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Tú no puedes volver atrás,
porque la vida ya te empuja,
como un aullido interminable,
interminable.

Te sentirás acorralada,
te sentirás perdida o sola,
tal vez querrás no haber nacido,
no haber nacido.

Pero tú siempre acuérdate
de lo que un d́ıa yo escrib́ı
pensando en ti, pensando en ti,
como ahora pienso.

La vida es bella ya verás,
como a pesar de los pesares,
tendrás amigos, tendrás amor,
tendrás amigos.

Un hombre solo, una mujer,
aśı tomados de uno en uno,
son como polvo, no son nada,
no son nada.

Entonces siempre acuérdate,
de lo que un d́ıa yo escrib́ı,
pensando en ti, pensando en ti,
como ahora pienso.

Nunca te entregues, ni te apartes,
junto al camino nunca digas
no puedo más y aqúı me quedo,
y aqúı me quedo.

Otros esperan que resistas,
que les ayude tu alegŕıa,
que les ayude tu canción,
entre sus canciones.

Entonces siempre acuérdate
de lo que un d́ıa yo escrib́ı,
pensando en t́ı, pensando en t́ı,
como ahora pienso.

La vida es bella ya verás,
como a pesar de los pesares,
tendrás amigos, tendrás amor,
tendrás amigos.

No sé decirte nada más,
pero tú debes comprender,
que yo aún estoy en el camino,
en el camino.

Pero tú siempre acuérdate
de lo que un d́ıa yo escrib́ı,
pensando en t́ı, pensando en t́ı,
como ahora pienso.

Paco Ibáñez - José Agust́ın Goytisolo
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cómo se llama ahora el grupo por culpa de desamores. Śı, en F́ısica existen.
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F́ısica en segundo. Espero que sigas siendo un titán y que volvamos a bebernos
una botella y media para celebrarlo. ¿El qué? Lo que sea. Guille, por tu
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A la memoria del Mole

Toda buena historia comienza con una idea descabellada. En este caso, tratar
de encontrar similitudes en las ecuaciones de Maxwell (a cargo el Mole y yo) y
Schrödinger (a cargo Cris) utilizando el formalismo de las funciones de Green.
Cabe preguntarse, ¿Con alguna inmediata aplicación?
Para responder a esta pregunta, es necesario traer a escena el famoso paper de
Berger titulado “Side-Jump Mechanism for the Hall Effect of Ferromagnets” [1]
que en castellano podŕıa traducirse como “Salto lateral debido al efecto Hall
de los ferromagnéticos”. Traducciones aparte, en este art́ıculo se demuestra
que existe un desplazamiento lateral del paquete de ondas planas incidentes
tras el impacto con un cacharro que presente la interacción de “sṕın y órbita”.
En el ĺımite de part́ıcula pequeña y usando la aproximación de Bohrn, Berger
probó que la dirección del salto lateral depende drásticamente del sṕın inci-
dente. Aśı pues, electrones con spin “up” y “down” se deflectan en sentidos
opuestos tras el choque. Matemáticamente, la probabilidad de este salto lateral
viene dado por la densidad de corriente electrónica tras el choque, que, como
hemos comentado, alberga información del spin (up o down) del paquete de
ondas planas incidente. Nuestra contribución llegó tras probar que este salto
lateral es resonante, es decir, la magnitud del salto puede llegar a ser varios
órdenes de magnitud mayor que la obtenida por Berger. Este descubrimiento
no fue nunca publicado, quizás motivado por alguna exigencia experimental
que se me escapa entre los dedos. Sin embargo, el hecho de encontrar que la
corriente electrónica tras el choque es la responsable del salto lateral nos hizo
preguntarnos al Mole y a mı́ si pudiese existir un análogo con el vector de
Poynting en luz. En particular, tras descubrir el curro que se hab́ıa pegado
Arnoldus en esta dirección [2]. En este trabajo, se demuestra que, efectiva-
mente, existe un desplazamiento aparente de una esfera dipolar eléctrica bajo
iluminación de una onda plana circularmente polarizada. Es decir, con “spin”
bien definido. Al igual que ocurre con el caso de Berger, este desplazamiento
aparente tiene una dirección definida (o la contraria) con luz circularmente
polarizada a derechas (o a izquierdas). El lector podrá notar que existe una
clara analoǵıa en los trabajos de Berger y Arnoldous y que aunque parezca
mentira, nunca lo llegamos a escribir. No obstante, queda pendiente como un
buen homenaje a cargo de Cris y un servidor.
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De esto tenemos culpa todos y en particular, la curiosidad del Mole, que me
hizo abandonar Berger y electrones y conducirme hacia el horizonte Kerker.
Aún recuerdo cuando vino a verme al despacho y me dijo: “T́ıo, tenemos que
entender como funciona la puta helicidad y su relación con las condiciones de
Kerker”. “En particular, como funcionan con las part́ıculas de alto ı́ndice de
refracción. Y bueno, si consiguiésemos unir todo esto con fuerzas... ya estoy
viendo un PRL t́ıo”. “Que cojones, varios!”. Ilusionado (él y yo), me encargó
que me calculase el vector de Poynting dispersado por un dipolo eléctrico y
magnético bajo iluminación de una onda plana circularmente polarizada. Este
fue su primer y último encargo con respecto a la dirección de Tesis entendida
como “Haz algo que se me ha ocurrido a mı́”, hecho por el cual estaré eterna-
mente agradecido. Nostalgias a un lado, cuando lo calculé me di cuenta que si
las polarizabilidades eléctricas y magnéticas eran iguales el vector de Poynting
se anulaba en backscattering. El Mole me explicó que este hecho ya lo hab́ıa
publicado él anteriormente y que esa condición se llamaba “primera condición
de Kerker”. Por otro lado, me contó que exist́ıa una explicación fundamental
de este fenómeno dada por parte de Gabriel, Zambrana y Corbatón (como los
llamábamos entonces) a través de la helicidad y las simetŕıas del sistema [3,4].
Que, por favor, se lo explicase. Cuando terminé de contarle lo que buenamente
entend́ı, volvimos al cálculo del vector de Poynting y nos dimos cuenta de algo
genial: el desplazamiento aparente, śı, el de Arnoldous con dipolo magnético,
que llamamos a posteriori espejismo óptico, petaba en backscattering!. Tras
casi un año escribiendo el art́ıculo conseguimos por fin subir publicarlo [5], no
sin dificultades. Consejo: no enseñéis resultados en un congreso si no los tenéis
subidos al ARXIV. Consejos aparte, entend́ı el efecto de la primera condición
de Kerker en la dispersión, algo clave para el desarrollo de esta Tesis. Por otro
lado y gracias a la respuesta de uno de los Referees, nos montamos otro art́ıculo
con el objetivo de distinguir el spin y la helicidad magnitud [6]. Sugerido por
el Mole, también incluimos efectos de absorción y de forma completamente
fortuita, encontramos que la helicidad no se conserva en este escenario. Por
tanto y siempre en el régimen dipolar eléctrico y magnético bajo onda plana, el
vector de Poynting no se anula en backscattering. En un art́ıculo de invitación,
incluimos este “descubrimiento” donde escribimos que la primera condición de
Kerker no se consegúıa en presencia de efectos disipativos [7]. Sin embargo, no
encontramos una demostración formal para este fenómeno.
Intrigado por las condiciones de Kerker y con el objetivo de probarle al Mole
que alguno de sus art́ıculos no eran correctos (siempre he sido un poco puñetero),
me puse a investigar las propiedades de la segunda condición de Kerker. Esta
condición, también denominada Generalized second Kerker condition (GSKC)
para esferas dieléctricas, era entendida (no sé si aún) como la condición a partir
de la cual el cacharro no dispersa prácticamente nada de luz en la dirección
forward. Sin embargo, y a pesar de la cantidad inmensa de art́ıculos que lo dan
por sentado, me di cuenta que este fenómeno simplemente no se sosteńıa de
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forma general [8]. Únicamente cuando el cacharro dispersa relativamente poca
luz. De hecho, en la GSCK y con un régimen alto de dispersión, el patrón de
luz dispersado puede ser idéntico al de la primera condición de Kerker. Cuando
fui a ver a mi añorado Mole, supe de la importancia de este hecho tras su: “Y
una mierda, no me lo creo, eres un cabrón con pintas eh”. “Escŕıbelo en un
Latex y me lo mandas hoy por favor”. Escrib́ı este art́ıculo junto con Cris y mis
principales colaboradores (y amigos), entre los cuales destaca Diego Romero
Abujetas. En una de sus infinitas estancias en Donostia y recordando que la
absorción “mata a Kerker”, el Mole quiso que Diego lo probará, ya que yo
estaba disperso en otras vainas. La idea del Mole: demostrar que la parte elec-
trostática de polarizabilidad dipolar eléctrica no pod́ıa ser igual que la estática
de la magnética. Viendo cómo Diego se puso a hacer estos cálculos infinitos
y tras haber quemado una parte no desdeñable del Amazonas, desistió. Sin
embargo, en vista del interés y para probarme a mı́ mismo, decid́ı atacar este
problema mediante una v́ıa alternativa. Sin duda uno de los libros que más
me ha ayudado a entender las condiciones de Kerker es el Hulst [9]. En este
libro, las condiciones de Kerker (no llamadas aśı en el mismo) se presentan
en una notación tremendamente simplificada. Aśı pues, demostrar que la ab-
sorción “mata a Kerker” resultó brutalmente sencilla. Superorgulloso, fui con
mi demostración completa allá por septiembre de 2019 al despacho del Mole
en el DIPC: “Esto está bien, pero, ¿Para qué sirve?”. Aunque pueda resultar
duro, este tipo de comentarios siempre fueron superútiles para mı́, pues siem-
pre me incitaban (tras pasar unos d́ıas odiando al Mole) a seguir trabajando.
En particular, siempre intenté demostrarle a él y a mı́ mismo que vaĺıa para
currar en esto. En esta ĺınea y gracias tanto a la notación del Hulst, como
a unas relaciones de las funciones de Bessel del año de la tana, probé que la
helicidad no se conserva de forma general para esferas dieléctricas. Es decir,
que si tienes un par de coeficientes cumpliendo “Kerker”, los demás no pueden
cumplir Kerker para la misma frecuencia. Concerté una reunión con Gabriel
y el Mole para contárselo y su respuesta fue contundente: “No le encuentro
una aplicación inmediata, mira a ver si esto funciona para los whispery gallery
modes”. ¿Entendéis la F́ısica de estos modos? Yo tampoco. Aśı pues, me volv́ı
con mi demostración convencido de que pod́ıa sacarle partido a estas pruebas
matemáticas. En efecto, consegúı demostrar a ráız de esto que existen regiones
dipolares para part́ıculas gordas más allá de las resonancias cuadrupolares y
octupolares. Por otro lado y colaborando con Diego y Cris, vimos que en estas
regiones dipolares se cumpĺıa el “optimum forward light-scattering condition”.
Y más interesante aún, esta condición de optimización no depende de un ma-
terial particular sino del ratio entre el tamaño del cacharro y la longitud de
onda incidente (en oposición a la visión de la Russian Task Force). Ya śı, volv́ı
a enseñárselo al Mole y me dijo algo que jamás olvidaré: “T́ıo, eres la persona
que conozco que más sabe de las condiciones de Kerker”. “No te ŕıas, te lo
digo sinceramente, eres un cabrón”.
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Ya sin el Mole entre nosotros y en un confinamiento tremendamente doloroso,
me refugié en the abovementioned trabajos. Tras hacer un “curro de jefe”, que
ojalá nunca hubiese sido necesario, conseguimos publicar un PRL (siempre fue
mi sueño con el Mole) que por supuesto le dediqué [10]. Posteriormente, nos
publicaron el art́ıculo del cual más orgulloso estoy, quizás, porque también
era la idea preferida del Mole [11]. Hoy en d́ıa el Mole sigue persiguiéndome
en sueños. Quiero pensar que guardaba un buen recuerdo de mı́ y de los
infinitos ratos que le robaba al d́ıa para hablar de F́ısica. Cada vez que escribo
“However, we...” o “in striking contrast to..”, te recuerdo riéndote con un
cigarro cortado entre los labios.

As he came, he disappeared
Left, just a shadow, in your eyes
But his love always on your mind
And his smile haunting you at night

Heal, Racoon Racoon
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Resumen

La presente Tesis se enmarca dentro del campo de la Nanofotónica, es decir,
del estudio de la interacción de la luz con la materia en la nanoescala. En
particular, de la forma en que una onda plana interacciona con el objeto más
simétrico existente en la naturaleza: una esfera homogénea.
El problema de cómo una esfera homogénea iluminada con una onda plana
dispersa la luz se remonta a comienzos del siglo XX.. Concretamente, al año
1908, en el cual Gustav Mie resolvió anaĺıticamente este problema en el ĺımite
semiclásico, apoyado en las ecuaciones de Maxwell y en la correcta visión de
la luz como una onda electromagnética [12]. Con el paso de las décadas y
a pesar de que en sus comienzos el trabajo de Mie pasó casi inadvertido, el
interés por lo que hoy en d́ıa se conoce como Teoŕıa de Mie ha crecido enorme-
mente. En particular, tras el auge de los materiales con un ı́ndice de refracción
alto [13–16]. Estos presentan, en la región espectral del visible, resonancias
eléctricas y magnéticas con relativamente pocas pérdidas óhmicas, en fuerte
oposición a los metales en los cuales se basa la Plasmónica [17–21]. Además,
en el caso en el cual el tamaño de los objetos sea considerablemente menor
que la longitud de onda incidente, la respuesta óptica es dipolar. Este hecho
posibilita la existencia de soluciones anaĺıticas que simplifican brutalmente el
entendimiento de los problemas bajo consideración. En esta ĺınea se han de-
sarrollado importantes trabajos tanto sobre fuerzas ópticas [22–25], presión de
radiación, o en la f́ısica emergente de fuentes no radiativas como los anapo-
los [26–28]. Sin embargo, quizás una de las mayores ventajas de los materiales
con ı́ndice de refracción alto reside en el grado óptimo de control de la luz
dispersada por los mismos. Gracias a que presentan una respuesta eléctrica
y magnética (sin la necesidad de tener magnetización en el objeto) se pueden
recuperar las condiciones anómalas de dispersión de luz predices por Milton,
Wand y Kerker en los años 90 [29]. Esencialmente, estos autores auguraron que
si las respuestas eléctrica y magnética de una esfera homogénea con magneti-
zación permanente eran idénticas, no exist́ıa luz en retrodispersión, es decir,
en el sentido opuesto a la dirección de la onda incidente. Por otro lado, vatici-
naron justo el efecto contrario bajo otro ratio más complicado de la respuesta
eléctrica y magnética. En este último escenario, no deb́ıa existir luz en el
sentido de la dirección de la onda plana incidente.
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Sin embargo, sendas predicciones, actualmente denominadas “condiciones de
Kerker”, no se pudieron corroborar debido a la ausencia de materiales magnéticos
a frecuencias ópticas. Como hemos adelantado previamente, estas mediciones
experimentales llegaron de la mano de los materiales de ı́ndice de refracción
alto. En particular, cuando la respuesta eléctrica y magnética (sin magneti-
zación permanente) del objeto es, en valor absoluto, idéntica. En este caso
y dependiendo del signo de las polarizabilidades eléctricas y magnéticas en el
ĺımite dipolar, podemos tener tanto la primera condición de Kerker (polariz-
abilidades en fase) como la segunda condición de Kerker (polarizabilidades en
antifase).
El objeto de esta Tesis es ahondar tanto en los fundamentos matemáticos
como en posibles aplicaciones de las condiciones de Kerker en materiales de alto
ı́ndice de refracción. En esta ĺınea, demostramos en el Caṕıtulo 3 que existe un
error importante a la hora de localizar la posición de una nanoesfera de Silicio
en la primera condición de Kerker bajo iluminación de onda plana. De hecho,
si se coloca el detector en campo lejano en las inmediaciones de retrodispersión,
la nanoesfera parece estar dispersando luz desde una posición tremendamente
lejana a su localización real. Este intrigante efecto, denominado comúnmente
como espejismo óptico, se discute tanto tanto desde la interacción del sṕın y
órbita en luz como de la conservación de helicidad y momento angular en la
dirección de propagación de la onda incidente.
En el Caṕıtulo 4, se demuestra que no es necesario medir la dispersión de
luz en retrodispersión para inferir el espejismo óptico de la esfera de Silicio.
En particular, se muestra que con una sola medida de la polarización en la
dirección perpendicular de la onda incidente se puede inferir, de manera in-
directa, la magnitud del espejismo óptico en cualquier dirección de medida.
Curiosamente y a través de esta única medida de polarización, se puede cole-
gir la redistribución de sṕın y órbita de la luz y la asimetŕıa de la misma.
Gracias a ello, en este Caṕıtulo se establece una clara distinción entre he-
licidad y sṕın tras la dispersión. En vista de la literatura vigente hasta la
fecha [30, 31], esta aclaración es necesaria pues, en una onda plana, estos dos
conceptos se entremezclan y su interpretación puede conducir a error. En
este caṕıtulo, también se discute el rol de la absorción. En este escenario,
comprobamos numéricamente que la primera condición de Kerker no se puede
conseguir. Como consecuencia, la helicidad no se conserva tras la dispersión.
Del mismo modo, demostramos que la asimetŕıa en la dispersión de la luz no
es máxima debido a la absorción. Motivado por este hecho, en el Caṕıtulo 5
se demuestra anaĺıticamente que la absorción (y hasta una eventual ganancia
óptica) “matan” la primera condición de Kerker. Para ilustrar este resultado,
se muestra gráficamente cómo se va desvaneciendo el cero de dispersión de luz
predicho por Kerker, Wang y Miles a medida que se incrementa la absorción.
En esta ĺınea, demostramos que la helicidad tras la dispersión no se conserva.
Este descubrimiento revela una importante conexión entre la simetŕıa de du-
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alidad y la conservación de enerǵıa. En otras palabras, si hay absorción, no se
recupera dualidad.
Siguiendo con la investigación sobre la naturaleza de las condiciones de Kerker,
demostramos en el Caṕıtulo 6 que la segunda condición de Kerker para esferas
dieléctricas ha sido completamente malentendida en numerosos trabajos pre-
vios. Hasta ahora, se daba por hecho que el efecto de la segunda condición de
Kerker en la luz dispersada era que esta cáıa enteramente en el semiplano de
retrodispersión. Sin embargo, en este Caṕıtulo demostramos que la luz disper-
sada puede ser totalmente simétrica con respecto al anterior plano y, para un
régimen de dispersión fuerte, puede caer en la dirección de incidencia, mime-
tizando el efecto de la primera condición de Kerker. Discutimos estos efectos
mediante el parámetro de asimetŕıa, cuyo signo controla el patrón de radiación
de la luz dispersada. Para terminar, mostramos en el Caṕıtulo 7 que el régimen
dipolar eléctrico y magnético no es excluyente de las part́ıculas pequeñas si es-
tas se comparan con la longitud de onda incidente. En estos nuevos reǵımenes
dipolares, que aún no han sido explorados con profundidad, mostramos que
la mejor condición de retrodispersión, es decir, donde la transmisión de luz es
más eficiente, se da para un ratio entre la longitud de onda y el tamaño de
la esfera. Este hecho supone un avance con respecto al entendimiento de este
fenómeno de optimización, ya que anteriormente fue predicho erróneamente
para un particular ı́ndice de refracción (diamante en visible).
En resumen, en esta Tesis se discute el efecto de las condiciones de Kerker
sobre esferas dieléctricas. Sorprendentemente, y a pesar de la simplicidad
de los cálculos aqúı obtenidos, podremos extraer bastante información que, o
no ha sido explorada, o ha sido malinterpretada. Los resultados de esta Tesis
aspiran a servir como inspiración de futura investigación teórica y experimental
adicional sobre los fenómenos en ella descritos.
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CHAPTER 1

Introduction

Light-matter interactions date back to the origin of the universe with the Big
Bang explosion and the forming of galaxies, stars, planets, and moons. Hence,
scattering and absorption of light, which is the central problem of study in
this Thesis, is present in nature long before life’s existence and humankind.
Two illustrative examples of the abovementioned were the observation of the
cosmic microwave background (relic radiation) in 1965 by Arno Penzias and
Robert Wilson [32] and more recently, the experimental corroboration of the
existence of gravitational waves in 2016 by the LIGO collaboration [33]. Both
achievements corroborate the validity of the general relativity, introduced by
Albert Einstein. The previous examples are invisible to our naked eye since
they occur out of the visible spectral range. Examples of these phenomena
can be found, for instance, in low-energy electromagnetic radio waves in which
long-distance communications are based, microwaves that heat our coffee in
the mornings, X-rays that helps cancer diagnoses, or high-energy gamma rays
that arise from the radioactive decay of atomic nuclei. Hence, phenomena asso-
ciated with light-matter transitions have been crucial along with the history in
diverse branches of science, such as engineering, medicine, and astrophysics. In
recent years and with the emergence of Nanophotonics, the branch of physics
devoted to studying light-matter interaction at the nanoscale, scattering, and
absorption of light in the ultraviolet, visible, and near-infrared spectral range
has received a great deal of interest. We can describe the electromagnetic
radiation by the wave picture at these dimensions, and the use of Maxwell’s
equations is suitable.
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1.1 A brief history of the origin of Maxwell equations

These equations were first formulated in 1865 by James Clerk Maxwell in
his paper “A Dynamical Theory of the Electromagnetic Field” [34]. In this
work, Maxwell summarized, organized, and decisively contributed to the un-
derstanding of electromagnetics until the date. These contained, among others,
the Gauss’s law for both electric and magnetic fields, stating that only static
electric fields can be related to a source, whereas no magnetic monopoles ex-
ist, or the Coulomb’s law (1970), which quantifies the force between two sta-
tionary, electrically charged particles. Moreover, in these equations, we can
find an extension of Ampère’s law (1825) that relates the integrated magnetic
field around a closed loop to the electric current passing through the loop,
or Michael Faraday’s induction, namely, the production of an electromotive
force across an electrical conductor in a changing magnetic field. Later, Oliver
Heaviside synthesized Maxwell’s over 20 equations into the four recognizable
ones modern physicists use. Remarkably, Maxwell’s equations also inspired
Albert Einstein to develop the theory of special and general relativity. Hence,
both the observation of the relic radiation and gravitational waves’ detection
also owe Maxwell’s work.
Maxwell’s equations successfully unified the concepts of light and electromag-
netism, one of physics’s grand unification. These equations depict the dy-
namics of macroscopic electromagnetic fields in materials described by their
dielectric response. However, Maxwell’s equations’ exact solution is generally
arduous, depending on the ratio between the incident wavelength and the ob-
ject. Moreover, both object’s shape and the nature of the incoming wave play
an important role. Several approximations have been employed along history
to get some insight into the scattering and absorption of light. For instance,
for objects much smaller than the incident wavelength, the so-called Rayleigh
scattering, named after the nineteenth-century British physicist John William
Strutt (3rd Baron Rayleigh), accurately describes the elastic electromagnetic
interaction between an incoming wave and a small single scatter described
by just its electric dipolar polarizability. In that scenario, Rayleigh showed
that the scattering cross-section of the particle scales with the incident wave-
length as λ−4. This strong wavelength dependence of the scattering means
that shorter (blue) wavelengths are scattered more strongly than longer (red)
wavelengths. This phenomenon results in the indirect blue light coming from
all-sky regions when viewed from earth. More examples of Rayleigh scattering
can be found, for instance, in amorphous solids such as glass, in the scat-
tering of optical signals in optical Silica fibers, or nanoporous materials. On
the other hand, for objects much bigger than the incident wavelength, the so-
called geometrical optics or ray optics, based on describing light propagation
after scattering in terms of optical rays, is an optimal approximation. This
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model assumes that light propagates in straight paths in homogeneous medi-
ums and may split in two at the interface between two different but constant
media. Snell’s law follows this principle, and hence, it does the phenomena
associated with reflection and refraction. The techniques in which ray optics
accurately describes light propagation are particularly useful in describing ge-
ometrical aspects of imaging, including optical aberrations. However, they fail
when considering interference or/and diffraction effects as the wave’s picture
is absent in this physical scenario.
The previous approximations, namely, Rayleigh scattering and geometric op-
tics, are tremendously helpful in getting some insight into the scattering and
absorption properties of light in each of the cases mentioned above. However,
an exact analytical solution to Maxwell’s equations is missing in both optical
models. In this vein and for objects with dimensions similar to the wave-
length, it is customary to consider the formal solution of Maxwell’s equations
with appropriate boundary conditions. This approach is handy due to exact
solutions, particularly for cylindrically symmetric objects such as disks, cylin-
ders, or spheres. As a vast part of this Thesis is dedicated to understanding
the scattering of arbitrarily sized spheres under plane wave illumination, let us
briefly comment on the origin of this problem.

1.2 Mie theory and Kerker conditions

The electromagnetic scattering by a homogeneous and isotropic sphere embed-
ded in a nondispersive medium under plane wave illumination is often referred
to as Mie scattering. However, Gustav Mie was not the first to formulate this
electromagnetic scattering problem (1908). Before him, Ludvig Lorenz solved
this problem independently in 1890. The scientific community did not pay too
much attention to this contribution because it was written in Danish. It re-
mained hardly known even after it had been translated to French. Also, Lorenz
did not connect his derivation with the Maxwell’s theory of electromagnetics.
Moreover and independently, Peter Debye considered the very related radiation
pressure problem on a spherical particle using two scalar potential functions.
Accordingly, the scattering by a homogeneous isotropic sphere embedded in
a nondispersive host medium under plane wave illumination has also been re-
ferred to as Lorenz-Mie theory, or even Lorenz-Mie-Debye theory. However,
Mie’s name has predominantly stuck in the most recent literature. This recog-
nition did not certainly arrive just after publishing his work, titled “Beiträge
zur Optik trüber Medien, speziell kolloidaler Metallösungen” (Contributions to
the optics of turbid media, particularly colloidal metal suspensions) [12]. This
paper aim at a fundamental theoretical explanation of the beautiful coloration
of metals, specifically gold, in a colloidal state. At that time, Mie, and the
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optical community, considered his treatise to be a relatively trivial application
of Maxwell’s electromagnetics. Moreover and importantly, Mie’s theory could
not be numerically corroborated at that time due to the absence of computers.
Due to these facts, Mie’s work remained almost unnoticed for over 50 years.
As a result, the paper is often referred to as “Sleeping Beauty” because of its
late recognition considering both the increased interest in the field and the
actual increasing number of citations.
This late recognition doubtless arrived after the book of Stratton (1941) [35].
In the latter, the Mie theory was reformulated in terms of the vector spherical
harmonics (VSWFs), making the Mie theory more accessible and understand-
able for a broad scientific audience. Besides Stratton’s book, a crucial role
in the Mie theory dissemination and popularization has been played by the
monographs by Born and Wolf (1959) [36], Kerker (1969) [37], and Bohren
and Huffman (1983) [38]. However, the monograph by van de Hulst (1957) [9]
has had by far the most significant impact on the dissemination of Mie’s work.
As a result, the Mie theory’s physical picture, which was initially restricted
to the scattering of a homogeneous sphere embedded in a nonabsorbing host
medium under plane wave illumination, extended to more complex scattering
systems. Examples of these can be found, for instance, in the seminal work
done by Mundy et al. in 1974 [39], in which an absorbing host medium can be
included in the scattering system, or in work done by Aden and Kerker [40], in
which the typical homogeneous Mie sphere can be replaced by a coated sphere
made of two different materials. With growing interest in magnetic nanos-
tructures, these works, among others, motivated Kerker, Wand, and Miles to
extend the physical picture of the Mie theory, initially derived for spheres with
µ = 1, to magnetic spheres with µ 6= 1 [29]. In this seminal work, the authors
predicted an anomalous zero optical backscattering condition regardless of the
sphere’s size when the magnetic sphere’s optical response satisfies ε = µ, ε is
the electrical permittivity of the sphere. In this scenario, they also showed
that the state of polarization of the scattered wave is preserved. On the other
hand, the authors also predicted, in the limit of the small particle (Rayleigh
scattering), a zero light scattering condition in the forward direction when the
condition ε = (4 − µ)/(2µ + 1) is met. At this optical response, the state of
polarization was predicted to flipping its incoming handedness. Nevertheless,
as occurred with the Mie theory in its early ages, these predictions remained
almost unnoticed due to the lack of magnetic materials at optical frequencies.
Moreover, a fundamental theoretical explanation of these “anomalous light
scattering phenomena” associated with the so-called first and second Kerker
conditions was somehow missing. Before proceeding to explain these “anoma-
lous Kerker conditions,” let us briefly discuss the concepts of both angular
momentum (AM) and polarization of light since they are needed for this task.
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1.3 Spin-orbit interactions of light

Like all phenomena involving waves, light has mechanical properties such as
energy and linear and AM. The first to suggest that light carries linear mo-
mentum was Johannes Kepler in 16191. By observing the sky at night, he
postulated the existence of radiation pressure to explain why comet tails al-
ways point away from the Sun. Later, in 1909, John Poynting suggested that
polarized light has AM, associated with circular polarization [41]. He linked
this AM to the spin angular momentum (SAM) of light. A single-photon
has a value of ±~ and, thus, is quantized. The first experimental demonstra-
tion of the transfer of SAM from a light beam was carried out in 1936 by
Richard Beth at Princeton University [42]. In this work, Beth showed that
a suspended quarter-wave plate took AM from a circularly polarized beam,
confirming Poynting’s physical insight a few decades before [41]. However, it is
nowadays well-accepted that AM of light not only contains spin but an orbital
contribution. The first work in this direction was done by Humblet [43]. In
this paper, he decomposed the AM of a classical electromagnetic field as a sum
of two terms2: the spin and the orbital angular momentum (OAM). However,
the interest in this work was not much noticed at that time. In fact, it has not
been appropriately taken into account even nowadays considering the current
research activity on the topic.
The interest in the AM doubtless arrived in 1992 by the hand of a group in
the Netherlands [44]. In this work, they demonstrated that light beams with
an azimuthal phase dependence of ei`ϕ carry a net AM regardless of the polar-
ization state it cannot be associated with the SAM. The angle ϕ denotes the
azimuthal coordinate in the beam’s transverse cross-section, and ` can take
any integer value, positive or negative. This OAM has then a value of L = ~`
per photon3. Just as with circularly polarized light, the sign of the orbital
angular moment indicates its handedness concerning the beam direction. The
first experiment of a transfer of OAM to an object was performed in 1995 by
Halina Rubinsztein-Dunlop and coworkers at the University of Queensland in
Brisbane, Australia [45]. Indeed, they used an unpolarized, helically phased
laser beam to impart OAM to a small ceramic particle held by optical tweezers.
Two years later, the Brisbane group repeated the experiment, this time trans-
ferring SAM from a polarized beam to a birefringent particle which encored
Beth’s experiment [46].

1It is worth noticing that Kepler did not name it linear momentum as this concept was
introduced by Isaac Newton in 1687.

2The AM contains a more unfamiliar surface AM. Humblet showed that the time-averaged
flux of AM through a spherical surface, this surface term does not contribute. As a result,
it is usually neglected in most discussions regarding this AM separation.

3We refer to as “per photon” when we define a EM density, just as it is done in quantum
mechanics, `z = E∗i LzEi/|E|2.
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Besides these abovementioned seminal works, there has been an increasing
interest in the so-called spin-orbit interactions (SOI) of light [47]. In other
others, in the interchange between the SAM and OAM in different scenar-
ios. These include spin-Hall effects in inhomogeneous media and at optical
interfaces [48–50], in single homogeneous dielectric spheres [2, 30, 51], spin-
dependent effects in nonparaxial (focused or scattered) fields [31,52], and spin-
controlled shaping of light using anisotropic structured interfaces [53].
Rigorously speaking, though, the separation from the total AM into its SAM
and OAM contributions cannot be made on firm physical grounds out of the
paraxial approximation [54]. This incompatibility is motivated since both SAM
and OAM operators break the transversality requirement and throw vectors
out of the Hilbert space of transverse Maxwell fields [54]. Consequently, an
effective transfer between the two quantities is not an entirely satisfactory
explanation for physical phenomena. Moreover, in the previous work, it is
demonstrated that a field’s polarization is not a contributor to its AM, in
striking contrast to the current state-of-the-art. These facts motivated Gabriel
Molina-Terriza and his group to use an alternative theoretical framework for
the general and rigorous treatment of the AM of light and its role in light-
matter interactions. As we will shortly see, this is especially interesting in the
fundamental understanding of the first and second Kerker conditions.

1.4 Duality symmetry and high refractive index particles

The fundamental explanation of the origin of the anomalous light scattering
patterns arising at the first and second Kerker conditions arrived through the
seminal work done by Gabriel Molina-Terriza et al. titled “Electromagnetic
Duality Symmetry and Helicity Conservation for the Macroscopic Maxwell’s
Equations ” [3]. They proved that when ε = µ is satisfied, a non-geometrical
symmetry, namely, the electromagnetic duality symmetry, broken in the micro-
scopic Maxwell’s equations by the presence of charges, can be restored for the
macroscopic Maxwell’s equations. This duality restoration leads the system
to preserve the helicity of the electromagnetic field interacting with it, which
Calkin previously showed for the electromagnetic fields in vacuum 1965 [55].
The helicity, defined as the normalized projection of the total AM onto the
linear momentum of the wave, Λ = (J · p)/|p|, describes the state of polariza-
tion in the frame of reference of the wave. A useful interpretation of helicity
can be obtained by considering the electromagnetic field’s expansion as a su-
perposition of plane waves. In that representation, we can link helicity with
the handedness of each plane wave. The scattering of an object will present
a well-defined helicity if all plane waves are circularly polarized and have the
same handedness to the direction of the wave’s momentum, as can be inferred
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a) b) c)

Figure 1.1 – Electromagnetic fields decomposed in left and right circularly
polarized plane waves. (a) Well-defined helicity Λ = +1. (b) Well-defined
helicity Λ = −1. (c) Undefined helicity since both left and right circularly
polarized plane waves appear in the decomposition.

from Fig. 1.1. This explanation provides a fundamental explanation of the
state of polarization’s invariance, first introduced by Kerker, Wang, and Miles
in 1983 [56]. Notably, the zero optical backscattering condition can also be
understood through both the preservation of helicity (duality symmetry) and
the conservation of the total AM in the incident direction of the wave (rota-
tional symmetry) in the following way [4]. From the definition of the helicity
and at backscattering we have p = −|p|, and hence, Λ = −Jz. However, if
the electromagnetic duality is restored (dual material), the helicity must be
preserved, identical to the AM of the incident PW per photon, i.e., Λ = Jz.
Both relations cannot be fulfilled simultaneously, and consequently, the only
solution is that no backscattered plane wave can exist. Although rigorously
demonstrated by Molina-Terriza and his former group in Sidney, the restora-
tion of duality leads to the conservation of the state of polarization, and the
zero optical backscattering condition requires the existence of magnetic mate-
rials (µ 6= 1). However, these do not exist at optical frequencies, and hence,
they could not be experimentally corroborated.
Almost simultaneously, another group led by Prof. Juan Jose Saenz brought
to the physical scene the so-called high refractive index (HRI) materials [14],
which present at optical frequencies resonant electric and magnetic modes with
reduced dissipative losses, in contrast to plasmonic particles [17,57]. Until that
date, the vast majority of the efforts were devoted to metallic nanoparticles
that present well-defined resonances due to the electrons’ collective excita-
tion [58–60]. Plasmon resonances are strongly dependent on the material,



Duality symmetry and high refractive index particles xxix

shape, and size of the supporting elements, allowing for manipulating and
tuning light at the subwavelength scale [61–63]. For these reasons, it was pre-
sumed to open the door to the control of light behavior [64]. However, due to
the high losses, heating, and incompatibility with complementary metal-oxide-
semiconductor fabrication processes at working frequencies, a relatively small
number of applications have been realized in practice. Moreover, the absence
of magnetic response at optical frequencies limited their widespread use.
In contrast, dielectric and semiconductor nanoparticles with a HRI, such as sili-
con or germanium in the visible and telecom spectral range, present themselves
as a real alternative to plasmonic particles [13–16]. For small HRI nanoparticles
under plane wave illumination, the optical response of these objects can be fully
described by just electric and magnetic dipolar modes with a negligible contri-
bution from higher orders multipolar modes [13–16]. In this scenario, and when
the electric and magnetic dipolar polarizabilities oscillate in-phase and with
equal amplitude, the first Kerker condition is satisifed [23], and then, the zero
optical backscattering condition is met [65–67]. This absence of backscattered
light prediction was experimentally demonstrated first for millimeter-scale ce-
ramic spheres in the microwave regime [65] and shortly after for nanometer-
scale HRI Si [67] and GaAs [66] nanospheres. Since then, the study of Kerker
conditions has been significantly expanded and generalized, becoming ubiqui-
tous in Nano-Optics and Photonics [68,69]. New Kerker phenomena have been
shown to emerge from the interplay between dipolar and higher-order multi-
polar responses [70–73], from non-spherical particle’s shapes [74, 75] or from
near-field [76,77], and structured beam illumination [78–81].
In contrast with the first Kerker condition, the zero-forward condition, which
arises when the second Kerker condition is satisfied in the dipolar regime, is
strictly inhibited by the optical theorem [82–86]. As an alternative defini-
tion, we can consider the generalized second Kerker condition (GSKC) [23],
corresponding to crossed electric and magnetic dipoles of equal amplitude os-
cillating in anti-phase. Strong suppression of forwarding scattering was as
well experimentally observed in the microwave regime [65] at this condition, in
agreement with the near-zero-forward intensity condition for Rayleigh parti-
cles [23,84]. Strong suppression of forwarding scattering is an important issue
in light transport and scattering in nanostructured complex media [87–95].
Significant efforts have been made in this direction to find novel efficient ways
to control the directionality of light propagation in a broader sense, not just
optimizing the scattering of light in the forward and backward directions, but
also introducing the steering or switching of light [96,97].
Another interesting regime that has been actively exploited within HRI nanos-
tructures is nonlinear optics, in particular, for second and third harmonic
generation4 [98, 99]. The latter plays a key role in the excitation of the so-

4Harmonic generation denotes a nonlinear optical process in which n photons with the
same frequency interact with a nonlinear material, are “combined,” and generate a new
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called non-radiating anapole5 [100]. In short, a non-radiating anapole refers
to as the physical scenario in which the total scattering is identical to zero,
yet the electromagnetic energy is enhanced inside the particle6. As a result,
the target under illumination feels the incoming radiation’s presence, yet light
propagates without an effective change in its linear momentum. Indeed, the
tunability of the electric and magnetic modes of HRI nanostructures has been
widely employed to reach the anapole state [101]. The electric anapole has
been observed for HRI nanodisks [26, 28, 102–104], nanowires [105–108], or
core-shells [109,110] under PW illumination. Further, tightly focused radially
polarized beams, which do not excite the magnetic multipole components, have
been presented as a possible approach to unveil anapoles in HRI spheres in the
limit of small particle [111,112]. However, the simultaneous suppression of the
electric and magnetic dipolar scattering efficiencies for larger spheres under
plane wave illumination, at the so-called hybrid anapole [27], is still a matter
of research.
HRI dielectric nanoantennas can also be extended to more complex systems,
such as the so-called metasurfaces [113]. These structures are just flat ultrathin
optical components consisting of arrays of subwavelength optical particles [114].
The optical properties of metasurfaces are determined by the electric and mag-
netic resonant properties of the constituting HRI nanostructures. One example
of this phenomena is the enhanced transmission efficiency that a metasurface
supports when its unit cell acts as Huygens’ sources [115]. Namely, when its
constituting HRI nanostructures maximize the optical transmission with zero
reflection. On the other hand, perfect flat reflectors have also been reported us-
ing metasurfaces by tunning the two electric and magnetic dipolar resonances’
spectral separation [116,117].
Having now introduced the most relevant fields in which HRI nanostructures
are employed, namely, control of the directionality of light through Kerker con-
ditions, optical invisibility given by the anapole state, or optical metasurfaces,
let us move on to the main structure of the Thesis.

1.5 Thesis structure

The structure of this Thesis is organized as follows: In Chapter 2, we present
the fundamental tools used in the Thesis. After the introductory Chapter, we

photon with n times the energy of the initial photons.
5The term anapole, meaning “without poles” in Greek, was introduced in the physics of

elementary particles by Yakov Zel’dovich.
6Notice that this definition does not need of the traditional Cartesian decomposition, in

which the anapole state is explained by means of the destructive interference between the
electric dipole and electric toroidal dipole. For a rigorous explanation, check Ref. [100].
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present the main research results in five Chapters. Their respective highlights
are summarized in the following items:

• In Chapter 3, we show that a Si nanosphere satisfying the first Kerker
condition can give rise to a divergent apparent-shift in the backscattering
direction. We analyze this optical localization error, commonly referred
to as optical mirage, from two frameworks: SOI of light and helicity
conservation. Our results go beyond previous studies that only consider
apparent displacements from Rayleigh spheres.

• In Chapter 4, we demonstrate that the SOI of light expressions, optical
mirage, and g-parameter are linked and entirely determined by a mea-
surement of helicity at the perpendicular direction to the incoming plane
wave. From this finding, we reveal that SAM and helicity are not equiv-
alent. Moreover, we demonstrate that the maximum optical mirage does
not correspond to the SAM’s zeros, in contrast to what occurs when only
considering a pure electric dipole. We also analyze how absorptive effects
may modify the abovementioned magnitudes.

• In Chapter 5, we demonstrate that either losses or optical gain inhibit the
restoration of the EM duality for the scattering by a single homogeneous
dielectric sphere. This phenomenon precludes the conservation of helicity
and the zero optical backscattering condition for pure-multipolar regimes.
Finally, we demonstrate that optical gain is a compulsory requirement
to achieve zero forward light scattering.

• In Chapter 6, we analyze the physics behind the GSKC for subwavelength
electric and magnetic dipolar particles. At this optical condition, we find
that the scattered light does not always lie in the backward semi-sphere,
in striking contrast to the current state-of-art.

• In Chapter 7, we show that helicity conservation can be used as a probe of
pure-multipolar spectral regions. Under PW illumination, we show that
the dipolar behavior is not necessarily limited to small particles, con-
trary to what could be expected. In these unexplored dipolar regimes,
we demonstrate that the optimum forward light scattering condition does
not (only) appear for a given refractive index but to a given size param-
eter.



a



CHAPTER 2

Methods

Light is in the range of the electromagnetic spectrum where the wave-particle
duality is most significant. This region is where low energy radiation, described
like waves, and high energy radiation, related like particles, come together. Its
interaction with matter is a complex phenomenon that can be addressed in
different ways. Although the most precise description is given by quantum
electrodynamics, in nano-optics, a large number of problems can be tackled
by considering a semi-classical approach. Usually, it is primarily sufficient to
adopt a wave picture to describe the optical radiation, allowing the use of
classical field theory based on Maxwell equations.
In this Chapter, we start by introducing in Section 2.1 Maxwell’s and Helmholtz
equations together with the transversal continuity of the EM fields between two
different media. In Section 2.2, we show that the incident, internal, and scat-
tered EM fields can be expressed on a suitable multipolar basis. In Section 2.3,
we explicitly write down the electric and magnetic Mie coefficients to show a
new way to express the first Kerker condition. In Section 2.4, we present the
scattering, extinction, and absorption efficiencies. Finally, we show in Sec-
tion 2.5 that the g-parameter may be used as a signature of duality restoration
in pure-multipolar spectral regimes.
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2.1 Maxwell equations

The underlying dynamics of interacting charged particles and EM fields are
described by Maxwell’s equations [34]. These equations are formulated as
macroscopic equations that describe the dynamics of EM fields in materials
that can be described by their dielectric response,

∇ ·B = 0, (1)

∇ ·D =
ρext

ε0
, (2)

∇×E = −∂B

∂t
(3)

∇×H =
∂D

∂t
+ Jext. (4)

Here E and H are the electric and magnetic fields, respectively, D is the
electric displacement, and B the magnetic induction. Moreover, ρext and Jext

denote the free density charge and density current, respectively. For further
convenience, we use here Maxwell’s equations in the Fourier domain [38], where
the harmonic time-dependence of the EM fields is assumed, e−iwt, with w
being the frequency of light. Then, any field can be expressed as A(r, t) =
Re{A(r)e−iwt}, where A(r) represents a complex-amplitude vector and Re{}
denote the real part.
In this description, Maxwell equation’s can be re-written as,

∇ ·B = 0, (5)

∇ ·D =
ρext

ε0
, (6)

∇×E = iwB, (7)

∇×H = −iwD + Jext. (8)

At this point, it is useful to make use of the constitutive relations,

D = ε0E + P, (9)

B = µ0H + M, (10)

with ε0 and µ0 being the electric permittivity and magnetic permeability in
vacuum. P denotes the polarization density, namely, the density of molecular
dipole moments induced by the electric field [38]. Similarly, M, defined as the
magnetization density, is the density of molecular magnetic dipole moments
induced by the magnetic field. Since we will be dealing with an isotropic, non-
dispersive, homogeneous, and linear media, the constitutive relations reduce
to D = εE and B = µH. Here ε and µ are scalars that define the electric
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and magnetic properties of the medium, respectively. In this scenario, the
macroscopic Maxwell’s equations can be written only as functions of E and H,

∇ ·H = 0, (11)

∇ ·E =
ρext

ε
, (12)

∇×E = iwµH, (13)

∇×H = −iwεE + Jext. (14)

One interesting feature of Maxwell’s equations is that in the absence of free
charges and currents (ρext = Jext = 0), it is possible to obtain a non-trivial
solution. In this scenario, by applying the curl operator and taking into account
the vector calculus identity, ∇×∇×A = ∇ (∇ ·A)−∇2A, we arrive to

∇2E + k2E2 = 0 and ∇2H + k2H2 = 0, (15)

where k = w
√
εµ is the wave-number in the medium. Equation (15) is com-

monly referred to as Helmholtz equation for the vectorial EM fields. As above-
mentioned, it has a non-trivial solution even in the absence of free charges and
currents. However, its solution crucially depends on the boundary conditions
(BC). Firstly, the EM fields must vanish at infinity and be finite everywhere
else. Secondly, the following relation must be satisfied between two different
media, denoted by {E1,H1} and {E2,H2}, respectively,

(ε2E2 − ε1E1) · n̂ = σsurf , (ε2H2 − ε1H1) · n̂ = 0,

n̂× (E2 −E1) = 0, n̂× (H2 −H1) = jsurf . (16)

Here σsurf denotes the surface charge density at the surface, jsurf is the surface
current density; n̂ is the unitary normal vector to the interface between 1 and
2. From these expressions, it is noticeable that the tangential components of
E and H must be continuous, while the normal components of D = εE and
B = µH can be discontinuous depending on the properties of the interface.

2.2 Multipolar expansion of the electromagnetic fields

Before applying the BC conditions mentioned above to obtain the internal and
scattering Mie coefficients, let us briefly introduce the electromagnetic fields’
multipolar expansion. This expansion is beneficial to describe EM interactions
with spherical symmetry and has been widely used in different branches of
physics ranging from nanoantennas to nuclear physics. Perhaps this is the
reason that explains why there is not an unified notation for them. Throughout
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this Thesis, we will make use of a convenient linear combination of the vector
spherical wavefunctions (VSWFs),

Ξσ
lm =

1√
2

[
∇× gl(kr)Xlm

k
+ σgl(kr)Xlm

]
, (17)

gl(kr) = A
(1)
l h

(1)
l (kr) +A

(2)
l h

(2)
l (kr), (18)

Xlm =
1√

l(l + 1)
LY ml (θ, ϕ), (19)

Following Jackson’s notation [118], Xlm denote the vector spherical harmonics,
with X00 = 0, gl(kr) is a linear combination of the spherical Hankel functions,
Y ml (θ, ϕ) are the scalar spherical harmonics, and L = −i (r×∇) is the OAM
operator. The quantum numbers l, m, and σ = ±1 denote the eigenvalues of
the square of the total AM [119], J2, the AM in the incident direction [119], Jz,
and helicity [54], Λ, respectively. The multipoles Ξσ

lm can be built following
the standard rules of AM addition [119,120] as simultaneous eigenvectors of J2,

Jz, with J = L +
↔
S given by the sum of the OAM, L, and SAM,

↔
S, operators:

↔
S ≡ iI× , L ≡ {−ir×∇} (20)
↔
Si = êi ·

↔
S = iêi × . (21)

Here êi=x,y,z indicates unitary Cartesian vectors and I is the unit dyadic.
Moreover, these multipoles are as well eigenvectors of the helicity operator for
monochromatic fields, which can be expressed without loss of generality as
Λ = (J · p)/|p| = (1/k)∇× [54].
Therefore, the multipoles Ξσ

lm are then simultaneous eigenvectors of J2, Jz,
and Λ, i.e. :

J2Ξσ
lm = l(l + 1)Ξσ

lm (22)

JzΞ
σ
lm = mΞσ

lm (23)

ΛΞσ
lm ≡ 1

k
∇×Ξσ

lm = σΞσ
lm (24)

Depending on the domain in which the EM fields are defined, we shall write
Ξσ
lm = Ψσ

lm if gl(kr) = jl(kr) = jl (incident and internal EM fields) while
Ξσ
lm = Φσ

lm if gl(kr) = hl(kr) = hl (scattered EM fields). In this notation,
jl and hl denote the spherical Bessel and Hankel functions, respectively [118].
The orthonormalization relation for Ξσ

lm is given by∫
Ω

Ξσ
lm
∗ ·Ξσ′

l′m′ dΩ =
1

2

(
|gl|2

(
1 +

l(l + 1)

(kr)2

)
+

1

(kr)2

∣∣∣∂ (rgl)

∂r

∣∣∣2) δσσ′δll′δmm′ (25)

where dΩ = sin θdϕdθ and, again, gl = jl accounts for internal and external
EM fields and gl = hl for the EM scattered field.
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An explicit expression of the VSWFs in spherical polar coordinates (with uni-
tary vectors êr,θ,ϕ) is given by

Ξσ
lm = êr i

√
l(l + 1)

2

gl(kr)

kr
Y ml

+ êθ
1√

2l(l + 1)

{
−gl(kr)

( σm
sin θ

Y ml

)
+ ig̃l(kr)

(
∂Y ml
∂θ

)}
+ êϕ

1√
2l(l + 1)

{
−g̃l(kr)

( m

sin θ
Y ml

)
− iσgl(kr)

(
∂Y ml
∂θ

)}
,

with

g̃l(kr) ≡ gl−1(kr)− l gl(kr)
kr

= (l + 1)
gl(kr)

kr
− gl+1(kr). (26)

2.3 Mie theory: Scattering and internal coefficients

The solution to the Mie theory arises by imposing Eq. (16) to the EM fields
evaluated at the surface of the sphere in the absence of free currents,

r̂× (E2 −E1) = 0, r̂× (H2 −H1) = 0. (27)

where n̂ = r̂ is the radial unit vector.
The EM fields outside of the sphere are given by the sum of both incident and
scattered EM fields, {E2,H2} = {Ei + Esca,Hi + Hsca} while in the inside
of the sphere are given by the internal fields, {E1,H1} = {Eint,Hint}. As a
result, Eq. (27) becomes

r̂× (Esca + Ei −Eint) = 0, r̂× (Hsca + Hi −Hint) . (28)

Under circularly polarized PW illumination , these electric fields are given by

Eσ
i =

∞∑
l=0

+l∑
m=−l

∑
σ′=±1

Cσσ
′

lm Ψσ′

lm, (29)

Eσ
int =

∞∑
l=0

+l∑
m=−l

∑
σ′=±1

Fσσ
′

lm Φσ′

lm, (30)

Eσ
sca =

∞∑
l=0

+l∑
m=−l

∑
σ′=±1

Dσσ′

lm Φσ′

lm, (31)
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where

Cσσ
′

lm = σil
√

4π(2l + 1)δmσδσσ′ , (32)

Fσσ
′

lm = −il
√

4π(2l + 1)
σcl + σ′dl

2
δmσ, (33)

Dσσ′

lm = −il
√

4π(2l + 1)
σal + σ′bl

2
δmσ. (34)

Here {al, bl} are the electric and magnetic scattering Mie coefficients while
{cl, dl} denote the electric and magnetic internal Mie coefficients. The mag-
netic field is given by ZH = −iΛE, where Z =

√
µ/ε is the medium impedance.

The steps needed to solve Mie theory under PW illumination are explicitly
shown in many light-scattering books such as Bohren and Huffman [38] (with
the e−iwt convention) or van der Hulst [9] (with the eiwt convention). As a
result, we will not repeat here its tedious yet elegant calculation. Instead, we
will comment on some overlooked aspects of the physics behind these results.
So, by inserting Eqs. (29)-(31) into the BC shown in Eq. (28) and after some
cumbersome algebra, we arrive to the explicit expressions of the scattered and
internal Mie coefficients,

al =
mSl(mx)S′l(x)− Sl(x)S′l(mx)

mSl(mx)C ′l(x)− Cl(x)S′l(mx)
,

bl =
Sl(mx)S′l(x)−mSl(x)S′l(mx)

Sl(mx)C ′l(x)−mCl(x)S′l(mx)
,

cl =
Sl(x)C ′l(x)− S′l(x)Cl(x)

mSl(mx)C ′l(x)− Cl(x)S′l(mx)
,

dl =
Sl(x)C ′l(x)− S′l(x)Cl(x)

Sl(mx)C ′l(x)−mCl(x)S′l(mx)
.

(35a)

(35b)

(35c)

(35d)

Here, the scatterer (and the host medium) is assumed to be non-magnetic, so
the permeability contrast is µ = µp/µh = 1, where the sub-indices p and h refer
to particle and host medium. The refractive index contrast is denoted by m =

mp/mh, Sl(z) = zjl(z) and Cl(z) = zh
(1)
l (z) are the Riccati-Bessel functions,

and the argument x = ka = mhk0a = 2πmh(a/λ0) is the size parameter.
Here a denotes the radius of the sphere and λ0 the incident wavelength in
vacuum. As introduced in Sec 1.2, The first Kerker condition, at which both
the incoming helicity is preserved and the zero optical condition is satisfied,
is given by setting a1 = b1 in the dipolar regime. An interesting feature that
had not been explored until the publication of some of our works [10, 11] is
how the scattering Mie coefficients behave when the first Kerker condition
is satisfied. Generally and out of the dipolar regime, this is given by al =
bl. As a matter of fact and by exploring the mathematical nature of both
Eq. (35a) and Eq. (35b), it is straightforward to notice that al = bl arises
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for either Sl(mx) = 0 (node of first kind) or S′l(mx) = 0 (node of second
kind) [9]. The beauty of this representation lies in the extreme simplification
of the first Kerker condition. As we discuss in Chapters 5 throughout the nodes
notation, the first Kerker condition cannot be obtained for lossy spheres. This
phenomenon precludes the conservation of the EM helicity after scattering,
and hence, the restoration of the EM duality. Moreover, by using some helpful
mathematical proofs concerning Bessel functions, we also demonstrate that, for
lossless spheres, the scattering cannot preserve EM helicity in general terms.
It is only conserved in the physical scenario in which a pure-multipolar order
l contributes to the optical response. This finding allowed us to get some
insight into unexplored dipolar regimes that arise well beyond the electric
and magnetic quadrupolar resonances for HRI under plane wave illumination,
contrary to what was assumed by the broad optical community [13–16]. This
precise result can be found, for instance, in Chapter 7.
Summarizing, the reader will note that although the Mie coefficients were
calculated over 100 years ago, there still new physics behind them. However,
to fully understand the physics of the following Chapters, we need to introduce
measurable quantities in a laboratory, such as the extinction, scattering, and
absorption cross-sections.

2.4 Optical theorem and cross-sections

In the previous section, we have shown the EM field’s expressions under a
circularly polarized plane wave. Nonetheless, it is not easy to measure the
EM field in experiments at optical frequencies. Hence, we need to derive some
physical magnitudes that could be experimentally determined. An example
of this quantity is the radiation’s EM power in its geometrical representation
(cross-sections), as we will shortly see. In order to do that, we first need to
define the time-averaged Poynting vector [118].

〈St〉 =
1

2
Re{Et ×H∗t} = 〈Si〉+ 〈Ssca〉+ 〈Sext〉, (36)

where

〈Si〉 =
1

2
Re{Ei ×H∗i }, (37)

〈Ssca〉 =
1

2
Re{Esca ×H∗sca}, (38)

〈Sext〉 =
1

2
Re{Ei ×H∗sca + Esca ×H∗i }. (39)

The flux of the Poynting vector across a closed surface containing the scatterer
is defined by the energy flux per unit of area and time, accounting for the loss
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or gain of energy inside the surface. This magnitude, accounting for energy
conservation, and hence, the optical theorem [38]. This is defined as follows,

Wabs = −
∫
A

〈St〉 · r̂ dA =
�
��

�
��
�*0∫

A

〈Si〉 · r̂ dA+

∫
A

〈Ssca〉 · r̂ dA︸ ︷︷ ︸
Wsca

−
∫
A

〈Sext〉 · r̂ dA︸ ︷︷ ︸
Wext

,

(40)
where dA = r2 sin θdθdϕ. In Eq. (40), we have used that the power carried
by the incident EM wave is strictly zero for a non-absorbing host medium. In
other words, the flux entering this imaginary surface surrounding the scatterer
is identical to the one that is coming out. Moreover, it is clear that if the scat-
terer does not absorb some of the incident radiation, Eq. (40) is identical to
zero7. Nevertheless, this plausible phenomenon does not imply that the Wsca

and Wext vanish. As a matter of fact and as briefly introduced in Sec 1.4, this
physical scenario would correspond to the excitation of the anapole state [26],
in which the particle under illumination does not scatter, and light propa-
gates without a change of its linear momentum. However, in general terms,
Wsca 6= 0 and Wext 6= 0, and then, both scattering and extinctions contribu-
tions are accessible in a laboratory. Wext accounts for the total amount of
energy (scattering plus absorption) removed from the incident wave due to the
presence of a particle. As a result, it is convenient to express Wext in terms of
the incoming wave’s irradiance. This is nothing but the concept of the extinc-
tion cross section [38]. The explicit extinction and scattering cross-sections’s
calculations can be found again in Bohren’s [38] and Hulst’s [9] books. In
those books, they show that these scattering cross-sections do not depend on
the incoming PW’s polarization 8 and read as

σsca =
Wsca

Ii
=

2π

k2

∞∑
l=1

(2l + 1)
(
|al|2 + |bl|2

)
, (41)

σext =
Wext

Ii
=

2π

k2

∞∑
l=1

(2l + 1)<{al + bl}, (42)

where σabs = σext − σsca. Here, it is used the incoming radiance of a PW.
The calculation of the incoming irradiance is straightforward and does not
depend on polarization. Indeed and by taking into account the most generic
expression of a PW, E = E0e

i(k·r)û, û being any polarization unit vector, we
arrive to Ii = |〈Si〉| = ZE2

0 . Equations (41)-(42) represents the extinction and
scattering cross-sections for a homogeneous sphere under PW illumination.

7Besides absorptive effects, another case for Wabs 6= 0 occurs in the presence of gain, i.e.,
when energy is pumped onto the system. This scenario will be discussed in Chapter 5.

8Notice that the polarization of the incoming wave cannot play any role in the energy
conservation as it is decoupled from Mie coefficients.
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However, it is convenient to introduce efficiencies (or efficiencies factors) for
these cross-sections.

Qsca =
σsca

G
, σext =

σext

G
, (43)

where G is the cross-sectional particle area projected onto a plane perpendic-
ular to the incident beam (e.g., G = πa2) for a sphere of radius a. The word
“efficiency,” together with the intuitive notions molded by geometrical optics,
might lead us to believe that extinction efficiencies can never be greater than
unity. Indeed, if geometrical optics were an utterly trustworthy guide into
the world of small particles, the extinction efficiency of all particles would be
identically equal to unity: all rays incident on a particle are either absorbed
or deflected by reflection and refraction. However, in Nanoptics, interference
effects must be taken into account, and hence, this physical picture does not
simply hold. The efficiencies will be used constantly throughout this Thesis,
and hence, they deserve a box in this section, just as the scattering and internal
Mie coefficients,

Qsca =
2

x2

∞∑
l=1

(2l + 1)
(
|al|2 + |bl|2

)
,

Qext =
2

x2

∞∑
l=1

(2l + 1)<{al + bl},

(44a)

(44b)

where Qabs = Qext −Qsca.
The aim of maximizing the scattering at the first Kerker condition has been ad-
dressed in previous works [121,122]. By using numerical methods, it was found
that a particular refractive index material (m = 2.45) was the best candidate
to fulfill the so-called optimum forward light scattering condition in the dipolar
regime [121,122]. However, by imposing the first Kerker condition in the dipo-
lar regime through the nodes notation, S′1(mx) = 0, it is straightforward to
notice that the electric and magnetic scattering Mie coefficients do not depend
on m. Indeed, they become a1 = b1 = S′1(x)/C ′1(x). As a result, we will show
that the scattering efficiency presents an infinite number of optimum forward
light scattering conditions for a fixed x size parameter that maximizes Qsca.
A throughout study of this striking phenomenon can be found in Chapter 7,
where these concepts are deeply studied.

2.5 Diferential cross-section and g-parameter

So far, we have introduced the concepts of the extinction, scattering, and
absorption cross sections. These are measurable quantities in a laboratory
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and account for the energy removed from the incident light-wave due to the
presence of a target. However, these cross sections do not give any insight into
the directionality of light; e.g., in an experiment, one could measure the same
scattering efficiency at the first and second Kerker conditions. At these, light
lies entirely in the forward and backward semi-plane, respectively. As a result,
we need an extra magnitude to take into account.
The directionality of the scattered light in the far-field limit, which is one of the
key ingredients in this Thesis, is governed by the differential cross-section [38],

dσsca

dΩ
= lim
kr→∞

r2 〈Ssca〉 · r̂
|〈Si〉|

, with

∫
Ω

dσsca

dΩ
dΩ = σsca. (45)

Equation (45) gives then some insight into the far-field energy pattern of the
scattered wave. This angular distribution depends on the object’s optical re-
sponse. As a result, it may result convenient to anticipate this scattering
pattern from an other physical magnitude that contains the optical properties
of the scatterer. As a matter of fact, this is given by the asymmetry parameter
(g-parameter), which can be straightforwardly computed from Eq.(45) as

g = 〈cos θ〉 =

∫
dσsca

dΩ cos θ dΩ

σsca
. (46)

For a particle that scatters light isotropically (i.e., the same in all directions),
g vanishes. If the particle scatters more light toward the forward direction
(θ = 0), g is positive. Contrary, g is negative if the scattering is directed more
toward the backward direction (θ = π). For a homogeneous sphere, it can
be shown that after some cumbersome but trivial algebra, the g-parameter
becomes [38]

g =
4

x2Qsca

[∑
l

l (l + 2)

l + 1
<{ala∗l+1 + blb

∗
l+1}+

∑
l

2l + 1

l (l + 1)
<{alb∗l }

]
. (47)

From Eq. (47) we can distinguish two terms: one that involves an interference
between l and l+ 1 terms (e.g. dipolar and quadrupolar), and other that only
mixes the electric and magnetic Mie coefficients of the same multipolar order
l. Since in this Thesis we will mainly focus on the dipolar regime (l = 1) the
first term can be neglected. In this scenario, the g-parameter becomes

g =
Re {a1b

∗
1}

|a1|2 + |b1|2
. (48a)

From this equation, it is straightforward that the maximum value of the g-
parameter is given by the first Kerker condition, i.e., g = 0.5⇐⇒ a1 = b1. As
we show in Chapter 4, there is unexplored physics behind this phenomenon.
As a matter of fact, in Chapter 4, we demonstrate an intriguing equivalence
between helicity after scattering and the g-parameter.
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2.6 Summary

In this chapter, we summarise the fundamental tools used in the following chap-
ters. We have introduced, among others, Maxwell equations, electric and Mie
coefficients, scattering, extinction, and absorbing efficiencies, and g-parameter.
The reader will shortly test that within the boxed expressions in this Chapter,
we can explore a huge amount of information that had not been previously
discussed to the best of my knowledge. Nevertheless and as previously com-
mented, detailed discussions of the electromagnetic theory can be found in
general text-books [9, 35,38,118].
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CHAPTER 3

Enhanced spin-orbit optical
mirages from dual nanoparticles

3.1 Introduction

In addition to energy and linear momentum, a light wave carries AM [41–43]
that can be split into spin angular momentum (SAM) and orbital angular
momentum (OAM) contributions [45, 123–125]. The interplay between these
components is commonly referred to as spin-orbit interactions (SOI) of light
and has attracted a great deal of interest in the past years [47,124,126,127].
An interesting analogy between the SOI in light and the spin Hall effect (SHE)
in electronic systems can be drawn [128, 129]. In the latter, electrons with
different spins (up and down) are deflected asymmetrically by scattering off
impurities due to the SOI. This well-known phenomenon drives to a transverse
spin current that, in turn, induces a measurable spin accumulation at the sam-
ple edges. One of the microscopic origins of the SHE is the so-called side-jump
mechanism [1], in which a spin-dependent displacement of the center of mass of
the electronic wave packet occurs as a result of the SOI effect [130,131]. Simi-
larly, an apparent transversal shift of a target particle induced by light scatter-
ing can be derived by an AM exchange in the context of SOI of light. Hereafter,
this effect is referred to as optical mirage and has been observed in several sce-
narios, for example, in beams impinging on a dielectric surface [48,50] or when
considering a target with spherical symmetry described by a single electric (or
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magnetic) polarizability [2]. In the latter case, the apparent displacement of
the pure electric (or magnetic) dipolar particle localization does not depend on
the optical properties, but on the scattering angle, with opposite displacements
for incident left and right circularly polarized photons (well-defined handed-
ness), as occurs with the spin of electrons after scattering. The apparent shift
(∆) is maximized at the plane perpendicular to the direction of the incoming
wave taking a value of ∆ = λ/π [2] and thus, for circularly polarized light,
is always below the incident wavelength. Remarkably, it has been recently
shown that this subwavelength limit can be surpassed by illuminating with
elliptically polarized light for small numerical apertures [51]. In the same vein,
for larger multipolar spheres and certain combinations of radius and refractive
index, resonant apparent shifts, reaching tens of wavelengths in magnitude,
were numerically found at some specific angles [30]. These results were in-
terpreted due to a full transfer from SAM to OAM at those directions [30].
At those, the scattered light was presumed to be linearly polarized (being the
SAM identically to zero).

In this Chapter, we demonstrate that by considering a high refractive index
(HRI) spherical particle, sustaining both an electric and magnetic dipolar re-
sponse, this subwavelength maximum limit can be drastically surpassed when
the spherical particle is excited by circularly polarized light (well-defined EM
helicity σ = ±1). In other words, a large macroscopic apparent shift (∆� λ),
even greater than those reported previously [30, 51], arises in the backscatter-
ing region. The scattering system together with the so-called helicity basis is
briefly introduced in Sec. 3.2. Specifically, we show in Sec. 3.3 that this optical
mirage is intimately related to the generation of a spiraling power flow and
can be explained in terms of an AM exchange per photon between the SAM
and OAM contributions in a SOI of light context. In contrast with an earlier
work [30], we exhibit in Sec. 3.4 that, for HRI dipolar spheres, the optical mi-
rage reaches its maximum value at angles where the spin of the photons is sign
reversed, i.e., at directions at which the light is not linearly polarized. Based
on the EM helicity preservation, we straightforwardly demonstrate that the
maximum AM exchange occurs when the system is dual, i.e., when the electric
and magnetic dipolar moments are equal, at the so-called first Kerker condi-
tion [23, 29]. At this first Kerker condition, the scattered light preserves the
incoming EM helicity per photon in all directions with a vanishing intensity
in the backscattering direction. As we show, this zero optical backscattering
condition gives rise to a huge optical mirage associated with the appearance of
a (2σ charge) topological optical vortex [127,132,133]. In Sec. 3.5, we present
the main conclusions which are derived from this Chapter.
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Figure 3.1 – Schematic representation of the optical mirage vector when
considering a clockwise circularly polarized incoming wave (green straight
arrow lying on the z-axis). The observer, represented by an eye, perceives a
non-radial scattered Poynting vector (S1,S2) that leads to an apparent shift
(∆1,∆2) of the dipole localization, both lying on the xy-plane.

3.2 System and methods

We consider a non-absorbing dielectric sphere of radius a and refractive index
mp embedded in an otherwise homogeneous medium with constant and real
refractive index mh. The geometry of the scattering system is sketched in
Fig. 3.1, where we consider a circularly polarized PW with wavenumber k =
mhk0 = mh2π/λ0 (being λ0 the light wavelength in vacuum) and EM helicity
per photon σ = ±1 (we associate left polarized light with a positive EM helicity
per photon, namely, σ = +1) incident along the z-axis.
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Instead of using the traditional multipole Mie expansion to describe the light
which is scattered by the sphere [38], we shall find it useful to work in a basis of
multipoles, Ψσ

lm, which were introduced in Chapter 2, particularly, in Sec 2.2.
Let us recall that these are eigenfunctions of the helicity operator Λ, the total
AM in the incident direction, Jz, and the square of the total AM, J2, [4, 54].
In this basis, the incident field (circularly polarized PW) can be written as:

Eσ
i

E0
=

x̂+ σiŷ√
2

eikz =

∞∑
l=0

+l∑
m=−l

∑
σ′=±1

Cσσ
′

lm Ψσ′

lm, (49)

kZHσ
i = −i∇×Eσ

i , (50)

Cσσ
′

lm = σil
√

4π(2l + 1)δmσδσσ′ , (51)

where 1/Z = ε0cmh (being ε0 and c the vacuum permittivity and speed of light,
respectively). Such circularly polarized PW, with EM helicity per photon σ,
carries a jz = m = σ unit of total AM per photon parallel to the propagation
direction [118]. In a SOI of light description, this unit of total AM is entirely
given by the spin contribution since a PW by definition does not carry OAM;
namely, jz = sz with 〈Lz〉 = 0. In the same basis, the scattered field is given
by

Eσ
sca

E0
=

∞∑
l=0

+l∑
m=−l

∑
σ′=±1

Dσσ′

lm Φσ′

lm, (52)

Dσσ′

lm = −il
√

4π(2l + 1)
σal + σ′bl

2
δmσ. (53)

Here al and bl are the standard electric and magnetic Mie scattering coeffi-
cients, whose explicit expressions can be found in Chapter 2, specifically in
Sec. 2.3. Since a sphere presents axial symmetry around the z-axis, the jz of
the incident beam is preserved and then, the scattered wave can only involve
m = σ. Consequently, Eσ

sca is an eigenfunction of the z-component of the total
(dimensionless) AM operator, J = L + S, with eigenvalue jz = m = σ,

σ =
Eσ

sca
∗ · (Lz + Sz) Eσ

sca

|Eσ
sca|

2 = `z(r) + sz(r), (54)

sz(r) =
−i {Eσ

sca
∗ ×Eσ

sca} · êz
|Eσ

sca|
2 , (55)

`z(r) =
Eσ

sca
∗ · LzEσ

sca

|Eσ
sca|

2 =
−i

|Eσ
sca|

2

{
Eσ

sca
∗ · ∂Eσ

sca

∂ϕ

}
. (56)

Equation (54) shows that the sum of the (dimensionless) OAM, `z(r), and
SAM, sz(r), per photon is constant and equal to the incoming AM per photon.
Note that this sum is valid even in the near field region and it would be valid
even in the presence of absorption, as it is discussed in Chapter 4.
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3.3 Emergence of the optical mirage from the Spiralling
Poynting vector

Let us now consider the scattering from a HRI subwavelength sphere in a
spectral range such that the optical response can be fully described by its first
electric and magnetic dipolar Mie coefficients a1 and b1, i.e. by its electric and
magnetic polarizabilities αE = ia1(6π/k3) and αM = ib1(6π/k3) [14]. We find
useful to split the scattered field into the sum of two components with opposite
EM helicity,

Eσ
sca

E0
= − k3

√
12π

{
(σαE + αm)Ψ+

1σ + (σαE − αm)Ψ−1σ

}
= Eσ+ + Eσ−, (57)

Eσσ′
∼ Eσσ

′
eiσϕ

(
êσ′ + iσ

√
2

kr

σ cos θ − σ′

sin θ
êr + ...

)
, (58)

where the last identity corresponds to the medium-far-field expansion with

Eσσ
′

E0
=

eikr

4πkr
k3

(
σαE + σ′αm

2

)
(σ cos θ + σ′), (59)

êσ′ =
1√
2

(êθ + iσ′êϕ). (60)

The scattered fields by HRI dielectric nanoparticles present several peculiar
properties arising from the interference between the electric and magnetic
dipolar radiation and have been largely discussed both theoretical [13,14] and
experimentally [16, 65–67]. Most of these properties are encoded in the FF
energy-radiation pattern, namely, in the differential scattering cross section,
which in the helicity basis reads as

dσsca

dΩ
= lim

kr→∞
r2 Sσsca · êr

|Si|
= r2 |Eσ+|2 + |Eσ−|2

|E0|2
, (61)

where Sσsca = 〈Sσsca〉 = Re {Eσ
sca
∗ ×Hσ

sca} /2 is the time averaged Poynting
vector9. In the electric and magnetic10 dipolar regime the diferential scattering
cross section is given for the scattering of an homogeneous sphere by [23],

dσscat

dΩ
=

k4

(4π)2

(
|αE|2 + |αm|2

)(1 + cos2 θ

2
+ 2g cos θ

)
, (62)

9In the FF there is no information regarding the polarization of the incoming wave. Note
that this makes completely sense given the fact that the cross-sections, calculated from the
FF expression of the total Poynting vector, cannot depend on polarization effects.

10We refer to as “magnetic” whereas we want to highlight that the dipolar object is not a
Rayleight scatterer, namely, the electric dipolar regime is clearly insufficient to describe the
optical response of the object.
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Figure 3.2 – Poynting vector streamlines with counterclockwise (clockwise)
rotation for σ = 1 (σ = −1) when viewed from the perpendicular direction,
θ = π/2. This figure is valid for any dipolar response, i.e., arbitrary values of
the electric or/and magnetic polarizabilities αE and αM. The orange circle
represents the dipolar particle.

where

g =
Re {a1b

∗
1}

|a1|2 + |b1|2
, (63)

is g-parameter, which has been previously defined in Chapter 2, particularly,
in Sec. (2.5). Although in the strict FF limit the streamflow lines of the
Poynting vector lie along the radial direction, tracing them to their source,
they do indeed spiral towards the origin at shorter distances, in analogy with
the light scattered by an electric dipole excited by circularly polarized light
[2, 30, 134, 135]. Consequently, as sketched in Fig. 3.1, the Poynting vector11,
Sσsca, makes an angle with the line of sight, which drives to an apparent shift
(optical mirage) ∆ in the perceived position of the spherical dipolar particle,
with

∆ = lim
kr→∞

(
êr × (r× Sσsca)

|Sσsca|

)
= lim
kr→∞

(
2i

k |Eσ
sca|

2

Eσ
sca
∗

sin θ
· ∂Eσ

sca

∂ϕ

)
êϕ. (64)

11Note that the Poynting vector emerging from an electric and magnetic dipolar sphere
can be seen in Appendix A.2. Particularly, the scattered Poynting vector when considering
a well-defined EM helicity PW (as it is the case) is explicitly shown in Appendix A.3.
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Taking into account both Eqs. (54)-(56), the optical mirage can be written as

∆

(λ/π)
= −`z(θ)

sin θ
êϕ =

sz(θ)− σ
sin θ

êϕ = −σ
[

sin θ (1 + 2g cos θ)

1 + cos2 θ + 4g cos θ

]
êϕ. (65)

In absence of a magnetic dipolar optical response, which mathematically is
equivalent to set g = 0 in Eq. (65), one recovers the previously reported results
for electric dipoles [2, 30], which were interpreted as a result of transfer from
SAM to OAM [30, 31]. According to those previous works, this AM transfer
is expected to be maximum at those directions at which the scattered light is
linearly polarized, being the SAM of scattered photons identically zero12. For
a pure electric (or magnetic) dipole excited by circularly polarized light, the
maximum AM transfer would occur in the plane perpendicular to the incoming
light (θ = π/2) being the maximum displacement equal to ∆ = λ/π, and
thus, it is always subwavelength. In striking contrast to the purely electric (or
magnetic) case when excited with a circularly polarized field, the field scattered
by electric and magnetic dipoles presents a very different polarization structure
[136]: the scattered radiation on the plane perpendicular to the incoming light
(θ = π/2) is no longer linearly polarized. Notably, this change does not affect
the streamlines of the Poynting vector on this particular plane (as shown in
Fig. 3.2), giving rise to the same subwavelength optical mirage. However,
out of this plane, the optical mirage presents a non-trivial behavior strongly
dependent on both θ and the incident wavelength λ.
Figures 3.3 and 3.4 summarize the anomalous behaviour of the optical mirage
∆(λ, θ) for silicon nanospheres in the infrared (similar behavior is obtained in
other spectral ranges as long as the scattering cross section can be described by
only the first two dipolar multipoles, see Fig. 3.3a). As can be seen in Fig. 3.4,
for θ = π/2, the apparent shift is always subwavelength λ/π for all incident fre-
quencies, mimicking the case arising from a pure electric (or magnetic) dipolar
sphere. When the g-parameter is negative (λg1 < λ < λg2) the maximum op-
tical mirage occurs for θ < π/2 and it is always subwavelength, being slightly
larger than the one for θ = π/2. However, for g > 0 the optical mirage can
be much larger than λ/π. Particularly, when the electric and magnetic po-
larizabilities are identical (λ = λK1), i.e., at the first Kerker condition [23], it
diverges as θ → π. Notice that the singularity is naturally resolved since, at
the first Kerker condition, there is exactly zero backscattered intensity [65,66].
Interestingly, this can be easily understood from symmetric arguments nicely
brought to the physical scene in Ref. [4] and briefly summarized in Chapter 1:
at backscattering, Λ = (J · p)/|p| = −Jz = −σ. However, when the system
is dual, the EM helicity is preserved after scattering, namely, Λ = Jz = σ.

12As we show in the next Chapter, the wave’s polarization after scattering cannot be
generally linked with the SAM. This polarization’s information is carried by the degree of
circular polarization (DoCP).
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Figure 3.3 – (a) Scattering cross sections σsca = σs for a 230 nm Si
nanosphere versus the incident wavelength. The special wavelengths
λK1

= 1825 nm and λK2
= 1520 nm correspond to the first Kerker condition

and GSKC [23], respectively. (b) g-parameter versus the incident wavelength.
This is identical to zero at λg1

= 1326 nm and λg2
= 1612 nm (and negative

in between). The maximum value is obtained at the first Kerker condition,
namely, λK1 . (c) Colormap of the normalized optical mirage, ∆/(λ/π), versus
the scattering angle and the incident wavelength. The maximum optical
mirage’s enhancement for λK1

at backscattering (θ = π) is clearly observed.
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Evidently, both phenomena cannot be satisfied simultaneously. As a result,
such light wave cannot exist at the backscattering direction.

3.4 Optical mirage near the first Kerker condition

We can now examine the peculiar behaviour of ∆ near the first Kerker con-
dition. When the electric and magnetic dipolar responses are identical, i.e.
αE = αM, in the electric and magnetic dipolar regime, the EM helicity is
preserved after after scattering [3, 91]. In this scenario, the g-parameter is
maximized, g = 1/2, according to Eq. (63), (see Fig. 3.3b) which gives rise to

∆π

λK1

= −σ tan

(
θ

2

)
êϕ. (66)

Figure 3.4 – Optical mirage colormap (Fig. 3.3) cuts versus the scattering
angle θ for different values of the incident wavelength, belonging to regions
with g < 0 (λK2

), g = 0 (λg1
, λg2

) and g > 0 (λ1, λ2 and λ3, respectively
decreased 5, 10 and 15 nm with respect to λK1

, and λK1
itself). At θ = π/2,

∆ = λ/π is observed to be a universal value . Both subplots show examples
of trajectories of the Poynting vector at forward and backscattering, being
similar for λg1

and λg2
(a) and considerably different for λK1

(b).
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From Eq. (66), various interesting limiting cases can be identified: firstly, in
the forward direction, the optical mirage and lz are strictly zero since Sϕ = 0.
This can alternatively be concluded through the system’s existing symmetries:
as the scatterer is dual, the system must conserve the incoming field’s EM he-
licity, which in the forward direction corresponds to the spin density. Thus, the
circular incident polarization (EM helicity) is preserved in the forward direc-
tion and must carry all the AM per photon (leaving `z = 0). Secondly, in the
direction perpendicular to the incident wavevector (θ = π/2), the interference
between the electric and magnetic dipolar contribution vanishes. As a conse-
quence, sz = 0 and `z = σ and, in analogy with pure electric (or magnetic)
dipoles, we obtain a subwavelength apparent shift, ∆ = σλ/π, although in this
case the scattered light is circularly polarized. The most striking effect arises
at an observation angle near backscattering θ . π where, as discussed above,
the optical mirage diverges.

0

Figure 3.5 – (a) g-parameter vs the incident wavelength for a 230 nm Si
sphere. (b) OAM distribution. (c) SAM distribution. At the first Kerker
condition (λ ≈ 1824 nm) the maximum AM exchange arises, i.e., `z = 2 and
sz = −1.
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This divergence is naturally solved since the Poynting vector becomes strictly
zero in the backscattering direction, evidencing an optical vortex’s appearance
in that direction. As a matter of fact, near backscattering `z(. θ) → 2σ,
while the spin reverses sign sz(θ . π) → −σ (but still maintaining constant
EM helicity), which confirms the existence of a vortex with `z = 2σ emerging
from a nanoparticle. This phenomenon is as a nanoscale analog of the light
backscattered from a perfect reflecting cone [137]. The AM exchange for a
230 nm Si particle versus the incident wavelength and the scattering angle
is shown in Fig. 3.5. From this plot, we can infer all the abovementioned
intriguing phenomena in the vicinity of the first Kerker condition.

3.5 Conclusions

We have shown that light scattering from a HRI nanoparticle can lead to ap-
parent macroscopic displacements of the particle position (optical mirages).
Notably, these are much larger than the incident wavelength and those that
have been reported so far. Interestingly, we derived an explicit expression that
relates the optical mirage and the z-component of the OAM per photon, `z.
As a result of the interference between the fields scattered by the electric and
magnetic dipoles, we found that `z presents a non-trivial dependence on the
scattering angle, which, in contrast with previous work [30], leads to optical
mirage maxima at angles where the spin of the photons is sign-reversed. Re-
markably, for dual nanospheres, i.e., at the first Kerker condition, we predict a
huge enhancement of the apparent shift related to the emergence of an optical
vortex in the backscattering direction.
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CHAPTER 4

Asymmetry, helicity and SOI of
light scattered from

subwavelength particles

4.1 Introduction

In Chapter 3, we have shown that the scattered light by a 230 nm Si sphere
in the telecom spectral range [14] can lead to a considerable enhancement of
the optical mirage at the backscattering direction [5]. As a matter of fact,
the optical mirage diverges when the EM helicity is preserved after scattering.
As we have shown, this phenomenon occurs when the first Kerker condition
is satisfied, namely, when the first electric and magnetic Mie coefficients po-
larizabilities are strictly identical. In a SOI of light description, this divergent
value can be derived from a full AM exchange between the spin and orbit
components: at the first Kerker condition, when the EM helicity is conserved,
the SAM density is sign reversed at backscattering (with `z = 2σ), inducing
an optical vortex in this direction. As a direct consequence, this Si sphere
seems to be scattering very far from the actual source. These findings may
give ground for the conjecture that any optical property related to the electric
and magnetic polarizabilities, such as particle size, refractive index contrast,
or absorptive effects may modify the scattered EM helicity density or the AM
transfer between the spin and orbit components, and hence, the optical mirage.
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In this Chapter, we show that the remarkable angular dependence of these
optical mirages and those of the intensity, EM helicity, SAM, and OAM den-
sities are all strikingly linked and entirely determined by the dimensionless
g-parameter in the dipolar regime, being independent of the specific optical
properties of the scatterer (including absorptive effects). Notably, we demon-
strate in Sec. 4.2 that the g-parameter is precisely half of the EM helicity
density in the FF limit, or equivalently, the degree of circular polarization
(DoCP), at the perpendicular direction to the incoming plane wave. This
intriguing phenomenon points to the maximization of the g-parameter as a
straightforward detector of the EM duality restoration in the dipolar regime13.
As a result, the g-parameter, which typically appears in the context of op-
tical forces [22, 138], light transport phenomena [87] and radiation pressure
effects [139], can be used as well as a signature of dual spheres. Note that
these findings open the possibility to infer the whole angular properties of the
scattered fields (OAM, SAM, optical mirage and intensity) by a single far-field
polarization measurement at the perpendicular direction to the incoming wave
(θ = π/2). Nonetheless, for completeness, we write down in Sec. 4.3 both the
OAM and SAM densities to explicitly demonstrate that, in striking contrast to
the DoCP case, the expected value of the OAM and SAM densities are constant
and identical to half of the incoming EM helicity per photon. Interestingly,
the result of these calculations matches with the seminal work carried out by
Marston and Crichton [124]. Finally, we explicitly illustrate in Sec. 4.4 that
generally, the maximum optical mirage and the maximum AM exchange takes
place at different scattering angles for a given optical response. Moreover, none
of these maxima values match when the scattered light is linearly polarized,
in striking contrast to when considering a pure electric (or magnetic) dipolar
scatter [2, 30] and as briefly mentioned in the previous Chapter. The main
conclusions of this Chapter can be found in Sec. 4.5.

4.2 DoCP in the electric and magnetic dipolar regime

Let us consider an arbitrary HRI nanoparticle in the electric and magnetic
dipolar regime. By applying the helicity operator for monochromatic waves,
Λ = (1/k)∇×, to the scattered electric field in the FF limit (see Eq. (57)), we
arrive to

DoCP = Λθ =
Eσ

sca
∗ · (ΛEσ

sca)

Eσ
sca
∗ ·Eσ

sca

=
|Eσ+|2 − |Eσ−|2

|Eσ+|2 + |Eσ−|2
=
V

I
, (67)

13Rigorously speaking, the restoration of EM duality can only be achieved for magnetic
materials when ε = µ. Nonetheless, we will relax this constraint throughout the present
Thesis as dielectric nanospheres at the first Kerker condition behave as dual scatterers.
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where

V = 4σG0

((
|αE|2 + αM|2

)
cos θ + Re{αEα

∗
M}
(
1 + cos2 θ

))
, (68)

I = 2G0

((
|αE|2 + αM|2

) (
1 + cos2 θ

)
+ 4Re{αEα

∗
M} cos θ

)
, (69)

being

|Eσσ′
|2 = G0

(
|αE|2 + αM|2 + 2σσ′<e{αEα

∗
M}
) (

1 + cos2 θ + 2σσ′ cos θ
)
.

(70)

Here G0 = |E0|2k4/64π2r2, where E0 is the incoming electric field’s amplitude,
k = 2π/λ0, r is the sphere’s radius of observation, αE and αM are the dipolar
electric and magnetic polarizabilities, respectively, and θ is the scattering angle.
The DoCP, which measures the helicity of the scattered electric field in the
far-field limit, namely, the normalized amount of photons carrying opposite
helicities at a given θ, is only expressed in terms of V and I. These denote
two Stokes parameters which have been extensively analysed in the work by
Crichton and Marston14 [124]. In terms of the g-parameter in the electric and
magnetic dipolar regime [87], it can be checked that the DoCP reads as,

Λθ =
2σ
((

1 + cos2 θ
)
g + cos θ

)
1 + cos2 θ + 4g cos θ

, (71)

while its expected value, 〈Λ〉, is given by

〈Λ〉 ≡
∫ {
|Eσ+|2 − |Eσ−|2

}
dΩ∫

{|Eσ+|2 + |Eσ−|2} dΩ
= 2σg. (72)

According to Eq. (71), we can infer that the angular dependence of the DoCP
depends on the g-parameter while 〈Λ〉 is, by a factor of 2σ, the g-parameter in
the dipolar regime. In Fig. 4.1, we show the DoCP pattern vs. both scattering
angle θ and g-parameter for an incoming circularly polarized PW with well-
defined EM helicity per photon (σ = +1). As can be inferred from the plot, the
DoCP values are restricted to −1 < Λ ≤ 1, being maximized at the first Kerker
condition (αE = αM), when the scattering system preserves the EM duality. In
addition, we find that the polarization of the scattered light is linear (Λθ0 = 0)
when the condition g = − cos θ0/(1 + cos2 θ0) is fulfilled, corresponding to the
dashed line in Fig. 4.1. As can be seen, it matches with θ0 = π/2 only for
g = 0, which corresponds with the pure electric (or magnetic) dipolar case.
The relatively simple measurement of the polarization degree at a right-angle
scattering configuration provides useful insight into small particles’ scattering
properties. In particular, the spectral evolution of the DoCP was shown to be

14In this work, they show that the DoCP is a measurable physical quantity as it can be
unambiguously expressed in terms of Stokes parameters.
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Figure 4.1 – Color map of the DoCP vs the scattering angle θ and the g-
parameter. The white vertical line indicates that this set of DoCP values are
forbidden due to causality, i.e., g > −1/2 (in absence of optical gain) [84]. The
first Kerker condition, satisfied for g = 1/2, gives raise to the conservation
of the DoCP regardless of the scattering angle (intense red-color), being this
identical to the incoming EM helicity per photon (σ = +1). The dashed line
illustrates the curve where the scattered light is linearly polarized, Λθ = 0.

a simple and accurate way to identify electric and magnetic behaviors of the
scattered fields [140, 141]. Interestingly, we find that the DoCP, measured at
the perpendicular direction to the incoming wave, θ = π/2, follows a biunivocal
relation with the g-parameter,

Λπ
2

= 〈Λ〉 = 2σg. (73)

This means that by measuring the DoCP at 90o degrees, we can directly ex-
tract the g-parameter. From this measurement, one can straightforwardly
retrieve optical parameters such as the particle size or the index contrast since
the g-parameter function of these parameters15 [38]. The abovementioned is
schematically depicted in Fig. 4.2, where a specific example (g = −0.4) is
depicted.

15Note that the abovementioned holds since the g-parameter is a function of the electric
and magnetic Mie coefficients.
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4.3 Relation between the helicity density and the SOI of
light: Role of optical absorption

Once we have a complete description of the angular dependence of the EM
helicity density in the FF limit, or in other words, the DoCP, in the electric
and magnetic dipolar regime, it is interesting to analyse its relation with the
AM exchanges and the optical mirage. Following Crichton and Marston [124],
we notice that the z-component of the SAM per scattered photon, sz(θ), is a
measurable quantity simply related to the DoCP of the scattered light in the
FF limit by,

sz = Λθ cos θ =
2σ cos θ

((
1 + cos2 θ

)
g + cos θ

)
1 + cos2 θ + 4g cos θ

, (74)

where Λθ is given by Eq. (71).

Figure 4.2 – Sketch of the system: PW with well defined EM helicity per
photon, preserved in forward scattering, σ = +1, impinging on a example
sphere with g = −0.4. The scattered light is shown via the conical
trajectories of the Poynting vector. At θ = π/2, the single measurement of
the DoCP gives the value of the scatterer’s g-parameter. Red and blue lines
illustrate both the counterclockwise and clockwise polarizations, while the
linear polarization (LP) is illustrated in green.
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Additionally and as discussed in Chapter 3, due to the axial symmetry of the
scatterer, the z-component of the total AM of the incoming photons jz = σ is
preserved after scattering. Then, the z-component of the OAM per scatterd
photon, `z(θ), can also be related to the DoCP by

`z(θ) ≡ jz − sz(θ) = σ − Λθ cos θ = σ
sin2 θ (1 + 2g cos θ)

1 + cos2 θ + 4g cos θ
, (75)

which allow us to link the optical mirage’s apparent shift [5], ∆, with Λθ as

∆π

λ
=
`z(θ)

sin θ
=
σ − Λθ cos θ

sin θ
. (76)

It is important to emphasize that, for electric magnetic dipolar scatterers, the
SAM and OAM densities, given by Eqs (74)-(75) are general results, implying
that all the optical properties of the nanoparticle, including absorption losses,
are encoded in the g-parameter. The presence of absorption losses modifies
the relative weight between real and imaginary parts of the electric and mag-
netic polarizabilities modifying the scattering asymmetry and, consequently,
inducing changes in the SOI of the scattered light.
In contrast with the SAM and OAM densities, the expected (angle averaged)
values of SAM and OAM do not share this behaviour since,

〈Sz〉 =

∫
Ω

2σ cos θ
((

1 + cos2 θ
)
g + cos θ

)
dΩ∫

Ω
(1 + cos2 θ + 4g cos θ) dΩ

=
σ

2
, (77)

〈Lz〉 = σ

∫
Ω

sin2 θ (1 + 2g cos θ) dΩ∫
Ω

(1 + cos2 θ + 4g cos θ) dΩ
=
σ

2
, (78)

with
〈Sz〉+ 〈Lz〉 = 〈Jz〉 = σ. (79)

These results agree with those obtained by Crichton and Marston in Ref. [124].
Although the absorption, along with any optical effects contained in the g-
parameter, does not contribute to the expectation values of both OAM and
SAM contributions in the electric and magnetic dipolar regime, intriguing ef-
fects associated with the SOI of light may appear in absorbing targets.
Figure 4.3 summarizes the re-distribution of the AM into OAM and SAM con-
tributions per photon for a 55 nm Si sphere in the visible spectral range. This is
calculated from Eqs (74)-(75) when impinging with a circularly polarized PW
with well-defined EM helicity per photon (σ = 1). Figure 4.3(a) illustrates the
g-parameter as a function of the incident wavelength, λ. As is depicted, the
maximum value, g = 1/2, is not reached due to the fact that the absorption
precludes the emergence of the first Kerker condition16, αE 6= αM.

16A rigorous mathematical demonstration is given for the first time in Chapter 5.
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Figure 4.3 – (a) g-parameter as a function of the incident wavelength, λ, in the
visible spectral range, for a 55 nm Si sphere in the electric and magnetic dipolar
regime. (b)-(c) Distributions of OAM and SAM per photon, respectively, as a
function of the scattering angle, and λ.

Nevertheless, as it tends to be preserved, Λθ . 1 ⇐⇒ g . 0.5, the OAM per
photon (Fig. 4.3(b)), reaches values that exceed the incident AM per photon
in the incident direction, `z > jz. This phenomenon, previously referred to as
“supermomentum” for absorptionless spheres [47, 49, 51], emerges as a simple
consequence of the conservation of the AM per photon: according to Eq. (74),
−1 < sz < 1, and since the AM per photon must be conserved after scattering,
the OAM per photon can acquire larger values than the incident AM per
photon, since `z + sz = 1. It is important to notice that the roll of loss
via absorption effects inhibits the full AM-exchange (`max

z = 2) since the EM
helicity cannot be preserved, Λθ . 1. This can be checked in the attached
color map, where `max

z = 1.5.
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Figure 4.4 – Normalized optical mirage ∆̃ = ∆/∆̃max, spin density (sz) and
DoCP (Λ) vs the scattering angle θ for an incoming circularly polarized PW
of EM helicity per photon, σ = +1. The green vertical dashed-dotted lines
represent the angles corresponding to the maximum of optical mirage, ∆̃max.
Blue dotted lines correspond to the angles at which spin-to-orbit angular mo-
mentum transfer is maximum (or minimum value of the z-component of SAM
per scattered photon, smin

z ). The black squares indicate Λθ = 0, namely, the
(FF) observation angles at which light is linearly polarized (LP). (a) and (b)
correspond to Λπ/2 = −0.8 and Λπ/2 = +0.8 (i.e. g = −0.4 and g = +0.4),

respectively. As it can be seen, for g 6= 0, ∆̃max, smin
z and LP are local-

ized in three different scattering angles, In contrast with the g = 0 case (c)
where they all collapse at right scattering angles θ = π/2. (d) and (e) show
the different angular dependence as the g-parameter approaches the second
(Λπ/2 = −0.98 & −1) and first (Λπ/2 = 0.98 . 1) Kerker conditions, re-
spectively. (f) reproduces the g-parameter for isotropic spheres as a function
of their refractive index m and size parameter y = mka in the electric and
magnetic dipolar regime (after Ref. [87]). Black vertical line indicates the first
Kerker condition, where αE = αM. The solid white point highlights g = −0.4
which corresponds to both a high refractive index (HRI) dielectric sphere or to
a small perfectly conducting sphere [118]. Both subwavelength particles will
give rise to exactly the same spin-orbit coupling effects.
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4.4 Discussion of optical mirage, SAM, OAM and EM
helicity densities vs the scattering angle

Equations 62, 71, 74, 75 and 76 reflect the remarkable result that intensity,
DoCP, SAM and OAM of scattered photons and the optical mirage (dσscatt/dΩ,
Λθ, sz, `z and ∆) are all linked and fully determined, by the dimensionless g-
parameter, being independent of the specific optical properties of the scatterer.
This finding is the most important result of the present work: within a single
measurement of the DoCP at π/2 via polarization filters in the FF, we can
extract the g-parameter and infer the angular dependence of all the above-
mentioned scattering quantities. Moreover, within a single measurement, one
could extract the average of the particle sizes of a colloidal suspension or the
refractive index of single spheres since the g-parameter is a function of these
optical properties.
Figure 4.4 illustrates the AM exchange and the optical mirage dependence with
the FF observation angle θ for an incoming PW with an EM helicity per photon
σ = +1 and total z-component of the total AM per photon jz = σ. Figures 4.4
(a) and 4.4 (b) summarize the results for g = −0.4 and g = 0.4, respectively. In
contrast with pure electric (or pure magnetic) dipolar particles with symmetric
scattering (g = 0, Fig. 4.4 (c)), the maximum AM exchange (corresponding
to the minimum of sz) and the maximum optical mirage, ∆̃ = ∆/∆max, take
place at different scattering angles but in an angular region in which the z-
component of the SAM is negative (i.e. where the photons are not linearly
polarized) while the z-component of the OAM is larger than that of the total
AM (`z = jz − sz > jz = 1). The equivalent effect happens for σ = −1. The
angular gaps between the minimum of the z-component of the SAM (maximum
AM exchange), the maximum of the optical mirage effect and the angle at
which light is linearly polarized first increase when the g-parameter tends to
the second or first Kerker conditions, |g| ≈ 0.5, as it can be seen in Figs. 4.4(d)
and 4.4(e). However, in the limit of dual scatterers (g = +0.5) sz → cos θ
and Λθ → +1, and the extrema collapse again at the singular back scattering
angle θ = π. At this condition, there is a divergent optical mirage at back
scattering associated to the appearance of an optical vortex with sz = −1 and
`z = 2 [5]. In contrast, in absence of gain, the Optical Theorem imposes that
the limit of g = −0.5 is unreachable [84] which inhibits the complete (flipping)
transformation from sz = σ to sz = −σ, although a huge enhancement of
the optical mirage is predictable getting close to this condition. Based on the
aforementioned, in analogy with dual spheres, we can predict that an anti-dual
sphere -that could be made with a material with gain- [4], with g = −0.5, would
generate a perfect optical vortex in the forward direction with a divergent
optical mirage.
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4.5 Conclusions

In this Chapter we have shown that the scattered intensity of light, DoCP after
scattering, SOI of light densities (SAM and OAM), and the optical mirage
are entirely determined by the dimensionless g-parameter in the electric and
magnetic dipolar regime. As a result, nanospheres with completely different
optical properties (such as size, refractive index) but sharing an identical g
parameter value will lead to the same angular dependencies of the intensity,
DoCP, SAM to OAM exchanges, and optical mirage apparent shifts. Since
the g-parameter can be obtained from a far-field measurement of the DoCP,
our results predict the possibility of determining all angular dependences of the
scattering coefficients from a single polarization measurement, and therefore we
believe that our work open new perspectives in Optics and Photonics, including
antennas engineering, metamaterials, nanophotonics, and optical imaging.
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CHAPTER 5

Kerker conditions in lossless,
absorption, and optical gain

regimes

5.1 Introduction

In this Chapter, we analytically demonstrate in Sec. 5.2 that either losses
or optical gain inhibit the first Kerker condition for homogeneous dielectric
Mie spheres with µ = 1. As a result, we show that the g-parameter cannot be
maximized in the electric and magnetic dipolar regime, as numerically shown in
Chapter 4. The abovementioned unveils a hidden connection between energy
conservation and the first Kerker condition, regardless of the particle’s size,
incident wavelength, and incoming polarization. Interestingly, our proof does
not depend on the multipole order or the incoming wave’s nature; therefore,
it is a fundamental property of the Mie coefficients. We show in Sec. 5.3 that
neither the EM helicity can be preserved after scattering for lossy spheres. As
a result, the zero optical backscattering condition can be neither be perfectly
fulfilled in the dipolar regime under PW illumination. In particular, for a
Germanium (Ge) sphere in the dipolar regime, we quantify the gradual drift
from the ideal zero optical backscattering condition as the absorption rate is
increased. Moreover, we show in Sec. 5.4 that optical gain is a compulsory
requirement to satisfy the zero forward light scattering condition.
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5.2 A fundamental property of the Mie theory

Mie theory [9] gives an exact solution of Maxwell’s equations for a spheri-
cal particle in a non-dispersive homogeneous medium under PW illumination.
It allows writing the extinction, scattering, and absorbing efficiencies of the
particle as

Qext =
2

x2

∞∑
l=1

(2l + 1) Re{al + bl} =

∞∑
l=1

(
Qalext +Qblext

)
, (80)

Qsca =
2

x2

∞∑
l=1

(2l + 1)
(
|al|2 + |bl|2

)
=

∞∑
l=1

(
Qalsca +Qblsca

)
, (81)

where Qabs = Qext −Qsca.
The efficiencies are dimensionless magnitudes given by the ratio between the
cross-section and the geometrical area, Q = σ/πR2, where R is the radius of
the sphere. Here, x = kR is the size parameter, k = mhk0 = mh (2π) /λ0, λ0

being the wavelength in vacuum and m = mp/mh is the contrast index, where
mp is the refractive index of the particle and mh is the refractive index of the
external medium. The Mie coefficients, al and bl, can be expressed in terms of
the scattering phase-shifts [9] by,

al = sinαle
−iαl bl = sinβle

−iβl (82)

where

tanαl = − S
′
l(mx)Sl(x)−mSl(mx)S′l(x)

S′l(mx)Cl(x)−mSl(mx)C ′l(x)
, (83)

and

tanβl = −mS′l(mx)Sl(x)− Sl(mx)S′l(x)

mS′l(mx)Cl(x)− Sl(mx)C ′l(x)
. (84)

Here Sl(z) =
√

πz
2 Jl+ 1

2
(z) and Cl(z) =

√
πz
2 Nl+ 1

2
(z) are the Riccati-Bessel

functions, where Jl+ 1
2
(z) and Nl+ 1

2
(z) are the Bessel and Neumann functions,

respectively.
For non-dissipative targets, where m ∈ R, and according to Eq. (82), the elec-
tric and magnetic scattering phase-shifts, αl and βl, respectively, are real. In
this lossless regime and as a result of the optical theorem [9], the scattering and
extinction efficiencies are identical, i.e., Qext = Qsca with Qabs = 0. According
to Eqs. (83) and (84) and as briefly introduced in Chapter 2, the first Kerker
condition, in which the electric and magnetic dipolar modes oscillate in-phase
with identical amplitude, can be obtained either when S1(mx) = 0 (nodes of
first kind) or when S′1(mx) = 0 (nodes of second kind) [9]. However, for com-
plex values of the refractive index contrast, i.e., ={m} 6= 0, which corresponds
either with absorption (={m} > 0) or active media (={m} < 0), these nodes
are unreachable. To prove it, let us make use of the following Lemmas,
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1. When v > −1 the zeros of Jv(z) are all real [142],

2. When v > −1 and a, b ∈ R, then aJv(z) + bzJ ′v(z) has all its zeros real,
except when a/b+ v < 0 [142].

From Lemma 1, it is noticeable that the node of the first kind, Sl(mx) = 0,
is inhibited for either absorbing or optical gaining homogeneous dielectric Mie
spheres with µ = 1 since the zeros of the Bessel functions are all real. On the
other hand, the node of second kind, given by

S′l(mx) = Jl+ 1
2
(mx) + 2mx J ′l+ 1

2
(mx) = 0, (85)

corresponds to the function of Lemma 2 with a = 1, b = 2, and v = l + 1/2.
Therefore, Eq. (85) cannot be satisfied for ={m} 6= 0 since the condition
a/b+ v < 0 is inaccessible for homogeneous dielectric Mie spheres with µ = 1,
according to Mie theory (l ≥ 1) [9].
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Figure 5.1 – Extinction, scattering, and absorbing efficiencies from the
scattering by 223 and 48 nm Ge spheres in the telecom and visible spectral
range, respectively. The electric (e) and magnetic (m) dipolar (l = 1)
contribution is depicted for the extinction and scattering efficiencies. The
first Kerker condition (K1) arises for the non-absorbing sphere (a) while it is
not met for the lossy one (b).
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The immediate physical consequence of these Lemmas is straightforward: ei-
ther absorption or optical gain inhibits the emergence of the first Kerker con-
dition. It is important to note that these calculations’ validity holds regardless
of the particle size, incident wavelength, refractive index contrast, and the in-
coming light’s polarization. Remarkably, this result is valid for any multipole
order l. In short, we can conclude that al 6= bl ∀ l whereas ={m} 6= 0, making
this demonstration general.
Interestingly, the breaking of the emergence of the first Kerker condition can
be understood through the extinction and scattering efficiencies arising from
electric and magnetic modes. Indeed, in the presence of losses or active me-
dia, the extinction and scattering efficiencies arising from an arbitrary electric
multipole l cannot be identical to the magnetic counterpart emerging from the
same multipole l. According to the right side of Eqs. (80) and (81), this phe-
nomenon can be encompassed as following: if Qalsca = Qblsca then Qalext 6= Qblext

for ={m} 6= 0. These relations imply that the electric and magnetic modes
cannot simultaneously oscillate in-phase with equal amplitude, circumstance
that can occur for lossless spheres, as can be inferred from Fig. 5.1.
Figure 5.1a) illustrates the extinction, scattering, and absorbing efficiencies
versus the incident wavelength for a 223 nm Ge sphere in the telecom spec-
tral range, where losses are negligible. As can be inferred, the first Kerker
condition (black circle) arises at λ ≈ 2100 nm. In contrast and as previously
discussed, for a 48 nm Ge sphere in the visible spectral range, where losses
become considerable, the electric and magnetic modes do not simultaneously
oscillate in-phase with equal amplitude, precluding the first Kerker condition.

5.3 Absorption inhibits the conservation of helicity

To get a more in-depth insight into these results, based on the first Kerker con-
dition breaking, let us calculate EM helicity’s expected value after scattering.
The scattered fields outside the sphere, in a well-defined EM helicity decom-
position [143], i.e., Esca = E+

sca + E−sca with ΛEσ
sca = σEσ

sca, can be written,
as illustrated in the previous Chapters, in terms of “outgoing” VSWFs, Φσ′

lm

(defined in [5]) as

Eσ
sca = E0

∞∑
l=1

+l∑
m=−l

Dσ
lmΦσ

lm, (86)(
D+
lm

D−lm

)
= −

(
[al + bl] [al − bl]
[al − bl] [al + bl]

)(
C+
lm

C−lm

)
, (87)

ZHσ
sca = −iΛEσ

sca, (88)

where Cσσ
′

lm are the coefficients of the incoming wave.
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Figure 5.2 – (a) Real (dash-dotted red) and imaginary part (dashed-red) of
the refractive index contrast (m) vs the incident wavelength (λ) for a Ge
sphere. Maximum value of the expected value of the EM helicity in
solid-blue, 〈Λ〉max, for a Ge sphere vs λ under plane wave illumination with
σ = +1. (b) Color map of 〈Λ〉 vs λ and particle’s size (R) for a Ge sphere
under plane wave illumination with σ = +1. The visible range is
encompassed by a dashed rectangle, where 〈Λ〉 < 1.
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The expected value of the EM helicity of the scattered field is given by

〈Λsca〉 = 〈Λ〉 =
〈Eσ

sca
∗ · (ΛEσ

sca)〉
〈Eσ

sca
∗ ·Eσ

sca〉
=

∑∞
l=1

∑+l
m=−l |D

+
lm|2 − |D

−
lm|2∑∞

l=1

∑+l
m=−l |D

+
lm|2 + |D−lm|2

. (89)

Under illumination by a circularly polarized PW with well-defined helicity and
AM (m = σ = ±1), 〈Λ〉 can be derived as [10]

〈Λ〉 =

∫
Eσ

sca
∗ ·ΛEσ

sca dΩ∫
Eσ

sca
∗ ·Eσ

sca dΩ
= 2σ

[ ∑∞
l=1 (2l + 1) Re{alb∗l }∑∞
l=1 (2l + 1) |al|2 + |bl|2

]
. (90)

From Eq. (90) it is straightforward to notice that for either losses or optical gain
regimes, where the inequality al 6= bl ∀l holds, the EM helicity is not preserved,
namely, |〈Λ〉| < 1. Figure 5.2 summarizes most of the quantitative insights
about the previous property for a Germanium (Ge) sphere. For ={m} > 0,
corresponding to the visible spectral range (see Fig. 5.2a)), the maximum value
of the EM helicity, 〈Λ〉max, is far from being preserved, regardless of the size
of the Ge sphere in the entire visible spectral range which corresponds to the
dashed rectangle in Fig. 5.2b). Contrary, in the telecom spectral range, where
losses are negligible (see Fig. 5.2a)), the maximum value of the EM helicity
is essentially dipolar, namely, 〈Λ〉max = 〈Λ〉dip

max , being this preserved at the
first Kerker condition. This conservation can be inferred from 〈Λ〉max ≈ 1 in
Fig. 5.2a), which corresponds to the intense black region arising in Fig. 5.2b)).
To get insights into the relevance of the first Kerker condition breaking due
to absorption effects in the scattering radiation pattern, let us consider the
normalized-differential scattering cross-section, introduced in Chapter 2, par-
ticularly in Sec. 2.5.

Figure 5.3 – Normalized scattering patterns by Ge spheres calculated from
Eq. (91) in the telecom spectral regime (a) [λ = 2100 nm and R = 223 nm]
and visible spectral range (b) [λ = 632 nm and R = 48 nm] and (c) [λ = 575
nm and R = 35 nm]. The g-parameter is given by g = 0.5, 0.3, 0.1,
respectively, in the dipolar regime.
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In the electric and magnetic dipolar regime [6], it can be shown that this
magnitude reads as17

1

σsca

dσsca

dΩ
=

3

8π

(
1 + cos2 θ

2
+ 2g cos θ

)
, with 〈Λ〉 = 2σg, (91)

where g is the asymmetry parameter in the dipolar regime [87].
From the right side of Eq. (91), it is noticeable that at the first Kerker condi-
tion, when the EM helicity is preserved, the g-parameter is maximized in the
dipolar regime, i.e., g = 0.5. In this scenario, it can be inferred from the left
part of Eq. (91) that there is no light radiation in the backscattering direction
(θ = π) [65–67]. However, in the presence of losses or optical gain, the zero
optical backscattering condition cannot emerge in the dipolar regime due to
the first Kerker condition breaking that imposes both g < 0.5 and |Λ| < 1.
As an illustrative example, we show in Fig. 5.3 the gradual loss of the zero opti-
cal backscattering condition (see Fig. 5.3a)), as the absorption rate is increased
for a Ge sphere (see Fig. 5.3b) and Fig. 5.3c)). Consciously, Fig. 5.3a) illus-
trates the first Kerker condition depicted in Fig. 5.1a)) while Fig. 5.3b)) repre-
sents the maximum value of g (not the first Kerker condition) for Fig. 5.2b)).
As can be inferred, the zero optical backscattering condition is lost for lossy
spheres.

5.4 Optical Gain and second Kerker condition

Finally, let us briefly analyse the second Kerker condition, given by a1 = −b1.
Let us recall that at this dipolar optical response, the EM helicity flips its
value from 〈Λ〉 = +σ to 〈Λ〉 = −σ, according to Eq. (90), and the g-parameter
is minimized, g = −0.5, leading to the zero optical scattering condition in the
forward direction (see Eq. (91)). According to Eq. (82), the second Kerker
condition implies both

sin 2α1 = − sin 2β1 and sin2 α1 = − sin2 β1. (92)

It is straightforward to notice that lossless spheres, where ={m} = 0, cannot
satisfy the second Kerker condition since in that scenario αl, βl ∈ R and then,
the right side of Eq. (92) is unreachable. In contrast, it can be achieved for
active media, i.e., ={m} < 0 as we can infer from Fig. 5.4.
Figure 5.4 illustrates the g-parameter for a Ge-like sphere (m = 4) versus
the size parameter, x = kR, and the imaginary part of the refractive index
contrast, ={m}, under a plane wave with well-defined helicity (σ = +1). In
this regime, the optical response is almost entirely dipolar and, as a result, the

17This magnitude can be found in Chapter 3, specifically in Sec. 3.3.
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g-parameter is the same magnitude as the expected value of the EM helicity,
〈Λ〉 = 2g, according to the right side of Eq. (91). As previously mentioned,
the first Kerker condition (a1 = b1) arises in a lossless regime (={m} = 0)
at x ∼ 0.675. This specific size parameter corresponds to the first Kerker
condition appearing on Fig. 5.1a) and Fig. 5.3a). As expected, the first Kerker
condition does not emerge for ={m} 6= 0. On the other hand, the second
Kerker condition does not appear for ={m} = 0, according to Eq. (92). In
fact, it arises if and only if optical gain is being pumped onto the system, e.g.,
in the particular case of the Ge-like sphere, it emerges for ={m} ∼ −0.3 and
x ∼ 0.825, as can be reckoned from Fig. 5.4.
Let us now recall that in the far field the EM helicity density and the SAM and
OAM densities can be related as sz = Λθ cos θ and `z = σ−Λθ cos θ [54]. These
expressions imply that in the presence of losses or optical gain, the emerging op-
tical vortex along the backscattering direction with topological charge `z = 2σ
is broken [144]. As a consequence, the optical mirage, given by the simple rela-
tion |∆θ| = `z/ sin θ [5], does not fully diverge in the backscattering direction.

0.5

-0.5

Figure 5.4 – g-parameter vs the imaginary part of the refractive index
contrast, ={m} and the x = ka size parameter under well-defined EM helicity
(σ = +1) plane wave illumination. In this range, the optical response is
purely of dipolar nature. The first and second Kerker conditions are depicted
by black and white circles, respectively.
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This phenomenon can be then summarized as

={m} 6= 0 ⇐⇒ `z < 2σ ⇐⇒ |∆π| <∞. (93)

5.5 Conclusions

We have rigorously demonstrated that either losses or optical gain inhibit the
first Kerker condition’s appearance for dielectric spheres. As a direct con-
sequence of our analysis, we have shown that the EM duality restoration,
identified through the conservation of the EM helicity, cannot be achieved in
the presence of losses. Furthermore, we have studied the gradual loss of the
zero optical backscattering condition for a Ge sphere as the absorption is in-
creased. Furthermore, we have determined the conditions under which the
second Kerker condition emerges and, therefore, the zero forward optical scat-
tering condition is met. The abovementioned statements can be summarized
as follows: for the imaginary part of the contrast index ={m} 6= 0, while the
second Kerker condition is achievable, the first Kerker condition is inhibited.
In this scenario, the zero optical forward light scattering can be achieved in the
presence of optical gain. In contrast, for ={m} = 0, the first Kerker condition
is obtainable while the second Kerker condition is unreachable. In this case,
only the zero optical backscattering condition is reachable. Our straightfor-
ward but fundamental analysis unveils an intriguing connection between the
Kerker conditions and energy conservation, opening new insights into the Mie
theory.
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CHAPTER 6

Optimal backward light
scattering by dipolar particles

6.1 Introduction

In Chapter 5, particularly in Sec. 5.4, we have demonstrated that optical gain
(={m} < 0) is a compulsory requirement to satisfy the zero light-scattering
condition in the forward direction. We have explicitly shown that the second
Kerker condition, given by a1 = −b1, can be satisfied in this scenario. How-
ever, in the absence of optical gain, the second Kerker condition is precluded
by the optical theorem. As an alternative definition, we can consider the gen-
eralized second Kerker condition (GSKC) [23], α1 = −β1, corresponding to
crossed electric and magnetic dipoles of equal amplitude oscillating in anti-
phase. Strong suppression of forwarding scattering was already experimentally
observed in the microwave regime at this condition [65], in agreement with
the near-zero-forward intensity condition for Rayleigh particles [23,84]. Con-
trolling the directionality of light is an important issue in light transport and
scattering in nanostructured complex media [68,87–95], is also relevant in the
discussion of the so-called anapole modes [27,69,101], as well as in the context
of optical forces [22, 25, 139, 145, 146]. In most of the works mentioned above,
the equivalence between the GSKC and the near zero-forward condition was
presupposed even though it was only formally demonstrated in the Rayleigh
limit, where the particle’s scattering cross sections are very small.
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This Chapter demonstrates that the GSKC for dipolar particles can be formally
derived as the optimal combination of electric and magnetic dipolar responses
leading to maximum backward scattered intensities for a fixed scattering cross
section in the absence of optical gain. The optimal backward scattering takes
place at α1 = −β1 (i.e., the GSKC), but, interestingly, it does not lead to
the near-zero optical forward condition for strong scattering regimes. Our re-
sults reveal that, in the dipolar regime, the GSKC straightforwardly returns
the minimum g-parameter for a fixed scattering cross-section in the absence of
optical gain. However, the g-parameter is not always negative at the GSKC.
As a result, the differential scattering cross-section or, in other words, the
re-distribution of energy in the FF limit, ranges all possible scattering angle
diagrams, in striking contrast to the current state of the art. In particular, our
results provide a consistent explanation of the intriguing exception for zero-
forward scattering predicted for small, ε = µ = −2, magnetic particles [83]:
when the scattering cross-section approaches its maximum value (when the
electric and magnetic dipolar resonances are excited simultaneously), the dif-
ferential scattering cross-section resembles the one given by the first Kerker
condition, in opposition to the physical insight given thus far.

6.2 Role of the GSKC in the g-parameter

The EM fields scattered by HRI dielectric nanoparticles present unique prop-
erties from the interference between the electric and magnetic multipoles. As
introduced in Chapter 2 and as discussed in the previous chapters, most of them
are embedded in the g-parameter. For electric and magnetic dipolar spheres,
it is easy to show that the g-parameter and the scattering cross section read
in terms of the electric and magnetic scattering phase-shifts as [8]

g =
sinα1 sinβ1 cos (α1 − β1)

sin2 α1 + sin2 β1

, (94)

σsca =
6π

k2

(
sin2 α1 + sin2 β1

)
. (95)

The GSKC was proposed by Nieto-Vesperinas et al.: α1 = −β1 [23]. So far,
this was thought to be the optimized condition that gives rise to a negative
g-parameter, which in turn might reduce the scattered light in the forward
direction [147]. Surprisingly, it is straightforward to notice via Eq. (94) that
the GSKC (α1 = −β1) does not (generally) lead to a negative g-parameter,

g =
1

2

[
k2

6π
σK2

sca − 1

]
, (96)

where σK2
sca = (12π/k2) sin2 α1, according to Eq. (95).
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≳-0.5

0.5

Figure 6.1 – g-parameter as a function of the dipolar electric and magnetic
scattering phase-shifts, α1 and β1, respectively. The first Kerker condition
(α1 = β1) is depicted by a black dashed line. The GSKC (α1 = −β1) is
illustrated by a blue dash-dotted line.

This is the first significant result of the present Chapter. As can be seen from
Eqs. (95) and (96), only a relatively weak scattering leads to negative values
of the g-parameter. The threshold, i.e., g = 0, is given by ±α1 = ∓β1 = π/4.
Interestingly, this value corresponds to the scattering cross section that arises
from a pure dipolar electric (or magnetic) resonant particle, σres

sca = 6π/k2.
This phenomenology can be inferred from Fig. 6.1, where the g-parameter is
illustrated as a function of the dipolar electric and magnetic scattering phase-
shifts. Notice that Fig. 6.1 covers all possible optical responses in the dipolar
regime as they run over all possible values of the first electric and magnetic
Mie coefficients, according to Eq. (82). As predicted, the first Kerker condition
(α1 = β1) gives rise to the maximum value of the g-parameter, g = 0.5. Be-
sides, this is completely independent of the scattering cross-section, σsca, which
would correspond to circles in the figure, according to Eq. (95). Interestingly,
it can be inferred that the GSKC, α1 = −β1, minimizes the g-parameter for a
fixed scattering cross-section. However, this is not sufficient to state that this
condition always leads to negative values of the g-parameter.
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Figure 6.2 – (a) g-parameter as a function of the y = mka size parameter.
The black dashed and blue dash-dotted lines specify the first Kerker and the
GSKCs, respectively. (b) Scattering efficiencies arising from both a dipolar
and a fully multipolar optical response.

As an illustrative example that confirms the previous statement, the g-parameter
is considered for three spheres of different materials, Titanium Oxide-like
(TiO2, m = 2.6), Gallium Phosphide-like (GaP, m = 3.1) and Gallium Arsenide-
like (GaAs, m = 3.6) in air, as can be seen in Fig. 6.2a). Refractive index
data for these materials were taken from [148]. This figure shows that, at
the first Kerker condition, α1 = β1, the maximum value of the asymmetry
is always reached (dashed vertical black line). On the other hand, at the
GSKC, α1 = −β1, which corresponds to the dash-dotted vertical blue line, the
g-parameter is not always negative. The g-parameter is positive for the TiO2-
like sphere, almost zero for the GaP-like sphere case while it becomes negative
for the GaAs-like sphere. According to Eq. (96), this change of sign depends
strongly on the strength of the scattering cross-section. For completeness, the
scattering efficiency, Q = σsca/πa

2, is depicted in Fig. 6.2b) assuming both
a dipolar response (l = 1) and the full Mie multipolar expansion. As can be
inferred, the optical responses are purely dipolar, even for relatively strong
scattering regimes.
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6.3 The nearly-zero forward light scattering condition

Once we have discussed the role of the GSCK into the sign of the g-parameter,
let us now analyze the relevance of the GSKC in the nearly-zero optical forward
scattering condition,

dσsca

dΩ
=

3

8π
σK2

sca

(
1 + cos2 θ

2
+

[
k2

6π
σK2

sca − 1

]
cos θ

)
. (97)

At the GSKC, α1 = −β1, the scattering cross section, σK2
sca, governs the in-

tensity of the far-field pattern of the differential scattering cross section. As a
consequence, the GSKC is not sufficient (not even necessary) to obtain the typ-
ical pear-like structure, in striking contrast to previous analysis [138, 149]. In
fact, it is clear that near the electric and magnetic dipole resonances, in which
g . 0.5 ⇐⇒ σK2

sca . 12π/k2, the radiation pattern of the differential scatter-
ing cross section reminds to the one arising when the first Kerker condition
is satisfied. In this particular case, there is no net radiation at backscatter-
ing. On the other hand, when σK2

sca = σres
sca = 6π/k2, condition that leads to

g = 0, according to Eq. (96), the differential scattering cross section is iden-
tical to the one given by a pure electric (or magnetic) dipole. Finally, when
σK2

sca < σres
sca, which implies a negative g-parameter, the target scatters mostly

in the backward direction.
This phenomenology is further confirmed in Fig. 6.3, where the FF radia-
tion pattern of the (integral normalized) differential scattering cross-section is
considered, at the GSKC, for the materials illustrated in Fig. 6.2: TiO2-like,
GaP-like, and GaAs-like spheres. As expected, when g > 0, the scattering
pattern almost entirely lies in the forward direction, according to Fig. 6.3a.

Figure 6.3 – (Integral-normalized) differential scattering cross section,
(dσsca (θ)/dΩ)/σK2

sca, for different optical responses at the generalized second
Kerker conditon, i.e g = 0.2 (TiO2-like sphere), g = 0 (GaP-like sphere),
g = −0.2 (GaAs-like sphere), according to Fig. 6.2.
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This corresponds to the energy radiation pattern in the FF limit of the Ti02-
like sphere at the GSKC, where g = 0.2 (see dotted green line Fig. 6.2). At
g = 0, which arises from the GaP-like sphere at the GSKC, according to the
dashed red line in Fig. 6.2, the energy radiation pattern in the FF limit is
symmetrical, as it can be seen in Fig. 6.3b. This is identical to the one that
arises from a pure electric (or magnetic) dipole. Finally, when g < 0, the
target preferentially scatters in the backward direction, as it can be inferred
in Fig. 6.3c. This phenomenon corresponds to the energy radiation pattern in
the FF limit of the GaAs-like sphere at the GSKC, where g = −0.2, according
to the dash-dotted yellow line of Fig. 6.2. Note that this last case was the
“expected” from previous assumptions. Our analysis is straightforward to de-
rive that the nearly-zero optical forward scattering condition is only achievable
through a negative g-parameter.
In order to get deeper physical insight into the relevance of the GSKC, it is
interesting to derive the explicit expression of the differential scattering cross
section evaluated at the forward direction, as shown in Fig. 6.4. Under these
conditions,

α1 = −β1,

θ = 0,
=⇒ dσsca

dΩ
=

k2

16π

(
σK2

sca

)2
.

0

9

Figure 6.4 – Dimensionless differential scattering cross section, k2dσsca/dΩ,
evaluated at the forward direction, θ = 0.
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This equation shows that at the GSKC, in the forward direction (θ = 0),
the differential scattering cross section scales quadratically with the scattering
cross section. As a direct result, for a relatively large scattering cross section,
the target may scatter preferentially in the forward direction (θ = 0), leading
to a counterintuitive result, as the nearly-zero optical forward intensity condi-
tion for light is far from being obtained. In fact, near the electric and magnetic
dipolar resonances, where ±α1,∓β1 ≈ π/2 ⇐⇒ g . 0.5, the intensity in the
forward direction (θ = 0) is close to be maximized. Therefore, both Figs. 6.1
and 6.4 can be understood together as the actual implication of the GSKC:
Only when the scattering cross section is smaller than that for a pure reso-
nant particle, σK2

sca < σres
sca, a negative g-parameter can be obtained. In this

regime and only in this regime, the nearly-zero optical forward scattering can
be achieved.

6.4 Conclusions

We have shown that the GSKC can be derived as the optimal condition that
minimizes the g-parameter for a fixed scattering cross-section in the absence
of optical gain. We have found that the GSKC does not necessarily give rise
to a negative g-parameter. In fact, under this condition, we have exposed that
the g-parameter ranges from positive to negative values, crossing g = 0 when
the scattering cross-section is identical to the one arising from a pure electric
(or magnetic) resonant target. Consequently, we have demonstrated that the
far-field scattering pattern of the differential scattering cross-section runs over
all its possible polar diagrams. Notably, near the electric and magnetic dipole
resonances, we have explicitly exposed that this resembles the one given at
the first Kerker condition, where there is no net radiation in the backscatter-
ing direction. To have a more in-depth insight, we have then confirmed this
behavior by showing that the energy radiation pattern in the far-field limit,
or, in other words, the differential scattering cross-section at the GSKC in the
forward direction, scales quadratically with the scattering cross-section. Con-
sequently, for strong scattering regimes, the target preferably scatters in the
forward direction, striking contrast with the current understanding.
These findings are of considerable importance in different contexts where min-
imization of the g-parameter can be most relevant. This includes theory and
experimental work on optical forces (where the radiation pressure cross-section
strongly depends on the g-parameter) [150–152], light transport, and radiative
transfer phenomena since the minimization of g can significantly reduce the
transport mean free path [153].
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CHAPTER 7

Unveiling dipolar regimes of
large dielectric Mie spheres from

helicity preserving

7.1 Introduction

The so-called optimum forward light scattering was found at the first Kerker
condition for a given contrast index nano-sphere with m ∼ 2.45 [121,122]. This
optimization consists of maximizing the light-scattering at the first Kerker con-
dition in the electric and magnetic dipolar regime18. Nonetheless, the ideal
mapping from the scattering by dual magnetic spheres (ε = µ) onto the scat-
tering by larger dual dielectric spheres (µ = 1) can only be achieved in a
multipolar scattering process19 when the electric and magnetic Mie coefficients
are strictly identical, i.e., al = bl ∀l. This (non-magnetic) generalized EM du-
ality condition has not been proved to be unattainable, although it has been
extensively conjectured [3, 4, 154,155].

18From the results derived in Chapter 5; it is straightforward to notice that lossy spheres
cannot be candidates to fulfill the optimum forward light scattering condition since the first
Kerker condition is not reached, namely, al 6= bl for ={m} 6= 0.

19We denote multipolar scattering process whereas several multipoles contribute to the
optical response of the object, e.g., dipolar plus quadrupolar orders.
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In this Chapter, we rigorously demonstrate in Sec. 7.2 that the ideal map-
ping from ε = µ onto the scattering by homogeneous dielectric spheres with
µ = 1 is precluded due to a fundamental property of the Bessel functions.
The proof is general since it does not depend on the contrast index, multipole
order, incoming polarization, and x size parameter. As a result, the absence of
backscattered light and EM helicity conservation can not be ideally obtained
in a multipolar scattering process for the scattering of homogeneous dielectric
spheres with µ = 1. Nevertheless and as a direct consequence from our proof,
we show in Sec. 7.3 that the almost entirely conservation of the EM helicity
after scattering implies the existence of pure-multipolar spectral regions, par-
ticularly dipolar spectral regimes. Remarkably, for HRI spheres, these dipolar
regimes arise for large dielectric homogeneous spheres, well-beyond its pre-
sumed interval. We show in Sec. 7.4 that the optimum forward light scattering
condition, predicted for a given refractive index contrast of m = 2.45 [121,122],
arises quasi-periodically at a fixed size parameter in these unexplored dipolar
regimes, in striking contrast to previous assumptions [121, 122]. The main
conclusions of this Chapter can be found in Sec. 7.5.

7.2 Another fundamental property of the Mie theory

When al = bl ∀l the particle behaves as a dual sphere, preserving the EM he-
licity of the EM field [154]. In terms of the Bessel functions, this non-magnetic
generalized duality condition can be derived from the master equation,

aJl+ 1
2
(mx) + bmxJ ′l+ 1

2
(mx) = 0. (98)

Notice that when a = 1 and b = 0 the node of the first kind emerges, i.e.,
Sl(mx) = 0 ⇐⇒ al = bl = Sl(x)/ξl(x). On the other hand, when a = 1 and
b = 2, the node of the second kind arises, i.e., S′l(mx) = 0 ⇐⇒ al = bl =
S′l(x)/ξ′l(x). In this section, we firstly unveil a fundamental property of a non-
magnetic dielectric homogeneous Mie sphere with µ = 1 that has been broadly
conjectured [3, 4, 154, 155] but not yet demonstrated: The EM helicity cannot
be conserved in a multipolar scattering process. In order to prove it, let us
make use of the following Lemma,

1. When v > −1 and a, b ∈ R such as a2 + b2 6= 0 then no function of the
type aJv(z) + bzJ ′v(z) = 0 can have a repeated zero other than z = 0.

Note that Lemma. 1 generalizes a well-known result based on the interlacing
nature of the zeros of the Bessel functions for different v-order values [156,157].
Since the trivial solution mx = 0 implies no particle, then Eq. (98) can not be
formally satisfied ∀l.



Another fundamental property of the Mie theory 55

On physical grounds this phenomenon implies that, when al(m, x) = bl(m, x),
then no other pair of electric and magnetic Mie coefficients can be identical,
aj(m, x) 6= bj(m, x) ∀j 6= l. Note that this phenomenon occurs regardless of
the incoming polarization, multiple order, size parameter and contrast index,
making this demonstration general. There we have revealed a fundamental
property of the so-called Mie theory [12]. As an illustrative example, the
multipole first Kerker conditions, given by both the nodes of first and second
kind, i.e. Sl(mx) = 0 and S′l(mx) = 0, respectively, for l = 1, 2, 3, are shown
in Fig. 7.1. As a result of Lemma 1, these trajectories do not cross each
other neither overlap showing that the EM helicity after scattering can not be
preserved in a multipolar scattering process. Nevertheless it can be conserved
in pure-multipolar spectral regions with well-defined square of the total AM,
J2, and its z-component, Jz, particularly, in dipolar spectral regimes under
PW illumination, as we will shorty see.
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Figure 7.1 – Multipole Kerker conditions arising from the nodes of first and
second kind Sl(mx) = 0 and S′l(mx) = 0, respectively, for l = 1, 2, 3, versus
the contrast index m and the x size parameter. The nodes of first kind are
illustrated by dashed lines while the nodes of second kind are represented by
solid lines. Either of them leads to al = bl. The nodal trajectories neither
cross nor overlap, proving that the EM helicity can not be preserved in a
multipolar scattering process.
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Figure 7.2 – (a) Percentage error of assuming a dipolar response, i.e.,
Qdip

error = |Qdip
sca/Qsca − 1|% vs the y = mx size parameter and refractive index

contrast m. The dipolar spectral regime corresponds to white regions. (b)
Expected value of the EM helicity after scattering by a dielectric Mie sphere.
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7.3 Dipolar spectral regimes from the conservation of the
EM helicity

To confirm it, let us make use of the expected value of the scattered EM
helicity (see Eq. (90)). When the sphere is illuminated by a circularly polarized
PW with helicity σ, or by a cylindrically symmetric beam (eigenvector of the
helicity, Λ and z-component of the AM, Jz, with eigenvalues m and σ), the
scattered field is, in general, a combination of multipolar modes with fixed m,

〈Λ〉 = σ
1− T
1 + T

, where T =

∑∞
l=|m|

∣∣C+
lm

∣∣2 |al − bl|2∑∞
l=|m|

∣∣C+
lm

∣∣2 |al + bl|2
, (99)

is the helicity transfer function [154].
When T goes to zero, the particle response is said to be dual [154], and the scat-
tered EM helicity is the same as the EM helicity of the incoming beam. How-
ever, as we have previously demonstrated, the EM helicity is not preserved in a
multipolar scattering process. Nevertheless, the EM helicity can be reasonably
preserved in pure-multipolar spectral regions, particularly, in dipolar spectral
regimes under PW illumination, as can be inferred from Fig. 7.2. Firstly, we
identify dipolar regions (white colors) from Figure 7.2a, where the percentage
error of assuming a dipolar response, i.e., Qdip

error = |Qdip
sca/Qsca − 1|%, versus

the y = mx size parameter and index contrast m is depicted. Notice that Qdip
sca

corresponds to Eq. (81) but retaining only l = 1 (dipolar contribution). Sur-
prisingly, several dipolar spectral regimes are found far beyond its presumed
spectral interval (beyond the magnetic (mq) and electric quadrupole (eq) res-
onances) for HRI spheres with m ≥ 3.5. Secondly, we show in Figure 7.2b the
expected value of the EM helicity after scattering, 〈Λ〉, under well-defined EM
helicity plane wave illumination, σ = +1 (see Eq. (99)). As can be inferred

from the attached color-bar, 〈Λ〉 ≈ 1 when the s
′(q)
1 vertical trajectories, cor-

responding to the q-th zeros of S′1(mx) = 020, pass through a dipolar spectral
region. In contrast, 〈Λ〉 is not conserved in a multipolar scattering process as
a result of Lemma 1 since if al = bl then aj 6= bj ∀ j 6= l.
In order to get a deeper insight into the appearing of these dipolar spectral
regimes, in Fig. 7.3 we analyze the dipolar contribution (blue dashed line) to
the total scattering efficiency (black solid line) for two different dielectric-like
spheres [148]: Titanium Oxide (TiO2) with m = 2.5 and Germanium (Ge)
with m = 4. While in the case of TiO2 the dipolar regime (blue background
in Fig. 7.3a) just emerges in the limit of small particle [14, 16], the scattering
efficiency arising from the Ge sphere presents an unexpected dipolar regime

20We denote the q-th positive zeros of Sl(mx) = 0 and S′l(mx) = 0 as s
(q)
l and s

′(q)
l ,

respectively.
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beyond the point-dipole approximation in the interval given by 5.75 < y < 6.25
(narrow blue background in Fig. 7.3b), far beyond the mq and eq resonances.

Let us recall that, at this dipolar regime, the EM helicity is preserved at s
′(2)
1 for

the Ge sphere. This phenomenon implies that the zero optical backscattering
condition can be fulfilled for dipolar HRI microspheres.

Figure 7.3 – Scattering efficiency from: (a) TiO2-like sphere with m = 2.5
and (b) Ge-like sphere with m = 4. Blue regions illustrate the regimes that
are essentially described by a dipolar response. The fist and second
multipolar Kerker conditions are willfully depicted in order to show that just

s
′(1)
1 and s

′(2)
1 lead to EM helicity preserving for HRI spheres (m > 3.5),

according to Fig. 7.2.
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7.4 Optimum forward light scattering condition

The aim to obtain a minimum backscattering together with maximized total
and forward scattering has been tackled for spherical and spheroidal nanopar-
ticles [121, 122]. In the latter works, it was found that a diamond-like sphere
(m ∼ 2.45) [148] is the best candidate fulfilling the optimum forward light
scattering condition in the dipolar spectral regime, below the mq and eq res-
onances. The problem consists on maximizing the scattering efficiency (see
Eq. (81)) at the first Kerker condition given by S′1(mx) = 0⇐⇒ a1 = b1. This
maximization is mathematically expressed as,

max [Qscat] = 12 max

∣∣∣∣ S′1(x)

xξ′1(x)

∣∣∣∣2 ∼ 3.75, with xmax ∼ 1.12. (100)
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Figure 7.4 – (a) Node of the second kind, S′1(mxmax), where xmax ∼ 1.12, as
a function of the contrast index m. The q-th positive zero of this function,
depicted by circles, satisfies the optimum forward light scattering condition.

(b) Scattering efficiency, Qsca, evaluated at the x
(q)
k , i.e., the size parameter

that leads to the first Kerker condition given by s′1
q
, as a function of m.
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This calculation is not surprising: The scattering efficiency depends on the x
size parameter, and its maximum value is bounded. From the dipolar node of
second kind namely, S′1(mxmax) = 0, it is straightforward to derive the mate-
rial(s) that satisfy the optimum forward light scattering condition, as it can be
inferred from Fig. 7.4. Interestingly, for the asymptotic limit given by m� x, l
the dipolar node of the second kind reads as S′1(mx) ∼ − sin(mx) and then
the optimum forward light scattering condition is not a transcendental but an
analytical solution given by the simple form m = qπ/xmax. For completeness,
we illustrate the differential scattering cross-section, arising from two materials
with m ≈ 2.45 and m ≈ 5.47 satisfying the optimum forward light scattering
condition, in Fig. 7.5a and Fig. 7.5b, respectively. As previously discussed, the
scattering radiation pattern is identical since the optimum forward light scat-
tering condition arises at a fixed x size parameter (xmax ≈ 1.12) for an infinite
number of materials, contrary to previous interpretations [121, 122]. Finally,
let us discuss one aspect of interest about the dipolar regimes arising beyond

Figure 7.5 – Scattering radiation patterns arising from dual materials in the
dipolar spectral regime, normalized by the maximum value at the optimum
forward light scattering condition: (a)-(b) two dual materials satisfying the
optimum forward light scattering condition; (c)-(d) two dual Ge spheres with
index contrast m ≈ 4 below and above the quadrupole resonances,
respectively.
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the mq and eq resonances: The scattering radiation pattern arising from HRI
dual spheres such as Ge exceeds the one emerging from the same index contrast
in the limit of small particle, as can be inferred from Fig. 7.5c and Fig. 7.5d.
This phenomenon could drive future experiments based on the EM duality
restoration: EM helicity conservation and absence of backscattered light for
HRI spheres in the dipolar spectral regime arising well-beyond the limit of a
small particle.

7.5 Conclusions

We have unveiled a fundamental property of the Mie scattering of a dielectric
sphere. Namely, that when al = bl, no other pair of electric and magnetic Mie
coefficients can be identical, aj 6= bj ∀ j 6= l. This finding precludes the ideal
EM duality restoration (or ideal helicity conservation) in scattering processes
where several multipoles contribute to the optical response of an object [155].
The proof is general since it is solely based on a fundamental mathematical
property of the Bessel functions and, thus, remains valid regardless of the par-
ticle size, refractive index contrast, incident wavelength, and multipole order.
Nevertheless, we have shown that the EM helicity conservation can be used as
a probe of pure-multipolar spectral regimes, particularly dipolar nature, which
arises from its presumed spectral region. This intriguing finding shows that the
dipolar behavior is not necessarily limited to small particles, where the point-
dipole approximation works correctly [158]. From our results, it is straightfor-
ward to note that electric and magnetic dipolar optical forces [24,73,159,160],
radiation pressure [161, 162], light transport phenomena [8, 87], and the novel
concept of anapole modes [27], originally derived for small nanoparticles, can
be extended to larger HRI dipolar spheres. Moreover, the novel dipolar regions
where the EM helicity is preserved can be used to enhance the sensitivity of
circular dichroism spectroscopy of chiral particles [163,164]. This finding could
drive to experiments beyond the actual physical picture, mostly restricted to
small HRI materials that present a relatively weak scattering efficiency at the
first Kerker condition [165, 166]. Finally, we have proved that the optimum
forward light scattering condition, derived initially for a specific nanoparticle,
is satisfied for an infinite number of materials at a fixed x size parameter,
in contrast to previous interpretations [121, 122]. We believe that our results
open new perspectives in studying the light scattered by dielectric Mie spheres,
including new possible applications of HRI particles as building blocks in all-
dielectric optics and photonic devices.
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CHAPTER 8

Conclusions and outlook

8.1 Conclusions

This Thesis has been written to provide a closed but thorough theoretical de-
scription of the electromagnetic interaction between light and matter in the
emerging field of Nanophotonics. Mainly, I have focused on the electromag-
netic interaction between a PW with the most symmetric object existent in
nature: an homogeneous sphere. Although Gustav Mie solved this scattering
problem at the beginning of XX century [12], I have been able to explore some
overlooked aspects in the previous Chapters.
The main findings of this Thesis can be summarized into the following items:

• Enhanced errors in optical localization due to the first Kerker
condition. It is customary challenging to infer the existing errors in
optical localization from nanostructures. In Chapter 3, it is demonstrated
that the subwavelength displacement from a pure electric dipole under
plane wave illumination can be drastically surpassed by making use of a
HRI Si sphere sustaining both an electric and magnetic dipolar response.
This optical error commonly referred to as optical mirages, diverges in
backscattering at the first Kerker condition, i.e., when the electric and
magnetic dipolar response is identical. As demonstrated in Chapter 3,
this phenomenon can be understood employing a new theoretical and
practical framework for the study of light-matter interactions: helicity,
total angular momentum, and the use of symmetries.
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• Bringing together the concepts of helicity and asymmetry in
light scattering from small particles. Electromagnetic helicity, the
nonparaxial generalization of the notion of polarization, and the asym-
metry parameter, which governs the scattered light’s directionality, were
unseemly uncorrelated magnitudes. In Chapter 4, it is shown that both
helicity and the g-parameter are strikingly linked in the electric and mag-
netic dipolar regime. Consequently, the whole scattering pattern, given
by the sign of the g, can be indirectly inferred from a relatively sim-
ple measurement of the polarization in the far-field limit. This result
opens new insights into several physics branches such as optical forces,
particularly laser tractor beams, optical anapoles, and light transport
phenomena.

• An overlooked fundamental property of the Mie coefficients.
The first Kerker condition had been historically presented in terms of the
electric and magnetic Mie coefficients as al = bl. However, this notation
does not give insight into the first Kerker condition we are dealing with.
To tackle this problem, and in Chapter 5, we have introduced a brand-
new nodal notation that simplifies the first Kerker condition. Within this
formalism, it is demonstrated that absorption inhibits the first Kerker
condition for homogeneous spheres. As a result, the first Kerker condition
cannot be achieved in plasmonic nanostructures nor dielectric spheres in
the visible spectral range. This phenomenon precludes the conservation
of the incoming helicity and the zero optical backscattering condition in
the dipolar regime. In this vein, it is also shown that the zero optical
condition in the forward direction can only be achieved utilizing optical
pumping, namely, optical gain.

• Revisiting the so-called second Kerker condition and the nearly-
zero forward scattering. The perfect zero forward light scattering
condition, first introduced by Kerker, Wang, and Miles [29], has been
historically revisited due to its incompatibility with the optical theorem.
As a result, an energy-viable optical condition, referred to as the Gen-
eralized second Kerker condition (GSKC), was proposed as a plausible
alternative for HRI nanostructres [23]. Thus, the link with both GSKC
and nearly-zero forward light scattering has been taken for granted in
all previous works as it was thought to mimic the light scattering ef-
fects of those presented in Ref. [29]. However, it is shown in Chapter 6,
the GSKC does not generally give rise to the nearly-zero forward light
scattering condition. It ranges all possible light-scattering scenarios in
the dipolar regime. This result invites the optical community to revisit
some of their conclusions regarding scattered light’s directionality at the
GSKC.
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• Optimizing the zero optical backscattering condition in brand-
new dipolar spectral regimes. The absence of backscattered light
has been observed in several HRI nanostructures at the first Kerker con-
dition. However, the scattering efficiency at the first Kerker condition is
several orders of magnitude below the electric or magnetic resonances. In
Chapter 7, it is demonstrated that the optimum zero optical backscatter-
ing condition appears for a given x size parameter instead of for a given
index contrast at brand-new dipolar spectral regimes. These appear for
large dielectric spheres, such as Germanium, and, in a sense, break the
continuous association of dipolar regime with small particles. Our results
give new insights into understanding the absence of backscattered light
and the physical scenario behind the dipolar approximation. The latter
is quite handy as the analytical approach is suitable.

8.2 Outlook

We hope that the present Thesis has generated many interesting questions and
opened several directions worth exploring in the future. For example, we aim
to explore the relationship between the Kerker conditions and optical invisibil-
ity through the so-called optical anapoles. In the latter optical condition, the
electric and magnetic scattering efficiency simultaneously vanishes while the
internal energy is enhanced. As a result, these anapoles, commonly referred
to as hybrid anapoles, are mathematically found by imposing the first Kerker
condition with zero scattering. While hybrid anapoles are hindered for spheres
under plane wave illumination, we intend to excite the hybrid anapole through
a tightly-focused gaussian beam that discards higher multipolar orders in the
optical response of the sphere. This tightly-focused Gaussian beam is inti-
mately related to the concept of dipolar field, which is nothing but an ideal
field that only excites electric and magnetic dipoles at the focus. A review of
the concept of dipolar field can be found in Ref. [167].
Another field in which the findings of this Thesis can be directly applied is
optical chirality. Particularly, we aim to explore which is the optimum building
block enhancing the circular dichroism of a well-defined helicity signal. Based
on the properties of the spherical harmonics, eigenstates of the total angular
momentum, and helicity, we intend to derive a closed-analytical expression
that directly points out which is the best candidate to enhance the circular
dichroism of a signal. In contrast to previous assumptions, we expect not to
be the sphere the best building block since the first Kerker condition cannot
be associated with a resonant behavior.
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CHAPTER A

Poynting vector from an electric
and magnetic dipole

A.1 EM fields from an electric and magnetic dipole

The EM fields emitted by an electric and magnetic dipole can be written
following Jackson’s notation [118] as

Ee =
1

4πε0

{
k2 (r̂× p)× r̂

eikr

r
+ [3r̂ (r̂ · p)− p]

(
1

r2
− ik

r

)
eikr

r

}
(101)

Em = −Z0

4π
k2 (r̂×m)

eikr

r

(
1− 1

ikr

)
, (102)

while the magnetic field can be straightforwardly computed by ZH = −iΛE.
Here Z =

√
µ/ε is the host medium impedance, µ and ε being the permeability

and permittivity in the host medium, r̂ is the radial unit vector and k =
mh2π/λ0 is the wavevector in the host medium described.
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A.2 Poynting vector from an electric and magnetic dipole

The time-averaged Poynting vector is given by the simple relation

Sscat =
1

2
Re {E×H∗} = Se + Sm + Sem. (103)

where the subindex (em) refers to the interference between the electric and
magnetic contribution. After some cumbersome but trivial algebra it can be
shown the Poynting vector is given in the electric and magnetic dipolar regime
by

Se =
ck4

32π2ε0r2

{
r̂
(
|p|2 − (r̂ · p) (r̂ · p∗)

)
− 2

kr

(
1 +

1

(kr)2

)
Im {(r̂ · p) p∗}

}
,

(104)

Sm =
Zk4

32π2r2

{
r̂
(
|m|2 − (r̂ ·m) (r̂ ·m∗)

)
− 2

kr

(
1 +

1

(kr)2

)
Im {(r̂ ·m) m∗}

}
(105)

and

Sem =
Zck4

32π2r2

{(
2 +

3

(kr)4

)
[r̂ · Re {p×m∗}] r̂− 2

(kr)4
Re {p×m∗}

+

(
2

kr

)
Im {(r̂× p) (r̂ ·m∗) + (r̂×m∗) (r̂ · p)}

}
.

(106)

A.3 Poynting vector from circularly polarized plane waves

Let us consider an homogeneous spherical target, located in the origin of co-
ordinates r = 0, sustaining both an electric and magnetic dipole, illuminated
by a well-defined helicity (circularly polarized) PW,

Ei = E0e
ikz ξ̂σ, ZHi = iσE0e

ikz ξ̂σ, (107)

with

ξ̂σ =
x̂+ iσŷ√

2
=
eiσϕ

√
2

(
sin θr̂ + cos θθ̂ + iσϕ̂

)
. (108)

Here σ = ±1 is the incoming helicity, E0 is the amplitude of the electric field,
θ the scattering angle, i.e. z = r cos θ and [êr, êθ, êϕ] the typical spherical
(unitary) basis. In this description, the induced electric and magnetic dipoles
become

p = ε0αEEi(r = 0) and m = αMHi(r = 0). (109)
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Here αE = ia1k
3/(6π) and αM = ib1k

3/(6π) denote the electric and magnetic
polarizabilities, being a1 and b1 the so-called Mie coefficients [9]. The Poynting
vector can be easily computed from Eqs. (104)-(105)-(106) when considering
the induced dipoles as appear in Eq. (109). Neglecting the near-field terms,
we arrive to

Se =
2G0|αE|2

r2

{
r̂

(
1− sin2 θ

2

)
+

σ

kr
sin θϕ̂

}
(110)

Sm =
2G0|αM|2

r2

{
r̂

(
1− sin2 θ

2

)
+

σ

kr
sin θϕ̂

}
(111)

Sem =
4G0

r2
Re {αEα

∗
M} cos θ

{
r̂ +

σ

kr
sin θϕ̂

}
, (112)

where G0 = cε0|E0|2k4/64π2.

A.4 Poynting vector from linearly polarized plane waves

Let us consider an homogeneous spherical target, located in the origin of co-
ordinates r = 0, sustaining both an electric and magnetic dipole, illuminated
by a linearly polarized PW,

Ei = E0e
ikzx̂, ZHi = E0e

ikzŷ. (113)

The Poynting vector can be easily computed from Eqs. (104)-(105)-(106) when
considering linearly polarized dipoles induced by Eq. (113). Neglecting the
near-field terms, we arrive to

Se =
2G0

r2
|αE|2

(
1− cos2 ϕ sin2 θ

)
r̂, (114)

Sm =
2G0

r2
|αM|2

(
1− sin2 ϕ sin2 θ

)
r̂. (115)

The interference between the electric and magnetic dipoles given by

Sem =
4G0

r2

(
Re {αEα

∗
M} cos θr̂ (116)

− 1

kr
Im {αEα

∗
M} sin θ

(
cos(2ϕ)θ̂ − cos θ sin(2ϕ)ϕ̂

))
. (117)

It is important to notice that generally, Im {αEα∗M} 6= 0.
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