Expert Systems With Applications 185 (2021) 115641

Contents lists available at ScienceDirect Eipert

Systems
wi
Applications %

An International
Journal

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Check for

Embedding-based real-time change point detection with application to e
activity segmentation in smart home time series data

Unai Bermejo ?, Aitor Almeida ", Aritz Bilbao-Jayo?, Gorka Azkune"

2 DeustoTech - University of Deusto, Avenida de las Universidades 24, 48007 Bilbao, Spain
bJXA NLP Group, Faculty of Computer Science, Euskal Herriko Unibertsitatea (EHU/UPV), M. Lardizabal 1, 20008 Donostia, Spain

ARTICLE INFO ABSTRACT

Keywords:

Activity transition detection
Change point detection
Activity segmentation
Smart homes

Action embeddings

Sensor embeddings

Human activity recognition systems are essential to enable many assistive applications. Those systems can
be sensor-based or vision-based. When sensor-based systems are deployed in real environments, they must
segment sensor data streams on the fly in order to extract features and recognize the ongoing activities.
This segmentation can be done with different approaches. One effective approach is to employ change point
detection (CPD) algorithms to detect activity transitions (i.e. determine when activities start and end). In this
paper, we present a novel real-time CPD method to perform activity segmentation, where neural embeddings
(vectors of continuous numbers) are used to represent sensor events. Through empirical evaluation with 3
publicly available benchmark datasets, we conclude that our method is useful for segmenting sensor data,
offering significant better performance than state of the art algorithms in two of them. Besides, we propose
the use of retrofitting, a graph-based technique, to adjust the embeddings and introduce expert knowledge
in the activity segmentation task, showing empirically that it can improve the performance of our method
using three graphs generated from two sources of information. Finally, we discuss the advantages of our
approach regarding computational cost, manual effort reduction (no need of hand-crafted features) and
cross-environment possibilities (transfer learning) in comparison to others.

solutions are not that popular, as they tend to generate privacy con-
cerns (Chernbumroong, Cang, Atkins, & Yu, 2013; Yilmaz, Javed, &
Shah, 2006).

When sensors are used to collect environmental information, those
systems must accomplish the task of recognizing activities from a
stream of sensor events. Without exception, in real applications, these
sensor events are unsegmented. Hence, the first step in human activity
recognition (from now on, HAR) is to segment sensor events in order
to extract features and recognize the ongoing activities.

This is a demanding task, since the activities do not always have the

1. Introduction

The development of systems capable of monitoring human activities
in smart homes is crucial in order to build many human-centered
applications that are used in a wide range of subjects, from preventive
medicine and security to sustainability and entertainment (Ranasinghe,
Al Machot, & Mayr, 2016). More concretely, in the field of healthcare
and ambient assisted living, these activities are often called Activities
of Daily Living (ADLs) and they are used by health professionals to
measure the functional status of dependent patients, essentially elderly
people and persons with disabilities (Bennett, Rokas, & Chen, 2017).

Their monitoring also serves to perform medical interventions to people
with risk conditions (e.g. diabetes) and to evaluate the evolution of
diseases, including their early detection, such as cancer, Alzheimer’s
or depression.

These activity-aware systems are often composed by low-cost sen-
sors that capture the actions performed by users over time. With this
information, those systems can recognize activities by using differ-
ent types of algorithms. Likewise, it is possible to employ cameras
to gather images or videos and recognize the activities being car-
ried out (Weinland, Ronfard, & Boyer, 2011). However, vision-based

* Corresponding author.

same number of sensor events, nor do they always have to present them
in the same order. User behavior is difficult to predict. For example, to
prepare breakfast, different sensors can be activated (different actions
can be performed) and they do not always have to be activated in
the same order. One day, the person may open the refrigerator, take
out a brick of milk and activate the coffee maker to prepare a milky
coffee. On another day, perhaps the brick of milk is out of the fridge
and the person only has to turn on the coffee maker, or does not feel
like making coffee and prepares a juice. This leads to a very varied,

E-mail addresses: unai.bermejo@deusto.es (U. Bermejo), aitor.almeida@deusto.es (A. Almeida), aritzbilbao@deusto.es (A. Bilbao-Jayo),

gorka.azcune@ehu.eus (G. Azkune).

https://doi.org/10.1016/j.eswa.2021.115641

Received 1 December 2020; Received in revised form 11 June 2021; Accepted 19 July 2021

Available online 24 July 2021
0957-4174/© 2021 The Authors.

(http://creativecommons.org/licenses/by-ne-nd/4.0/).

Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:unai.bermejo@deusto.es
mailto:aitor.almeida@deusto.es
mailto:aritzbilbao@deusto.es
mailto:gorka.azcune@ehu.eus
https://doi.org/10.1016/j.eswa.2021.115641
https://doi.org/10.1016/j.eswa.2021.115641
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2021.115641&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

U. Bermejo et al.

rich and complex stream of sensor events to segment and from which
recognize activities.

There exists multiple approaches to perform activity segmentation.
A very promising technique that has recently begun to be used is
change-point detection (CPD) (Aminikhanghahi & Cook, 2017a). In this
approach, different algorithms are used to detect activity transitions
(change points) that mark the start and end of activities. Capturing
such starts and ends makes possible to separate the sensor events in
non-overlapping segments that encapsulate all the information of the
activity being carried out, without introducing information from others
activities, what can ease the job of the recognition module on both
inference and training.

In this sense, segmenting sensor events with CPD algorithms can
improve the recognition performance of many classifiers (Aminikhang-
hahi & Cook, 2019), in comparison to the most popular alternative,
the window-based approach, which separates the data in overlapping
or non-overlapping segments of fixed size. Moreover, detecting ac-
tivity transitions enables many applications on its own like timed
notification systems or automatic intervention systems that can be
deployed in homes to address health risks (Sprint, Cook, Fritz, &
Schmitter-Edgecombe, 2016).

In this paper, we propose an unsupervised novel methodology
based on Mikolov, Sutskever, Chen, Corrado and Dean (2013) popular
Word2vec embedding models to detect activity transitions and perform
activity segmentation. This methodology relies on representing sensor
events with embeddings and computing similarities between them to
find activity transitions in real-time. We propose three alternatives to
compute such similarities. Through empirical evaluation, we demon-
strate the usefulness of every alternative to detect activity transitions
in three benchmark datasets.

Furthermore, we glimpse several advantages of our method in com-
parison to other CPD-based activity segmentation algorithms. First, our
method is simple, easy to interpret and more efficient in terms of
computational cost. Second, it does not need hand-crafted features,
as sensor embeddings, generated in a semi-supervised fashion, are
used as features. Third, it is e-real-time configurable, what permits
to balance the model between delay and accuracy depending on the
application requirements (see Section 2, Related Work). Fourth, the
representation of sensor events with embeddings opens the possibility
to perform direct transfer learning between environments for activity
segmentation.

In addition, as we believe that our methods require high-quality
embeddings to function properly, we propose to use a hybrid tech-
nique called retrofitting (Faruqui et al., 2014) to post-process sensor
embeddings. This graph-based technique allows us to introduce expert
knowledge and improve their representational capabilities with barely
any effort. We show empirically that our CPD methods’ performance
improves after adjusting the embeddings with this approach, employ-
ing different knowledges graphs generated from two distinct sources
of information. Our approach is inspired by the past work of other
authors (Triboan, Chen, Chen, & Wang, 2017, 2019) who have also
explored the usage of external information to tackle the segmentation
problem.

The rest of the paper is organized as follows. Section 2 summarizes
the related work on activity segmentation and CPD. Section 3 explains
our approach. Section 4 shows the experimental results and Section 5
discusses them. Finally, Section 6 presents our conclusions and lines of
future work.

2. Related work

Common HAR approaches employ a fixed window length to se-
quentially segment the incoming sensor events. This technique has the
problem of determining the optimum size of the window. For small
values, activity information can be lost, making the task of activity

Expert Systems With Applications 185 (2021) 115641

recognition difficult. For large values, more than one activity’s infor-
mation can be part of the same segment, which creates a classification
error in the first step of the process. To overcome this problem, some
authors have explored adaptive, dynamic window size methods (La-
guna, Olaya, & Borrajo, 2011; Okeyo, Chen, Wang, & Sterritt, 2014).
These methods try to find significant events that mark the beginning
and the end of one activity, so the window size is adjusted to fit
those boundaries. However, as in real scenarios activities may overlap
and erratically transition from one to another, these approaches still
encounter too many issues to segment sensor data accurately.

Another classical approach to sensor event segmentation is to em-
ploy frequent pattern mining techniques. These methods try to find
patterns by iterating multiple times across the data, which can be
used later to recognize activities (Cook, Krishnan, & Rashidi, 2013;
Rashidi & Cook, 2013). Although they show good results for multiple
datasets, they are completely offline. As in this paper we focus on
real-time segmentation, no further mention will be made to this type
of algorithms.

Authors in the past had also augmented their solutions for event
segmentation using additional semantic information. In Triboan et al.
(2017, 2019), authors use domain knowledge for discerning sensor
data into multiple threads of activity of daily living. The authors use
ontologies to perform terminology box and assertion box reasoning,
along with logical rules to infer whether the incoming sensor event is
related to a given sequences of the activity.

In contrast to window-based segmentation, CPD-based segmentation
has to deal with the task of detecting state transitions.

A time series data stream S = {x,,...,x;,...} can be defined as an
infinite sequence of data points indexed in time order, where x; is a
vector of arbitrary dimension. They are commonly used to describe the
current state of systems and processes. When the data points do not
differ or change during a certain period, it can be assumed that the
process remains in the same state during such period. Two consecutive,
distinct states are separated by a change point. In smart home time
series data, we can translate state to activity, data point to sensor event
and change point to activity transition.

Therefore, in this approach, the activity segmentation is performed
by detecting change points that mark the start and end of activities
(transitions). Fig. 1 shows the differences between the window-based
segmentation approach and the CPD-based approach.

CPD can be performed in real-time or offline. To define how real-
time is an algorithm, the concept of ¢-real-time algorithm is used in
the literature (Aminikhanghahi & Cook, 2017a). An algorithm is said
to be e-real-time when it makes a decision at time ¢ after a delay of
e data points. In other words, and as explained by Aminikhanghahi,
Wang, and Cook (2018), a e-real-time algorithm needs to inspect data
points x,,x,,1,...,%,, to decide if there exists a change point in 1.
Hence, according to this definition, an offline algorithm is co-real-time
and a completely-online algorithm is O-real-time. As can be understood,
the lower the ¢ value is, the more responsive the system can be.
However, reducing the value of & usually impacts on the model’s
accuracy. In this paper, we focus our efforts on developing a config-
urable e-real-time method that can be adapted to any responsiveness
or accuracy requirements.

Multiple CPD algorithms have been developed that behave differ-
ently in terms of response time. They can be supervised or unsuper-
vised.

A supervised CPD approach employs machine learning algorithms
in form of binary or multi class classifiers. In the first case, all the state
transitions at any time ¢ represent one class and all of the within-state
points a second class. This has been demonstrated to be a complex
learning problem as there can exist too many possible types of tran-
sitions (Cook & Krishnan, 2015; Feuz, Cook, Rosasco, Robertson, &
Schmitter-Edgecombe, 2014). In the second case, a multi class classifier
learns to find state boundaries if the number of possible states is
given. Again, it is a hard training problem as the data must be diverse

U. Bermejo et al. Expert Systems With Applications 185 (2021) 115641

Activity 1 > Activity 2 >

wi Wi+l Wi+2

Window-based activity segmentation

Feature extraction Feature extraction Feature extraction
v V) 4
[Activity recognition model]

- > >
@ Activity 1] Activity 2
E |
& |
2
-
k3]
o
=
a
_g Feature extraction
& L 4
[Activity recognition model]

Fig. 1. Window-based and CPD-based segmentation. Ai is the action identifier (sensor event). The extracted features from each segment are used to predict the ongoing activity.

enough to represent all the possible states but also all the possible » Subspace model. The CPD is based on the analysis of subspaces.
transitions between them (Cleland et al., 2014; Han, Lee, Lee, et al., The time series is represented by state spaces and the change
2012; Synnott, Chen, Nugent, & Moore, 2014). Apart from these two points are detected by identifying state space distances between

. . . consecutive sliding windows.
approaches, virtual classifiers can also be used to detect change points L . . .
K X K) K + Probabilistic methods. The algorithms that fall in this category
in a supervised manner (Hido, Idé, Kashima, Kubo, & Matsuzawa,

(e.g. bayesian approaches) estimate probability distributions for

2008). Although most of them perform on 1-real-time, labeled data is each new sliding window based on the previous ones to detect
hard to find in real applications (Kwon, Kang, & Bae, 2014; Szewcyzk, change points.

Dwan, Minor, Swedlove, & Cook, 2009). Due to this fact, the method * Clustering. These methods focus on grouping similar data points
we propose is fully unsupervised. into clusters that represent states and identify change points by

comparing its features.
» Kernel based methods. This kind of algorithms map observa-
tions onto a higher-dimensional feature space and compare the

Unsupervised algorithms find change points without the need of
labeled data. These techniques rely on statistical features of the time

series to determine if a change point exists at time 7. In the literature, homogeneity of consecutive windows to detect change points.
they are often differentiated in six families (Amlnlkhanghahl & Cook, . Graph based methods. By representing the time series data
2017a): points as nodes and edges, these methods calculate similarities

U. Bermejo et al.

between observations that can be used to detect change points
when compared to a threshold.

+ Likelihood ratio. These techniques assume that the probability
density of two consecutive sliding windows are the same if they
belong to the same state. Then, they rely on calculating density
ratios between windows to find change points.

As the nonparametric likelihood ratio algorithms uLSIF, RuLSIF and
SEP have shown to obtain the best results on CPD in smart home
time series data (Aminikhanghahi & Cook, 2017b; Aminikhanghahi
et al., 2018), are totally unsupervised and can work in ¢-real-time, we
compare our method with them.

Regarding the use of embeddings for change detection as we pro-
pose in this research work, it has been already applied in other do-
mains. Ceci, Corizzo, Japkowicz, Mignone, and Pio (2020) proposed an
embedding based change detection approach to predict the behavior of
smart grids. To do so, time series’ embeddings were created through
stacked auto-encoders and Euclidean distance was used with a prede-
fined threshold in order to detect if future observations were deviating
from the expected data distribution. Huang, Kong, and Huang (2014)
proposed the use of Kernel Mean Discrepancy in order to detect process
changes in the high dimensional process monitoring field. In contrast
to previously mentioned works, we propose the use of embeddings
created using Word2Vec algorithm and the cosine similarity for activity
segmentation.

3. Embedding-based real-time CPD

In this section, we describe our method, which has three variants.
We present a naive approach to perform CPD with embeddings as
baseline, and two elaborated, more complex alternatives. We do also
propose a technique to introduce expert knowledge in our particular
embedding-based CPD task.

3.1. Sensor vs. action space

User behaviors are comprised of a large collection of defining
elements, making them a complex structure. In order to properly de-
scribe it, we have defined a series of concepts on the basis of those
proposed in Chaaraoui, Climent-Pérez, and Flérez-Revuelta (2012): ac-
tions, activities and behaviors. Actions describe the simplest conscious
movements, while behaviors describe the most complex conduct. To be
able to work with a more flexible representation of the information in
the intelligent environments, we map the raw sensor data to actions like
proposed in Chen et al. (2008). Other authors have proved that actions
area suitable approach to model behaviors (Schank, 1983). The advan-
tage of working on the action-space is that different sensor types may
detect the same action type, simplifying and reducing the hypothesis
space. This is even more important when using semantic embeddings
to represent these actions in the model, as the reduced number of
actions produces more significant embedding representations, as seen
in Almeida and Azkune (2018).

3.2. Proposed method

First, our method requires to generate the actions embeddings of-
fline. This step only has to be done once and does not require labeled
data. As defined in our previous work (Almeida & Azkune, 2018), given
a sequence of actions S, = {ay. ..., a;, ..., q,; } where [, is the sequence
length and a; € R% indicates the action vector of the ith action in
the sequence, we let Context(a;) = [a;_,,...,a;_1, 4,41 -..,a;;,] be the
context of g;, where 2n is the length of the context window. Being
p(a;|Context(a;)) the probability of the ith action in the sequence for
action a;, the target of the model used to create the embeddings is to
optimize the log maximum likelihood estimation (logMLE):

L (MLE)=Y logp(a;|Context(a;)) €}

a, €S

Expert Systems With Applications 185 (2021) 115641

Table 1
Cosine similarity scores (Formula (2)) between sample actions embeddings. See
Fig. 2.

Action Al A2 A3 A4

Al 1.00 0.86 0.34 0.27
A2 0.86 1.00 0.33 0.24
A3 0.34 0.33 1.00 0.91
A4 0.27 0.24 0.91 1.00

Second, and once the action embeddings are generated, we compute
cosine similarity scores (CS) between them to find change points in
real-time. In natural language processing, cosine similarity is used for
tasks such as phrase analogy and synonymy (Mikolov, Chen, Corrado
and Dean, 2013; Mikolov, Yih and Zweig, 2013). Inspired by this,
and as activities are formally composed by actions, our first intuition
was that calculating similarities between consecutive actions could be
useful for detecting activity transitions (change points). Concretely, we
thought that if two consecutive actions were not similar (low cosine
similarity score), it could probably mean that the user changed to
another activity. In this paper, we present and evaluate three main
alternatives built upon this intuition.

CS-CPD. The first one is a naive approach that compares the com-
puted cosine similarity between two consecutive actions to a threshold.
Formally, if the cosine similarity score CS(a;,q;,;) computed between
action g; at time ¢; and action g;,; at time ¢, is below a certain
threshold A, a change point occurs at time ¢, .

CS Ay = A @
U IANA

CCS-CPD. The second one is a more complex approach that defines
the existence of a change point or activity transition as follows. Given
an action g; at time 7;, we determine that a change point exists at #; if the
context cosine similarity score CCS(a;,n) is above a certain threshold
th, where 2n is the length of the context window.

N
1
CCSU, N) = 5= Y CS(A, Ay)+ (1= CS(A, A,)) 3)
j=1

The calculation of this score is based on the assumption that an
action that is closely similar to the following actions, but which is
clearly different from the actions that precede it, may be a transition
between activities (change point).

CCSD-CPD. The third approach employs the context cosine similar-
ity score differently. Instead of comparing it to a threshold, we search
for descending patterns in the following way. Given an action a; at
time 7;, we determine that a change point exists at ¢; if CCS(a;,n) >
CCS(a;_y,n)+d, where d is the minimum distance to consider a change
of trend and 2n is the length of the context window.

For a better understanding of the differences between the first
and second approaches, consider the example depicted in Fig. 2. In
this figure, a toy data stream composed of two consecutive activities,
Activity 1 and Activity 2, which are frequently performed by executing
Action 1 and Action 2, and Action 3 and Action 4 respectively is shown.
The semantic relationships between actions are described in Table 1
with cosine similarity. The threshold value is set to 0.7 and the context
window length is set to 2.

As can be seen for this example, the second method (CCS), which
employs the context cosine similarity score, can deal with outliers
(actions that not fit the activity in a normal situation). The first method
(CS), instead, generates false positives when it encounters an outlier, as
it does not consider the context of the action.

Likewise, we believe that the third method is less sensitive to
outliers than the second method, since context cosine similarity scores
decrease when approaching to an actual activity transition (change
point) and extremely increase when it occurs. Namely, by searching for

U. Bermejo et al.

Naive CS approach TH = 0.7

Expert Systems With Applications 185 (2021) 115641

W Cosine Sivilarty Score we wm Theeshold

| Activity 1 | Activity 2 >
‘v ' 90 ouen ! N
1 1]
; i |
: i ;
. i :
i !
CS(A1,A2) CS(A2 A1) CS(A1,A2) CS(A2, A3) CS(A3, Ad) CS(A4, A3) CS(A3, A2) CS(A2, A4)
086>=TH 0.86>=TH 086>=TH 033<TH 091>=TH 091>=TH 033<TH 024<TH
B Conlext Cosine Similanty Score == = Threshold
CCS approach TH=0.7N =2 . ’ ’
| Activity 1 Activity 2 D> -

> |

v

[
1 0.50
1
' L¥

CCS(A1, 1) CCS(A2, 1) CCS(A1,1) CCS(A2, 1) CCS(A3, 1) CCS(Ag, 1) CCS(A3, 1)

050 <=TH 050<=TH 033<=TH 018<=TH 081>TH 050<=TH 033<=TH

CCS{A2, 1)

050 <=TH

Qutlier

R

CCS(A4, 1)

0,00
069 <=TH

Fig. 2. Comparison between the naive CS approach and the CCS approach. The CS approach does not consider the context of the action, creating false positives when it encounters
an outlier. The CCS approach calculates context cosine similarity scores (Formula (3)) and does not create false positives when an unexpected action is performed. See Table 1.

these changes of trend, we think that we can deal with outliers better
than with a fixed threshold value.

Regarding the threshold value th and the minimum distance d
value, it must be said that they have to be chosen based on optimal
performance for a particular scenario (time series). This same thing
happens with the aforementioned state of the art approaches that
employ density ratio CPD algorithms to perform activity segmentation,
as they also compare the obtained scores against a fixed threshold
value (Aminikhanghahi et al., 2018). The context window length must
be fixed accordingly too.

Finally, concerning response times, the first method (CS) is
1-real-time, as it only needs one sensor event to determine the existence
of a change point. The second approach (CCS) and the third approach
(CCSD) are both (n+1)-real-time where 2n is the length of the context
window. We consider that being able to configure the context window
length is a strength, because it allows to fit the model to any application
requirements (balance between delay and accuracy) and adapt it to the
nature of the time series.

3.3. Retrofitting action embeddings

The cosine similarity score between two action embeddings is signif-
icantly influenced by how well these are distributed in the vector space.
Due to this fact, we hypothesize that the embeddings quality directly
impacts our CPD methods performance. In other words, we believe that
the embeddings must represent the actions well enough so our models
behave as expected.

To ensure so, the embeddings have to be trained with sufficient,
high quality data. Although it is possible to gather the necessary
amount of training data in most occasions, smart home time series data
is usually full of noise (outliers). These outliers can distort their gener-
ation process and consequently, they may end up not being sufficiently
representative of the different actions. To overcome this, we propose to
retrofit the trained action embeddings with knowledge-graphs.

Retrofitting is a graph-based learning technique that employs rela-
tional resources to obtain higher quality semantic embeddings (Faruqui
et al., 2014). In short, it is a post-processing step that runs belief
propagation on a knowledge graph to update embedding vectors so the
new ones are similar to the vectors of related token types and similar

to their purely distributional representations. The retrofitting software
is publicly available at its GitHub repository.'

As occurs with the Word2vec algorithm, this method was originally
thought for natural language processing. In the original paper, the
authors demonstrated that retrofitting word embeddings with semantic
lexicons can improve many NLP tasks. For instance, word similarity,
synonym selection and sentiment analysis (Faruqui et al., 2014).

In this work, we propose to use this technique to update the trained
action embedding vectors with three different knowledge graphs that
have the actions as nodes and the relations between actions as edges.

Formally, each of these graphs is an undirected graph G = (V, E)
where V is a set of unique actions (sensor events) and E is a set of
edges [x,y] such that x,y € V. An edge [x,y] is constructed if two
actions x,y share a common entity. For the first graph, we construct
edges with activities. For the second graph, we construct edges with
locations. The third graph has the combination of edges of both the
activity and location entities.

Necessarily, these graphs must be generated by experts or from
a labeled data source. Thus, the approaches that employ this post-
processing step are not unsupervised, but hybrid. We provide insights
about how the aforementioned graphs can be generated in Section 4.

4. Experiments and results

In this section, we describe the experiments we performed to vali-
date our methods. We performed three types of experiments:

» Type I - Cross-validated performance. These experiments evalu-
ate our embedding methods in three benchmark datasets. The aim
of these experiments is to estimate the behavior of our methods
in a real scenario. We employ leave-one-day-out cross-validation
and report averages and standard deviations for the chosen met-
rics. We generate the embeddings and optimize parameters only
with each split training data.

Type II - Performance comparison in 2-real-time. These exper-
iments compare our methods with three state of the art density
ratio CPD algorithms: uLSIF, RuLSIF and SEP. The aim of these
experiments is to confirm the usefulness of our methods against

L https://github.com/mfaruqui/retrofitting.

https://github.com/mfaruqui/retrofitting

U. Bermejo et al.

Table 2
Details of the datasets used for the evaluation.
House A House B House C

Age 26 28 57
Setting Apartment Apartment House
Rooms 3 2 6
Duration 28 days 14 days 19 days
Sensors 14 23 21
Activities 8 13 16

algorithms that have been proven as effective for activity seg-
mentation. We decide to evaluate them in 2-real-time, leaving
one week of data for testing and the rest for training (embed-
ding generation and parameter optimization). As all the methods
have random initialization, we perform several executions for
the different configurations and provide averages and standard
deviations for the chosen metrics.

Type III - Embeddings quality. These experiments compare our
embedding methods with and without retrofitting. The aim of
these experiments is to confirm the hypothesis made in Section 3:
‘Embeddings quality directly impacts our CPD methods perfor-
mance’. For such purpose, we retrofit embeddings with three
different knowledge graphs. We generate such graphs from two
sources of information: Expert Activity Models (EAMs) and data
labels (groundtruths). These experiments follow the same pa-
rameter optimization, embedding generation and cross-validation
strategy as Type I experiments.

Before explaining those experiments in detail, we describe the
datasets and metrics we chose for the evaluation.

4.1. Datasets

To make our results comparable and easily reproducible, we use the
publicly available Van Kasteren activity datasets of Houses A, B and
C (Van Kasteren, Englebienne, & Krose, 2011; Van Kasteren, Noulas,
Englebienne, & Krose, 2008). These datasets are well known in the
literature and have traditionally served as benchmark for different HAR
tasks. Table 2 contains a summary of the datasets.?

In House A, an individual is monitored in a three-room apartment
where 14 binary sensors were installed. Those sensors were installed in
locations such as doors, plateboards, cupboards, freezer, refrigerator or
toilet. Sensor data for 28 days was collected for a total of 2120 sensor
events and 245 activity instances. The annotated activities were: ‘Leave
House’, ‘Use Toilet’, ‘Take Shower’, ‘Go To Bed’, ‘Prepare Breakfast’,
‘Prepare Dinner’, ‘Get Drink’ and ‘None’. It is important to say that
although many authors remove the ‘None’ label (other activity or not
recognized activity), we take it into account as an activity itself. In real
scenarios this label will appear frequently, as a result of erratic behav-
ior, annotation problems or sensor errors, so we decide to maintain it to
test algorithms performance more realistically. Likewise, we must say
that during preprocessing we removed day 2008-03-16 because it has
annotation problems. In this period, no matter which, all sensor events
were annotated with the ‘Leave House’ label.

House B and C present more challenging scenarios, with a greater
number of different sensors and activities (for example, ‘Brush Teeth’,
‘Shave’ or ‘Play Piano’), but with less recorded days. However, in
House B and C, sensor event frequency is higher than in House A,
having a total of 13358 and 22 770 sensor events respectively. Another
important detail regarding House C is that we divide the ‘Use Toilet’

2 These datasets are available in our GitHub repository after preprocessing
and conversion to CSV format: https://github.com/gazkune/generic_ar/tree/
master/datasets.

Expert Systems With Applications 185 (2021) 115641

activity into ‘Use Toilet Upstairs’ and ‘Use Toilet Downstairs’, as there
are two different toilets in the house.

We think that the combination of these three datasets is a good
reference to test our methods, since people with different ages, activi-
ties with different levels of detail and different house distributions are
present. We do also think that having different sensor event frequencies
is good to test our CPD algorithms rigorously, as sensor event frequency
directly impacts the proportion between change points (activity transi-
tions) and no change points. For more information of the three houses,
please refer to Van Kasteren et al. (2011, 2008) where floorplans and
other details such as annotation methodologies are provided.

Regarding sensor-action mappings, it must be said that we decided
to apply a 1:1 mapping function, because the semantics of each sensor
event can be clearly identified and considered unique with respect to
the target activities (see Table 3).

4.2. Performance metrics

According to Aminikhanghahi and Cook (2017a), the most common
metrics used to evaluate the performance of CPD algorithms are True
Positive Rate (TPR or also known as Sensitivity), False Positive Rate
(FPR) and Geometric Mean (G-Mean). In this paper, we use these
metrics to evaluate our methods.

TPR (True Positive Rate, Sensitivity). The portion of positive
examples (change points) that were recognized correctly. This metric
indicates how effectively true state changes are detected by a CPD
algorithm.

TP
T TP+FN

FPR (False Positive Rate). The portion of negative examples (no
change points) that are recognized as change points to the total number
of negative examples. This metric indicates how many ‘false alarms’
generates a CPD algorithm.

_FP
T FP+TN

G-Mean (Geometric Mean). As a CPD algorithm often encounters
an imbalanced class distribution (understandably, change points are
less in number than no change points), it is needed to use a metric that
combines both Sensitivity and Specificity to evaluate its performance.

TP TN
X

G-Mean = VTPRXTNR = \/
TP+ FN FP+TN

To determine if a detected change point is correct, we adopt the
same strategy as in the literature (Aminikhanghahi et al., 2018; Feuz
et al.,, 2014; Liu, Yamada, Collier, & Sugiyama, 2013). We consider
that a detected change point at time 7; is correct if a true change point
occurs in the time interval [t; — 4,¢; + A]. We chose 4 = 1 for exact
CPD evaluation and A = 10 for evaluation with a small time offset (in
seconds).

TPR @

FPR)

©

4.3. Type I - Cross-validated performance

In order to evaluate the performance of the proposed approaches,
we have used leave-one-day-out cross-validation. In a similar manner
to common cross-validation approaches, this evaluation methodology
evaluates proposed approach’s performance in each of the available
days in the dataset with a model trained with all the days except the one
being evaluated. Then, we report the average and standard deviation
values for the chosen metrics in Table 4.

For parameter optimization, we perform sensitivity analysis with
different values at regular intervals with the training days of each split.
For thresholds th, we increment by 0.1 from 0.0 to 1.0 and choose the
best value for the G-Mean metric in exact CPD. For minimum distances
d, we test the following values: 0.0, 0.001, 0.01 and 0.1. Again, we
choose the best one according to the G-Mean. Finally, for windows
lengths, we test n values from 1 to 5.

https://github.com/gazkune/generic_ar/tree/master/datasets
https://github.com/gazkune/generic_ar/tree/master/datasets

U. Bermejo et al.

Table 3

Expert Systems With Applications 185 (2021) 115641

Extract of the House A dataset after preprocessing. Each sensor event has associated a timestamp and an activity label. We decided to apply a 1:1 mapping function between
sensor events and actions. When the activity label changes between two consecutive actions (ordered by timestamp), a change point (activity transition) occurs. We mark change

points with 1 and no change points with 0.

Timestamp Sensor event (ON) Action Activity Change point
09:12:53 HallBathroomDoor HallBathroomDoor UseToilet 0
09:13:55 ToiletFlush ToiletFlush UseToilet 0
09:14:01 HallBathroomDoor HallBathroomDoor UseToilet 0
09:14:06 ToiletFlush ToiletFlush UseToilet 0
09:15:03 PlatesCupboard PlatesCupboard PrepareBreakfast 1
09:15:18 GroceriesCupboard GroceriesCupboard PrepareBreakfast 0
09:15:28 Fridge Fridge PrepareBreakfast 0
09:18:05 PlatesCupboard PlatesCupboard PrepareBreakfast 0
09:57:21 HallBathroomDoor HallBathroomDoor UseToilet 1
09:59:06 ToiletFlush ToiletFlush UseToilet 0
10:00:25 HallBathroomDoor HallBathroomDoor UseToilet 0
10:00:30 HallToiletDoor HallToiletDoor UseToilet 0
10:31:18 HallToiletDoor HallToiletDoor TakeShower 1
10:31:23 HallToiletDoor HallToiletDoor TakeShower 0
10:40:42 HallToiletDoor HallToiletDoor TakeShower 0
10:40:47 HallToiletDoor HallToiletDoor TakeShower 0
10:49:25 Frontdoor Frontdoor LeaveHouse 1
17:13:24 Frontdoor Frontdoor LeaveHouse 0
Table 4

Cross-validated performance experiments. Leave-one-day-out cross-validation. Exact and 10s offset evaluation CPD. Averages and standard deviations are reported. Best results in
bold. Embeddings were generated only with each split’s training data. Optimum parameters (threshold, minimum distance, context window length) were selected according to best

G-Mean on each split’s training data (exact CPD evaluation).

Model Exact CPD 10s offset CPD
TPR FPR G-MEAN TPR FPR G-MEAN

CS 0.89 + 0.14 0.43 = 0.15 0.70 + 0.09 0.90 + 0.12 0.40 + 0.15 0.72 + 0.09
A CCS 0.72 + 0.13 0.27 + 0.07 0.72 + 0.09 0.75 + 0.11 0.24 + 0.07 0.75 + 0.07

CCSD 0.77 + 0.12 0.23 + 0.06 0.77 + 0.06 0.78 + 0.11 0.21 + 0.06 0.78 + 0.06

CS 0.57 + 0.12 0.10 + 0.06 0.71 + 0.09 0.67 + 0.09 0.09 + 0.05 0.78 + 0.05
B CCS 0.55 + 0.12 0.12 + 0.06 0.69 + 0.08 0.70 + 0.09 0.10 + 0.05 0.79 + 0.05

CCSD 0.51 + 0.15 0.08 + 0.06 0.67 + 0.12 0.61 + 0.08 0.08 + 0.05 0.75 + 0.06

CS 0.40 + 0.15 0.03 + 0.03 0.60 + 0.16 0.44 + 0.15 0.03 + 0.03 0.63 + 0.17
C CCSs 0.56 + 0.16 0.09 + 0.08 0.69 + 0.17 0.63 + 0.17 0.07 + 0.05 0.74 + 0.18

CCSD 0.42 + 0.13 0.04 + 0.03 0.62 + 0.15 0.46 + 0.13 0.04 + 0.03 0.64 + 0.16

For generating the action embeddings according to the definition
given in Section 3, we employed Mikolov, Sutskever et al. (2013)
Word2vec algorithm on its Gensim implementation® with its default
parameter values (size=50, window=1, iter=5, etc.) and the training
days data. These same default parameters were found optimum in
our previous papers to obtain high quality semantic action embed-
dings for behavior modeling (next action prediction task) in the same
datasets (Almeida & Azkune, 2018; Almeida, Azkune, & Bilbao, 2018).

4.4. Type II - Performance comparison in 2-real-time

In these experiments, we compare our embedding-based methods
that calculate cosine similarities between actions (CS, CCS, CCSD)
against state of the art density ratio algorithms (uLSIF, RuLSIF, SEP)
in the three described datasets. Those generalistic methods for change
point detection have been proven effective for activity segmentation in
2-real-time recently (Aminikhanghahi et al., 2018).

Probably, the biggest limitation of these density ratio CPD methods
is their computational cost (Aminikhanghahi et al., 2018). Due to this
fact, we have divided the experiments of this section in two steps. First
we compare the computation times of our approach (CS, CCS, CCSD),
cosine similarity, with the one used by the current state of the art
methods (uLSIF, RuLSIF, SEP), density ratio. We do this by increasing
the number of features of two random vectors. We report the results for
both approaches in Table 5 and Fig. 3. Please note that the results are
grouped depending on the distance used to compare the vectors, as it

3 https://radimrehurek.com/gensim/models/word2vec.html.

is the main component of the algorithms regarding the computational
costs. To compute density ratios, we employed the open-source library
densratio* for the Python programming language. To calculate cosine
similarity values between vectors, we employed SciPy library’s cosine
distance function.®

The second step is the performance evaluation. As the results of the
previous step show, we cannot afford doing leave-one-day-out cross-
validation for density ratio algorithms (due to the time constraints).
Therefore, we split each dataset in train and test of consecutive days,
instead of adopting a cross-validation strategy. We leave the last week
for testing and the rest of the days for training (parameter optimiza-
tion and embedding generation). The optimum parameters we found
for the three houses are shown in Table 6. We employed the same
sensitivity analysis strategy as Type I experiments for such parameter
optimization.

To extract features and model density ratios between windows, we
followed the same feature engineering methodology as Aminikhang-
hahi et al. (2018). We slid a window that looks at k = 30 actions
and extracts a feature vector with time information, action information
and general window characteristics. We tried to employ other, simpler
feature extraction approaches (only action event counts, action event
counts plus window features, action event counts plus time features)
without improving the results obtained by the referenced approach.
We did also test different values of k (5, 10, 15, 20, 25). This feature

4 https://github.com/hoxo-m/densratio_py.
5 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.
distance.cosine.html.

https://radimrehurek.com/gensim/models/word2vec.html
https://github.com/hoxo-m/densratio_py
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cosine.html

U. Bermejo et al.

Expert Systems With Applications 185 (2021) 115641

—— Cosine Similarity
30 ~ Density Ratio

25 A

20 ~

15

Time (Seconds)

10 A

100 200

o

300 400 500

Number of features

Fig. 3. Evolution of the required computation time as we increase the number of features of two vectors for Cosine Similarity (CS, CCS, CCSD) and Density Ratio (uLSIF, RuLSIF,

SEP).

Table 5

Time required in seconds for the computation of Cosine Similarity (CS, CCS, CCSD)
and Density Ratio (uLSIF, RuLSIF, SEP) between two vectors as the number of features
increases.

N2 features Cosine similarity (s) Density ratio (s)

15 0.000086 0.294254
30 0.000061 1.092677
50 0.000050 2.194505
75 0.000048 4.274077
100 0.000045 7.142882
250 0.000047 16.358610
500 0.000052 32.000003
Table 6

Performance comparison in 2-real-time experiments. Parameter optimization with
training sets. th: threshold, n: context window length, d: minimum change of trend
distance. Please, consider that, as explained in Section 3, our CCS and CCSD embeddings
methods are (n + 1)-real-time and density ratio algorithms are n-real-time. Thus, we
are comparing the methods in 2-real-time, except the CS method which is always
1-real-time.

Model House A House B House C

th n d th n d th n d
uLSIF 0.1 2 - 0.1 2 - 0.1 2 -
RuLSIF 0.3 2 - 0.2 2 - 0.2 2 -
SEP 0.3 2 - 0.1 2 - 0.1 2 -
Ccs 0.5 - - 0.9 - - 0.9 - -
CCS 0.5 1 - 0.5 1 - 0.5 1 -
CCSD - 1 0.1 - 1 0.0 - 1 0.0

extraction was performed offline to accelerate the experimentation
process. In a real scenario, it can be performed in real-time.

Having said so, it is important to remark that both the density ratio
methods and our methods have random initialization. Because of that,
we executed each method 5 times with the optimum parameters® of
Table 6 in the three test sets (House A, B and C) and calculated averages
and standard deviations. We provide the results in Table 7.

6 For the sensitivity analysis in the different training sets, we also performed
5 executions.

4.5. Type III - Embeddings quality

For these experiments, we follow the preprocessing and cross-
validation methodologies described in the previous Type I experiments
(Cross-validated performance). However, in this case, we compare our
CPD embedding approaches with and without retrofitting to analyze if
the embeddings quality has a direct impact in their performance. For
making a fair comparison and getting rid off the randomness factor on
the embeddings generation, we employed the same embeddings models
generated in Type [experiments.

To retrofit the embeddings, we used 3 different knowledge graphs.
For generating such graphs, we employed two different sources of
information: Expert Activity Models (EAMs) and the labeled data of the
three datasets’ training sets. In our previous work (Azkune & Almeida,
2018), we defined an EAM as a standardized computational model of
activities generated by experts that contains the following knowledge:

Actions. The minimum number of actions that are usually exe-
cuted to perform a given activity. Each action can be associated
to one or more sensor events. Each sensor is placed in a location
(e.g. Kitchen, Bathroom) and classified with a type (e.g. Cooking,
Hygiene).

Duration. A rough estimation of the typical duration of a given
activity.

Starting time. Approximate time ranges when a given activity is
usually started (multiple time ranges are supported).

Locations. Semantic tags for the places where a given activity is
usually performed. For example, Bathroom or Bedroom (multiple
locations for an activity are supported).

With this information, we are able to construct activity and location
graphs, as we can determine what actions share locations and activities
to generate edges. Likewise, we think that generating edges only from
labeled data is a perfect alternative when expert knowledge is not
available. An edge [x,y] can be constructed if two actions share a
common label / at any time in a common labeled data source. For
example, considering Table 3, where an extract of House A dataset is
shown, an edge between ‘Groceries Cupboard’ action and ‘Fridge’ action
could be constructed as they share the ‘Prepare Breakfast’ activity (the

U. Bermejo et al.

Table 7

Expert Systems With Applications 185 (2021) 115641

Performance comparison in 2-real-time experiments. Test set (House A, B and C). Exact and 10s offset evaluation CPD. Averages and standard deviations for 5 executions. Best
results in bold. Optimum parameters were selected empirically with each house training set (see Table 6).

Model Exact CPD 10s offset CPD
TPR FPR G-MEAN TPR FPR G-MEAN
uLSIF 0.54 + 0.04 0.32 + 0.03 0.61 + 0.01 0.62 + 0.04 0.26 + 0.03 0.68 + 0.01
RuLSIF 0.61 + 0.02 0.40 + 0.01 0.60 + 0.01 0.69 + 0.01 0.34 + 0.01 0.68 + 0.01
A SEP 0.57 + 0.05 0.33 + 0.03 0.61 + 0.01 0.64 + 0.04 0.28 + 0.02 0.68 + 0.01
CS 0.85 + 0.12 0.44 + 0.13 0.68 + 0.08 0.86 + 0.11 0.42 + 0.13 0.70 + 0.08
CCs 0.71 + 0.10 0.27 + 0.03 0.72 + 0.06 0.73 = 0.09 0.25 = 0.03 0.74 + 0.06
CCSD 0.82 + 0.03 0.27 + 0.01 0.78 + 0.02 0.84 + 0.03 0.24 + 0.01 0.80 + 0.02
uLSIF 0.18 + 0.03 0.05 + 0.01 0.41 + 0.03 0.26 + 0.04 0.04 + 0.01 0.50 + 0.04
RuLSIF 0.34 + 0.05 0.12 + 0.01 0.55 + 0.04 0.48 + 0.05 0.12 + 0.01 0.65 + 0.03
B SEP 0.42 + 0.02 0.15 + 0.00 0.60 + 0.02 0.56 + 0.02 0.14 + 0.00 0.69 + 0.01
CS 0.39 + 0.04 0.09 + 0.00 0.59 + 0.03 0.54 + 0.05 0.08 + 0.00 0.70 + 0.03
CCS 0.39 + 0.01 0.06 + 0.00 0.61 + 0.01 0.49 + 0.00 0.05 + 0.00 0.68 + 0.00
CCSD 0.41 + 0.02 0.08 + 0.00 0.62 + 0.01 0.55 + 0.01 0.07 + 0.00 0.71 + 0.01
uLSIF 0.21 + 0.01 0.01 + 0.00 0.46 + 0.02 0.23 + 0.02 0.01 + 0.00 0.48 + 0.02
RuLSIF 0.39 + 0.02 0.05 + 0.00 0.61 + 0.01 0.43 + 0.03 0.05 + 0.00 0.64 + 0.02
C SEP 0.45 + 0.01 0.06 + 0.00 0.65 + 0.01 0.49 + 0.01 0.06 + 0.00 0.68 + 0.01
CS 0.30 + 0.01 0.02 + 0.00 0.54 + 0.01 0.33 + 0.01 0.02 + 0.00 0.57 + 0.01
CCS 0.37 + 0.01 0.02 + 0.00 0.60 + 0.01 0.41 + 0.01 0.02 + 0.00 0.63 + 0.01
CCSD 0.41 + 0.01 0.03 + 0.00 0.63 + 0.00 0.44 + 0.01 0.03 + 0.00 0.66 + 0.01

label) at time 9:15:18 and time 9:15:28 respectively. The same logic
applies to locations or any kind of entity in form of label.

It is important to remark that, when constructing activity graphs
from labeled data, we do not consider the ‘None’ activity, as it could
affect negatively to the results, modeling relations between actions that
do not correspond with reality or any expert knowledge. However,
remember that this ‘None’ label (other activity or not recognized ac-
tivity) is considered in the CPD task evaluation. We made the same
decision regarding ‘Setting Up Sensors’ and ‘Install Sensor’ activities
(only performed in the first two days of House B), as they do not give
any insight about relations between actions.

We show the results of retrofitting embeddings with different knowl-
edge graphs in Table 8. Similarly, to illustrate how retrofitting can
improve actions embeddings and provide more significant cosine simi-
larity scores, we built Table 9.

5. Discussion
We discuss the results for each type of experiment separately.
5.1. Type I - Cross-validated performance

First of all, we will start analyzing the results from G-Mean metric’s
perspective. In House A, we can observe that the CCSD method achieves
the best results in both exact and 10 offset evaluations, increasing
in 5 and 3 points respectively the performance of CCS, and 7 and 6
points compared to CS. As it can be clearly seen analyzing these results,
CCSD outperforms by a wide margin the other two proposed methods.
However, this varies in the other two scenarios where CS and CCS gain
importance.

With regard to House B, CS and CCS have an equiparable perfor-
mance, being the first one the best approach in the exact evaluation
(2 points better than CCS and 4 compared to CCSD) and CCS the best
performing in the 10s offset scenario (1 point better than CS and 4
compared to CCSD).

In House C, the best performing approach is CCS by a wide margin
with respect to CS and CCSD for both exact and 10s offset evaluations,
achieving 9 and 7 points differences in the first one and 11 and 10 in
the second one.

Therefore, after analyzing these results we can conclude that using
the actions’s context (CCS, CCSD) is useful in the three scenarios (House
A, B and C). However, CCS and CCSD’s performance varies depending
on the testing scenario: House A for CCSD, and Houses B and C for CCS.

About G-Mean’s standards deviations, it is important to remark
that the three houses have relatively high values, particularly House
C which achieves values up to 18 points. This means that there is a
significant difference in the performance of the models depending on
the day that it is being evaluated.

Regarding the TPR and FPR metrics, all methods seem to find
a balance between detecting change points and not generating false
alarms. This makes sense since we optimized parameters looking at
the G-Mean metric. Nevertheless, it is remarkable that in House A
higher TPRs are achieved in comparison to the other two houses. We
believe that those differences are caused due to the complexity of each
environment. House B and C are clearly more challenging scenarios
than House A. They have higher number of activities, more sensors
and less training data, what makes more demanding to detect activity
transitions in real-time.

5.2. Type II - Performance comparison in 2-real-time

On the one hand, from a quantitative perspective, the results ob-
tained in these experiments show that our embedding-based CPD meth-
ods outperform the latest density ratio algorithms in two of the three
chosen scenarios. We start analyzing the results for the G-Mean metric,
which is the most important one, as it provides information about the
algorithm ability to find change points (activity transitions) without
generating false alarms.

In House A, only with the CS naive approach, we are able to improve
SEP’s G-Mean (best density ratio algorithm) by 7 points for exact CPD.
With the rest of the two approaches, CCS and CCSD, we are able to
improve it by 11 and 17 points respectively. With a t-test that outputs
(p = 0.0074) for CCS < SEP and (p = 0.0000) for CCSD < SEP, we
confirm that their differences are statistically significant at the (p<0.05)
level. For the 10s offset evaluation experiments, we also improve the
likelihood algorithms G-Mean, but with smaller differences.

In House B, we improve SEP’s G-Mean by 2 points (p = 0.0495)
with the CCSD approach. We believe that the gap between House A
and House B’s G-Mean is because House B is a more challenging sce-
nario and has less training data, what clearly impacts the embeddings
generation and the parameter optimization. House B also presents some
annotation problems, derived from the annotation technique that was
used, a personal diary (Van Kasteren et al., 2011). We extract the same
conclusions for 10s offset evaluation.

With respect to House C, we are not able to improve SEP’s G-Mean.
It outperforms CCSD by 2 points (p = 0.0000). However, it is important

U. Bermejo et al.

Table 8

Expert Systems With Applications 185 (2021) 115641

Embeddings quality experiments. Leave-one-day-out cross-validation. Exact evaluation CPD. Performance average changes with retrofitting for the G-Mean metric. Best improvements
in bold. We use three types of graphs to retrofit embeddings. ACT: Activity graph, LOC: Location graph, ACT-LOC: Activity and Location graph. Graphs are generated from two
sources of information: labeled data (from training sets) and Expert Activity Models (EAMs). Embeddings were generated only with each split’s training data (same models
of Table 4). Optimum parameters (threshold, minimum distance, context window length) were selected according to best G-Mean on each split’s training data (exact CPD

evaluation).
Model Labeled data (training set) Expert activity models
ACT LOC ACT-LOC ACT LOC ACT-LOC
CcS 0.57 —13% 0.81 +11% 0.63 -7% 0.81 +11% 0.79 +9% 0.79 +9%
A CCS 0.77 +5% 0.79 +7% 0.72 +0% 0.80 +8% 0.80 +8% 0.80 +8%
CCSD 0.77 +0% 0.82 +5% 0.75 —2% 0.82 +5% 0.82 +5% 0.82 +5%
CcS 0.30 —41% 0.49 —22% 0.45 —26% 0.61 —10% 0.51 —20% 0.51 —20%
B CCS 0.70 +1% 0.69 +0% 0.69 +0% 0.69 +0% 0.70 +1% 0.70 +1%
CCSD 0.67 +0% 0.66 —1% 0.64 —3% 0.67 +0% 0.64 —3% 0.64 —3%
(& 0.33 -27% 0.60 +0% 0.36 —24% 0.39 -21% 0.57 —3% 0.38 —22%
C CCS 0.69 +0% 0.75 +6% 0.69 +0% 0.68 —1% 0.74 +5% 0.68 —1%
CCSD 0.62 +0% 0.62 +0% 0.62 +0% 0.61 —-1% 0.62 +0% 0.61 -1%
Table 9 Last but not least, it must be said that our method is fast and

Cosine similarity scores between related actions from House A before and after
retrofitting with an activity graph. HBD: HallBathroomDoor, TF: ToiletFlush, HTD:
HallToiletDoor. The higher the cosine similarity scores, the better. Our methods rely on
high cosine similarity scores between related actions to function properly. In this case,
those actions are related because they share the activities ‘TakeShower’ and ‘UseToilet’
according to our EAMs and the ground truth labels of the dataset.

Action HBD TF HTD

Before After Before After Before After
HBD 1.00 1.00 0.50 0.93 0.53 0.87
TF 0.50 0.93 1.00 1.00 0.45 0.82
HTD 0.53 0.87 0.45 0.82 1.00 1.00

to say that we still improve the other two likelihood algorithms per-
formance: RuLSIF and uLSIF. The good results of SEP in comparison to
the other likelihood algorithms seem logical to us, since SEP has been
demonstrated to be the most efficient CPD algorithm for other smart
home time series datasets (Aminikhanghahi et al., 2018). Likewise, we
think that as happens with House B, the differences with House A’s
performance are due to the complexity of the scenario and the lack of
high-quality, big enough training sets to create the embeddings.

Analyzing standard deviations, we see that the embedding-based
methods’ stability is comparable to density ratio methods. The standard
deviations range from 1 to 5 points. The only configurations that
surpass this range are the naive CS approach (8) and the CCS approach
(6) in House A.

In respect of the embedding methods and continuing the analysis
of the G-Mean, the results suggest again that considering the action’s
context (CCS, CCSD) is useful to determine the existence of an activity
transition (change point), in contrast of the naive approach (CS), which
only considers the next action. The results also confirm our intuition
that the CCSD approach, which searches for changes of trend between
consecutive context similarity scores, can perform better than the CCS
approach, which compares the context similarity scores to a threshold.

On the other hand, with respect to the qualitative differences be-
tween methods, it is particularly interesting that the embedding-based
methods outperform the density ratio algorithms without feature en-
gineering. In other words, we consider promising the possibility of
finding change points by capturing the semantic meaning of actions
(sensor events) with unsupervised embeddings models and without the
need of hand-crafted features, which are difficult to design and often a
potential source of problems as they are usually thought for a concrete
environment (not generalizable).

In relation to this last insight, we also consider positive the great
performance of embeddings models as they could enable transfer learn-
ing (pre-trained embeddings models, finetuning) for this particular
task and serve as inspiration to solve many challenges on the field
regarding that concept, which is a well-known open question in the
literature (Feng & Duarte, 2019; Ma et al., 2020).

10

efficient in comparison to density ratio algorithms. Estimating den-
sity ratios in real-time is known to be computationally expensive
(Aminikhanghahi et al., 2018) compared to the computation of cosine
similarities (see Table 5, Fig. 3). As it can be seen in Fig. 3, while cosine
similarity computation times do not suffer a noticeable variation as
the number of features increases, the computation time of density ratio
increases linearly as we add new features, needing 2 s for its calculation
with only 50 features (the dimensionality of our embeddings). This
could be a clear advantage to consider when deploying models in edge
devices with scarce computational resources (Gémez-Carmona, Casado-
Mansilla, Kraemer, Lopez-de Ipifia, & Garcia-Zubia, 2020) or that use
rechargeable batteries (De La Concepcion, Morillo, Gonzalez-Abril, &
Ramirez, 2014).

5.3. Type III - Embeddings quality

The results of these experiments confirm that retrofitting embed-
dings can be useful to improve their meaning and find change points
more precisely. In most cases, retrofitted embeddings improve the
G-Mean of all our methods significantly.

Nevertheless, in some occasions, and mainly for the naive CS ap-
proach, performance drastically worsens. We think that this perfor-
mance degradation has to do with the optimal threshold values going
above 0.9 when embeddings are adjusted with graphs (consider that 0.9
is the last interval we test). In relation to this and looking at Table 9,
we see that cosine similarity scores between actions increase when
performing retrofitting, so we hypothesize that optimum thresholds
must be increasing too. Thus, it is normal for the CS naive approach,
the one more sensible to the threshold, to be so negatively affected.

Regarding CCS method’s performance, it is noteworthy to mention
that is always improved at least by one point with the proposed graphs
for retrofitting. In House C, the CCS method has a very significant
improvement using retrofitted embeddings with both labeled data and
EAMs location graphs. Introducing location information into the action
embeddings seems useful for CCS in this scenario.

Now, we focus the discussion on the CCSD method. In House A,
retrofitted embeddings improve G-Mean up to 5 points with loca-
tion graphs generated from labeled data and all the graphs generated
from EAMs. On the contrary, there is no improvement on CCSD’s
performance using this type of graphs in Houses B and C.

We believe that the performance differences between graphs are
caused by the quality of the datasets annotations and the quality of
the EAMs in each house. Namely, the quality of information sources is
critical to adjust the embeddings effectively. For example, House B, as
mentioned before, has annotation problems, what makes logical not to
obtain significant improvements with graphs generated from its labeled
data. Likewise, the best EAMs are the ones of House A. It is the simpler
scenario and it is easier to model its expert knowledge precisely. So,

U. Bermejo et al.

again, it is logical for us to obtain less improvements in Houses B and
C, the most complex scenarios, with graphs generated from their EAMs.

In summary, we confirm that embeddings quality does affect to our
CPD methods and that retrofitting could be a good technique to boost
applications where abundant/excellent expert knowledge is available.

6. Conclusions and future work

From this research, we can conclude that our novel embedding-
based approach is useful for unsupervised real-time CPD in smart
home time series data. Moreover, as this method can be used in any
situation where the time series is discretizable and does not require
domain-specific feature extraction, we would like to explore its effec-
tiveness in other fields as future work. In addition, after comparing its
variants against three state of the art algorithms in three benchmark
datasets, we observe that this method can segment sensor data more
accurately than its competitors. In this sense, we believe that this seg-
mentation technique can be used to boost activity recognition models
even more, generating better, error-free segments and consequently, al-
lowing those models to extract more representative features to classify
activities in real-time.

We also think that, as computing cosine similarities is affordable in
terms of computational cost, this method can enable many applications
where computational cost is critical. Likewise, we think that the sen-
sor/action representation with embeddings is useful to perform direct
transfer learning between different environments, what other models
cannot do easily. In future work, we plan to empirically explore these
beliefs with cross-environment performance experiments.

Regarding possible improvements, we are aware that the hyperpa-
rameter selection (threshold, minimum distance, window length) has a
great impact on the models performance. The optimal values for these
hyperparameter are dataset-specific, and as explained in the previous
section, are fine-tuned using the training data. Currently this is a user-
guided process, which could be automatized for better results. We
conclude that it would be interesting to use other methods like gradient
descent to find its optimum values, instead of employing constant
increments. This same conclusion was withdrawn by Aminikhanghahi
et al. (2018) for density ratio CPD algorithms. Additionally, as we have
shown that retrofitting embeddings to knowledge-graphs can improve
the CPD results, we would like to explore other hybrid approaches
to tweak the embeddings. Concretely, we plan to use NLP word-level
embeddings to represent the actions as in our previous work (Azkune,
Almeida, & Agirre, 2020). Finally, we would like to study the possi-
bilities of deploying the algorithm in the edge (Diaz-de Arcaya, Mifi6n,
Torre-Bastida, Del Ser, & Almeida, 2020), and studying its performance
in platforms with constrained resources that could be installed in
intelligent environments.

CRediT authorship contribution statement

Unai Bermejo: Conceptualization, Methodology, Software, Valida-
tion, Formal analysis, Investigation, Data curation, Writing - origi-
nal draft, Visualization. Aitor Almeida: Conceptualization, Methodol-
ogy, Validation, Formal analysis, Writing - review & editing, Super-
vision, Project administration. Aritz Bilbao-Jayo: Conceptualization,
Validation, Writing - review & editing, Visualization. Gorka Azkune:
Validation, Data curation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

11

Expert Systems With Applications 185 (2021) 115641

Acknowledgments

This work was carried out with the financial support of FuturAAL-
Ego (RTI2018-101045-A-C22) granted by Spanish Ministry of Science,
Innovation and Universities.

References

Almeida, A., & Azkune, G. (2018). Predicting human behaviour with recurrent neural
networks. Applied Sciences, 8(2), 305.

Almeida, A., Azkune, G., & Bilbao, A. (2018). Embedding-level attention and multi-scale
convolutional neural networks for behaviour modelling. In 2018 IEEE smartworld,
ubiquitous intelligence & computing, advanced & trusted computing, scalable comput-
ing & communications, cloud & big data computing, internet of people and smart
city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 439-445).
IEEE.

Aminikhanghabhi, S., & Cook, D. J. (2017a). A survey of methods for time series change
point detection. Knowledge and Information Systems, 51(2), 339-367.

Aminikhanghahi, S., & Cook, D. J. (2017b). Using change point detection to automate
daily activity segmentation. In 2017 IEEE international conference on pervasive
computing and communications workshops (PerCom workshops) (pp. 262-267). IEEE.

Aminikhanghahi, S., & Cook, D. J. (2019). Enhancing activity recognition using
CPD-based activity segmentation. Pervasive and Mobile Computing, 53, 75-89.

Aminikhanghahi, S., Wang, T., & Cook, D. J. (2018). Real-time change point detection
with application to smart home time series data. IEEE Transactions on Knowledge
and Data Engineering, 31(5), 1010-1023.

Diaz-de Arcaya, J., Minén, R., Torre-Bastida, A. L., Del Ser, J., & Almeida, A. (2020).
PADL: A modeling and deployment language for advanced analytical services.
Sensors, 20(23), 6712.

Azkune, G., & Almeida, A. (2018). A scalable hybrid activity recognition approach for
intelligent environments. IEEE Access, 6, 41745-41759.

Azkune, G., Almeida, A., & Agirre, E. (2020). Cross-environment activity recognition
using word embeddings for sensor and activity representation. Neurocomputing, 418,
280-290.

Bennett, J., Rokas, O., & Chen, L. (2017). Healthcare in the smart home: A study of
past, present and future. Sustainability, 9(5), 840.

Ceci, M., Corizzo, R., Japkowicz, N., Mignone, P., & Pio, G. (2020). ECHAD: Embedding-
based change detection from multivariate time series in smart grids. IEEE Access,
8, 156053-156066. http://dx.doi.org/10.1109/ACCESS.2020.3019095.

Chaaraoui, A. A., Climent-Pérez, P., & Florez-Revuelta, F. (2012). A review on vision
techniques applied to human behaviour analysis for ambient-assisted living. Expert
Systems with Applications, 39(12), 10873-10888.

Chen, L., Nugent, C. D., Mulvenna, M., Finlay, D., Hong, X., & Poland, M. (2008).
A logical framework for behaviour reasoning and assistance in a smart home.
International Journal of Assistive Robotics and Mechatronics, 9(4), 20-34.

Chernbumroong, S., Cang, S., Atkins, A., & Yu, H. (2013). Elderly activities recognition
and classification for applications in assisted living. Expert Systems with Applications,
40(5), 1662-1674.

Cleland, I., Han, M., Nugent, C., Lee, H., McClean, S., Zhang, S., et al. (2014).
Evaluation of prompted annotation of activity data recorded from a smart phone.
Sensors, 14(9), 15861-15879.

Cook, D. J., & Krishnan, N. C. (2015). Activity learning: Discovering, recognizing, and
predicting human behavior from sensor data. John Wiley & Sons.

Cook, D. J., Krishnan, N. C., & Rashidi, P. (2013). Activity discovery and activity
recognition: A new partnership. IEEE Transactions on Cybernetics, 43(3), 820-828.

De La Concepcién, M. A., Morillo, L. S., Gonzalez-Abril, L., & Ramirez, J. O. (2014).
Discrete techniques applied to low-energy mobile human activity recognition. A
new approach. Expert Systems with Applications, 41(14), 6138-6146.

Faruqui, M., Dodge, J., Jauhar, S. K., Dyer, C., Hovy, E., & Smith, N. A. (2014).
Retrofitting word vectors to semantic lexicons. In Proceedings of NAACL.

Feng, S., & Duarte, M. F. (2019). Few-shot learning-based human activity recognition.
Expert Systems with Applications, 138, Article 112782.

Feuz, K. D., Cook, D. J., Rosasco, C., Robertson, K., & Schmitter-Edgecombe, M. (2014).
Automated detection of activity transitions for prompting. IEEE Transactions on
Human-Machine Systems, 45(5), 575-585.

Goémez-Carmona, O., Casado-Mansilla, D., Kraemer, F. A., Lopez-de Ipifia, D., & Garcia-
Zubia, J. (2020). Exploring the computational cost of machine learning at the
edge for human-centric Internet of Things. Future Generation Computer Systems, 112,
670-683.

Han, M., Lee, Y.-K., Lee, S., et al. (2012). Comprehensive context recognizer based on
multimodal sensors in a smartphone. Sensors, 12(9), 12588-12605.

Hido, S., 1dé, T., Kashima, H., Kubo, H., & Matsuzawa, H. (2008). Unsupervised change
analysis using supervised learning. In Pacific-Asia conference on knowledge discovery
and data mining (pp. 148-159). Springer.

Huang, S., Kong, Z., & Huang, W. (2014). High-dimensional process monitoring and
change point detection using embedding distributions in reproducing kernel Hilbert
space. IIE Transactions, 46(10), 999-1016.

http://refhub.elsevier.com/S0957-4174(21)01034-4/sb1
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb1
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb1
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb2
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb3
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb3
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb3
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb4
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb4
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb4
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb4
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb4
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb5
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb6
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb7
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb7
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb7
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb7
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb7
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb8
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb8
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb8
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb9
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb9
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb9
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb9
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb9
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb10
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb10
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb10
http://dx.doi.org/10.1109/ACCESS.2020.3019095
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb12
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb13
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb14
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb14
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb14
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb14
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb14
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb15
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb16
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb16
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb16
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb17
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb18
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb20
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb21
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb21
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb21
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb21
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb21
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb22
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb23
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb23
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb23
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb24
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb25
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb25
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb25
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb25
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb25

U. Bermejo et al.

Kwon, Y., Kang, K., & Bae, C. (2014). Unsupervised learning for human activity
recognition using smartphone sensors. Expert Systems with Applications, 41(14),
6067-6074.

Laguna, J. O., Olaya, A. G., & Borrajo, D. (2011). A dynamic sliding window approach
for activity recognition. In International conference on user modeling, adaptation, and
personalization (pp. 219-230). Springer.

Liu, S., Yamada, M., Collier, N., & Sugiyama, M. (2013). Change-point detection in
time-series data by relative density-ratio estimation. Neural Networks, 43, 72-83.

Ma, Y., Campbell, A. T., Cook, D. J., Lach, J., Patel, S. N., Ploetz, T., et al. (2020).
Transfer learning for activity recognition in mobile health. arxiv preprint arXiv:
2007.06062.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arxiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems (pp. 3111-3119).

Mikolov, T., Yih, W.-t., & Zweig, G. (2013). Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american
chapter of the association for computational linguistics: Human language technologies
(pp. 746-751).

Okeyo, G., Chen, L., Wang, H., & Sterritt, R. (2014). Dynamic sensor data segmentation
for real-time knowledge-driven activity recognition. Pervasive and Mobile Computing,
10, 155-172.

Ranasinghe, S., Al Machot, F., & Mayr, H. C. (2016). A review on applications of activity
recognition systems with regard to performance and evaluation. International
Journal of Distributed Sensor Networks, 12(8), Article 1550147716665520.

Rashidi, P., & Cook, D. J. (2013). COM: A method for mining and monitoring human
activity patterns in home-based health monitoring systems. ACM Transactions on
Intelligent Systems and Technology (TIST), 4(4), 1-20.

12

Expert Systems With Applications 185 (2021) 115641

Schank, R. C. (1983). Dynamic memory: A theory of reminding and learning in computers
and people. cambridge university press.

Sprint, G., Cook, D. J., Fritz, R., & Schmitter-Edgecombe, M. (2016). Using smart homes
to detect and analyze health events. Computer, 49(11), 29-37.

Synnott, J., Chen, L., Nugent, C. D., & Moore, G. (2014). The creation of simulated
activity datasets using a graphical intelligent environment simulation tool. In 2014
36th annual international conference of the IEEE engineering in medicine and biology
society (pp. 4143-4146). IEEE.

Szewcyzk, S., Dwan, K., Minor, B., Swedlove, B., & Cook, D. (2009). Annotating smart
environment sensor data for activity learning. Technology and Health Care, 17(3),
161-169.

Triboan, D., Chen, L., Chen, F., & Wang, Z. (2017). Semantic segmentation of real-
time sensor data stream for complex activity recognition. Personal and Ubiquitous
Computing, 21(3), 411-425.

Triboan, D., Chen, L., Chen, F., & Wang, Z. (2019). A semantics-based approach
to sensor data segmentation in real-time activity recognition. Future Generation
Computer Systems, 93, 224-236.

Van Kasteren, T. L., Englebienne, G., & Krose, B. J. (2011). Human activity recognition
from wireless sensor network data: Benchmark and software. In Activity recognition
in pervasive intelligent environments (pp. 165-186). Springer.

Van Kasteren, T., Noulas, A., Englebienne, G., & Krose, B. (2008). Accurate activity
recognition in a home setting. In Proceedings of the 10th international conference on
ubiquitous computing (pp. 1-9).

Weinland, D., Ronfard, R., & Boyer, E. (2011). A survey of vision-based methods for
action representation, segmentation and recognition. Computer Vision and Image
Understanding, 115(2), 224-241.

Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. Acm Computing
Surveys (CSUR), 38(4), 13-es.

http://refhub.elsevier.com/S0957-4174(21)01034-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb26
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb27
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb27
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb27
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb27
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb27
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb28
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb28
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb28
http://arxiv.org/abs/2007.06062
http://arxiv.org/abs/2007.06062
http://arxiv.org/abs/2007.06062
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb31
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb31
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb31
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb31
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb31
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb33
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb34
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb35
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb36
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb36
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb36
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb37
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb37
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb37
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb38
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb39
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb40
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb40
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb40
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb40
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb40
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb41
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb42
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb44
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb45
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb45
http://refhub.elsevier.com/S0957-4174(21)01034-4/sb45

	Embedding-based real-time change point detection with application to activity segmentation in smart home time series data
	Introduction
	Related work
	Embedding-based real-time CPD
	Sensor vs. action space
	Proposed method
	Retrofitting action embeddings

	Experiments and results
	Datasets
	Performance metrics
	Type I - Cross-validated performance
	Type II - Performance comparison in 2-real-time
	Type III - Embeddings quality

	Discussion
	Type I - Cross-validated performance
	Type II - Performance comparison in 2-real-time
	Type III - Embeddings quality

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

