sensitivity to deaminate of overhanging ends
(31,32). In contrast, true variants should be distributed uni-
formly along the whole piece of DNA irrespective of con-
text. In order to account for this factor, a descriptor showing
the median distance from the end of the read of all the reads
supporting the alternate allele, and its normalized version
calculated by dividing this number by the fragment length,
was added to the model. It should be noted that end of read
does not always correspond to end of original molecule as
DNA is subjected to artificial fragmentation ahead of being
sequenced.

Base and mapping quality. In order to account for possible
variability between FFPE and fresh samples, we incorpo-
rated the median Phred base quality score, the median read
mapping quality value and the ratio between median Phred
base quality of the alternate allele and median Phred base
quality of the reference allele.

Fragment length. In order to account for the possibility
that artefactual deaminations are more common in shorter
fragments than longer ones, as a result of formalin pro-
ducing cross-linking that causes DNA fragmentation and
deaminations nearby, we included a variable that contains
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the median length of the fragments carrying the variant al-
ternate allele.

Strand bias. SB has been previously described as being as-
sociated with sequencing data postprocessing and genome
context (34). We left it to the learning algorithm to deter-
mine whether this anomaly is also associated with formalin-
induced artefacts. Different mathematical definitions have
been described for capturing this bias (21,35). We consid-
ered two of them in our model, SB-GATK and SB-GUO,
which are further described in the ‘Feature Descriptors’ sec-
tion in the Supplementary Data.

Damage assessment

We assessed DNA damage using four distinct indicators:
(1) median library fragment length; (2) mean library dupli-
cation level; (3) coefficient of variation of library depth of
coverage; and (4) GIV score of C:G > T:A changes. The me-
dian fragment length value provides a measure of the DNA
fragmentation level. When DNA is very fragmented, the
amount of amplifiable template is small, and therefore, du-
plicate DNA fragments are created. When these fragments
are sequenced, differences in their relative quantities lead
to uneven depth of coverage. The GIV score is a measure
of global read pair orientation bias in a given library and
scores >2 are indicative of extensive damage. For the case
of C:G > T:A changes, we calculate it as follows:

GIV =

vR1
C>T + vR2

G>A

bR1
C + bR2

G

vR1
G>A + vR2

C>T

bR1
G + bR2

C

(3)

where

vR1
C>T = number of C > T variants in R1

vR2
G>A = number of G > A variants in R2

vR2
C>T = number of C > T variants in R2

vR1
G>A = number of G > A variants in R1

bR1
C = number of C nucleotides in R1

bR2
G = number of G nucleotides in R2

bR1
G = number of G nucleotides in R1

bR2
C = number of C nucleotides in R2

Thus, as a general rule, the more damaged the sample,
the more variable the depth of coverage, the lower the me-
dian fragment length and the greater the library duplication
level and the C:G > T:A GIV score. Fragment length data
were obtained directly from the bam files, depth of coverage
information using samtools depth (30) and GIV scores us-
ing Damage-Estimator (20). Library duplication levels were
calculated using FastQC and the mean value between R1
and R2 was considered (36).

Experimental design

Learning algorithms. Five well-established supervised
learning algorithms were evaluated for the model: logistic
regression (logReg), random forest (RF), extreme gradient
boosting (XGBoost), naive Bayes (NB) and artificial
neural network (ANN). The selection was made so that

algorithms belonging to several families were considered:
regression algorithms (logReg), Bayesian networks (NB),
artificial neural network algorithms (ANN) and decision
tree algorithms (XGBoost, RF). All the analyses were
carried out in R and details regarding the packages and
parameters used are described in Supplementary Table S1.
It should be noted that ANN and XGBoost are designed to
work only with numeric data, so for these two algorithms,
categorical variables were one-hot feature encoded; i.e.
each n-valued categorical variable was converted into n
binary variables, one for each category.

Evaluation strategy. In order to choose the best classifica-
tion algorithm as well as measure the quality of the final
model, we adopted a leave-one-sample-out cross-validation
performance assessment scheme. For each sample, this
strategy divides the data into two parts: a test set that holds
the observations corresponding to that sample and a train-
ing set that includes the variants in the rest of the samples.

To evaluate the performance of the classifiers, we used the
value of the area under the receiver operating characteris-
tic (ROC) curve (AUC), as this metric is independent of the
classification threshold and is not so much affected by pos-
sible class imbalances (37).

Three different performance estimators were calculated:
resubstitution (RE), cross-validation (CVE) and sample-
out (SOE) AUC estimators. RE was obtained by both train-
ing and evaluating a classifier using the same dataset, i.e.
each of the training sets. CVE was obtained by following
10 times 10-fold stratified cross-validation scheme within
each training set. SOE was calculated by fitting the model
to the training data and evaluating it in the test set. As the
dataset contained data from 27 different samples, 27 esti-
mations of this group of three estimators were obtained.
Whereas looking at the gap between RE and CVE helps
us find out whether there is room for a better model fit,
CVE and SOE by themselves provide us with an estima-
tion of the performance of the classifier in unseen instances,
i.e. its generalization ability. Among these two, CVE is the
most positively biased one as both training and test datasets
share variants from the same samples. Additionally, SOE,
for which the evaluation is made in a completely new sam-
ple, gives us a sample-aware performance estimation. Sup-
plementary Figure S3 shows a graphical summary of this
evaluation scheme.

To further test the model’s generalization performance,
the final model was evaluated in two independent datasets
(colon and liver dataset and gastro-oesophageal dataset)
corresponding to new subjects and different cancer types
again by means of the AUC (Supplementary Figure S4).

Feature analysis. We analysed discriminatory power of the
features in two different ways.

First, we carried out a univariate analysis by calculating
the AUC value for continuous valued features and the nor-
malized mutual information (NMI) for categorical descrip-
tors (38). In brief, for calculating the AUC value of each
continuous feature, we ranked the observations according
to their value for that feature. Then, we set a threshold equal
to the first value, classified the samples with values below
that threshold in one class and those with values above that
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threshold in the other class, and calculated the true positive
and false positive rates of this classification. We repeated
the same procedure using all the feature values as thresh-
olds for the classification. After considering all the possi-
ble thresholds, we depicted the ROC curve and calculated
the area underneath. It should be taken into account that
the AUC is an effective metric for individual feature classi-
fication performance only when that feature follows a uni-
modal distribution for each of the classes. For more com-
plex distributions such as multimodal ones, it may provide
an overly pessimistic value. In the case of discrete variables,
this method cannot be applied. As an alternative, we cal-
culated the NMI value between each of those features and
the class vector, quantifying this way the amount of infor-
mation obtained about the deamination status by knowing
that descriptor. The normalization we adopted here works
by dividing the mutual information value by the mean value
of the class and feature entropies. The choice of a normal-
ized version of the mutual information over the regular mu-
tual information was motivated by the fact that the upper
bound of the latter depends on the number of possible val-
ues for the variable. As this number varies between features,
so does the range of possible values they can take, making
any comparison between features difficult.

After we had trained the classification models, we did a
second predictive power assessment of the features through
the best models’ built-in feature importance metrics. These
were decision tree-based models, with feature importance
assessment being based on the improvement in the classifi-
cation after using each feature as a decision node in the trees
(39).

Performance comparison with other tools. The perfor-
mance of the final model was compared with one of the
state-of-the-art techniques, SOBDetector (22), and two
common variant refinement practices: filtering variants by
depth of coverage and filtering by VAF. For the depth of
coverage and VAF filtering, we depicted the ROC curves
and calculated their AUC values in the validation set fol-
lowing the same procedure we employed for the univariate
feature analysis. SOBDetector was run using default param-
eters and the ROC curve and AUC value of the posterior
probabilities that the variant is an artefact were calculated.

RESULTS

Sample damage analysis

We computed four FFPE damage indicators: the coefficient
of variation of depth of coverage, the mean library duplica-
tion level, the median fragment length and the GIV score of
C:G > T:A changes.

For the breast dataset, 20 out of the 27 (74%) FFPE sam-
ples displayed GIV scores >2 for C:G > T:A changes (me-
dian value = 2.98), whereas all the FF samples had val-
ues <1 (median value = 0.975). In addition, FF samples
had larger median fragment sizes (median fragment size =
199 bp) and lower library duplication levels (median mean
duplication level = 22%) compared to FFPE samples (me-
dian fragment size = 118 bp, median mean duplication level
= 85.7%). The variability of the fragment size was larger in
FFPE samples (range 100–138 bp) than FF samples (range

189–208) and duplication levels were also more variable
in FFPE samples (range 26.5–94.5%) than in FF samples
(range 19.7–28.6%). The coefficient of variation of cover-
age depth for FF samples had a median value of 1.08 (range
1.03–1.27), while for FFPE samples the median value was
1.33 (range 1.15–3.82). Likewise, median depth of coverage
values was in the range 37–48X for FF samples, while FFPE
samples showed diverse median values, ranging from 0X, in
the case of samples with a great number of non-covered ex-
ons, to 172X (Table 2 and Figure 2). In summary, while FF
samples showed no damage signs, FFPE samples were dam-
aged in varying levels.

Regarding the colon and liver dataset, FFPE samples
showed much less damage than the FFPE samples in the
breast dataset (median GIV score = 0.89, median fragment
length = 152, median mean duplication level = 18.6 and
median coefficient of variation value of depth of coverage
= 1.10, while for the breast dataset, median GIV score =
2.98, median fragment length = 118, median mean duplica-
tion level = 85.7 and median coefficient of variation value of
depth of coverage = 1.33). Moreover, the four damage indi-
cators showed close values for FFPE and FF samples (Ta-
ble 2 and Supplementary Figure S7). Similarly, the gastro-
oesophageal dataset also showed more limited damage lev-
els than the breast dataset for all the indicators except for
the median fragment length (median GIV score = 0.887,
median fragment length = 114, median mean duplication
level = 42.5 and median coefficient of variation value of
depth of coverage = 0.823), and again for indicators other
than the fragment length, the values for FF and FFPE were
close to each other (Table 2 and Supplementary Figure S8).

Variant labelling

Identified deamination and non-deamination variants for
the breast dataset averaged 62 154 and 388 per sample,
with a total of 1 594 078 deamination variants and 10 102
non-deamination variants (Table 3 and Supplementary Ta-
ble S3). Deamination to non-deamination per sample ratios
ranged between 64.2 and 263, with an average value of 172,
showing that this is a highly unbalanced problem and that
this imbalance varies significantly between samples (Figure
3).

A comparison in the labelling approach that we took
with the LearnReadOrientationModel tool of the GATK
program demonstrated that we identified more deamina-
tions (1 594 078 compared to 1 510 878). From these,
1 388 914 deaminations were commonly identified by both
methods (87% concordant). Hence, 121 964 and 205 164
deaminations were non-overlapping to LearnReadOrienta-
tionModel and our approach, respectively (Supplementary
Figure S9). All of the 121 964 deamination variants called
only by LearnReadOrientationModel were present in the
vcf files we obtained from tumour-only mode variant call-
ing on the FFPE samples and passed the Mutect2 PASS
filtering step, but were not present in the files generated
by tumour/normal variant calling in the FFPE/FF sam-
ple pairs. Specifically, 50 813 (44%) of those variants had
been called in tumour/normal mode but were not fulfilling
PASS filtering and other 7007 additional variants (6%) had
also been called in tumour-only mode variant calling on the
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Figure 2. Damage analysis on breast dataset. All FF samples show GIV score values <2, suggesting an absence of C:G > T:A orientation bias in the
libraries, while the majority of FFPE samples present scores above this threshold, indicating extensive presence of this bias. Differences are also observed
regarding median fragment length and mean library duplication level, where FFPE samples present smaller fragments and larger duplication levels. Finally,
depth of coverage is also rather uniform for FF samples, while it shows greater variability for FFPE specimens. Note that depth of coverage subfigure is
zoomed to the boxes. Note also that GIV scores were calculated using all variants and not only those with a VAF <30%.
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Table 2. Median and range values of four FFPE damage indicators calculated for both FF and FFPE samples in all the datasets

FF FFPE

Coverage depth coefficient of variation (X) Breast dataset 1.08 (1.03–1.27) 1.33 (1.15–3.82)
Colon and liver dataset 0.70 (0.69–0.71) 1.10 (1.08–1.15)
Gastro-oesophageal dataset 0.698 (0.671–0.877) 0.823 (0.736–0.989)

Mean library duplication level (%) Breast dataset 22 (19.7–28.6) 85.7 (26.5–94.5)
Colon and liver dataset 20.3 (18.3–23.6) 18.6 (14.7–25.8)
Gastro-oesophageal dataset 38.3 (30.4–43.3) 42.5 (31.8–69.4)

Median fragment length (bp) Breast dataset 199 (189–208) 118 (100–138)
Colon and liver dataset 163 (160–166) 152 (146–153)
Gastro-oesophageal dataset 160 (116–176) 114 (86–137)

GIV score of C:G > T:A changes Breast dataset 0.975 (0.968–0.986) 2.98 (0.594–3.98)
Colon and liver dataset 1.02 (1.01–1.02) 0.89 (0.85–0.92)
Gastro-oesophageal dataset 0.994 (0.887–1.01) 0.887 (0.560–0.996)

FFPE and FF samples show contrasting values in the breast dataset; instead, much smaller differences are observed in the colon and liver and gastro-
oesophageal datasets, especially for the GIV score and mean library duplication level. Numbers in the table suggest larger damage levels in the breast
samples than in the other two datasets.

Figure 3. Per sample number of variants in the breast dataset. The colours indicate the deamination fractions of all the variants of that sample. As can
be seen, the number of variants is very variable between samples, ranging from 5305 to 90 377. The fraction of deaminations on these variants is always
>0.985, showing that this is a highly unbalanced problem. At the same time, this also means that the number of both deamination and non-deamination
variants is very variable between samples, ranging from 5224 to 89 972 in the former case, and from 81 to 746 in the latter case. Samples with the same
number before the underscore in their name correspond to the same specimen.
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Table 3. Dataset summary: number of samples and C:G > T:A variants
with a VAF <30% (deaminations and non-deaminations) in each dataset

Attribute
Breast
dataset

Colon
and liver
dataset

Gastro-
oesophageal

dataset

No. of samples 27 4 16
No. of total deaminations 1 594 078 9994 446 878
No. of total non-deaminations 10 102 3157 18 793

FF samples. This suggests that these variants could not con-
fidently be called differentially to the FF sample, and hence,
they were highly likely labelled as deaminations by Learn-
ReadOrientationBias incorrectly.

We hypothesize that the 205 164 variants that were not
picked up by LearnReadOrientationModel did not display
read orientation bias, which is the filter used by this algo-
rithm.

Univariate feature analysis

Table 4 shows the AUC or NMI value for each variable in-
cluded in the model. The SOB (AUC = 0.91) and FDeamC
(AUC = 0.86) variables showed the most promising predic-
tive capacity, followed by allele frequency-related features
and the count of reference allele bases, whose AUC val-
ues ranged around 0.79 and 0.71, respectively. SB-GATK
had an AUC of 0.74, whereas SB-GUO, the number of al-
ternate allele bases and those features related to fragment
length, base and mapping quality and position on read
had AUC values between 0.51 and 0.58. For discrete vari-
ables, isSNP showed the largest classification power (NMI
= 0.33), whereas the rest of descriptors tested had more
lower values in the range of 1.4e-6 to 7.7e-4.

An important point to bear in mind with regard to the
classification power of isSNP feature is that in our dataset
it is confounded with the classification label. For this rea-
son, and in order to avoid a confounding effect that would
mislead classification performance evaluation, as argued in
the ‘Discussion’ section, we decided to remove the isSNP
descriptor from the datasets.

Model evaluation

The median CVE and SOE values of the models tested
ranged from 0.81 to 0.89 (Table 5), with XGBoost (CVE =
0.89, SOE = 0.87) and RF (CVE = 0.88, SOE = 0.87) mod-
els performing best. These two algorithms were followed by
ANN and logReg, and NB yielded the worst classification
results.

In addition, the distribution of the three estimators across
samples showed that RE and CVE had little variability be-
tween cases, as expected since a similar set of samples was
used in all cases (Figure 4). Further analysis of the data
looking at each fold shows a lack of variation between folds
too, except for a few outliers in ANN (Figure 5). In contrast,
SOE varied within a broader range: for all the algorithms,
a difference >0.2 was observed from the sample with the
lowest AUC to the one with the largest AUC.

Notably, for all the algorithms, there were samples in
which the SOE was larger than the CVE, and even larger

Table 4. NMI or AUC values for the variables included in the model,
ordered in a decreasing importance order

Feature
Type of
variable

NMI
[0–1]

AUC
[0.5–1]

SOB Real valued - 0.91
FDeamC Real valued - 0.86
Normalized number of reference
bases

Real valued - 0.79

Normalized number of alternate
bases

Real valued - 0.79

VAF Real valued - 0.78
SB-GATK Real valued - 0.74
Number of reference bases Real valued - 0.71
SB-GUO Real valued - 0.58
Fragment length Real valued - 0.54
Base quality Real valued - 0.54
Median position from read end Real valued - 0.54
Number of alternate bases Real valued - 0.54
Base quality fraction Real valued - 0.53
Normalized median position from
read end

Real valued - 0.52

Mapping quality Real valued - 0.51
isSNP Categorical 0.33 -
Base one position before Categorical 7.7e−04 -
Base one position after Categorical 7.1e−04 -
Dinucleotide before Categorical 4.4e−04 -
Dinucleotide after Categorical 4.3e−04 -
Homopolymer length Integer 4.2e−04 -
Base two positions after Categorical 8.1e−05 -
Base two positions before Categorical 8.1e−05 -
Reference allele Categorical 1.4e−06 -

See the ‘Descriptors’ section in main text and the ‘Feature Descriptors’
section in the Supplementary Data for further details on the descriptors.

Table 5. Median AUC CVE, RE and SOE estimations for each algorithm

CVE RE SOE

logReg 0.845 0.847 0.828
NB 0.823 0.824 0.808
ANN 0.876 0.894 0.862
RF 0.884 1.000 0.867
XGBoost 0.894 0.943 0.873

RF and XGBoost show the largest CVE, RE and SOE values, followed by
ANN, logReg and NB, in that order. In XGBoost, and especially RF, RE
is well above CVE and SOE. logReg, NB and ANN show closer or non-
existent gaps between the estimators, especially for CVE and RE. Median
SOE is in all five algorithms the lowest estimator among the three.

Figure 4. RE, CVE and SOE values for each algorithm. Note that for CVE,
the median AUC of all folds for each sample is shown. This means that,
first, these densities are proportional to variability across samples and, sec-
ond, any differences between folds cannot be observed from this repre-
sentation (Figure 5 gives this information). CVE and RE show very low
variability; this is indeed an expected behaviour as a similar set of samples
was used for calculating each of those values. For all the models, there is a
difference >0.2 between the lowest and largest SOE values, showing that
performance is very dependent on sample particularities.
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Figure 5. Ten-fold cross-validation AUC values, i.e. CVE values, for each
algorithm. XGBoost, RF and ANN show the largest values, followed by
logReg and NB, in that order. ANN density is more spread than the other
four due to the presence of certain outliers; this indicates that the perfor-
mance of this model is less stable across instances than the rest.

than RE, despite median SOE across samples being for the
five algorithms the lowest estimation value among the three.

Model refinement

In order to test the choice of model parameters, we looked at
differences between CVE and RE. In the case of logReg, NB
and ANN, no substantial gap existed between CVE and RE
(Figure 4 and Table 5). However, for both XGBoost (median
RE = 0.94, median CVE = 0.89, median SOE = 0.87) and
RF (median RE = 1, median CVE = 0.88, median SOE =
0.87), RE was well above CVE and SOE. In order to iden-
tify better hyperparameter configurations that could allow
a better adjustment to the data in the case of these two latter
algorithms, especially in RF (Figure 6), we carried out ran-
dom grid searching for the number of learnt trees, the num-
ber of descriptors used to learn each tree and the maximum
depth of the trees. No clear performance improvement was
observed, suggesting a lack of room for further refinement
(data not shown).

Final model and validation on external datasets

To further validate the approach, the best algorithms (XG-
Boost and RF) were used to create models with the data
from the breast dataset and were evaluated on two indepen-
dent validation datasets. The first validation dataset con-
sisted of four FFPE–FF paired colon and liver tumour sam-
ples and contained a total of 9994 deaminations and 3157
non-deaminations with a VAF <30%, labelled following
the same procedure. While still showing an imbalance be-
tween the classes (∼3:1), this was much less pronounced
than that in the breast cancer dataset. The second dataset
consisted of 16 FFPE–FF paired gastro-oesophageal can-
cer samples with a total of 446 878 deaminations and 18 793
non-deaminations with a VAF <30% and again labelled
the same way. The imbalance in this dataset was more pro-
nounced than that in the colon and liver dataset (∼24:1) but
still less than that in the breast dataset (Table 3 and Sup-
plementary Table S3). Resulting AUC values for the colon
and liver dataset were 0.9643 and 0.9541 for XGBoost and
RF, respectively; in the gastro-oesophageal dataset, AUC
values for XGBoost and RF were 0.9639 and 0.9567, re-
spectively. By way of illustration, we also calculated addi-
tional performance metrics that are dependent on a classi-

fication threshold. For doing so, we chose the classification
threshold that would minimize the number of false positives
while ensuring a minimum value for the sensitivity of 0.99.
This was done using the data on the training set. It is im-
portant to note here that these results that are dependent
on a threshold cannot be extrapolated to other scenarios
since the criterion for selecting the threshold may not be
suitable for them. The metrics for this threshold, consider-
ing the deamination as the positive class, are depicted in Ta-
ble 6. Except for the negative predictive value (NPV) and,
to a lesser extent, the specificity, values for both models are
very similar. Of note is the fact that small improvements in
the positive predictive value (PPV) (in the colon and liver
dataset, the values were 0.9419 for XGBoost and 0.9494 for
RF; in the gastro-oesophageal dataset, values were 0.9886
and 0.9903, respectively) are highly detrimental to the NPV
(in the colon and liver dataset, specificity values were 0.8810
for XGBoost and 0.7965 for RF; in the gastro-oesophageal
dataset, values were 0.7471 and 0.5776, respectively).

Performance comparison with state-of-the-art techniques

We compared the performance of our model with other ex-
isting approaches using the validation sets described ear-
lier. Both XGBoost (AUC = 0.9643 for the colon and liver
dataset, AUC = 0.9639 for the gastro-oesophageal dataset)
and RF models (AUC = 0.9541 for the colon and liver
dataset, AUC = 0.9567 for the gastro-oesophageal dataset)
outperformed the rest of the models and showed almost
identical ROC curves (Figure 7 and Table 7). In the colon
and liver dataset, SOBDetector and filtering by VAF pro-
duced close to each other results, with AUC values slightly
above 0.92. However, in the gastro-oesophageal dataset,
while filtering by VAF kept its performance, SOBDetector
fell to an AUC value of 0.7745. Filtering by depth of cov-
erage was the worst solution (AUC = 0.688 for the colon
and liver dataset, AUC = 0.7588 for the gastro-oesophageal
dataset).

Feature analysis by built-in metrics

Features ranked by their predictive capacity by both RF and
XGBoost built-in feature importance metrics are presented
in Table 8. An important thing to bear in mind here is the
way each algorithm manages correlated features: while RF
gives similar importance to correlated features (for instance,
the scaled importance of FDeamC and SOB was 1 and 0.71,
respectively; the scaled importance of the VAF, normalized
number of alternate bases and normalized number of refer-
ence bases was 0.59, 0.54 and 0.53, respectively), XGBoost
favours one over the rest (FDeamC and SOB had scaled
importance values of 1 and 0.12, respectively; VAF, nor-
malized number of alternate bases and normalized number
of reference bases had values of 0.051, 0.63 and 0, respec-
tively). Thus, for this feature analysis we only focused on
the ranking provided by the RF algorithm, as in the case of
XGBoost we ran the risk of underrating a variable when it
was simply correlated with another one.

In this RF ranking, FDeamC showed the highest classi-
fication power, far above the second one, which was SOB
(scaled importance score of 0.71). The median variant posi-
tion and the genomic context were quite relevant too (score
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Figure 6. RE, CVE and SOE values for RF. RE is equal to 1 in all cases and a gap exists between this and the rest of estimators, suggesting room for model
improvement. For the majority of the samples (n = 17), CVE is above SOE; still there are cases in which SOE is larger. This is surprising because CVE
being larger than SOE was expected as instances from the same sample are shared between the training and test sets in the former. Samples with the same
number before the underscore in their name correspond to the same specimen.

Table 6. Performance of the final XGBoost and RF models on the validation sets taking the deamination as the positive class

Validation set Algorithm AUC F1 Accuracy Sensitivity Specificity PPV NPV

Colon and liver XGBoost 0.9643 0.9535 0.9284 0.9654 0.8115 0.9419 0.8810
RF 0.9541 0.9406 0.9106 0.9320 0.8429 0.9494 0.7965

Gastro-oesophageal XGBoost 0.9639 0.9891 0.9791 0.9896 0.7295 0.9886 0.7471
RF 0.9567 0.9832 0.9680 0.9763 0.7715 0.9903 0.5776

Both models show AUC values close to 1 in the two datasets and almost identical values for the performance metrics that depend on a threshold, except
for the NPV. Besides, the NPV itself and the specificity are the metrics with the lowest values, which suggests that, with this threshold, the major limitation
is the detection of the true negatives, i.e. the non-deaminations.

Figure 7. ROC curves for the five tested approaches on the colon and liver (A) and gastro-oesophageal (B) validation sets. For both datasets, XGBoost and
RF outperform the other three approaches. In the colon and liver dataset, filtering by VAF and SOBDetector perform similarly and slightly worse than
our models. In the gastro-oesophageal dataset, instead, filtering by VAF keeps its good performance, while SOBDetector performs much poorly. Filtering
by depth of coverage is the worst-performing approach in both cases. AUC values are shown in Table 7.
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Table 7. AUC values for the five tested models on the two validation sets

Validation set XGBoost RF SOBDetector VAF Depth

Colon and liver 0.9643 0.9541 0.9216 0.9260 0.6883
Gastro-oesophageal 0.9639 0.9567 0.7745 0.9285 0.7588

XGBoost, RF and filtering by VAF all score above 0.92 in both datasets, while SOBDetector achieves those performance levels only in the colon and liver
dataset. In both sets, XGBoost and RF show the best performance, with all AUC values above 0.95. Filtering by depth of coverage is several points below
in all cases.

Table 8. Importance values and ranks provided by RF and XGBoost built-in metrics for the features in the models, ordered in decreasing importance
order according to the RF model

Feature
Scaled importance

(RF)
Scaled importance

(XGBoost)
Rank
(RF)

Rank
(XGBoost)

FDeamC 1 1 1 1
SOB 0.71 0.12 2 3
Median position from read end 0.67 0.065 3 11
Dinucleotide after 0.65 0.0058 (CA) 4 27 (CA)
Dinucleotide before 0.63 0.0056 (CC) 5 28 (CC)
VAF 0.59 0.051 6 13
SB-GATK 0.57 0.09 7 8
Normalized number of alternate bases 0.54 0.63 8 2
Normalized number of reference bases 0.53 0 9 65
SB-GUO 0.51 0.11 10 4
Base quality fraction 0.51 0.055 11 12
Normalized median position from read end 0.50 0.10 12 6
Base quality 0.43 0.020 13 17
Number of reference bases 0.41 0.077 14 10
Number of alternate bases 0.39 0.028 15 15
Fragment length 0.39 0.10 16 7
Base two positions before 0.25 0.0044 (T) 17 31 (T)
Base two positions after 0.24 0.0069 (G) 18 25 (G)
Base one position after 0.18 0.090 (G) 19 9 (G)
Base one position before 0.17 0.11 (C) 20 5 (C)
Homopolymer length 0.13 0.021 21 16
Mapping quality 0.11 0.019 22 18
Reference allele 0.10 0.030 (C) 23 14 (C)

The importance values presented here have been scaled to have a maximum value of 1; i.e. the top feature has an importance value of 1 and the rest
are scaled as a function of it. In the case of XGBoost, categorical features had been one-hot encoded, creating a much larger number of descriptors. For
the sake of readability and simplification, we only report the importance and rank values of the top-scoring feature within each broken down categorical
feature in XGBoost, which is shown between parentheses in the corresponding row.

of 0.67 for the median position; scores of 0.65 and 0.63 for
the dinucleotides immediately after and before the variant,
respectively). VAF and related features (i.e. the normalized
numbers of alternate and reference bases) were also among
the top features. This is consistent with the VAF distribu-
tion in our data whereby deaminations increased at near 0%
VAF values, and non-deaminations were more common as
we neared VAFs of 30% (Figure 1). SB-related features were
also relatively high in the ranking and thus showed a degree
of contribution to the model (scaled importance scores of
0.57 for SB-GATK and 0.51 for SB-GUO). Similar impor-
tance scores were achieved by the base quality fraction and
the normalized median position on the read. The remain-
ing features showed a score <0.50, meaning that their im-
portance was less than one-half of that of FDeamC. These
features included the base quality, the number of reference
and alternate bases, the fragment length, the nucleotides
one and two genomic positions before and after the vari-
ant, the length of the homopolymer they were in, their map-
ping quality and the reference allele. In general, importance
scores showed a gradual decrease, with the exception of
the first and second features, which were separated by a
gap of 0.29, and reached a minimum value of 0.10, which

corresponded to the feature representing the reference
allele.

As said, the analysis of the ranking produced by XG-
Boost was not so straightforward, but it is safe to say that,
although evident differences exist between the two rank-
ings, they both agreed in highlighting the major relevance
of those features related to read pair orientation bias and
VAF and, to a certain extent, of those related to the SB and
to the genomic context.

Implementation of the tool

We compiled the best two models trained on the breast
dataset (i.e. XGBoost and RF) in an R package named
Ideafix. Ideafix uses a vcf file generated with Mutect2 (ei-
ther in tumour-only mode or in tumour/normal mode) as
an input. It requires variant calling to be carried out us-
ing the Mutect2 algorithm as some of the model descrip-
tors are specific to this tool. This variant caller was more-
over chosen because it is publicly available, and it is one of
the most widely used and best rated tools (40,41). Ideafix
generates a new text file (the original vcf file or a new tab-
separated file) indicating deamination probability and vari-
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ant class (deamination or non-deamination) for each C:G
> T:A variant with a VAF <30%. It should be noted that
Ideafix has been designed to be used with data generated
from Illumina paired-end technology, so its performance
with data generated from other technologies such as Ion
Torrent has yet to be evaluated.

DISCUSSION

In this study, we have explored the use of machine learning-
based approaches for the identification of formalin-induced
cytosine deaminations. Specifically, we have formulated this
question as a fully supervised classification problem in
which we try to classify low variant frequency (VAF <30%)
variants into deaminations and non-deaminations. To our
knowledge, this is the first time such methodology has been
used for this purpose.

Given a set of variants found in an FFPE specimen,
the algorithm we propose is able to identify the artefac-
tual C:G > T:A changes with an estimated AUC >0.95.
Other benchmarked methods scored AUC values between
0.92 and 0.93 at best. Moreover, existing methods are all
univariate, whereas the Ideafix algorithm takes a multivari-
ate approach that allows to exploit relationships between
the descriptors.

Importantly, we carried out validation in multiple tu-
mour types (breast, colon, liver, gastric, oesophageal) ob-
tained, processed and sequenced in multiple centres and, as
we have shown, displaying different levels of DNA damage.
Predictably, the best results were obtained with samples that
were less degraded, namely those in the colon and liver can-
cer and gastro-oesophageal cancer datasets. The fact that
none of the variants in these samples were used for training
the final model confirms that DNA damage levels greatly af-
fect predictability. Figure 4 suggests that some samples are
easier to deal with than others as well; here, the largest SOE
value is >0.2 points above the lowest SOE value for all the
models, and the SOE value of certain samples is larger than
the CVE and even the RE. At the same time, all these ob-
servations suggest an absence of overfitting in the models.

The performance of our model was compared to three
other approaches: SOBDetector, filtering variants by depth
of coverage and filtering by VAF. The criteria we followed
to select between existing tools or practices (Supplementary
Table S2) are described next. First of all, comparing our
refinement model against variant calling methods would
have been unfair to the latter as even if their aim is the
same, they solve different problems. Our refinement model
assesses a list of already preprocessed variants that form
up the complete set of existing variants––deaminations and
non-deaminations––that is thereafter used for evaluation.
Variant calling tools, on the other hand, are run on raw
bam files, and thus they evaluate the entire coverage of
the sequenced region, i.e. the exome in this case, for pos-
sible variants, which in turn expands beyond the collec-
tion of mutations to be evaluated. Among the variant re-
finement tools designed for FFPE data, we ruled out the
two GATK features––LearnReadOrientationModel, be-
cause we already used it as an assessment of the variant la-
bels, and FilterByOrientationBias, due to it being a beta fea-
ture. Between the remaining, we prioritized tool availability

and user-friendliness, so that the final selection ended up
being the aforementioned.

A comparison between five different classification algo-
rithms demonstrated that decision tree-based models (XG-
Boost and RF) performed best. This most probably re-
flects their capacity to work well under default learning pa-
rameters, to pick up relationships between features, an ef-
fective handle of non-informative descriptors, outliers and
class imbalance, and their treatment of bias and variance
through the averaging of more constrained classifiers. It is
also noteworthy that our dataset contains a quite large num-
ber of correlated features, e.g. FDeamC and SOB or all al-
lele frequency-related features, and that decision tree algo-
rithms are by nature robust to this multicollinearity (42).

As already stated, XGBoost and RF were the best-
performing models with almost identical performance as
can be concluded from the overlap of their ROC curves
(Figure 7). Still, the particular classification threshold we set
(the one that minimizes the number of false positives while
keeping a minimum sensitivity value of 0.99) has a different
impact on the two models; i.e. it provides different costs to
false positive and false negative errors. This is observed par-
ticularly in the sensitivity and specificity values: while RF
shows better specificity, XGBoost has a greater sensitivity.
Likewise, it is noticeable that a minimal improvement in the
PPV is heavily damaging to the NPV. We believe this is due
to the number of positives (deaminations) being larger than
the number of negatives (non-deaminations). We used simi-
lar but not identical rules to set the threshold for both mod-
els, so it is yet to be clarified whether this and not the model
itself could be the reason of observing such differences.

Although decision tree models are black box models and
their interpretation is difficult, some insight into the cy-
tosine deamination process can be gained from them and
from the univariate feature analyses. All the three feature
importance analyses agreed in highlighting the relevance
of read pair orientation bias and allele frequency for iden-
tifying deaminations. This comes as no surprise as there
are a large number of works describing read pair orienta-
tion bias in formalin-induced cytosine deaminations, and
indeed, several of the existing tools and filters to deal with
data from FFPE tissues build upon those features (21,22).
We hypothesized the possible influence of some new ele-
ments for deamination identification, such as the composi-
tion of flanking bases, median length of the fragments that
carry the base change, base quality and position in the ge-
nomic fragment. While the relevance of most of them was
shown to be limited, the genomic context and the variant
position in the fragment seemed to be useful.

Interestingly, setting aside read pair orientation bias and
allele frequency, RF and XGBoost differed to a certain ex-
tent in the importance given to the features. We believe one
important reason behind these differences is the way the two
models deal with correlated features. In the RF algorithm,
two correlated features have an equivalent probability of be-
ing chosen to split a branch on a tree, as trees are indepen-
dently grown on resampled datasets, and hence, the impor-
tance of the property they reflect is diluted. That is not the
case for XGBoost, in which trees are created sequentially
and each one learns on the observations that the previous
tree has not been able to classify. As a consequence, when
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two correlated features are present, if one of them has been
used as a split in a previous tree, new trees will likely lay
aside those features and build upon unrelated ones. Indeed,
this behaviour is reflected in our results, as RF gave simi-
lar importance values to sets of correlated features such as
FDeamC and SOB, VAF, normalized number of alternate
bases and normalized number of reference bases, or SB-
GATK and SB-GUO, while XGBoost did not. In any case,
the fact that XGBoost is able to identify correlated features
allows to use reduced collections of features. This is an in-
teresting point, especially for occasions where obtaining the
values of some features involves hard work.

We would also like to raise the issue of removing the
isSNP descriptor from the model. As mentioned earlier, this
feature is confounded with the classification label (deam-
ination or non-deamination) in these datasets, due to the
following. The procedure we followed to label the vari-
ants into deaminations and non-deaminations was based on
their presence in one or both datasets of FFPE–FF paired
datasets, respectively (see the ‘Variant labelling’ subsection
in the ‘Materials and Methods’ section for further details).
Thus, the non-deamination label was primarily given to
both germline variants and systematic errors. While other
non-systematic errors exist and thus could be labelled as
deaminations, it is possible though less likely that a germline
variant is not detected in both datasets or that a consider-
able number of them get affected by the deamination phe-
nomenon and thus get the deamination label. As a con-
sequence, the isSNP feature gets significantly confounded
with the deamination status and this could result in mod-
els that rely very much on this feature for the classification.
Although this situation is not spurious, it could impact the
classification of some problem sets, such as those in which
we are interested in separating somatic variants from deam-
inations, in a negative way. This is so because instead of
recognizing deaminations, the model would be identifying
germline variants to a great extent, which would be of no
interest in such case, and at the same time, performance es-
timations we report here would then be overestimations of
the real performance. Directly discarding these variants that
were true for the isSNP feature seemed incorrect since, as we
already stated, deaminations can also affect these positions.
This fact was reinforced by the presence of such events in
our dataset (data not shown). Another reason against acting
this way is the existing evidence stating that filtering variants
based solely on their position is inaccurate and leads to in-
correct results (43). As a consequence, removing the isSNP
descriptor from the datasets seemed to be the best option.

Class imbalance was a major challenge faced with the
data, especially in the breast cancer dataset, which con-
tained a set of artefacts between 64.2 and 263 times greater
than the collection of real mutations. This suggests that
samples in this dataset were much more degraded than
those in the other two datasets and, indeed, damage analysis
results confirmed this observation. This imbalance reflects
the difference in the timing of the two mutation processes:
while the real mutation burden of a biopsy will remain in-
tact over time, cytosine deamination is a cumulative process
that will not cease and that is dependent on factors such as
storage time and time in contact with formaldehyde. Results
show that, even if this imbalance is high, good performance

can be obtained. In spite of the proficient performance,
this class asymmetry opens the door to use other learning
paradigms, such as one-class classification, that could better
adapt to the present scenario.

CONCLUSIONS AND FUTURE WORK

In this work, we present an effective algorithm to identify
cytosine deaminations within a list of low-frequency vari-
ants based on a collection of >20 descriptors. This method
can hence be applied to filter variant calls from FFPE spec-
imens and helps to confidently use these samples for molec-
ular testing.

Our tool has several advantages over other existing ap-
proaches that deal with formalin-induced artefacts. When
compared to wet-lab procedures, our algorithm is a non-
invasive and cost-effective technique and can be applied ret-
rospectively to existing FFPE material already sequenced.
Compared to computational approaches, Ideafix not only
outperforms them, but also does not automatically remove
identified artefacts that could result in the generation of
clinically important false negative results (15,19,21). In-
stead, we chose to allow the user to decide what to do with
the class probability information, for example whether cer-
tain variants warrant further testing if they occur in a clini-
cally relevant manner, such as mutations in the EGFR gene
in lung cancer patients that dictate TKI treatment. Addi-
tionally, unlike other methodologies that require multiple
filtering steps (13) and format conversion, the Ideafix algo-
rithm is fully automatic.

This work has several limitations that could be improved
in the future, including the lack of the true class labels of the
data through independent validation of variants in FFPE
material by other techniques such as qRT-PCR. We miti-
gated this risk by comparing FFPE specimens with matched
FF samples from the same tissues. Even then we are aware
that some variants classified as deaminations could be sub-
clonal mutations only present in the FFPE portion of the
tumour tissue or other non-systematic artefacts missed by
quality filters. Encouragingly, when we compare the labels
with those of a second deamination identification approach,
we obtain a large concordance, which reinforces the la-
belling technique used. A second limitation is the sequenc-
ing data this method can be applied to. This is so because the
top contributing feature in the final models, i.e. FDeamC,
is only computable in DNA data sequenced with Illumina
paired-end technology. Thus, while it is technically possible
to apply the algorithm to data generated by other systems,
e.g. Ion Torrent, the performance of our approach should
be reevaluated.

Future work to improve this package will include testing
and possible incorporation of new descriptors in the model
such as the genomic complexity of the variant region, since
less overlapping between SNVs detected in FFPE and FF
samples has been reported in low-complexity regions than
in reliable regions (44). Additionally, the number of PCR
cycles used for template amplification could also be incor-
porated in the model, as this would probably refine any al-
lele frequency value biased by this technique. Besides, we
propose addressing the problem from alternative learning
scenarios, instead of formulating the problem as fully su-
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pervised. For instance, we could try to learn on probabilis-
tic labels (45), i.e. to learn the classifier from a dataset with
probabilities associated with the labels, or to approach the
problem as a weak supervision problem (46). These strate-
gies provide an alternative natural fit to the problem, as this
is a problem where the majority of the labels will always be
uncertain and no ground truth exists. One-class classifica-
tion schemes could be suitable due to the inherent imbal-
ance in these datasets.

One of the most interesting scenarios to apply this
methodology in is somatic mutation detection, so we built
our algorithm upon cancer DNA sequencing data. In
fact, intratumour heterogeneity has largely been overlooked
mainly due to technical difficulties, but in the recent decades
more and more attention has been brought to it and
now there is evidence that subclonal mutations play key
roles in disease progression and response to therapy (8,47–
49). Given that most biopsies are routinely collected as
FFPE specimens for histopathological review, if precision
medicine is to become part of routine healthcare, proce-
dures able to confidently distinguish low-frequency somatic
mutations from formalin-induced changes should be imple-
mented. In any case, besides cancer somatic mutation detec-
tion, this method can be applied to any tissue sample of a
heterogeneous cell population from FFPE data.

DATA AVAILABILITY

Ideafix is available at https://github.com/mmaitenat/
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Mesrob,L., Fin,B., Delépine,M., Palomares,M.-A., Jubin,C. et al.
(2018) Performance comparison of three DNA extraction kits on
human whole-exome data from formalin-fixed paraffin-embedded
normal and tumor samples. PLoS One, 13, e0195471.

13. Yost,S.E., Smith,E.N., Schwab,R.B., Bao,L., Jung,H., Wang,X.,
Voest,E., Pierce,J.P., Messer,K., Parker,B.A. et al. (2012)
Identification of high-confidence somatic mutations in whole genome
sequence of formalin-fixed breast cancer specimens. Nucleic Acids
Res., 40, e107.

14. Kerick,M., Isau,M., Timmermann,B., Sültmann,H., Herwig,R.,
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