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Abstract: Chiral graphene nanoribbons are extremely interesting structures due to their narrow band
gaps and potential development of spin-polarized edge states. Here, we study their band structure
on low work function silver surfaces. The use of a curved Ag single crystal provides, within the same
sample, regions of disparate step structure and step density. Whereas the former leads to distinct
azimuthal growth orientations of the graphene nanoribbons atop, the latter modulates the substrate’s
work function and thereby the interface energy level alignment. In turn, we disclose the associated
charge transfer from the substrate to the ribbon and assess its effect on the nanoribbon’s properties
and the edge state magnetization.
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1. Introduction

Carbon-based nanostructures can display exceptionally varied properties depending
on their precise bonding structure. This includes graphene nanoribbons (GNRs) [1-3],
in which a graphene lattice is confined to narrow, one-dimensional stripes. GNRs with
armchair-oriented edges display a semiconducting band structure. In contrast, zigzag and
even chiral GNRs are quasi-metallic and develop spin-polarized edge states [2-5], unless
they are exceedingly narrow. In this case, the edge states from either side hybridize with
one another, which quenches the spin polarization and confers the ribbons a conventional
semiconducting band structure [6,7].

For ribbons with a (3,1) chiral vector, the minimum width required to maintain the
quasi-metallic behavior comprises six carbon zigzag lines from side to side [6]. This
theoretical prediction has been recently confirmed experimentally by synthesizing and
spectroscopically characterizing (3,1) chiral GNRs of varying widths on Au(111) [8]. How-
ever, these ribbons, as well as purely zigzag edged GNRs [9] or other GNRs featuring low
energy states associated with periodic zigzag edge segments [10-12], have been synthesized
and characterized to date only on Au(111).

To investigate the effect of different substrates with a lower work function on the
ribbon’s electronic properties, here we synthesize six zigzag lines wide (3,1) chiral GNRs
((3,1,6)-chGNRs) on a curved Ag crystal [13] that spans up to £15 degrees of vicinal angle «
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to either side with respect to the central (111) surface orientation. The synthesis is successful
over the entire crystal, but the different types of steps on each side of the sample have
a disparate effect on the ribbon’s preferred azimuthal alignment. This provides us with
an ideal sample on which to study the band dispersion by angle-resolved photoemission
(ARPES), both along and perpendicular to the ribbon’s longitudinal axis.

2. Materials and Methods

The reactant molecules 2’ ,6'-dibromo-9,9’:10' 9" -teranthracene (DBTA, Figure 1a) were
synthesized as reported in an earlier study [8]. The employed curved silver crystal was
prepared with standard sputtering/annealing parameters (E = 1000 eV /T = 370 °C). The
reactant molecules were sublimed from a homemade Knudsen cell heated to a temperature
of around 265 °C at a rate of 0.06 ML/min as controlled with a calibrated quartz crystal
microbalance. The sample was subsequently annealed to 180 °C and 315 °C for 10 min
and 1 min, respectively, to separately activate the polymerization and cyclodehydrogenation
steps. The sample was first analyzed with STM and subsequently transferred to the ARPES
chamber without breaking the vacuum. The STM images were acquired at room temperature
with a commercial Omicron VI-STM and processed with the WSXM software [14]. ARPES
measurements were obtained with a high-intensity monochromatic source (21.2 eV) and a
high-resolution display-type hemispherical electron analyzer (Phoibos150). The vertically
aligned manipulator and analyzer slit were perpendicular to the horizontally aligned step
direction of the curved crystal, allowing measurements over a wide band dispersion range
parallel to the steps by sample rotation (polar scans by manipulator rotation). The sample
temperature during the ARPES experiments was approximately 150 K. The lab-based He
gas discharge lamp has a spot size of approximately 1 mm?, therefore by moving the sample
perpendicular to the steps in steps of 1 mm, it is possible to probe sample regions with
different step densities (as shown in Supplementary Figures S1 and S2).

(3,1,6)-chGNR
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Figure 1. (a) Reactant (DBTA) and reaction scheme towards the (3,1,6)-chGNR structure, displaying
a (3,1) chiral vector marked in red and six atoms across its width marked in blue. (b) Schematic
description of the Ag curved crystal where d corresponds to the terrace width, « to the vicinal angle
from the [111] direction, and & to the monoatomic step height. The steps at the left and right sides of
the crystal display {100}-oriented and {111}-oriented microfactes, respectively.
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First-principles electronic structure calculations were performed using the DFT as
implemented in the SIESTA software package [15,16]. The van der Waals density func-
tional by Dion et al. [17] with the modified exchange correlation by Klimes, Bowler, and
Michaelides [18] was used. The valence electrons were described by a double-C plus a
polarization (DZP) basis set with the orbital radii defined using a 54 meV energy shift [16],
while the core electrons were described using norm-conserving Trouillers-Martins pseu-
dopotentials [19]. For integrations in real space [16], an energy cutoff of 300 Ry was used.
The smearing of the electronic occupations was defined by an electronic temperature of
300 K with a Fermi-Dirac distribution. The selfconsistency cycles were stopped when
variations on the elements of the density matrix were less than 10~% eV and less than
10~* eV for the Hamiltonian matrix elements. In order to avoid interactions with periodic
images from neighboring cells, systems were calculated within a simulation cell where at
least 50 A of the vacuum space was considered. Variable cell relaxations and geometry
optimizations were performed using the conjugate gradient method using a force toler-
ance equal to 10 meV /A and 0.2 GPa as a stress tolerance. A 101 k-point mesh along the
GNRs’ periodic direction was used. In order to simulate charged nanoribbons with large
portions of vacuum, the net charge of the systems was set to be different from zero while
simultaneously adding a compensating background charge.

3. Results

The reactant DBTA transforms into (3,1,6)-chGNRs following a two-step process
that consists of thermally activated Ullmann coupling and cyclodehydrogenation (CDH,
Figure 1a) [8]. The substrate is a Ag single crystal curved around the [1,1,1] axis, with the
(111) surface plane at the crystal’s central area as displayed in Figure 1b [13]. The stepped
surfaces towards either side thus share the same (111) terrace structure (of varying width d
depending on the vicinal angle). However, the steps display nonequivalent facets, namely,
{100} facets on the left-hand side and {111} facets on the right-hand side (Figure 1b) [13].

Figure 2 shows representative images of the sample after depositing nearly a full
monolayer of precursor molecules (DBTA) and stepwise annealing the crystal to 180 °C for
10 min and to 315 °C for 1 min, to drive the subsequent activation of polymerization and
cyclodehydrogenation. Notably, the resulting GNRs display three distinct arrangements
depending on the region of the Ag crystal.

{1,0,0}-steps flat surface {1,1,1}-steps

A

Figure 2. Representative STM images of the sample after GNR synthesis in regions with {100}-steps
(a), on the flat (111) surface in the central crystal region (b), and with {111}-steps (c). The [—1,1,0]
direction that coincides with the steps’ direction is shown on the left. Segments of two GNR structures

are superimposed on each of the images as a guide to the eye.

In the stepped regions characterized by {100} facets, the GNRs are found preferentially
aligned parallel to the steps’ direction (Figure 2a). In fact, in addition to the uniaxially
aligned ribbons on top of the flat terraces, the ribbons display a particular affinity to the
steps, adsorbing in a tilted configuration with either side of the GNR on each of the two
neighboring terraces (Figure 2a). Both of these findings were expected, since stepped
surfaces have been used often for alignment purposes [7,20-24], and many molecules,



Nanomaterials 2021, 11, 3303

40f8

including GNRs [22,25], are known to display a particular affinity for adsorption on the
undercoordinated and thus more reactive step atoms. Around the central (111) substrate
orientation, displaying ample flat terraces, the ribbons adsorb with multiple azimuthal
orientations, as expected from the six-fold symmetry of the surface (Figure 2b). In the
stepped regions characterized by {111} facets, the GNRs display again uniaxially aligned
ribbons. However, the ribbons surprisingly align perpendicularly rather than parallelly to
the steps’ direction and extend over multiple terraces (Figure 2c). Taking into account that
the terraces on the right and left-hand side of the crystal are identical, the difference in the
preferential alignment must necessarily have its origin in the nature of the steps, which
are formed by {100} and {111} facets, respectively. The specific interactions that cause this
striking difference are beyond the scope of this work, but the resulting sample is ideal to
probe the band dispersion parallel and perpendicular to the ribbon’s axis by ARPES.

We performed ARPES measurements that recorded the dispersion parallel to the
[—1,1,0] substrate direction, which coincides with the step direction on both sides of
the crystal. For the GNR bands, it corresponds to the dispersion along the longitudinal
(Figure 3a) and transverse direction of the ribbons (Figure 3c) in the regions with {100}
and {111} facets, respectively. The raw data along with the reference measurements on the
clean crystal are displayed in Figure S1. As previously observed with narrower (3,1,4)-
chGNRs [7], the band dispersion along the longitudinal ribbon direction (Figure 3a) is
hardly recognizable in the first Brillouin zone, starts becoming visible in the second, and
appears most intense in the third Brillouin zone (centred around 1.4 A~1). Indeed, in the
third Brillouin zone, not only the valence band but also following bands are observed with
remarkable clarity, allowing for a direct comparison with the band structure predicted by
DFT calculations for free-standing ribbons. As pictured in Figure 3a with the calculated
bands superimposed on the ARPES data, there is an excellent match between experiment
and theory. Such a good match, however, requires shifting the charge neutrality point
(CNP) by —0.52 V.

This shift implies a charge transfer at the GNR/silver interface. In contrast to Au, on
which the GNRs show a clear tendency to become p-doped [8,26], the substantially lower
work function of silver (e.g., 4.6 eV as compared to 5.4 eV for the (111) surfaces of Ag and
Au, [27] respectively) favors the opposite electron transfer from surface to GNR. For the
ARPES characterization, whereby only filled states are accessed, this has the advantage
that also the conduction band can be probed. The extent to which the conduction band
becomes accessible (populated) is quantitatively related to the charge transfer, taking into
consideration that each band hosts two electrons per unit cell. The measurements in
Figure 3a display 51% of the conduction band below the Fermi level, from where we can
conclude that approximately one electron per GNR unit cell is transferred from the silver
surface to the (3,1,6)-chGNRs, in qualitative agreement with the 1.3 electrons required to
shift the CNP by 0.52 eV according to DFT calculations.

However, the amount of charge transfer shows variations across the curved silver
surface. Figure 3c displays the dispersion along the transverse ribbon’s axis. Along this
direction, the electronic states do not show any notable dispersion and appear as flat bands.
This implies a negligible overlap of the wave functions of electronic states in neighboring
ribbons. The extent to which the conduction band is populated cannot be inferred from
these data as clearly as before. Yet, the flat band associated with the charge neutrality point
appears at a similar energy as in Figure 3a, and hence the charge transfer can be concluded
to be comparable.

The situation is slightly different in the central (111) region of the crystal (Figure 3b).
There, the ribbons display multiple azimuthal orientations, each of them contributing
to the convoluted ARPES signal. The overall dispersion can thus be recognized less
clearly, although the general appearance can be ascribed to a washed-out convolution
of Figure 3a,c. However, the CNP appears about 0.16 eV higher in energy. As a result,
only 31% of the conduction band is populated, which in turn implies a charge transfer
of only about 2/3 of an electron per unit cell. The modulation of the CNP as a function
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of the vicinal angle is displayed in Figure 3d (see the associated data in Figure S2) and is
ascribed to the lower work function in the stepped regions as compared to the compact flat
surface [7,22,28]. Figure 3d also displays the charge transfer required to shift the CNP to the
measured energies, according to DFT calculations, and underlines the importance of local
work function variations for influencing the electronic properties in weakly interacting
metal-organic interfaces [29,30].

(a) {100} steps 1|" K (b) Flat(111) surface
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Figure 3. ARPES data displaying the dispersion along the [—1,1,0] direction of the curved Ag crystal
on the stepped regions with {100} step facets (a, x = —10°), on the central flat region (b, o = 0°),
and on the stepped region with {111} step facets (¢, @ ~ 10°). The calculated band structure for
free-standing GNRs after shifting the charge neutral point to —0.52 eV is superimposed on the third
Brillouin zone of the panel (a). The horizontal light blue solid line marks the Fermi energy, and the
vertical light blue dashed line marks its crossing point with the CB. The red arrows in panels (b) and
(c) mark the flat band (FB) at the charge neutral point. (d) Measured CNP as a function of the vicinal
angle and calculated charge transfer to reach such interface band alignment, according to the DFT.

4. Discussion

Indeed, theoretical calculations on ribbons with different doping levels reveal impor-
tant implications for their properties [31,32]. Whereas in the absence of spin polarization
(3,1,6)-chGNRs display a quasi-metallic band structure (Figure 4a) [8], allowing for spin
polarization results in a 16 meV more favorable ground state that includes an increased
bandgap (=238 meV) and edge states with antiferromagnetically oriented magnetization
(Figure 4b). However, charging the system with 1.3 extra electrons per unit cell shifts the
CNP by —0.52 eV, quenches the magnetization, and the nanoribbon recovers the quasi-
metallic band structure with no spin polarization (Figure 4c).
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Figure 4. DFT simulations for (3,1,6)-chGNRs. (a) Relaxed atomic configuration (top) and electronic
band structure (bottom) without spin-polarization. (b,c) Spin density (top) and spin-polarized
band structure (bottom) for the neutral case and upon charge transfer of 1.3 electrons per unit cell,
respectively. (d) Spin-polarized electron density at the marked carbon atoms at the ribbon’s edges as
a function of charge transfer.

In an attempt to quantify the necessary charge to quench the edge state magnetization,
we performed additional calculations gradually modifying the GNR doping level. As
depicted in Figure 4d, a charge transfer of only 0.3 electrons per unit cell is already sufficient
to fully prevent any magnetism in this kind of ribbon. Although the exact value may vary
for nanoribbons of different width or chirality, this is a key finding to keep in mind for the
design of potential devices aiming at the exploitation of the magnetic edge states of GNRs.

In our experiment, the charge transfer throughout the whole crystal is such that it
fully quenches the magnetization. However, higher work function materials may instead
provide an energy level alignment that maintains the intrinsic edge state spin-polarization,
and the smoothly varying work function in curved crystals as a function of the vicinal
angle may help in its fine adjustment [28].

5. Conclusions

In conclusion, we synthesized chiral graphene nanoribbons on a curved silver crystal.
Depending on the crystallographic facets displayed by the substrate steps, the ribbons grew
along different orientations. At the same time, the varying step density at different vicinal
angles modulated the substrate work function. As a result, angle-resolved photoemission
spectroscopy at varying substrate positions allowed probing the band dispersion both
along and perpendicular to the GNR axis. In addition, we could also probe the varying
energy level alignment of the charge neutral point, from where the charge transfer between
the GNR and substrate can be inferred. By theoretical calculations we analyzed the conse-
quences of the latter for the ribbon’s edge state magnetization, which is fully quenched for
amounts of charge transfer as low as 0.3 electrons per GNR unit cell.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11123303/s1, Figure S1: ARPES raw data and substrate reference measurements.
Figure S2: ARPES data across the curved silver crystal surface.
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