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Abstract

Background: Cholangiocarcinoma (CCA) encompasses a
heterogeneous group of malignant tumors with dismal
prognosis and increasing incidence worldwide. Both late di-
agnosis due to the lack of early symptoms and the refractory
nature of these tumors seriously compromise patients’ wel-
fare and outcomes. Summary: During the last decade, im-
munotherapy and, more specifically, modulation of immune
checkpoints-mediated signaling pathways have been under
the spotlight in the field of oncology, emerging as a poten-
tial therapeutic approach for the treatment of several can-
cers, including CCA. Generally, high expression levels of im-
mune checkpoints in patients with CCA have been associ-
ated with worse clinical outcomes, particularly with shorter
overall survival and relapse-free survival. Thus, immune
checkpoint inhibitors (ICls), which mainly constitute differ-

ent monoclonal antibodies, have been developed in order to
hamper the immune checkpoint-mediated pathways. Inter-
estingly, chemotherapy may increase the expression of im-
mune checkpoints, while other therapeutic approaches
such as ablative and targeted therapies may enhance their
antitumor activity. In this sense, several clinical trials evalu-
ated the safety and efficacy of ICls for CCA, both as a mono-
therapy and in combination with other ICls or loco-regional
and systemic therapies. Additionally, many other clinical tri-
als are currently ongoing and results are eagerly awaited.
Here, we summarize the key aspects of immune checkpoint
molecules as prognostic factors and therapeutic targets in
CCA, highlighting the most recent advances in the field and
future research directions. Key Messages: (1) Effective thera-
peutic approaches for CCA are urgently needed. (2) Expres-
sion levels ofimmune checkpoints in patients with CCA have
been proposed to be related with clinical outcomes.
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(3) Combination of different ICls may outperform the effi-
cacy of ICI monotherapy for CCA treatment. (4) Recent stud-
ies point toward the combination of ICls and other common
therapies, especially chemotherapy, as a promising strategy

for treatment of CCA patients. ©2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Cholangiocarcinoma (CCA) encompasses a group of
biliary malignant tumors with dismal prognosis. Differ-
ent cells, including hepatic stem/progenitors cells, chol-
angiocytes, hepatocytes, and/or multipotent stem cells
within peribiliary glands are susceptible to undergo neo-
plastic transformation, partially explaining the high het-
erogeneity of these tumors [1]. According to its anatomi-
cal site of development, CCAs can emerge at any point of
the biliary tree, being classified as intrahepatic cholangio-
carcinoma (iCCA), perihilar cholangiocarcinoma
(pCCA), and distal cholangiocarcinoma (dCCA) [1]. In-
cidence (0.3-85/100,000 person-years) [2] and mortality
(0.02-2.8/100,000 person-years) [3] rates have been pro-
gressively increasing worldwide over the past few de-
cades, currently placing CCA as the second most com-
mon primary liver neoplasm after hepatocellular carci-
noma (HCC), accounting for ~15% and ~3% of all
primary hepatic malignancies and gastrointestinal can-
cers, respectively [1].

Since CCA etiology is usually uncertain, it is conceiv-
able that this increasing incidence trends could be attrib-
uted to emerging and still undefined etiological factors
[2]. In this regard, several conditions such as primary
sclerosing cholangitis, cirrhosis, viral and parasitic infec-
tions, type 2 diabetes mellitus, and genetic landscape have
been described to increase the odds for cholangiocarcino-
genesis, while the role of others, including non-alcoholic
fatty liver disease and alcohol/tobacco consumption, re-
mains controversial [2]. Furthermore, the lack of symp-
tomatology at initial stages of the disease and the absence
of precise screening strategies hamper the early diagnosis
of CCA. Therefore, most patients are diagnosed at ad-
vanced stages when the disease is already disseminated,
thus compromising the effectiveness of curative thera-
peutic options, ultimately resulting in dismal prognosis
and low life expectancy [4].

To date, the only potentially curative therapy for pa-
tients with CCA is surgical resection of the tumor [5, 6].
However, only ~20% of patients are eligible for surgery
due to the late diagnosis and, even when curative resec-
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tion is achieved, relapse has been reported to occur in
~60-70% of patients, regardless of CCA subtype [7].
Therefore, patients with unresectable, metastatic, or re-
current tumors are only amenable to receive palliative
chemotherapy. Nowadays, the combination of gem-
citabine and cisplatin (GemCis) is widely accepted as the
first-line standard of care [4]. However, many efforts to
identify more effective first-line therapeutic regimens
have been made by combining different compounds with
the reference standard of care, albeit with no conclusive
results so far [1]. The existence of diverse and complex
mechanisms of chemoresistance in tumor cells and mi-
croenvironment seriously compromises GemCis efficacy,
which has led to the development of second-line treat-
ment strategies (i.e., folinic acid + fluorouracil + oxalipla-
tin) intended for a non-negligible minority of CCA pa-
tients who progress after first-line regimens [1]. Further-
more, the applicability of other therapeutic approaches,
such as loco-regional procedures or liver transplantation,
is conditioned by the CCA subtype and their benefits
need to be confirmed [1]. A better understanding of the
molecular biology driving biliary tract malignancies has
contributed to the development of novel and tailored
therapies based on the mutational status of CCA driver
genes (i.e., mainly isocitrate dehydrogenasel/2 mutations
and fibroblast growth factor receptor 2 gene fusions) and
the immunological tumor microenvironment [4]. Re-
garding immunotherapies, modulation of immune
checkpoints has been gaining relevance in clinical oncol-
ogy, currently being considered as a potential strategy for
the treatment of several cancers. Herein, we provide a
state-of-the-art summary focused on both the clinical rel-
evance of immune checkpoints in CCA and the current
and emerging therapeutic strategies aiming to modulate
the immunological tumor microenvironment in this ma-
lignancy.

Immune Checkpoint Expression and Clinical
Outcomes in CCA

During tumorigenesis, immune cells can recognize tu-
mor-specific and tumor-associated antigens expressed by
malignant cells, triggering specific responses to control
tumor growth. However, both tumoral and immune cells
may also express high levels of inhibitory immune check-
points which, through different pathways, prevent T cells
from exerting their effector functions (i.e., cytokine re-
lease and direct cytotoxicity mostly) [8]. Cancer immu-
notherapy modulates immune components and tumor
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microenvironment to restore an effective immune sur-
veillance that controls tumor growth and reverts the eva-
sion capacity of neoplastic cells. Interestingly, different
strategies may contribute to boost antitumor immune re-
sponse, including the use of monoclonal antibodies
(mAbs) directed against immune checkpoints [8]. De-
pending on their physiological inhibitory or stimulating
role in the immune response, immune checkpoints re-
quire a fine-tuning antagonistic or agonistic modulation,
respectively, to exert therapeutic effects [8]. In the last
decade, it has been demonstrated that at least a subgroup
of CCAs present suitable genomic and transcriptomic
features for this type of treatment, such as high tumor
mutational burden, which promotes the expression of
neoantigens recognizable by T cells, and the overexpres-
sion of genes encoding inhibitory immune checkpoints
[9]. In order to understand the basis for immune check-
point targeting as a novel treatment for CCA, the expres-
sion of multiple immune checkpoints and the relation-
ship between such expression with prognosis and other
clinical outcomes have been reported.

Programmed Death 1 and Programmed

Death-Ligand 1

Programmed death 1 (PD-1) is a cluster of differentia-
tion (CD) 28 family member expressed on activated T
and B lymphocytes, monocytes, dendritic cells (DCs),
regulatory T cells (Tregs), and natural killer T cells,
whereas its ligand programmed death-ligand 1 (PD-L1)
belongs to the B7 superfamily and is expressed on resting
B cells, T cells, macrophages (including Kupffer cells),
DCs, and various tumor cells (shown in Fig. 1) [10]. Upon
PD-L1 binding to PD-1, T-cell effector functions are in-
hibited and apoptosis is induced [10]. Drugs targeting the
PD-1/PD-L1 pathway have been approved by the Food
and Drug Administration for the treatment of several ma-
lignancies, being expression of PD-L1 an explored poten-
tial predictive biomarker of efficacy for this therapeutic
approach in some of them [10].

Currently, the expression rate of these immune check-
points in bile duct carcinomas remains controversial.
Some of the first studies were performed in medium-size
cohorts of patients with iCCA (i.e., 27-54), reporting PD-
L1 expression in all patients [11, 12]. Noteworthy, Sab-
batino et al. [12] and Fontugne et al. [13] reported lower
tumor cell-specific PD-L1 expression (29.6% and 8.62%,
respectively), whereas Gani and colleagues [11] showed
72.22% of PD-L1-expressing cells within the tumor front.
Similarly, expression of PD-L1 in extrahepatic CCA
(eCCA) tumor cells was heterogeneous, ranging from
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7.1% to 45% [14-16]. Some authors have reported a fre-
quency of ~70% of PD-L1* eCCAs, regardless of the cell
type that expresses this immune checkpoint [16]. More-
over, 2 recent studies with larger cohorts detected expres-
sion and high expression of PD-L1 in 42% and 31% of
iCCA patients, respectively, albeit the cellular type being
analyzed was not specified [17, 18]. In parallel, some of
these studies have also reported the presence of PD-1 in
tumor-infiltrating T lymphocytes (TILs) [12, 16]. The
striking observed differences in PD-L1 expression rates
among published studies might be explained by the fol-
lowing: (1) differences in immunohistochemical staining
procedures and/or in the sensitivity of the anti-PD-L1 an-
tibody clones employed [15]; (2) lack of consensus in the
interpretation of the results; (3) the size of the tumor tis-
sue sample used for evaluating PD-L1 expression [15]; (4)
differences in ethnicity and in environmental risk factors
[17]; and (5) the potential bias associated with small
patient cohorts (online supplementary Table 1, see www.
karger.com/doi/10.1159/000518104).

PD-1/PD-L1 signaling pathway is involved in T cell
exhaustion [10], suggesting that its hyperactivation pro-
motes evasion from immune surveillance and increases
aggressiveness of cancer cells. However, the clinical sig-
nificance of this axis in CCA is still unclear. In fact, en-
richment of PD-1* TILs has been associated with worse
overall survival (OS) and relapse-free survival (RFS) [17].
Likewise, most of the reviewed studies have correlated a
high expression of PD-L1 in CCA tissue with worse clin-
ical outcomes [11, 15, 17, 18]. Similar results have been
obtained in a study where class I human leukocyte anti-
gen (HLA-I) expression was also measured. In this case,
only when HLA-I was conserved within the tumor, PD-
L1 expression was associated with worse prognosis [12],
revealing a functional relationship between HLA-I and
PD-1/PD-L1 pathway in tumor immune surveillance and
evasion. HLA expression on tumor cell membranes is re-
quired for antigen recognition by T cell receptors, and
thus, when HLA is downregulated in the tumor, T cells
do not recognize tumoral antigens successfully, even if T
cell activity is restored. This is a point to keep in mind,
since HLA-I has shown to be downregulated in around
half of the samples [12, 16]. On the other hand, Yu et al.
[16] reported that, in comparison with negative PD-L1
tumors, positive expression of PD-L1 in CCA cells was
significantly associated with better OS and progression-
free survival (PFS), as well as with the absence of vascular
invasion in patients who had undergone curative-intend-
ed surgery. Of note, PD-L1 may be overexpressed in tu-
mor cells in response to an inflammatory environment
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and high T cell infiltration within the tumor, potentially
reflecting an active immunological response against can-
cer cells [19].

Human Endogenous Retrovirus-H Long Terminal

Repeat-Associating Protein 2

Human endogenous retrovirus-H long terminal re-
peat-associating protein 2 (HHLA2) is a recently de-
scribed human immune checkpoint which belongs to the
B7 family. It is constitutively expressed in monocytes, but
its expression can also be induced in B cells upon stimula-
tion and observed in some cancer cells (shown in Fig. 1)
(20, 21]. Interestingly, while HHLA2 seems to exert co-
stimulating effects when binding to CD28 family mem-
bers, its interaction with other putative receptors ex-
pressed on CD4" and CD8* T lymphocytes, as well as on
antigen-presenting cells (APCs), leads to a reduction of
T-cell effector functions [20]. Recently, the killer cell im-
munoglobulin-like receptor, 3 immunoglobulin do-
mains, and long cytoplasmic tail 3 has been identified as
an inhibitory receptor for HHLA?2 in both T and natural
killer cells. Importantly, antibodies blocking this interac-
tion have been proved to abolish the co-inhibitory role of
HHLA?2, while preserving its stimulating function [22].

A recent and interesting study found that 49% of pa-
tients with iCCA undergoing curative resection present-
ed high tumor levels of HHLA2, while PD-L1 expression
in tumoral cells was only detected in 28.1% of tumor sam-
ples [23]. In addition, 50% of samples with negligible PD-
L1 expression were positive for HHLA2, suggesting that
this immune checkpoint might be a promising target for
patients who are not eligible for PD-L1 inhibition. More-
over, high HHLA?2 expression was associated with a high-
er ratio of Treg/CD8* TILs and with shortened OS, indi-
cating that the expression of this immune checkpoint
may also serve as prognosis predictor in iCCA [23]. Nev-
ertheless, more preclinical studies are needed in order to
investigate the effects of HHLA2 blockade and its poten-
tial therapeutic efficacy.

Cytotoxic T Lymphocyte Antigen 4

Similar to PD-1, cytotoxic T lymphocyte antigen 4
(CTLAA4) is a co-inhibitory receptor present on T cells’
surface. It competes with CD28 for binding the ligands
CD80 and CD86 expressed on APCs’ membrane, but
contrary to the effects triggered by CD28, their interac-
tion with CTLA4 inhibits T-cell activation, making the
blockade of this checkpoint attractive for oncological
therapy [24]. Transcriptomic analysis of 770 immune-re-
lated genes performed in 22 bile duct cancer samples (i.e.,
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CCA and gallbladder cancer [GBC]) reported an inverse
correlation between CTLA4 expression and RFS [25]. In
addition, a recent publication described that ex vivo ex-
posure of CCAs-isolated TILs with high expression of
CTLA4 to anti-CTLA4 antibody promoted T cell matura-
tion and activation [26]. On the other hand, Lim et al. [27]
studied 77 patients diagnosed with eCCA, detecting pro-
longed OS and disease-free survival 5-year rates in those
with high expression of CTLA4 in comparison with pa-
tients with low levels (36.8% vs. 0.0% and 30.9% vs. 0.0%,
respectively), only when tumors with hilar location (n =
29) were considered. Furthermore, high expression of
CTLA4 on tumor cells was associated with greater CD8"
TILs density within the tumor [27].

Glucocorticoid-Induced Tumor Necrosis Factor

Receptor-Related Protein

Glucocorticoid-induced tumor necrosis factor recep-
tor-related protein (GITR) is a co-stimulatory immune
checkpoint belonging to the tumor necrosis factor recep-
tor family, whose expression is rapidly induced upon ac-
tivation in CD8" and CD4" T cells and particularly in
Tregs (shown in Fig. 1). Binding of ligand to GITR in-
creases cytotoxic and helper T cell effector functions [28].
Paradoxically, this agonistic interaction ligand-GITR in
Tregs abolishes their immunosuppressive function
(shown in Fig. 1) [28]. A recent study found greater ex-
pression of GITR, PD-1, and CTLA4 on TILs from surgi-
cally resected CCA pieces in comparison with T cells
from blood or tumor-free liver tissue [26]. Additionally,
ex vivo targeting of any of the aforementioned immune
checkpoints in CCA TILs increased the production of ef-
fector molecules and the proliferation of effector T cells,
which is intimately related to the control of tumor growth
and spread [26].

CD40 and CD40 Ligand

Some of the most recent evidence point toward other
less-explored immune checkpoints. Particularly, CD40/
CD40 ligand (CD40L) axis has been the focus of in vitro
and in vivo studies published during 2020 [29, 30]. CD40L
is a co-stimulatory molecule mainly expressed on the
membrane of T helper lymphocytes (shown in Fig. 1)
that, through interaction with CD40 on APCs triggers
their maturation, cytokine production, and indirect acti-
vation of cytotoxic T lymphocytes [30]. In this regard,
Sadeghlar et al. [30] transduced in vitro DCs from healthy
donors with CD40L adenovirus and pulsed them with tu-
mor cell lysates, increasing the expression not only of
CD40L but also of maturation markers and co-stimulato-
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Fig. 1. Interactions and therapeutic targeting of immune check-
points in CCA. Schematic representation showing the co-inhibi-
tory (red) and co-stimulatory (green) immune checkpoint path-
ways studied in CCA and main cell interactions implicated in their
signaling. In addition, drugs targeting these immune checkpoints,
which have been studied in CCA, are indicated in the figure. APC,
antigen-presenting cell; CCAc, cholangiocarcinoma cell; CD28,
cluster of differentiation 28; CD40, cluster of differentiation 40;
CD40L, CD40 ligand; CD80, cluster of differentiation 80; CTLA4,

ry molecules on DCs, Th1 cytokine/chemokine produc-
tion, and the proliferation and stimulation of cytotoxic
cells against the eCCA cell line EGI-1.
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cytotoxic T lymphocyte antigen 4; HHLA2, human endogenous
retrovirus-H long terminal repeat-associating protein 2; GITR,
glucocorticoid-induced tumor necrosis factor receptor-related
protein; GITRL, GITR ligand; KIR3DLS3, killer cell immunoglob-
ulin-like receptor, 3 immunoglobulin domains and long cytoplas-
mic tail 3; PD-1, programmed death 1; PD-L1, programmed death-
ligand 1; TAM, tumor-associated macrophage; TGF B, transform-
ing growth factor B; TIL, tumor-infiltrating T lymphocyte; Treg,
regulatory T cell. Created with BioRender.com.

These results were consistent with a study where dif-
ferent murine models of iCCA were treated with a CD40
agonistic antibody. Interestingly, the efficacy of a CD40
agonist was compared with anti-PD-1 antibody adminis-
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tration, combination of both antibodies, and combina-
tion of CD40 agonist, anti-PD-1 antibody, and chemo-
therapy [29]. In this setting, anti-PD-1 and CD40 agonist
monotherapies resulted in modest beneficial effects,
while the combination of both molecules markedly re-
duced tumor burden [29]. Similarly, combination of anti-
PD-1 and CD40 agonist with chemotherapy improved
mice survival when compared with GemCis alone [29].
Importantly, such benefits were demonstrated to be de-
pendent on macrophages, DCs, CD4*, and CD8* lym-
phocytes [29].

Immune Checkpoint-Targeted Therapies for CCA

Administration of immune checkpoint inhibitors
(ICIs) might stimulate TILs and help to eliminate cancer
cells, thus controlling tumor growth and recurrence of
many neoplasms, such as CCA [31]. Considering the clin-
ical applicability of ICIs as a potential treatment for this
tumor, several clinical trials have been completed and,
importantly, much more are currently ongoing, albeit
with a limited number of patients and only preliminary
results available. Noteworthy, most studied cohorts only
included patients with advanced CCA previously treated
with different therapies and further studies are warrant-
ed.

ICI Monotherapies

PD-1 Inhibitors

Several human mAbs have been designed to block
PD-1 and hamper its binding to specific ligands (shown
in Fig. 1). In this regard, the efficacy of the anti-PD-1
pembrolizumab has been evaluated in small, non-ran-
domized studies for different types of tumors, including
biliary tract cancers (BTCs) [32]. The phase II KEY-
NOTE-158 (NCT02628067) and phase [b KEYNOTE-028
(NCT02054806) clinical trials were developed to evaluate
the antitumor activity and safety of pembrolizumab in
patients with advanced BTCs (i.e., CCA and GBC), in-
cluding 104 and 24 patients, respectively [32]. The main
difference between both clinical trials was the proportion
of patients with PD-L1 expression. Therefore, all the pa-
tients enrolled in the KEYNOTE-028 study were positive
for this immune checkpoint, while tumor expression of
PD-L1 was only detected in 58.6% of the subjects includ-
ed in the KEYNOTE-158 trial [32]. This had minimal im-
pact on some clinical outcomes, observing an objective
response rate (ORR) of 13% and 5.8% with a correspond-
ing estimated duration of response of >18 months and 26
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months, a median OS (mOS) of 5.7 months and 7.4
months, and a median PFS (mPFS) of 1.8 months and 2.0
months in the patients enrolled in the KEYNOTE-028
and KEYNOTE-158 trials, respectively (shown in Ta-
ble 1) [32]. Therefore, these data suggest that pembroli-
zumab exerts durable antitumor activity regardless of
PD-L1 expression [32].

Contrarily, the therapeutic response to the anti-PD-1
nivolumab was conditioned by PD-L1 expression in an
American phase II (NCT02829918) and a Japanese phase
I (JapicCTI-153098) clinical trials. Both study cohorts
were constituted by patients with CCA and GBC that
were refractory or intolerant to previous systemic therapy
(shown in Table 1) [33, 34]. Despite differences in ethnic-
ity and environmental risk factors, treatment with
nivolumab exerted an antitumor effect with durable re-
sponse for at least 1 year, with minor adverse events (AEs)
[33, 34]. Currently, the safety and efficacy of toripalimab
are being tested in an ongoing phase Ib/II clinical trial
(NCT03867370) for resectable iCCA with no preliminary
results available yet (shown in Table 1).

PD-L1 Inhibitors

In the case of PD-L1 blocking agents, the efforts have
been mainly focused on the development of immuno-
globulin (Ig) G1 mAbs. This IgG subclass, unlike IgG4,
binds fragment crystallizable (Fc) receptors with high af-
finity, triggering antibody-dependent cellular cytotoxic-
ity (ADCC). This feature is a double-edged sword though,
as it may enable lysis of PD-L1-expressing tumor cells,
but also the death of T cells expressing this immune
checkpoint. For this reason, different approaches have
been assumed in the development of anti-PD-L1 IgGl
antibodies.

In this way, durvalumab is a selective, high-affinity
PD-L1 inhibitor (shown in Fig. 1) with an inactivated Fc
[35]. This feature restrains the activation of both ADCC
and complement, while overcoming PD-L1-mediated ex-
haustion of TILs [35]. Durvalumab monotherapy result-
ed in a mOS of 8.1 months and 16.7% of disease control
rate (DCR) in an Asian BTC cohort (NCT01938612), al-
though 19% of patients developed significant AEs (shown
in Table 1) [36]. According to preclinical data, an ongoing
phase I clinical trial (NCT03101488) on Chinese patients
with advanced solid tumors aims to analyze the impact of
envafolimab, a novel camelid-derived chimeric anti-PD-
L1 nanobody with human IgG1 Fc (shown in Table 1)
[37]. Interestingly, partial response (PR) has been ob-
served in the 2 patients with CCA included in this cohort,
at a dosage of both 5 and 10 mg/kg [37].
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In addition to the ICIs mentioned above, there are oth-
er PD-L1 blocking IgG1 mAbs including atezolizumab,
avelumab, CK-301, CBT-502, and BGB-A33, as well as
IgG4 as BMS-936559, CS-1001, and adebrelimab. How-
ever, CBT-502 (NCT03825705), atezolizumab
(NCT03201458) [38], and adebrelimab (NCT04634058)
are the only ones in which safety and efficacy are being
tested in patients with CCA so far (shown in Tables 1, 2).

GITR Agonists

The majority of clinical trials evaluating ICIs are fo-
cused on agents directed against TILs’ inhibitory immune
checkpoints, but there are also few studies trying to acti-
vate these lymphocytes through stimulatory molecules
such as GITR [26]. Based on preclinical evidence, a recent
phase I clinical trial (NCT01239134) was the first to de-
termine the safety, pharmacokinetics, pharmacodynam-
ics, and the maximum tolerated dose of TRX518, an ago-
nistic mAb against GITR (shown in Fig. 1) which has a
dysfunctional Fc abolishing ADCC and complement-me-
diated lysis [39]. Currently, TRX518 monotherapy is be-
ing tested as second-line treatment in 43 patients with
different advanced solid tumors including pancreatic
cancer, which shares many features with eCCA subtypes
[39]. Of note, the results obtained so far corroborate pre-
vious findings on the effect of GITR agonistic stimulation
over effector lymphocytes and Tregs, but no clinical re-
sponse has been achieved [39]. For this reason, and based
on preclinical evidence, the combination of GITR and
ICIs will be evaluated in upcoming clinical trials [39].

ICI Combined Therapies

PD-1+CTLA4 Inhibitors

A phase II clinical trial (NCT02923934), in which
nivolumab and the CTLA4 targeting inhibitor ipilimu-
mab were administered in combination, could not out-
perform the efficacy of anti-PD-1 monotherapy in a co-
hort of patients with CCA and GBC. Thus, the ORR and
DCR of the entire cohort were 23% and 44%, respectively,
being further reduced to 19.2% and 30.8% when only pa-
tients with CCA were considered [40]. Moreover, a mOS
of 5.7 months and a mPFS of 2.9 months were reported
(shown in Table 1), indicating that the impact of the dual
therapy was similar to that obtained in clinical trials eval-
uating the efficacy of anti-PD-1 monotherapy [40]. Nev-
ertheless, an ongoing phase II study (NCT02834013)
compares this combination (i.e., nivolumab + ipilimu-
mab) with nivolumab as a monotherapy for CCA (shown
in Table 1), among other rare tumors, which will allow to
determine whether these similarities between anti-PD-1
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monotherapy and anti-PD-1/anti-CTLA4 dual therapy
are real.

PD-L1 + CTLA4 Inhibitors

The NCT01938612 clinical trial also evaluated the im-
pact of durvalumab combined with tremelimumab (i.e.,
anti-CTLA4 mADb) in the same cohort of Asian patients.
Interestingly, mOS and the DCR slightly increased (i.e.,
10.1 months in dual therapy vs. 8.1 months in monother-
apy and 32.2% in dual therapy vs. 16.7% in monotherapy,
respectively) (shown in Table 1), although the number of
patients with any grade AEs increased, with 23% of pa-
tients developing severe side effects. In addition, the aver-
age duration of the response diminished 1.2 months [36].

Finally, other clinical trials combining novel anti-PD-
L1 and anti-CTLA4 mAbs are now under investigation.
In this regard, the NCT04634058 study aims to evaluate
the efficacy and safety of adebrelimab combined with
IBI310, a PD-L1, and a CTLA4 inhibitor, respectively, in
patients with advanced iCCA who have progressed after
systemic treatment (shown in Table 1).

Local and Systemic Therapies Combined with ICls for
CCA Treatment

Combination of Radiotherapy and ICIs

To date, the use of radiotherapy in CCA remains con-
troversial [5]. Lately, its combination with pembrolizu-
mab or nivolumab (i.e., anti-PD-1 inhibitors) has been an-
alyzed in 4 patients with advanced iCCA [41, 42]. Even
though none of them were ideal candidates for receiving
this immunotherapy according to the national compre-
hensive cancer network guidelines, the combination of
both therapeutic strategies (i.e., radiotherapy + ICI) ei-
ther achieved PR with reduction of the sum of lesion di-
ameters or maintained complete response (CR) for 11
and 26 months [41, 42]. This unexpected beneficial anti-
tumor effect of immunotherapy combined with radio-
therapy in iCCA could be the result of the radiotherapy’s
ability to sensitize the tumor to ICIs by improving the
presentation of tumor-associated antigens and increasing
PD-L1 expression in tumor cells [41]. However, more
studies should be conducted to confirm this statement,
since the only available data are derived from case reports.

Combination of Ablative Therapy and ICIs

Tumor ablation techniques may also enhance the ef-
fects of ICIs and, consequently, the antitumor immune
response [43]. Thereby, one of the arms (i.e., arm E) of a

Gutiérrez-Larranaga et al.



phase I/1I clinical trial (NCT01853618) combined micro-
wave ablation plus tremelimumab (i.e., anti-CTLA4
mAb) for the treatment of 20 patients with advanced
BTCs (i.e., iCCA [n = 12], eCCA [n = 6], and GBC [n =
2]) (shown in Table 2) [43]. A total of 16 patients had le-
sions that were evaluable for response, but only 2 re-
sponding patients (i.e., 12.5%; all eCCA) were identified
[43]. Moreover, 37.5% of the patients (6/16) achieved sta-
ble disease (SD) lasting up to 6.2 months, while the re-
maining 50% (8/16) underwent disease progression [43].
Overall, treatment was well tolerated by the majority of
patients as <10% of them experienced severe AEs, albeit
some low-grade treatment-related AE appeared in all
study patients [43]. Interestingly, the authors also report-
ed a significant increase in CD8" T cell activation medi-
ated by tremelimumab [43]. However, this was the arm of
the clinical trial with the lowest mOS and mPEFS (i.e., 6
months and 3.4 months, respectively) in comparison with
the other arms, where tremelimumab was combined with
radiofrequency ablation (RFA) and other ablative thera-
pies. This could be a reason why a pilot study
(NCT02821754) is currently ongoing to evaluate the ef-
ficacy of RFA or cryoablation combined with tremelim-
umab and durvalumab (i.e., anti-PD-L1 mAb) in a simi-
lar, but larger, cohort of patients with BTC (shown in Ta-
ble 2).

Combination of Chemotherapy and ICIs

To date, the clinical response achieved by exclusively
chemotherapy-based treatment for CCA is unsatisfacto-
ry. Nevertheless, treatment with gemcitabine and other
chemotherapeutic agents revealed to increase PD-L1 ex-
pression, consequently maximizing PD-1/PD-L1 axis sig-
nals [44]. Therefore, this supports the idea of combining
chemotherapy with ICIs to increase treatment effective-
ness. In this regard, in a phase II clinical trial
(NCT03311789) the combination of GemCis plus
nivolumab (i.e., anti-PD-1 mAb) was evaluated in 32 pa-
tients with unresectable or metastatic BTCs (i.e., iCCA
[n=11], pCCA [n = 6], dCCA [n =9], and GBC [n = 6])
(shown in Table 2) [45]. Unfortunately, 5 patients were
excluded from the study due to a rapid deterioration as a
consequence of tumor-related complications (n = 4) and
AEs unrelated to study drugs (n = 1) [45]. Thus, response-
evaluable patients achieved an ORR of 55.6% (5 patients
with CR and 10 patients with PR) with a mOS and a mPFS
of 8.5 months and 6.1 months, respectively [45]. More-
over, 6 patients previously defined as resistant to Gem-
Cis-based therapy were included in the trial, in order to
evaluate whether the combination of ICIs and chemo-
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therapy could re-sensitize BTCs [45]. Surprisingly, one of
these patients achieved CR, while another presented PR
[45]. Similarly, a Japanese study (JapicCTI-153098) em-
ployed the same therapeutic approach (i.e., GemCis +
nivolumab) in patients with non-resectable CCA [33].
Compared to what was observed when nivolumab was
administered as monotherapy (shown in Table 1), pa-
tients treated with the dual therapy experienced a marked
increase of mOS, mPFS, and response rate (i.e., 154
months, 4.2 months, and 36.7%, respectively) (shown in
Table 2) [33]. However, the proportion of patients with
treatment-related serious AEs also increased [33]. Note-
worthy, the NCT03101566 is an ongoing clinical trial
bearing important similarities with the aforementioned
study, but in a Western population (shown in Table 2).

On the other hand, a phase II (NCT03046862) study
including CCA and GBC patients detected no significant
differences between GemCis + durvalumab and GemCis
+ durvalumab + tremelimumab schemes in terms of mOS
(i.e., 18.1 months vs. 20.7 months, respectively), mPFS
(i.e., 11.0 vs. 11.9 months, respectively), and ORR (i.e.,
73.4% vs. 73.3%, respectively) [46]. Nevertheless, these
therapeutic regimens improved the mOS and the ORR
obtained when both ICIs were combined with the stan-
dard of care chemotherapy and administered after 1 cycle
of GemCis (i.e., 15.0 months and 50.0%, respectively)
[46]. According to these promising results, the combina-
tion of GemCis + durvalumab versus GemCis + placebo
is being investigated in a phase III clinical trial
(NCT03875235) (shown in Table 2). Currently, there are
other clinical trials evaluating potential therapeutic com-
binations of ICIs with different chemotherapeutic agents,
as both first- and second-line treatments, but without any
reported findings so far. Some details about these studies
are described in Table 2.

Combination of Other Therapies and ICIs

The therapeutic value of dual treatment based on ICIs
and targeted therapies or epigenetic modulators is also
being analyzed for CCA therapy. In this line, an observa-
tional study combining lenvatinib (i.e., a vascular endo-
thelial growth factor 1-3 and fibroblast growth factor re-
ceptor 1-4 inhibitor) with pembrolizumab or nivolumab
(i.e., anti-PD-1 mAbs) has shown promising results in pa-
tients with iCCA, in whom 2 or more anticancer therapies
had previously failed [47]. Thus, 3 out of the 14 patients
enrolled in the study achieved PR with a mPFS of 5.9
months after treatment [47]. Importantly, the DCR and
the clinical benefit rate (i.e., ORR + SD >5 months) were
92.9% and 64.3%, respectively [47]. According to these
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data, an Asian phase II clinical trial (NCT04550624) has
been recently launched using the aforementioned angio-
genic inhibitor plus pembrolizumab in a cohort with sim-
ilar characteristics (shown in Table 2). Interestingly, an-
other vascular endothelial growth factor inhibitor, called
bevacizumab, has been combined with atezolizumab (i.e.,
anti-PD-L1 mAb), obtaining promising results for the
treatment of patients with unresectable HCC [48] and
promoting the development of an ongoing phase II clini-
cal trial (NCT04677504) to evaluate the safety and effi-
cacy of bevacizumab in combination with atezolizumab
and GemCis in previously untreated BT'C patients (shown
in Table 2). Recently, a fusion protein containing the ex-
tracellular domain of the human transforming growth
factor P receptor II and an IgGl anti-PD-L1 antibody,
called M7824, has been developed and tested in a phase I
trial for metastatic or locally advanced solid tumors
(NCT02699515). An expansion cohort of this trial in-
cluding 30 Asian BTC patients showed an ORR, mPFS,
and mOS of 20%, 2.5 months, and 12.7 months, respec-
tively [49]. Importantly, treatment response was unrelat-
ed to PD-L1 expression, as well as durable with 83% on-
going responses at data cutoff (12.5 + to 14.5 + months)
[49]. Based on these data, a a phase II/IIT (NCT04066491)
and a a phase II (NCT03833661) clinical trials are under
development for locally advanced or metastatic BTC pa-
tients, in order to evaluate M7824 as first-line treatment
in combination with GemCis and as second-line after
chemotherapy failure, respectively (shown in Table 2).
Similarly, ICIs have been tested in combination with
epigenetic modulating drugs such as entinostat, a histone
deacetylase inhibitor, which has been described to pro-
mote both the expression of major histocompatibility
complex class II and the function of Tregs [31]. There-
fore, an ongoing phase II clinical trial (NCT03250273) is
evaluating the combination of nivolumab with entinostat
for the treatment of patients with unresectable or meta-

static CCA and pancreatic adenocarcinoma (shown in
Table 2).

Conclusion and Future Directions

Certainly, effective therapeutic approaches for CCA
still remain a challenge and, therefore, development of
novel and promising alternatives is urgently needed. In
this regard, immunotherapy and, more specifically, im-
mune checkpoint modulation, has emerged in recent
years as a potential strategy in oncology. Particularly in
CCA, overexpression of immune checkpoint molecules
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has generally been associated with worse clinical out-
comes, emerging as potential prognosis predictors.
Hence, regulation of immune checkpoints-mediated sig-
naling pathways opens avenues to control the progres-
sion of CCA and maybe even to eliminate it. Thus, thera-
pies combining different ICIs with the standard of care
chemotherapy have shown a relevant therapeutic value as
first-line therapy. Importantly, this treatment regimen
achieved better response than ICI monotherapy as sec-
ond line, which unfortunately has not provided the ex-
pected results. Moreover, ICIs in combination seem to
exert similar or slightly higher therapeutic effects than
ICI monotherapy, although this should be confirmed in
the future studies. It should be kept in mind that the ma-
jority of clinical trials developed so far have been focused
on evaluating the safety, tolerability, and efficacy of these
compounds. For this reason, further research is still need-
ed to determine their advantages over standard treat-
ments, as well as to expand the knowledge about other
less studied ICIs and to investigate new combinations
that could provide greater benefits to these patients. In
this regard, and as previously mentioned, ICIs have been
combined with loco-regional therapies or targeted thera-
pies, also exhibiting synergic effects. Hence, studies com-
paring the efficacy of this approach with GemCis + ICI
treatment could be interesting.

Since the response of patients to immune checkpoint
modulation is variable and the prognostic and predictive
value of PD-L1 expression remains controversial, up-
coming studies should be focused on the identification of
more accurate biomarkers. Unfortunately, little evidence
is available so far about the role of other immune check-
points in determining the clinical outcome of CCA. This
unmet need requires future research to elucidate the spe-
cific relationship between the expression of immune
checkpoints in CCA (either alone or in combination) and
both prognosis and response to ICIs, as recently suggest-
ed for other solid tumors in a systematic study [50]. Un-
doubtedly, this will help to identify patients who could
benefit from immunotherapy-based regimens, leading
toward a more personalized medicine. Finally, guidelines
indicating the recommended ICls-based therapy for
CCAs with different immune checkpoint expression sig-
natures should be developed.
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