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Abstract: The minimum energy structures of the Si3C5 and Si4C8 clusters are planar and contain
planar tetracoordinate carbons (ptCs). These species have been classified, qualitatively, as global
(π) and local (σ) aromatics according to the adaptive natural density partitioning (AdNDP) method,
which is an orbital localization method. This work evaluates these species’ aromaticity, focusing
on confirming and quantifying their global and local aromatic character. For this purpose, we use
an orbital localization method based on the partitioning of the molecular space according to the
topology of the electronic localization function (LOC-ELF). In addition, the magnetically induced
current density is analyzed. The LOC-ELF-based analysis coincides with the AdNDP study (double
aromaticity, global, and local). Moreover, the current density analysis detects global and local ring
currents. The strength of the global and local current circuit is significant, involving 4n + 2 π- and
σ-electrons, respectively. The latter implicates the Si-ptC-Si fragment, which would be related to the
3c-2e σ-bond detected by the orbital localization methods in this fragment.

Keywords: clusters; planar tetracoordinate carbon (ptC); local and global aromaticity; chemical
bonding; orbital localization; electron localization function (ELF); electron delocalization; current
density analysis

1. Introduction

The concept of aromaticity has been extended over time to coin new features that
define a system as aromatic and address a diversity of organic and inorganic systems [1–5].
In this regard, nowadays the concept of aromaticity, π and σ, is used extensively to rational-
ize the stability of some atomic clusters [6]. Accordingly, the aromaticity well justifies the
clusters’ highly symmetric and stable structures. So, numerous planar boron clusters [7–9],
metal clusters [1,5–7,10–14], and metallabenzenes [15–19] fit well into the concept of aro-
maticity. Along with π- and σ-aromaticity, multiple local π-aromaticity shows to be a
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helpful concept for rationalizing complex conjugate systems, such as polycyclic hydrocar-
bons or graphene [20,21]. Moreover, it was indicated that the concept of multiple local
σ-aromaticity is also applicable in the chemistry of nonagermanide clusters [22].

Chemists dedicate considerable effort to predicting new molecules with exotic non-
classical structures. Planar hypercoordinate carbons, i.e., carbon linked to four or more
ligands in the plane, are especially puzzling systems. With the modest goal of achieving
a thermally accessible transition state for a classical racemization experiment, in 1970
Hoffman and coworkers introduced strategies to stabilize a planar tetracoordinate carbon
(ptC) [23]. Notably, this study inspired many theoretical and experimental studies over
the last 50 years culminating in numerous compounds with ptCs [24–30]. More recently,
“planar hypercoordinate” chemistry expanded to include planar species where the central
atom is not limited to carbon, and the coordination number is more than four. Species
with planar pentacoordinate [31–38] and hexacoordinate [39–42] carbons (ppCs or phCs)
have been designed in silico. Electronic delocalization (i.e., aromaticity, resonance) plays a
determining role in the stability of many of these species. Consequently, a comprehensible
chemical bonding analysis is fundamental for interpreting their stability. For instance, the
18-valence electron D4h-CAl42− cluster is a doubly σ- and π-aromatic cluster experimentally
detected in the Na+[CAl42−] complex [29,30]. Of particular interest in this work is the
concept of aromaticity (π, σ, local, global) and the role it plays in justifying the stability of
systems with planar hypercoordinate carbons.

Aromaticity is not an observable property, yet it is generally assessed in terms of
structural, energetic, and magnetic criteria [3,43–48]. Aromatic and antiaromatic species
sustain diatropic and paratropic ring currents when exposed to a uniform magnetic field
perpendicular to the molecular plane [49–54]. This magnetic response allows the inter-
pretation of experimental NMR spectroscopy and magnetic anisotropy measurements on
(anti) aromatic molecules [45,55]. The nucleus-independent chemical shift (NICS) is a very
popular theoretical descriptor used for assessing aromaticity. Schleyer and coworkers de-
fined the NICS as “the negative of the absolute magnetic shielding,” further suggesting to
compute it at the molecular center [56]. Note that the Biot–Savart law connects the induced
magnetic field at the ring center, and thus the chemical shift at this point, to the ring current
density [57]. In particular, the out-of-plane component of the NICS measured above the
molecular plane [i.e., NICSzz(1)] is well correlated with the intensity of the ring current
flux (according to the ring current strength, RCS, values) [58,59]. However, some works
reported significant discrepancies between the NICS-based and the current density-based
analyses for systems with multiple (local and global) aromaticity (i.e., aromatic polycyclic
hydrocarbons) [60,61]. These differences are because the NICS is affected by coupling
contributions from local and global aromatic circuits, making it difficult to assign local,
semilocal, and global ring current contributions.

Previously, some of the authors of this work designed a series of ptC global minima
composed of carbon and heavier atoms of group 14 of the periodic table [62–64]. The design
strategy consisted of replacing three consecutive protons from an aromatic hydrocarbon
by one E2

4+ fragment (E = Si-Pb), favoring the preservation of the π-aromatic circuits of
the parent aromatic hydrocarbons (see Scheme 1) [62]. Interestingly, the systems Si3C5,
Ge3C5, Si4C8, and Ge4C8 (C5H5

− and C8H6
2− derivatives) contain one or two ptCs in

their lowest energy structures. The chemical bonding analysis—employing the adaptive
natural density partitioning analysis (AdNDP)—suggests that these systems are globally
π-aromatic and locally σ-aromatic. This aromatic character was supported by the analysis
of the nucleus-independent chemical shift (NICS) [62].

Given the NICS problems mentioned above, in this work we analyze the local and
global ring currents in the Si3C5 and Si4C8 systems. In addition, we analyzed the chemical
bonding with the ELF-LOC method, an orbital localization scheme in the domains of the
electronic localization function (ELF). The ELF-LOC, like AdNDP, provides information
related to electronic delocalization, given its flexibility to identify orbitals distributed in
more than two atomic centers. Our results confirm the presence of two delocalization
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circuits, one global (π) and one local (σ). More importantly, the global and local ring currents
are diatropic and significant (according to the ring current strength, RCS, calculations).
These results strongly support these systems’ double aromatic character (local and global)
and their role in their stability.

Chemistry 2021, 3, FOR PEER REVIEW 3 
 

 

 
Scheme 1. Design strategy of aromatic ptC systems employed in reference [62]. 

Given the NICS problems mentioned above, in this work we analyze the local and 
global ring currents in the Si3C5 and Si4C8 systems. In addition, we analyzed the chemical 
bonding with the ELF-LOC method, an orbital localization scheme in the domains of the 
electronic localization function (ELF). The ELF-LOC, like AdNDP, provides information 
related to electronic delocalization, given its flexibility to identify orbitals distributed in 
more than two atomic centers. Our results confirm the presence of two delocalization cir-
cuits, one global (π) and one local (σ). More importantly, the global and local ring currents 
are diatropic and significant (according to the ring current strength, RCS, calculations). 
These results strongly support these systems’ double aromatic character (local and global) 
and their role in their stability. 

2. Computational Methods 
Geometry optimizations were performed at B3LYP [65]/6-311+G* [66,67] level. Vibra-

tional frequencies were evaluated at the same level to confirm the optimized structures as 
true minima on their potential energy surface using the Gaussian16 program [68]. Carte-
sian coordinates of the optimized structures are shown in Table S1. 

A detailed description of the ELF-LOC algorithm can be found elsewhere [69–72]. In 
this work, all numerical determinations were performed at the B3LYP level within density 
functional theory (DFT), using the atomic STO-3G basis sets. The overlap integrals over 
the ELF regions, required to calculate the localized natural orbitals, were obtained from 
the GAMESS computational package [73] and a modified version of the ToPMoD program 
[74]. The orbital localization was performed using our codes [69,70]. 

Current densities were computed with the GIMIC program [75,76] using the gauge- 
including atomic orbital (GIAO) [77] method. In the calculations, the magnetic field is di-
rected along the z-axis, i.e., perpendicular to the molecular plane. The unit for current 
susceptibility is nA T−1 and the results are, therefore, independent of the magnitude of the 
magnetic field. For a qualitative analysis, vector plots of the current density in a plane 
placed 0.0 and 0.5 Å above the molecular plane were generated. Diatropic (aromatic) and 
paratropic (antiaromatic) currents are assumed to circle clockwise and counterclockwise, 
respectively. Current pathways are visualized using Paraview [78,79]. The ring current 
strengths (RCS), a measure of the net current intensity around the molecular ring, were 
obtained after considering different integration planes (see Figures S1–S3). The integration 
planes correspond to cut-off planes perpendicular to the chosen bonds of the molecule 
and extend horizontally along the ring’s plane in 3.6 Å, with 2.6 Å above and below the 

Scheme 1. Design strategy of aromatic ptC systems employed in reference [62].

2. Computational Methods

Geometry optimizations were performed at B3LYP [65]/6-311+G* [66,67] level. Vibra-
tional frequencies were evaluated at the same level to confirm the optimized structures as
true minima on their potential energy surface using the Gaussian16 program [68]. Cartesian
coordinates of the optimized structures are shown in Table S1.

A detailed description of the ELF-LOC algorithm can be found elsewhere [69–72]. In
this work, all numerical determinations were performed at the B3LYP level within density
functional theory (DFT), using the atomic STO-3G basis sets. The overlap integrals over
the ELF regions, required to calculate the localized natural orbitals, were obtained from the
GAMESS computational package [73] and a modified version of the ToPMoD program [74].
The orbital localization was performed using our codes [69,70].

Current densities were computed with the GIMIC program [75,76] using the gauge-
including atomic orbital (GIAO) [77] method. In the calculations, the magnetic field is
directed along the z-axis, i.e., perpendicular to the molecular plane. The unit for current
susceptibility is nA T−1 and the results are, therefore, independent of the magnitude of
the magnetic field. For a qualitative analysis, vector plots of the current density in a plane
placed 0.0 and 0.5 Å above the molecular plane were generated. Diatropic (aromatic) and
paratropic (antiaromatic) currents are assumed to circle clockwise and counterclockwise,
respectively. Current pathways are visualized using Paraview [78,79]. The ring current
strengths (RCS), a measure of the net current intensity around the molecular ring, were
obtained after considering different integration planes (see Figures S1–S3). The integration
planes correspond to cut-off planes perpendicular to the chosen bonds of the molecule and
extend horizontally along the ring’s plane in 3.6 Å, with 2.6 Å above and below the ring.
The two-dimensional Gauss-Lobatto algorithm [76,80] was used to integrate the current
passing through an integration plane.

Vector plot visualization of the current density in the plane of the molecule and
0.5Å above are reported in Figures S1–S5. It is essential to mention that the negative
(diatropic) and the positive (paratropic) NICS at the center of the molecules are associated
with aromaticity and anti-aromaticity. In contrast, for the RCS, a positive (diatropic) and
negative (paratropic) sign correspond to aromatic and anti-aromatic molecules, respectively.
For both the NICS and the RCS, values close to zero suggest non-aromatic behavior [81].
Both the NICS and the current density analysis were performed at B3LYP/6-311+G* level.
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The NICS were computed using the gauge-including atomic orbital (GIAO) [77]
method and dissected into their core, σ, and π contributions, using the natural chemical
shielding (NCS) [82] analysis as implemented in the NBO 6.0 program [83]. To evaluate the
NICS, we used NICSall, a simple program developed in our group, which is interfaced with
the Gaussian program. NICSall helps to prepare the inputs and submits the calculations
to generate the data according to the user’s requirements. In this work, we computed the
NICS in 2D. To do this, we first estimated the box size, which in this case was defined by
the sides equal to 1.5 times the length and width of the molecule (centered and placed in
the XY plane) by the height (z-axis), taking their lowest value. NICSall prepares the inputs
to fill the grid with a step size of 0.2 Å (this is a default value; it could be modified by the
user). Finally, NICSall delivers the outputs: text files with the properties (scans, FiPC-NICS)
or cube files to plot maps and isosurfaces. The NICS plots were performed with the VisIt
3.0.2 program [84].

It is essential to mention that both the ring currents analysis [76] and the ELF analy-
sis [85,86] are not very dependent on the method or the basis set used in their calculation.

3. Results

For the sake of clarity, our analysis will be divided into two parts: the chemical
bonding analysis according to the ELF-LOC method and the global and local aromaticity
analysis according to magnetic criteria.

3.1. Chemical Bonding Analysis According to the ELF-LOC Method

The orbital localization provided by the ELF-LOC method reveals a chemical bonding
pattern similar to that described by AdNDP, as shown in Figures 1 and 2. In Si3C5 and Si4C8,
the C5 and C8 rings are connected by 2-center 2-electron C-C σ-bonds (2c-2e). For Si4C8, one
C-C σ-bond (2c-2e) that splits the C8 ring into two pentagons is also detected. Additionally,
delocalized bonds are detected, three π-bonds in the case of Si3C5 and five in Si4C8. Note
that in this set, the π-orbitals are distributed over the entire molecular structure. Moreover,
delocalized σ-bonds (3c-2e) are also detected in each Si-ptC-Si triangular fragment. These
results support global π- and local σ-delocalization, suggesting possible global and local
aromaticity according to Hückel’s 4n + 2 rule [87–89].
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Figure 1. Results of ELF-LOC for Si3C5 cluster.

3.2. Current Density Analysis

According to the magnetic criteria, in the presence of an external magnetic field,
aromatic (antiaromatic) molecules sustain diatropic (paratropic) currents. In contrast, in
nonaromatic molecules, the currents in one direction or the other cancel out, giving a
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resultant current strength close to zero [53–55,76,81,90,91]. In this work, we define “local
ring current” as the current circuits distributed in a local molecular ring. In contrast, we
describe the “global ring current” circuit as distributed around the whole molecule. This
assignment was introduced by Sundholm et al. [61] and recently used by our group to high-
light the shortcomings of the NICS in assessing the aromaticity of polycyclic systems [92].
Note that Aihara introduced a similar concept to distinguish between different current
density pathways [93].
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We can glimpse the patterns of current flows by inspecting current density plots.
Hence, the magnetically induced current density of Si3C5 and Si4C8 systems, calculated
in a plane located 0.5 Å above the molecular plane, are shown in Figures 3 and 4 (part a).
These plots guide our selection of the integration planes. The different contributions
(bond, atomic and ring currents) are defined and quantified by analyzing the integration
profiles along the integration planes, see Figures S1 and S2. In this way, it is possible to
computationally determine the local and global character of the induced currents. The
strength of the local currents (diatropic) is computed and then subtracted from the strength
of the diatropic current connecting the local rings to determine the global RCS [61,92].
Accordingly, it has been possible to identify the different delocalization circuits in the
studied systems (part b of Figures 3 and 4). In addition, the intensity of each current is
also shown in these figures. For the Si3C5 system, an intense and paratropic current is
detected inside the C5 (RCS = −8.06 nA/T). This ring current is more paratropic than that
exhibited by the cyclopentadienyl anion (−3.5 nA T−1), the results of which are shown in
Figure S3. A global diatropic ring current with a strength of 12.2 nA T−1 is also detected.
The latter result is from the delocalization of the six π-electrons and is weaker than that of
the cyclopentadienyl anion (14.5 nA T−1). The differences may be due to the effect of the
polarization of the π-electron cloud toward the silicon atoms. This hypothesis is supported
by analyzing the Si2C5H2 system, with one less bridged silicon atom exhibiting a paratropic
(RCS = −3.6 nA T−1) and diatropic (RCS = 13.4 nA T−1) current intensity closer to those
of the cyclopentadienyl anion (see Figures S3 and S5). Interestingly, a local diatropic ring
current involving the Si-ptC-Si fragment is also detected, in complete agreement with that
predicted by AdNDP and the ELF-LOC, which indicated the presence of a σ-delocalized
3c-2e bond. Moreover, the RCS value (5.2 nA/T) suggests that this species has a moderate
local σ-aromatic character.

For the case of the Si4C8 system (Figure 4), the current density analysis detects
two paratropic and local ring currents (within each C5 ring). Similar to Si3C5, these
currents are more paratropic (RCS = −4.7 nA T−1) than those of the pentalene dianion
(RCS = −4.4 nA T−1), whose current density analysis is shown in Figure S4. We also detect
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a weak global paratropic ring current (RCS = −1.6 nA T−1) distributed around the C8
fragment in addition to an intense global diatropic current (RCS = 10.4 A T−1). The global
diatropic current is less intense than those of the pentalene dianion (RCS = 10.4 A T−1), pre-
sumably because of the polarization of the π-electron cloud toward the silicon. Finally, two
local sigma currents are detected, involving the Si-ptC-Si circuits, similar to that exhibited
by Si3C5 system. Moreover, these currents are of moderate intensity (RCS = 5.8 nA T−1),
leaving in evidence the local sigma aromatic character of these species.
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3.3. NICS Analysis

Figure 5 shows the σ- and π-components of the NICSzz computed in both the molecular
plane and a plane perpendicular to the molecular plane for the Si3C5 and Si4C8 systems.
These plots are in complete agreement with the ring current analysis. The σ-component
clearly depicts paratropic regions at the center of the C5 rings in both Si3C5 and Si4C8,
in accord with the presence of paratropic ring currents inside these rings. In addition,
an intense diatropic region (long-range) centered on the local Si-ptC-Si ring is observed
supporting the presence of a local diatropic current in this region. The π-component exhibits
a strong diatropic region around the whole Si3C5 and Si4C8 ring (long-range), in agreement
with the presence of a global diatropic ring current. As indicated previously [61,92], the
NICS analysis does not allow the identification of all the ring current circuits. However,
it is a suitable complement to understand the magnetic behavior of these species and the
interpretation of their aromaticity under the magnetic criterion. Figure 6 shows a classical
NICSzz analysis, i.e., discrete measurements at the center of the ring and 1.0 A above.
The values measured in the molecular plane are pretty large (presumably because of the
coupling of bond contributions). In contrast, the values above the plane agree with the
current strength values measured in the induced current density analysis. In addition,
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Figures S6–S8 show an identical NICSzz analysis for Si2C5H2, the cyclopentadienyl anion
(C5H5

−), and the pentalene dianion (C8H6
2−). As seen with the current density analysis,

diatropicity due to π-delocalization decreases for species with ptCs, presumably by the
electron cloud polarization towards silicon atoms.
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4. Conclusions

The global (π) and local (σ) aromaticity of Si3C5 and Si4C8 clusters have been reviewed,
employing an orbital localization method (ELF-LOC) and magnetically induced current
density analysis.

The ELF-LOC investigation leads to bond descriptions like those reported previously,
based on the adaptive natural partitioning analysis (AdNDP) method. These systems show
σ- and π-delocalization in agreement with Hückel’s rule of 4n + 2 electrons.

The induced current density analysis identifies global and local aromatic current circuits. In
the case of Si3C5, a local paratropic current (of moderate-intensity, RCS =−8.1 nA T−1) is detected
inside the C5 ring. However, a diatropic current of higher intensity (RCS = 12.16 nA T−1) is also
present, which provides a global aromatic character to this species. A local σ-diatropic current
involving the Si-ptC-Si fragment is also identified, with moderate intensity (RCS = 5.2 nA T−1).
These results highlight the double aromatic character of this species. In the case of Si4C8, a
weak global paratropic current (RCS = −1.5 nA T−1) and an intense global diatropic current
(RCS = 10.4 nA T−1) are identified. In addition, two local diatropic currents around the Si-
ptC-Si rings (RCS = 5.8 nA T−1) are also identified. This study highlights the double aromatic
character of these clusters and the importance of this delocalization pattern in the stabilization of
these species.

The ptC structures of the Si3C5 and Si4C8 clusters correspond to the global minima
and, together with their double aromatic character, suggest that gas-phase experiments
could detect these species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemistry3040080/s1, Table S1: Cartesian coordinates of the studied systems, Figure S1:
(a) Vector plot visualization of the current density of Si3C5 in a plane placed 0.5 Å above the molecular
plane and top view of integration planes. (b) Integration profiles along the integration planes of Si3C5,
Figure S2: (a) Vector plot visualization of the current density of Si4C8 in a plane placed 0.5 Å above
the molecular plane and top view of integration planes. (b) Integration profiles along the integration
planes of Si4C8, Figure S3: (a) Vector plot visualization of the current density of C5H5

− in a plane
placed 0.5 Å above the molecular plane and top view of integration planes (RCS are also reported
in nA T−1). (c) Integration profiles along the integration planes of C5H5

−, Figure S4: (a) Schematic
representation of local and global currents. (b) Vector plot visualization of the current density
of C8H6

2− in a plane placed 0.5 Å above the molecular plane and top view of integration planes.
(c) Integration profiles along the integration planes of C8H6

2−, Figure S5: (a) Schematic representation
of local and global currents. (b) Vector plot visualization of the current density of Si2C5H2 in a
plane placed 0.5 Å above the molecular plane and top view of integration planes. (c) Integration
profiles along the integration planes of Si2C5H2, Figure S6: (a) Computed values (in ppm) of σ-
and π-components (left and right sides) of NICSzz at and above the ring centers (local and global)
of Si2C5H2 (at the GIAO-B3LYP/6-311+G*//B3LYP/6-311+G* level). The blue/red dots denote
diatropic/paratropic character, and the dot size is in line with the NICSzz magnitude. (b) Isolines of
the σ- and π-components of NICSzz for Si2C5H2 (at the GIAO-B3LYP/6-311+G*//B3LYP/6-311+G*
level). The isolines are plotted in both the molecular plane (left) and a plane perpendicular to the
molecular plane (right). The color scale at the bottom is in ppm, Figure S7: Isolines of the σ- and
π-components of NICSzz for both the cyclopentadienyl anion (C5H5

−) and the pentalene dianion
(C8H6

2−) (at the GIAO-B3LYP/6-311+G*//B3LYP/6-311+G* level). The isolines are plotted in both
the molecular plane (left) and a plane perpendicular to the molecular plane (right). The color scale at
the bottom is in ppm, Figure S8: Computed values (in ppm) of σ- and π-components (left and right
sides) of NICSzz at and above the ring centers (local and global) of both the cyclopentadienyl anion
(C5H5

−) and the pentalene dianion (C8H6
2−) (at the GIAO-B3LYP/6-311+G*//B3LYP/6-311+G*

level). The blue/red dots denote diatropic/paratropic character, and the dot size is in line with the
NICSzz magnitude.
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