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Simple Summary: There are a number of reports in the scientific literature dealing with the implica-
tion of ceramide kinase (CERK) and its product, ceramide 1-phosphate (C1P), in the regulation of
cell growth and survival, apoptosis, inflammation, and cell migration/invasion. However, no report
has so far compiled or put into context the information related to the implication of the CERK/C1P
axis in cancer development and metastasis. Hence, the present review highlights the relevance of
CERK and C1P in tumorigenesis and tumor dissemination. Whilst CERK produces intracellular C1P,
which can act on intracellular targets directly, C1P can also be secreted into the extracellular milieu
and interact with sites (possibly receptors) at the plasma membrane of cells. This action can trigger
signaling cascades that may end up modulating the expression of specific genes involved in tumor
promotion and dissemination. The biology of CERK/C1P in cancer growth and dissemination is
herein discussed in detail.

Abstract: Cancer cells rewire their metabolic programs to favor biological processes that promote
cell survival, proliferation, and dissemination. Among this relevant reprogramming, sphingolipid
metabolism provides metabolites that can favor or oppose these hallmarks of cancer. The sphingolipid
ceramide 1-phosphate (C1P) and the enzyme responsible for its biosynthesis, ceramide kinase (CERK),
are well established regulators of cell growth and survival in normal, as well as malignant cells
through stress-regulated signaling pathways. This metabolite also promotes cell survival, which
has been associated with the feedback regulation of other antitumoral sphingolipids or second
messengers. C1P also regulates cancer cell invasion and migration of different types of cancer,
including lung, breast, pancreas, prostate, or leukemia cells. More recently, CERK and C1P have been
implicated in the control of inflammatory responses. The present review provides an updated view on
the important role of CERK/C1P in the regulation of cancer cell growth, survival, and dissemination.

Keywords: ceramide kinase; ceramide-1-phosphate; cancer cell signaling; tumor cell proliferation;
invasion and dissemination

1. Introduction

Ceramide kinase (CERK) was first discovered in rat neural secretory (synaptic) vesicles
by S. Bajjalieh and co-workers [1]. The enzyme activity was exclusively found in membrane

Cancers 2022, 14, 227. https://doi.org/10.3390/cancers14010227 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14010227
https://doi.org/10.3390/cancers14010227
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4359-1704
https://orcid.org/0000-0001-5957-1260
https://orcid.org/0000-0002-2539-016X
https://doi.org/10.3390/cancers14010227
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14010227?type=check_update&version=1


Cancers 2022, 14, 227 2 of 13

fractions that contained synaptic vesicle markers, and its lipid product was ceramide-
1-phosphate (C1P). Soon after, Kolesnick and Hemer [2] demonstrated the existence of
C1P in human leukemia HL-60 cells and showed that C1P was mainly synthesized from
sphingomyelin but not glycosphingolipids, although de novo synthesis of ceramides and
the recycling of sphingosine in the salvage pathway are also substrates for CERK (Figure 1).
Both the de novo synthesis and salvage pathways take place in the endoplasmic reticulum
and are primarily regulated by ceramide synthases (CerS) [3,4].
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Figure 1. Sphingolipid metabolism. Sphingomyelinase (SMase), sphingomyelin synthase (SMS),
serine palmitoyl transferase (SPT), 3-ketosphinganine reductase (KDR), ceramide synthase (CerS),
dihydroceramide desaturase (DEGS), sphingosine kinase (SphK), sphingosine 1-phosphate phos-
phatase (SPP), ceramide 1-phosphate phosphatase (C1PP), and ceramide kinase (CERK) are rep-
resented by their acronyms. The dashed arrow with interrogation mark represents a putative
mechanism for C1P generation from S1P.

Once synthesized, ceramides can be transported by ceramide transfer protein (CERT)
to the Golgi apparatus, where they can be phosphorylated by CERK to yield C1P (Figure 2).
A specific ceramide phosphate transfer protein (CPTP) would then transport C1P to the
plasma membrane and other organelles [5], where it may participate in the regulation of
different cellular processes.

Besides CERK, the intracellular levels of C1P are regulated by hepatic ceramide phos-
phate phosphatase (CPP) [6] or lipid phosphate phosphatases (LPP) [7], enzymes that
catalyze C1P dephosphorylation to increase ceramide levels. Non-conventional regula-
tion of C1P production has also been reported. In this connection, sphingomyelinase
phosphodiesterase-like 3b, an enzyme that is present in podocytes (terminally differenti-
ated cells of the kidney filtration barrier), modulates C1P levels by preventing the access of
CERK to its ceramide substrate [8], thereby reducing C1P levels.

Although C1P was discovered as early as in 1989, no biological function was attributed
to CERK or C1P until 1995, with the discovery that C1P stimulated DNA synthesis and
cell division in rat fibroblasts [9]. The mitogenic effects of C1P were accompanied by
an increase in the levels of proliferating cell nuclear antigen (PCNA) [10] and were an-
tagonized by (non-phosphorylated) ceramides [9,10]. Subsequent in vitro studies, using
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non-mammalian biological systems, showed that C1P increased the size of chick embryo
otic vesicles, an action that was also accompanied by increased PCNA levels and inhibited
by ceramides [11].
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Figure 2. Synthesis and intracellular transport of C1P. Ceramides are transported from the endo-
plasmic reticulum (ER) to the Golgi apparatus by ceramide transfer protein (CERT). In the Golgi
apparatus, ceramide kinase (CERK) phosphorylates ceramide to generate C1P. Then, a C1P transfer
protein (CPTP) transports C1P to the plasma membrane and probably to other organelles. C1P is also
present in the perinuclear region.

CERK and C1P regulate cell proliferation in a variety of cell types, including primary
bone marrow-derived macrophages [12,13], mesenchymal cells [14], primary rat aortic
vascular smooth muscle cells [15], primary photoreceptor progenitors [16,17], and renal
mesangial cells and fibroblasts [18]. The mechanisms involved in the mitogenic actions of
C1P in primary or transformed cells include the upregulation of mitogen-activated pro-
tein kinase kinase (MEK)/extracellularly regulated kinases 1-2 (ERK1-2), c-Jun N-terminal
kinase (JNK), protein kinase Cα, NADPH oxidase, and phosphatidylinositol-3-kinase
(PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways [12,13,19–21]. Of interest,
other molecular processes have been similarly involved in these phenotypes, including the
C1P-mediated vascular endothelial growth factor (VEGF) production in macrophages [22]
or C1P-induced lysophosphatidic acid (LPA) receptor activation in myoblasts [23]. In line
with the latter report, Meacci and co-workers have recently shown that the CERK/C1P
axis plays a crucial role as molecular regulator of skeletal muscle mass associated with
cancer [24]. In addition to stimulating cell proliferation, C1P can increase cell number
through the inhibition of apoptosis. The mechanisms by which C1P promoted mammalian
cell survival involve the inhibition of the ceramide-generating enzymes acid sphingomyeli-
nase (A-SMase) [25] or serine palmitoyl transferase (SPT) [26], stimulation of the PI3K/Akt
pathway [27], and upregulation of the inducible form of nitric oxide synthase (iNOS) ex-
pression [28]. C1P was also found to be protective against cyclophosphamide-induced
ovarian damage in a mouse model of premature ovarian failure [29], cisplatin ototoxicity in
cochlear hair cells [30], TNFα-induced endothelial colony-forming cell apoptosis [31], and
death of retina photoreceptors [16]. Of additional interest, inhibition of CERK was shown
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to block insulin-like growth factor-1-mediated survival of otic neurosensory progenitors by
impairing Akt phosphorylation in chick embryos [32].

Another relevant biological function regulated by CERK and C1P is cell migration,
a complex physiological process that is absolutely required for embryogenesis, organo-
genesis, wound healing, and immune responses. Whilst intracellularly generated C1P
is implicated in the regulation of cell growth and survival, exogenous C1P is required
for the regulation of cell migration in different cell types, including mouse and human
monocytes/macrophages [33–35], human umbilical vein endothelial cells, multipotent
stromal cells, and endothelial progenitor cells [36], stem cells in patients with acute my-
ocardial infraction [37], coronary artery macrovascular endothelial cells [38], retina Muller
glia cells [39], or bone marrow-derived mesenchymal stem cells [14]. Noteworthy, this
biological function of C1P is also relevant in tumor cells. CERK-produced intracellular C1P
has been shown to be required for invasion/migration of a variety of cancer cell types,
as discussed below (reviewed in [40–42]). Two important molecular tools for studying
the biology of CERK are the selective inhibitors NVP-231 [43,44] and K1 [45]. Although
other inhibitors of sphingolipid metabolism may affect the levels of ceramide, which is the
physiological substrate of CERK, these fall out of the scope of this review. Nonetheless,
the reader is referred to a recent review by Gomez-Larrauri and co-workers to expand
on these aspects [46]. Lastly, it should be noted that C1P is implicated in inflammatory
responses [47,48] and CERK or C1P play key roles in adipogenesis [42,49,50]. All of the
above cellular functions, namely the upregulation of cell proliferation, survival, and in-
vasion/migration by CerK/C1P, are pro-tumorigenic actions and are hereby discussed
in detail.

2. Implication of CERK/C1P in Leukemia Cell Growth and Dissemination

In addition to increasing proliferation of primary monocytes/macrophages (derived
from the bone marrow), C1P turned out to be a potent stimulator of mouse leukemia
RAW264.7 macrophage proliferation, an action that was dependent upon VEGF secretion
from these cells [22]. C1P-stimulated VEGF release was substantially reduced by knocking
down ERK2 or Akt2, without intervention of ERK1, Akt1, or Akt3, and was completely
inhibited when PI3K was downregulated with specific siRNA, actions that led to complete
inhibition of C1P-stimulated cell growth. Earlier studies, using the same leukemia cell
model, showed that C1P stimulated cell migration. Interestingly, the role of this metabolite
in regulating cell migration depends on its action on cell surface receptors rather than on
its intracellular production and signaling. Neither the activation of CERK by interleukin-
1β or the calcium ionophore A23187 [33] nor cell permeable light sensitive caged C1P
analogs [35,51,52] could stimulate monocyte/macrophage migration suggesting that in-
tracellular C1P is not essential for regulation of this process. However, treatment of the
monocytes with C1P in the presence of pertussis toxin failed to stimulate ERK or Akt phos-
phorylation, as well as cell migration, suggesting the intervention of a Gi protein-coupled
receptor in this action [33]. Similar results were obtained when human monocytic leukemia
(THP-1) cells or J774.A1 reticulum cell sarcoma (a primary non-Hogdkin’s lymphoma of the
bones) were used as biological models [34]. The latter report showed that C1P-stimulated
cell migration was dependent upon ERK1-2 and Akt phosphorylation and the subsequent
release of macrophage chemoattractant protein-1 (MCP-1). Moreover, C1P was present
at relatively high levels in human leukemia (HL-60) cells, a hematological malignancy
characterized by the accumulation of large numbers of immature myeloblasts in the bone
marrow [2] and promoted homing of hematopoietic stem and progenitor cells that are
susceptible to malignant transformation and development of leukemia [53]. Interestingly,
prolonged incubation of human leukemia HL-60 cells, with the anticancer drug daunoru-
bicin, rendered the cells resistant to this drug, a fact that was associated with reduced
concentration of proapoptotic ceramides and a concomitant increase of antiapoptotic C1P
levels [54]. Of additional interest, phosphatidic acid (PA), which is structurally related
to C1P, displaced radiolabeled C1P from its membrane-binding site and inhibited C1P-
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stimulated mouse leukemia RAW264.7 cell migration. The mechanism by which PA exerted
this inhibitory action was associated with a sharp reduction in the levels of phosphorylated
ERK1-2. Exogenous bacterial phospholipase D (PLD) (from Staphylococcus aureus), an en-
zyme that produces PA at the plasma membrane of cells, recapitulated the inhibitory effects
of exogenous PA on leukemia cell migration [35]. Since PA has mitogenic properties [55–57]
and has been associated with progression of some cancer cell types [58–62], it might be
possible that synthetic PA analogs lacking cell growth promoting properties could be useful
for counteracting leukemia cell migration.

3. Implication of CERK/C1P in Breast Cancer

Breast cancer is the most common cancer among women worldwide, accounting for
about 30% of female cancers, with a mortality-to-incidence rate of 15% [63]. Although
primary tumors can be effectively treated by the combination of surgery, radiotherapy, and
chemotherapy, many breast cancer patients relapse with recurrent disease, even 20 years
after diagnosis and treatment, a fact that is associated with the morbidity and mortality
of the disease [64]. Hence, identification of the mechanisms or pathways implicated in
the survival of these cancer patients after therapy could contribute to the development
of more efficient drugs or strategies to reduce the risk of recurrence. Analysis of gene
expression profiles, from more than 2200 patients with breast cancer, revealed that CERK
expression was associated with an increased risk of recurrence in women with breast
cancer [64], suggesting that targeting this pro-survival enzyme may be highly beneficial
to overcome this disease. Moreover, a recent report described the upregulation of CERK
and sphingosine kinase 1, which produces sphingosine 1-phosphate (S1P), in breast cancer
tissues. In particular the levels of C1P (23:0) and C1P (23:1) were elevated in tumor
tissues, as compared to adjacent normal tissue, and correlated well with the Ki-67 index, a
prognostic parameter in breast cancer patients [65]. Using the human breast cancer cell lines
MDA-MB-231 and MCF7, Schwalm et al. showed that overexpression of CERK enhanced
cell migration, through a mechanism involving activation of Akt [66]. The increased
migration of CERK-overexpressing cells was reduced by pretreatment of the cells with
the CERK inhibitor NVP-231 or by knocking down CERK expression with specific short
hairpin RNAs. Moreover, inhibition of the PI3K/Akt pathway or RhoA-dependent protein
kinase (ROCK) with the selective inhibitors LY290042 or Y27632, respectively, blocked
migration of CERK-overexpressing breast cancer cells, suggesting a relevant role of these
pathways in the regulation of CERK-associated breast cancer cell migration; targeting
this enzyme may be an important therapeutic strategy in metastatic breast cancer. Of
interest, it was also reported that estrogen receptor-negative breast cancer patients with
high CERK expression exhibited worse prognosis [67]. Moreover, CERK overexpression
was sufficient to promote triple-negative breast cancer (TNBC) cell growth and migration,
and conferred chemoresistance to TNBC cell lines [68]. Moreover, inhibition of CERK
counteracted chemoresistance in the breast cancer cells through a mechanism involving
activation of the Ras/ERK, PI3K/Akt/mTOR, and RhoA pathways [68,69].

4. Implication of CERK/C1P in Lung Cancer

Lung cancer is the most devastating type of cancer worldwide. There are two major
cancer subtypes, (1) non-small cell lung cancer (NSCLC), which is the most common lung
cancer subtype, and accounts for 80–85% of all lung cancer cases [70], and (2) small cell lung
cancer (SCLC), which is less frequent and accounts for 15–20% of the total lung cancer cases.
The five-year lung cancer survival rate is approximately 18% [71]. Although surgery is the
best choice for cure in early-stage NSCLC, many patients with lung tumors are not suitable
surgical candidates because of limited pulmonary function and serious comorbidities [72].
Hence, in patients presenting metastatic disease, chemotherapy is the first-line treatment
option [73]. Many anticancer drugs, including the most often used in lung cancer therapy
(i.e., cisplatin, paclitaxel (taxol), gemcitabine, or etoposide), exert part of their anticancer
activity by increasing the levels of proapoptotic ceramides [74–78]. Nonetheless, since the
accumulation of ceramides might lead to C1P formation under conditions where CERK
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is upregulated or overexpressed, causing drug resistance, downregulation of this enzyme
activity, or expression, would potentiate the chemotherapeutic actions of the anticancer
drugs. In this concern, downregulation of CERK using specific siRNA reduced progression
of the cell cycle into S phase, decreased cell proliferation, and enhanced apoptosis of the
NSCLC A549 lung cancer cells [79]. Moreover, CERK inhibition using NVP-231 blocked
breast and lung cancer cell proliferation by inducing M phase arrest and subsequent cell
death [44]. Of particular interest is the fact that lung cancer is especially sensitive to the
actions of extracellular C1P. Both lung cancer cell subtypes are sensitive to relatively low
concentrations of C1P (0.5 µM) to undergo cell migration. Interestingly, C1P resulted to
be more potent than its family member, S1P, at stimulating migration of the human lung
cancer cells NSCLC A549, HTB177, HTB183, and CRL5803, as well as the SCLC CRL2062
and CRL5853 cancer cells [80]. Nonetheless, it has also been reported that contrary to the
effects elicited by exogenous C1P on cell migration, intracellularly generated C1P (CERK-
derived) inhibits cell migration and metastasis of the NSCLC A549 cells [81]. The latter
report also shows that endogenous C1P inhibits the migration of MCF7 breast cancer cells.
These C1P actions seem to be contradictory. However, and contrary to exogenous C1P,
intracellular C1P accumulation failed to induce macrophage migration [35,52]. The latter
findings could be recapitulated in a different study using 3T3-L1 cells to study preadipocyte
differentiation into mature adipocytes. Specifically, it was observed that CERK expression
increased during adipogenesis [49], whereas treatment of the preadipocytes with exogenous
C1P inhibited this process [50]. Likely the effects of C1P may be dependent on different
factors such as cellular compartmentalization, the ability of cells to secrete C1P into the
extracellular milieu, or the different C1P species that can be produced at a time under
specific metabolic conditions.

A malignancy associated with lung cancer is Kaposi sarcoma [82], which is a vascular
tumor of the blood vessels and lymph nodes mainly linked to cutaneous lesions and is
quite common in acquired immune deficiency syndrome (AIDS) patients [83]. Interestingly,
endothelial colony-forming cells, a unique endothelial stem cell population, are highly
increased in the blood of Kaposi sarcoma patients and have the ability to efficiently pro-
duce high levels of C1P (and S1P), a fact that significantly contributes to their increased
proliferative properties. Additionally, exogenous C1P and S1P were found to stimulate
proliferation of these cells [84], suggesting that both bioactive sphingolipids are relevant
for development of Kaposi sarcoma; targeting C1P and S1P signaling may turn out to be a
useful therapeutic approach to treat the disease.

5. Implication of CERK/C1P in Neuroblastoma

Our group previously reported that part of the mechanism whereby C1P stimulates
primary bone marrow-derived macrophage proliferation involves activation of NADPH ox-
idase and the subsequent formation low levels of reactive oxygen species (ROS) [13], which
contrary to the cytotoxic effects of high ROS concentrations, is a mitogenic signal [85–89].
C1P activated cPLA2 and PKCα in the macrophages and inhibition of these enzymes
blocked C1P-stimulated NADPH activation, pointing to a relevant role of these kinases
in the production of NADPH oxidase-derived ROS. Concurrently, Barth and co-workers
showed that CERK regulates TNFα-stimulated NADPH oxidase and linked this action
to the production of ROS and proinflammatory eicosanoids in human neuroblastoma
cells [90]. Noteworthy, and in agreement with previous work, CERK was shown to be
antiapoptotic and to suppress all-trans retinoic acid-induced neuronal differentiation in
SH-SY5Y human neuroblastoma cells [91]. The proinflammatory actions of the CERK/C1P
axis, along with its mitogenic and pro-survival properties, suggested a relevant role in the
development of neuroblastoma, as well as in inflammation and the neuronal survival of
the central nervous system. However, in normal mouse cerebellar Purkinje cells, CERK
was not necessary for survival, although it played a relevant role in higher brain functions
related to emotion [92]. Furthermore, in collaborative investigations with Meacci’s group,
we found that the antiproliferative action of vitamin D3 and some of its synthetic analogues
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in human neuroblastoma cells implicated CERK. Specifically, the inhibition of this enzyme,
by treatment with the active form of vitamin D3, 1,25-dihydroxivitamin D3, specific gene
silencing, or with the pharmacological CERK inhibitor K1, led to a sharp depletion of
intracellular C1P levels, and drastically reduced neuroblastoma cell proliferation [93]. The
evidence that CERK/C1P acts as a molecular effector of the antiproliferative action of
1,25-dihydroxivitamin D3 represents a new possible target for anticancer therapy of human
neuroblastoma and may help to identify new biomarkers for increased disease-specific
risks in vitamin D3-deficient patients [93].

6. Implication of CERK/C1P in Pancreatic Cancer

Pancreatic cancer is the fourth leading cause of cancer mortality worldwide, with
only 4–6% of patients with chances of a five-year survival rate after diagnosis [94,95].
Survival rates are better for patients with the malignant disease localized to the pancreas
itself because surgical resection is practically the only chance of cure of this cancer type.
However, 80–85% of patients with pancreatic cancer present with advanced unresectable
disease, making it difficult to treat. Of interest, about 20% of pancreatic tumors are caused
by cigarette smoke, and cancers from smokers show more genetic mutations than those
from non-smokers [94]. The most common and deadly type of solid tumor in the pancreas
is ductal adenocarcinoma, which has very poor prognosis. This aggressive disease is
characterized by invasiveness, rapid progression, and profound resistance to chemother-
apy. Hence, there is a need to better understand the biological mechanisms implicated
in the establishment and progression of pancreatic tumors, so as to be able to develop
effective interventions or better therapeutic strategies to treat this disease. C1P regulates
cell migration and invasion of human pancreatic adenocarcinoma cells, actions that are
necessary for cells to metastasize. Specifically, exogenous C1P enhances both migration and
invasion of human ductal pancreatic PANC-1 and MiaPaCa-2 cells through a mechanism
involving activation of the PI3K/Akt-1 and MEK/ERK1-2 pathways [96]. C1P also induces
activation of the mammalian target of rapamycin (mTOR), which is downstream of Akt
and upregulates the RhoA/ROCK-1 pathway, which is involved in reorganization of the
cytoskeleton in the context of chemotaxis. Inhibitors of these and other signaling path-
ways are being used clinically to treat pancreatic cancer [97]. Interestingly, pretreatment
of the pancreatic cancer cells with pertussis toxin, a Gi protein inhibitor, abrogated C1P-
stimulated cell migration /invasion, suggesting the participation of a Gi protein-coupled
receptor in these processes [96], as previously found in leukemia cells [33]. Moreover,
pancreatic cancer cells have the ability to migrate spontaneously, and cells engineered
to overexpress CERK showed enhanced spontaneous cell migration. The latter actions
were completely blocked by NVP-231, or by downregulating CERK with specific siRNA in
a receptor-independent manner [96]. Subsequent studies showed that pancreatic ductal
adenocarcinoma cells secrete extracellular vesicles containing C1P to specifically promote
pancreatic cancer stem cell motility, making C1P release a mechanism that could facilitate
pancreatic tumor progression [98].

7. Implication of CERK/C1P in Prostate Cancer

Prostate cancer (PCa) is the second most frequent cancer diagnosed in men and fifth
leading cause of death worldwide [99]. The androgen-signaling axis plays an essential
role in the pathogenesis of prostate cancer [100]. The androgen receptor (AR) regulates
multiple cellular events, such as proliferation, apoptosis, migration, invasion, and differenti-
ation [101]. In turn, androgen receptors, as well as androgen synthesis, represent important
therapeutic targets (androgen deprivation therapy), and a variety of anticancer drugs target-
ing this program have demonstrated to hinder prostate cancer progression [102]. However,
resistance to androgen deprivation often arises, leading to castration resistant prostate can-
cer (CRPC), which accounts for a large fraction of prostate cancer mortality [103]. Studies
focused on understanding the mechanisms underlying CRPC have increased the knowl-
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edge on dysregulated androgen signaling, leading to the development of several novel
AR-directed therapies for CRPC (2).

In PCa, exogenous ceramide (C6) and (C16) treatment delayed the growth of tumor
cells and induced cell death through apoptosis [104,105], thereby supporting the notion that
agents that elevate ceramide levels could be used as novel chemotherapeutic agents [106].

Recently, our group has provided new insight into the regulation and function of
CERK and C1P in PCa. Through a bioinformatics analysis of human PCa transcriptomics
datasets, searching for metabolic genes correlated with AR activity, we found that CERK
is among the top genes repressed by the nuclear receptor [107], thus confirming results
obtained using other approaches [108]. We validated this regulatory mode using cell lines
with AR agonists and antagonists and murine models of PCa subject to castration. Of
importance, we showed that inhibition of AR, by means of MDV3100 treatment, increased
the abundance of C1P (C20) and (C24). Molecular analyses confirmed that AR sits on CERK
regulatory regions. Similar to the repression of NOV [109], the repressor EZH2 cooperates
with AR to exert its regulation of CERK. Functional analyses confirmed that C1P treatment
of PCa cells promoted cell migration (but not proliferation).

8. Concluding Remarks

It is well established that C1P and CERK regulate cell growth, survival, and motility
in both malignant and non-malignant cells. Although the molecular mechanisms whereby
CERK/C1P exerts its biological functions are still incomplete, accumulating evidence
supports the notion that this enzyme activity and its product are relevant targets for
reducing tumor formation and spreading. Taking into consideration the topology or
compartmentalization of C1P in cancer cells, the therapeutic relevance of CERK and C1P
can be pursued at two different levels. On one hand, as CERK is responsible for the
generation of intracellular C1P, targeting this enzyme activity or expression is an exciting
strategy to curb tumor growth. On the other hand, exogenous C1P, which is present in
plasma and exosomes, can interact with putative Gi protein-coupled receptors to trigger
cell migration/invasion in different cancer cell types. Although the putative C1P receptor(s)
is (are) still to be fully characterized and cloned, these, together with CERK, may be highly
relevant to promote the development of a new generation of cancer metabolism-targeting
agents to aid in the prevention or cure of cancer. Figure 3 outlines the major signaling
pathways that are regulated by C1P, in the context of tumor promotion, including cell growth
and death, inflammation, and cell migration, which are all relevant aspects of tumorigenesis.
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upon calcium ions for activity. C1P can be transported to the plasma membrane by CPTPor can
be secreted into the extracellular environment. Intracellular C1P can exert various biological func-
tions, including stimulation of cell growth, inhibition of apoptosis, stimulation of cell migration,
or modulation of inflammation, for which it targets different signaling pathways. C1P can also act
extracellularly to promote cell migration or glucose uptake, through interaction with a putative Gi
protein-coupled receptor, also affecting various signaling pathways, as indicated.
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