
DOCUMENTOS DE TRABAJO

BILTOKI

Facultad de Ciencias Económicas.
Avda. Lehendakari Aguirre, 83

48015 BILBAO.

D.T. 2011.08

On Downloading and Using CPLEX within COIN-OR
for Solving Linear/Integer Optimization Problems.

Gloria Pérez y M. Araceli Garı́n

Documento de Trabajo BILTOKI DT2011.08
Editado por el Departamento de Economı́a Aplicada III (Econometrı́a y Estadı́stica)
de la Universidad del Paı́s Vasco.

ISSN: 1134-8984

1

On downloading and using CPLEX within COIN-OR for solving linear/integer

 optimization problems

 Gloria Pérez1 and M. Araceli Garín2

1
 Dpto. Matemática Aplicada y Estadística e I.O. Universidad del País Vasco, Leioa (Vizcaya), Spain.

email: gloria.perez@ehu.es
2
 Dpto. Economía Aplicada III. Universidad del País Vasco, Bilbao (Vizcaya), Spain.

email: mariaaraceli.garin@ehu.es

November, 2011

 Abstract

The aim of this technical report is to present some detailed explanations in order to use the solver CPLEX within COIN-OR
environment. In particular, we describe how to download, install and use the corresponding source code and libraries under Windows
and Linux operating systems. We will use an example taken from the literature, with the experimental code and files written in C++, to
describe the whole process of editing, compiling and running the executable, to solve this optimization problem by using this software. In
the case of the Windows environment, a C++ compiler is also needed. We will use the Visual C++ 2010 Express Edition.

Keywords: CPLEX, COIN-OR, C++

1. Introduction

COIN-OR, which stands for COmputational INfrastructure for Operations Research, is a collection of open source software for
optimization, see http://www.coin-or.org. The Open Source Initiative (OSI) is a non-profit corporation with global scoped formed to
build bridges among different constituencies in the open source community. There exist several solvers with OSI interfaces in COIN-OR
environment. One of them is IBM ILOG CPLEX, see http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/. In this
case, the open access to this software will be done with an academic license. The source code in case of COIN-OR and libraries in
case of CPLEX will be compiled and linked with your own code.

In this working paper we describe how to download, install and use the corresponding solvers under Windows and Linux operating
systems. In both cases we present the installation options for 32 bits machines, although it is possible and very similar the installation in
64 bits machines. We will use an example with a principal program written in C++, for solving a small optimization problem.
Additionally to this principal program, we will compile several auxiliary functions, written as external files (also with extension .cpp)
and describe how to link this code with COIN and CPLEX libraries and with some others libraries with general and interface
applications to generate the executable for solving mixed integer optimization problems.

In order to illustrate the procedure step by step, we will use the farmer’s problem taken from Birge and Louveaux (1997). We will
describe the whole procedure under Windows and Linux-like operating systems. In Pérez and Garín (2010), these same authors present
a similar description for using COIN-OR software in the solution of linear/integer optimization problems. The reminder of the paper is
as follows: Section 2 presents an example taken from the literature, over we have written the source code. Section 3 describes the
downloading process and basic installations of CPLEX, COIN-OR and Visual C++ 2010 under Windows-like systems. Section 4
presents the details to create the Visual C++ project, in order to generate an executable (solution) with CPLEX within COIN-OR
environment and running it, to solve an optimization problem. Section 5, gives the main steps for the basic installation of CPLEX
software within COIN-OR under Linux-like systems. Section 6, describes the process to link your own code with CPLEX and COIN-
OR environment and running the executable under Linux. Appendix A summarizes the source code files written in C++, for the
example. Appendix B adds the Makefile file for compiling and linking under Linux, and Appendix C presents the output file to check
the results of farmer problem. Finally, Appendix D presents an easy interactive way to solve the optimization problems with CPLEX.
The working paper finishes with some references.

2. Illustrative case

Let us consider the farmer’s problem taken from the Section Introduction and Examples, pp. 4-15, of Birge and Louveaux (1997). The
problem reads as follows:

2

where 21, xx and 3x are the first stage variables, i.e., represent decisions on land assignment, that have to be taken now. However,

4,1L=iwiω and 2,1=jy jω , are second stage variables, which represent decisions about sales and purchases, that depend on the

yields. These decisions depend also of a scenario index ,ω with ,3,2,1=ω which corresponds to above average, average or below
average yields, respectively. Assuming that the farmer wants to maximize long-run profit, it is reasonable for him a solution that

maximizes his expected profit. If the three scenarios have an equal probability of
3

1
, the farmer’ problem reads as given above. The

optimal solution value is 108390, as you can check in the output file, resul-farmer.dat, given in the Appendix C.

At the beginning, we need to edit several files with dimensions, auxiliary functions and the principal program corresponding to the
source code in order to define the problem statement, see Appendix A for the source files. We consider the two stage stochastic problem
in compact representation,

0,

..

min

21

21

21

≥
≤+≤

≤≤

+∑
Ω∈

ω

ωω
ωω

ω

ωω
ω

ω

yx

hyWxTh

bAxb

ts

ycpxc tt

where vector x denotes the first stage variables and the vectors ωy and ωw the second stage variables.

To introduce the dimensions we must edit a file named const-farmer.h. We do not have the .mps file with the coefficients, so we are
going to introduce them by indices into the arrays of COIN-OR. The coefficients of the model are charged with the auxiliary function
named model-farmer.cpp. This information must be included in the arrays of COIN-OR. This is made by the auxiliary function param-

ωωω ,,,0,,

,6000

,6000

,6000

,16

,20

,24

,2404.2

,2403

,2406.3

,2002

,2005.2

,2003

,500

)1036210150238170(
3

1

)1036210150238170(
3

1

)1036210150238170(
3

1
260230150min

33

32

31

34333

34232

34131

23232

22222

21212

13131

12121

11111

321

433323231313

423222221212

413121211111321

jiwyx

w

w

w

xww

xww

xww

wyx

wyx

wyx

wyx

wyx

wyx

xxx

wwywyw

wwywyw

wwywywxxx

iji ∀≥
≤
≤
≤

≤+
≤+
≤+

≥−+
≥−+

≥−+
≥−+

≥−+
≥−+

≤++

++−+−−

++−+−−

++−+−−++

3

farmer.cpp. Finally, the principal program code is in file principal-farmer-cplex.cpp. In this program is also described how to solve the
model if the information is read from a mps file. After solving the linear problem, we have added the possibility of solving a mixed-
integer problem by considering for example, the first stage variables as integer. A header file includes the needed solvers of COIN-OR
and CPLEX. This is the file pm.h.

3. The downloading process and basic installations of CPLEX, COIN-OR and Visual C++ 2010 under Windows-like systems

The first step is to download the COIN-OR code. For doing it, you must click on Download/Use in the left hand side of the home page
http://www.coin-or.org. Then in the second Section titled Source Code, you must click on here to download the source code for the
latest stable release. You can observe an index for the source of a number of COIN projects. You must click on CoinAll/ to obtain the
list of last versions. In this case you will click on and select CoinAll-1.4.0zip. Alternatively, you can go directly to the home page
http://www.coin-or.org/download/source/CoinAll/CoinAll-1.4.0.zip. After saving the corresponding zip file, you must extract the code
into the subdirectory named, C:\CoinAll\.

The second step is to download the CPLEX libraries with academic license. To do it, go to the page
 http://www-01.ibm.com/software/websphere/products/optimization/academic-initiative/index.html

In the right hand side, middle page and under the epigraph Membership, you must to click on Join now, for registration.

Becoming a member of the Academic Initiative require two steps. In the first step, click on Register, and complete the required
information.

You will see the following screen. Then you must give your institutional (UPV/EHU, if case) e-mail address, and a password,
and click on Sign in button.

4

After obtaining your membership, you can access to the IBM Academic Initiative resources. You can back to the IBM Academic
Initiative home page, an click on the second option Get full-version software of the epigraph Member offerings under the Membership
epigraph.

After clicking on, you will see the following screen.

5

Select the Download from the Software Catalog option in the middle of the page. You will see the page entitled: IBM Academic
Initiative Program, where you must click on Submit button if you are agree that IBM may process you data. After submitting, you go to
the following page and in the left had side of the screen you must click on the first item Search for software.

You will see the following screen. You must type CPLEX in the box of Find by search text. Before clicking on Search, to filter your
search, select in the icon Search filter options, the Operating System Windows XP, and Language English. Moreover, in the box of Find
by part number, you can type CZJS1ML and click on the search button.

6

The selected version must be IBM ILOG CPLEX Optimization Studio Research Edition v12.2 for Windows 32 bits Multilingual. Also,
you can sign the license agreement.

Click also on I agree, and at the end of the following screen, and then, click on the Download now button.

7

The executable file is called cplex_studio122.acad.win-x86-32.exe. Select the directory to install it, with name
C:\ILOG\CPLEX_Studio_AcademicResearch122.
Clicking two times over the .exe file, it will begin the process of installation, you must select the folder of the installation,

.

IBM ILOG CPLEX is a product that needs a license key. Go back to the home page from where you have downloaded the code, and
click on ILOG support, in the paragraph Note about license keys.

You must follow step by step the process for obtaining the license key. Click on the ILOG Optimization Key Request button at Step 2.
As membership, with your ID and password, you will obtain the following screen. Click on Download now button, and you will get a
text plain file, the key file acess.ilm. Follow the guide ILOGQuickStart.pdf for its installation. To obtain this file, please click on Quick
Start guide button. Save a copy of the license key file access.ilm in the location C:\ILOG\ILM\.

8

Once you have downloaded and installed the source code and libraries of COIN-OR and IBM ILOG CPLEX, you must do the following
movement of files. Look at the file cplex.h in the following directory
C:\ILOG\CPLEX_Studio_AcademicResearch122\cplex\include\ilcplex.

Copy the file cplex.h into the directory C:\CoinAll\Osi\src\OsiCpx.

Now, go to the directory C:\CoinAll\Osi\src, and locate the following six header files: OsiSolverInterface.hpp, OsiCollections.hpp,
OsiSolverParameters.hpp, OsiCut.hpp, OsiRowCut.hpp, and OsiColCut.hpp. Copy all of them to the subdirectory
C:\CoinAll\Osi\src\OsiCpx.

Finally, you must add two environment variables in your computer. To do it, go to your Desktop, and click on the Inicio button. Then,
click on the buttons: Panel de control ->Sistema ->Opciones Avanzadas ->Variables de entorno. Under the epigraph Variables de
usuario, you must add two new variables. Click on the Nueva button add a first variable with name PATH, and value,
C:\ILOG\CPLEX_Studio_AcademicResearch122\cplex\bin\x86_win32. Then, add a second variable with name ILOG_LICENSE_FILE
and value C:\ILOG\ILM\access.ilm. After doing it, you must restart your computer. The corresponding screens under Windows XP and
Windows 7, respectively, are as follow:

9

The third piece that you need for running your source code is a C++ compiler. You can download the Visual C++ 2010 Express Edition
(30/90 days free) from the home page http://www.microsoft.com/Express/VC. Click on the Visual C++ 2010 express button in the right
hand side of the screen, select the language and click on the INSTALAR AHORA button. After downloading and save the file
vc_web.exe anywhere in your computer, you must click two times over it to execute it and start the installation procedure. When it
finishes, you will see the following screen.

Now, you must obtain a license key for using the free version of the C++ compiler. To obtain it, go to the start page of Visual C++ 2011
and select the following sequence of buttons, Start page-> Help->Register Product->Obtain a registration key online.

10

You need a Hotmail account, and a password to get the fourteen digits code, that you have to copy in the registration key window and
obtain the free use of the product (Visual C++ 2010).

Now you can access to the compiler start page, that might look like this:

4. Linking your code with CPLEX and COIN-OR and running t he executable under Windows

You must create a Visual C++ project to compile and link your code. Remember that you must establish a working directory, for
example C:\coin-projects\farmer-cplex, where your source code is.
From the Desktop, click two times on Visual C++ 2010 to open it. You must select New Project in the left hand side options menu. Then
select the buttons General->Empty Project, and you will get a screen like this:

11

You must choose a name for your project, for example “farmer-cplex”, and enter the working directory C:\coin-projects\farmer-cplex as
location where you have to write your programs .cpp and .h, and a name if you want to create a new subdirectory for the solution. Also
you can select to create the project in the current solution or to create a new solution. If you click on OK, the project farmer-cplex and
the solution farmer-cplex are created, and look likes this:

In the working directory you have your own code, the source code .cpp and header .h files shown in the Appendix A. You must click on
File and open the file principal-farmer-cplex.cpp from the Visual C++ compiler. You can also do it, by adding your own source files of
code (.cpp) and the headers (.h) as existing items. To do it, you must click on the right button over the Source Files button, and over the
Header Files button. Then, you can open the files clicking two times over its name. The screen, look likes this:

12

Also you must change the Solution Configurations in the front of the screen, from Debug to Release.

After doing it, you must click in the File button, and add as Existing seven COIN projects. You must look for the path to the directory
where is each of them. The seven paths and projects are:
C:\CoinAll\Cbc\MSVisualStudio\v9\libCbc\libCbc.vcproj
C:\CoinAll\Cgl\MSVisualStudio\v9\libCgl\libCgl.vcproj
C:\CoinAll\Clp\MSVisualStudio\v9\libClp\libClp.vcproj
C:\CoinAll\CoinUtils\MSVisualStudio\v9\libCoinUtils\libCoinUtils.vcproj
C:\CoinAll\Osi\MSVisualStudio\v9\libOsi\libOsi.vcproj
C:\CoinAll\Osi\MSVisualStudio\v9\libOsiCbc\libOsiCbc.vcproj
C:\CoinAll\Osi\MSVisualStudio\v9\libOsiClp\libOsiClp.vcproj

Then click on the file with extension .vcproj to open and add it. After doing it, the screen look likes this. Notice in the left hand menu,
where are the added projects.

13

In the same way you have to add in libOsi from the directory C:\CoinAll\Osi\src\OsiCpx and as Existing items, the files
OsiCpxSolverInterface.hpp and OsiCpxSolverInterface.cpp.

Finally, you must modify some of the properties in you project in order to compile your code with the COIN-OR source code and link
with the IBM ILOG CPLEX libraries. To do it, click on the right button beside the boldface name of the project, farmer-cplex, and
select the last item, Properties.

In the left menu, in Common Properties you must add seven new references, clicking on the Add New Reference button, and select the
seven projects: libCbc, libCgl, libClp, libCoinUtils, libOsi, libOsiCbc and libOsiClp.

14

The screen becomes as follows.

In the Debugging options, you must establish the working directory, C:\coin-projects\farmer-cplex, and click on Aplicar
button.

15

Then, select the C/C++ and General button, and write as Additional include directions the following fourteen directories, all of
them separated by semi-colons:
C:\CoinAll\Cgl\src\CglProbing; C:\CoinAll\Cgl\src\CglGomory;
C:\CoinAll\Cgl\src\CglClique; C:\CoinAll\Cgl\src\CglKnapsackCover;
C:\CoinAll\Cgl\src; C:\CoinAll\Clp\src;
C:\CoinAll\Cbc\src; C:\CoinAll\Osi\src;
C:\CoinAll\BuildTools\headers; C:\CoinAll\Osi\src\OsiCbc;
C:\CoinAll\Osi\src\OsiClp; C:\CoinAll\CoinUtils\src;
C:\CoinAll\Osi\src\OsiCpx;
C:\ILOG\CPLEX_Studio_AcademicResearch122\cplex\include\ilcplex;
These are the directories with the header files included in the header file pm.h.

In the Optimization options, set as follows and click on the Aplicar button.

In Preprocessor, select the following definitions: WIN32; NDEBUG; _CONSOLE; and _CRT_SECURE_NODEPRECATE; and click
on the Aplicar button.

16

In Code Generation, set as follows and click on the Aplicar button.

In Linker, click on General and set the following options. Then, click on Aplicar button.

17

In Input button, select Additional Dependencies and add the location
C:\ILOG\CPLEX_Studio_AcademicResearch122\cplex\lib\x86_windows_vs2008\stat_mta\cplex122.lib
for Windows 32bits.

In System, set the following options and click on the Aplicar button:

Finally, click on the Aceptar button to go to the start project screen.

18

Now you must modify some properties of your solution (executable). To do it, click on the right button over the icon beside
Solution `farmer-cplex´ (8 projects), and select the last option, Properties.

In the left screen, select Startup Project in the Common Properties, and in the right screen click on Single Startup project you
have to have selected farmer-cplex project, like in the screen.

To set the Project Dependences, select in the right hand screen farmer-cplex as Project, and click on all the projects given
below. Finally, click on the Aplicar button and then, on the Aceptar button.

Before running the solution (executable), select in the Tools window, Settings and Expert Settings.

19

Now you can compile and link your code, i.e., you can build the solution, farmer-cplex.sln. To do it, in the start screen, click on the
Build button and then, on Build Solution. If all went fine, you obtain 0 failed, and the Solution (executable) has been built. This
information appears in the bottom of the screen. The screen look likes this:

To run the solution and get the output file, go to the start screen and click on Debug, and then on Start without Debugging, in a screen
like this:

After that, you get a black screen and the output file resul-farmer.dat has been generated in your working directory.

20

5. The download process and basic installation of CPLEX within COIN-OR under Linux-like systems

Again, the first step is to download the source code of COIN-OR. In similar way as is described in Section 3, for doing it, you must click
on Download/Use in the left hand side of the home page http://www.coin-or.org. Then in the second Section tittled Source Code, you
must click on here. You can observe an index for the source of a number of COIN projects. You must click on CoinAll/ to obtain the list
of last versions. In this case you will click and select CoinAll-1.4.0.tgz. Alternatively, you can go directly to the home page for this
version, http://www.coin-or.org/download/source/CoinAll/CoinAll-1.4.0.tgz. This project will only build in Linux-like environments
using the GNU autotools. The compiler gcc v4.1 at least will be needed. After downloading the tarball you must extract the code, for
example, typing in the prompt

$ tar xzvf CoinAll-1.4.0.tgz

This sentence creates a subdirectory (by default named CoinAll-1.4.0), that you can rename as CoinAll, where is the source code. You
can also by clicking on the right button over the .tgz, extract the code into. Then, go to the directory that you just downloaded or
extracted (in our case, CoinAll) and type the following script,

$./configure COIN_SKIP_PROJECTS=`Smi Alps Bcp Bcps Blis Thirdparty SYMPHONY’

With this script, the projects between ` and ’ are not installed. They are not needed for solving linear and/or integer optimization
problems. If everything went fine, you will see at the end of the output “Main configuration of CoinAll successful”

In the directory where you ran the configure script, you must install the code. To do it, you type

$ make install

After this, you will find the executables, libraries and header files in the “bin”, “lib” and “include” subdirectories, respectively. Now you
can compile and link your source code with the COIN-OR solvers.

21

As in the case of Windows systems, if we want to use the solvers of IBM ILOG CPLEX, in a second step we must download the
CPLEX libraries with academic license. The full process has been detailed in Section 3 for Windows systems and now, we will present
the main steps in Linux environments. At the beginning, you must go to the home page
http://www-01.ibm.com/software/websphere/products/optimization/academic-initiative/index.html

In the right hand side, middle page and under the epigraph Membership, you must click on Join now, for registration. After doing it, you
must complete process to become a member of the Academic Initiative. In the first step click on Register, and complete the required
information. You must give your institutional (UPV/EHU, if case) e-mail address, and a password, and click on Sign in button. After
obtaining your membership, you can access to the IBM Academic Initiative resources. You can back to the IBM Academic Initiative
home page, and click on the second option Get full-version software of the epigraph Member offerings under the Membership epigraph.
In the following screen, select the Download from the Software Catalog option in the middle of the page. You will see the page entitled
IBM Academic Initiative Program, where you must click on the Submit button if you are agree that IBM may process your data. After
submitting, you go to the following page and in the left hand side of the screen you must click on the first item Search for software. You
must type CPLEX in the box of Find by search text. Before clicking on Search, to filter your search, type in the box of Find by part
number, CZJS3ML and then, click on the search button. The selected version must be IBM ILOG CPLEX Optimization Studio Research
Edition v12.2 for Linux x86 and x86-64 Multilingual. Click also on I agree, and at the end of the screen, click on the Download now
button. By default, the software has been downloaded in the directory named DownloadDirector. In this location, there are two files,
cplex_studio122.acad.linux-x86.bin and dlmgr.pro. You must type

$ chmod 777 cplex_studio122.acad.linux-x86.bin

to get the executable file, and then, type

$./cplex_studio122.acad.linux-x86.bin

to start the installation in the directory ILOG. When the installation is completed, the message in the screen is:
IBM ILOG CPLEX Optimization Studio Academic Research Edition 12.2 has been successfully installed to:
/home/ILOG/CPLEX_Studio_AcademicResearch122

IBM ILOG CPLEX is a product that needs a license key. To get it, go back to the home page from where you have downloaded the code
and click on ILOG support, in the paragraph Note about license keys.

You must follow step by step the process for obtaining the license key. Click on the ILOG Optimization Key Request button at Step 2.
As membership, with your ID and password, you will obtain the following screen. Click on Download now button, and you will get a
plain text file, the key file acess.ilm. Follow the guide ILOGQuickStart.pdf for its installation. To obtain this file, please click on
Quick Start guide button. Save a copy of the license key file access.ilm in the location /home/ILOG/ilm. You must create a link with the
directory /usr/ilog. To do it, type

$ ln -s /home/ILOG /usr/ilog

Now you must create the library OsiCpxSolverInterface.lo. To do it, go to the locations /CoinAll/Cbc and /CoinAll/Osi and type in both
of them,

$./configure
$ make
$ make install

Look at the directory /ILOG/CPLEX_Studio_AcademicResearch122/cplex/include/ilcplex the file cplex.h. Copy this file into the
directory /CoinAll/Osi/src/OsiCpx.

Go to the directory /CoinAll/Osi/src, and locate the following six header files: OsiSolverInterface.hpp, OsiCollections.hpp,
OsiSolverParameters.hpp, OsiCut.hpp, OsiRowCut.hpp, and OsiColCut.hpp. Copy all of them to the subdirectory
/CoinAll/Osi/src/OsiCpx. Now, go to the location /CoinAll/Osi/src/OsiCpx and type,

$ make

Now in this directory the library OsiCpxSolverInterface.lo has been created. Copy it to the directory /CoinAll/Cbc/lib/

Finally, you must add two environment user variables in your computer. To do it, you can edit the hidden file .bashrc, and add at the
end of this file both definitions as follows

ILOG_LICENSE_FILE= "/home/ILOG/ILM/access.ilm"

22

PATH= $PATH; /home/ILOG/CPLEX_Studio_AcademicResearch122/cplex/bin/x86_sles10_4.1

Now, you must save the file and restart your computer.

6. Linking your code with CPLEX within COIN-OR and runni ng the executable under Linux

Assume that you have downloaded and installed the COIN-OR sources in the directory CoinAll, and downloaded and installed the
CPLEX code in the directory /ILOG/CPLEX_Studio_AcademicResearch122/, and made all the steps in the join installation procedure
described in Section 5.

For most COIN-OR packages the main directory contains an example subdirectory. Assuming that this is the case for the package Cbc,
the directory CoinAll/Cbc/Examples contains a Makefile that has been adapted to your system, see Appendix B for the Makefile
modified.

Copy this Makefile in your working directory where you have edited your own code, i.e., the files const-farmer.h, model-farmer.cpp,
param-farmer.cpp, principal-farmer-cplex.cpp and pm.h. In order to modify this Makefile to compile your own code, you only have to
change some things. Edit the file Makefile, where you put the name of the executable, which in the example is “driver” now you must
write a name for our executable, for example “farmer-cplex”. You must change a set of sentences that you can look in the Makefile
given in Appendix B.

From the prompt of your working directory, type
$ make -k farmer-cplex

to compile and link the code. If all went fine, an executable named farmer-cplex exists in your directory. To run it, you must type
$./farmer-cplex

Again, if all went fine you will see the following output, IBM ILOG License Manager: "IBM ILOG Optimization Suite for Academic
Initiative" is accessing CPLEX 12 with option(s): "e m b q ".

Tried aggregator 1 time.
LP Presolve eliminated 3 rows and 6 columns.
Reduced LP has 10 rows, 21 columns, and 30 nonzeros.
Presolve time = 0.00 sec.
Iteration log . . .
Iteration: 1 Scaled infeas = 239.999998
Switched to devex.
Iteration: 3 Objective = 20500.000000
Found feasible solution after 0.02 sec. Objective = 98000.0000
Probing time = 0.00 sec.
MIP emphasis: balance optimality and feasibility.
MIP search method: dynamic search.
Parallel mode: deterministic, using up to 4 threads.
Root relaxation solution time = 0.04 sec.
 Nodes Cuts/

 Node Left Objective IInf Best Integer Best Node ItCnt Gap
* 0+ 0 98000.0000 0 ---
* 0+ 0 -14150.0000 0 ---
* 0+ 0 -19100.0000 0 ---
* 0+ 0 -24050.0000 0 ---
* 0+ 0 -29000.0000 0 ---
* 0+ 0 -33950.0000 0 ---
* 0+ 0 -38900.0000 0 ---
* 0+ 0 -43850.0000 0 ---
* 0+ 0 -48800.0000 0 ---
* 0+ 0 -53750.0000 0 ---
* 0 0 integral 0 -108390.0000 -108390.0000 0 0.00%

Elapsed real time = 0.09 sec. (tree size = 0.00 MB, solutions = 11)
Root node processing (before b&c):
 Real time = 0.08

23

 Parallel b&c, 4 threads:
 Real time = 0.00
 Sync time (average) = 0.00
 Wait time (average) = 0.00

Total (root+branch&cut) = 0.08 sec.
Default column names x1, x2 ... being created.
Default row names c1, c2 ... being created.

Notice that the two last rows in the file principal-farmer-cplex.cpp must be commented for the Linux compilation. After the execution,
in your directory there exists a new file, resul-farmer.dat, with the output of the execution, see Appendix C.

You can also use an editor like emacs, that allows you to compile C++ code moreover than latex code. In this case, to run the executable,
you can do it from the prompt of the working directory where the executable is.

Appendix A
A.1 File const-farmer.h

//This is the last version of the code const-farmer.h
//Copyright (C) 2011 by Gloria Pérez and M. Araceli Garín. All rights reserved. No part of this code
//may be reproduced, modified or transmitted, in any form or by any means without the prior written permission of
//the authors. Integer constants which define the dimensions of the stochastic version of the farmer' problem.
//Model (1.5), pp.11, Birge and Louveaux (1997)
//Number of scenarios
#define nw 3
//Number of first stage continuous variables
#define nix 3
//Number of second stage continuous variables
#define niy 6
//Number of first stage constraints
#define m1 1
//Number of second stage constraints
#define m2 4
//Number of variables and constraints of the whole problem
#define ncols nix+niy*nw
#define nrows m1+m2*nw
#define nelement m1*nix+m2*(nix+niy)*nw

A.2 File pm.h

//This is the last version of the code pm.h
//Copyright (C) 2011 by Gloria Pérez and M. Araceli Garín. All rights reserved.
//No part of this code may be reproduced, modified or transmitted, in any form or by any means
//without the prior written permission of the authors.
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <stdio.h>
#include <iostream>
#include <fstream>
using namespace std;
#include <cstdlib>
#include "ClpSimplex.hpp"
#include "CoinHelperFunctions.hpp"
#include "CoinTime.hpp"
#include "CoinBuild.hpp"
#include "CoinModel.hpp"
#include "OsiClpSolverInterface.hpp"
#include "CbcModel.hpp"
#include "CoinPackedMatrix.hpp"
#include "CglKnapsackCover.hpp"
#include "OsiCuts.hpp"

24

#include "CglClique.hpp"
#include "CglGomory.hpp"
#include "CglProbing.hpp"
//cplex
#include "cplex.h"
#include "OsiCpxSolverInterface.hpp"

A.3 File model-farmer.cpp

//This is the last version of the code model-farmer.cpp
//Copyright (C) 2011 by Gloria Pérez and M. Araceli Garín. All rights reserved.
//No part of this code may be reproduced, modified or transmitted, in any form or by any means
//without the prior written permission of the authors.
#include "pm.h"
#include "const-farmer.h"

void models(double c1[nix],double c2[niy][nw],
 double p[nw], double b1[m1], double b2[m1],
 double A[m1][nix], double h1[m2][nw],
 double h2[m2][nw],double T[m2][nix][nw],
 double W[m2][niy][nw])

//Model coefficients of farmer' problem. Birge and Louveaux(1997),pp.4-15
{

 int i,iomega;
//weights p
 for (iomega=0; iomega<nw; iomega++) p[iomega]=1.0/(1.0*nw);
//obj coefficients c1,c2
 c1[0]=150.;
 c1[1]=230.;
 c1[2]=260.;
//obj coeficientes WITHOUT weigths
 for (iomega=0;iomega<nw;iomega++)
 {
 c2[0][iomega]=238.;
 c2[1][iomega]=210.;
 c2[2][iomega]=-170.;
 c2[3][iomega]=-150.;
 c2[4][iomega]=-36.;
 c2[5][iomega]=-10.;
 }
//left and right hand sides: b1,b2, h1 and h2
 b1[0]=-1e31;
 b2[0]=500;
 for (iomega=0;iomega<nw;iomega++)
 {
 h1[0][iomega]=-1e31; h2[0][iomega]=-200.;
 h1[1][iomega]=-1e31; h2[1][iomega]=-240.;
 h1[2][iomega]=-12000.; h2[2][iomega]=0.0;
 h1[3][iomega]=0.; h2[3][iomega]=6000.0;
 }

//matrix A, x variables
 for (i=0;i<nix;i++) A[0][i]=1.0;
// matrices T and W
 //scenario 1
 iomega=0;
// T[j-1][i-1][iomega]: j=1,m2;i=1,nix;iomega=1,nw

T[0][0][iomega]=-3.;T[0][1][iomega]=0.; T[0][2][iomega]=0.; //equation 1
T[1][0][iomega]=0.; T[1][1][iomega]=-3.6; T[1][2][iomega]=0.;//equation 2
T[2][0][iomega]=0.; T[2][1][iomega]=0.; T[2][2][iomega]=-24.;//equation 3
T[3][0][iomega]=0.; T[3][1][iomega]=0.; T[3][2][iomega]=0.; //equation 4

25

//W[j-1][i-1][iomega]:j=1,m2;i=1,niy;iomega=1,nw
 //equation 1
 W[0][0][iomega]=-1.;//y_1
 W[0][1][iomega]=0.;//y_2
 W[0][2][iomega]=1.;//w_1
 W[0][3][iomega]=0.;//w_2
 W[0][4][iomega]=0.;//w_3
 W[0][5][iomega]=0.;//w_4
 //equation 2
 W[1][0][iomega]=0.;
 W[1][1][iomega]=-1.;
 W[1][2][iomega]=0.;
 W[1][3][iomega]=1.;
 W[1][4][iomega]=0.;
 W[1][5][iomega]=0.;
 //equation 3
 W[2][0][iomega]=0.;
 W[2][1][iomega]=0.;
 W[2][2][iomega]=0.;
 W[2][3][iomega]=0.;
 W[2][4][iomega]=1.;
 W[2][5][iomega]=1.;
 //equation 4
 W[3][0][iomega]=0.;
 W[3][1][iomega]=0.;
 W[3][2][iomega]=0.;
 W[3][3][iomega]=0.;
 W[3][4][iomega]=1.;
 W[3][5][iomega]=0;
//**
 //scenario 2
 iomega=1;
//**
// T[j-1][i-1][iomega]: j=1,m2;i=1,nix;iomega=1,nw

T[0][0][iomega]=-2.5; T[0][1][iomega]=0.; T[0][2][iomega]=0.; //equation 1
T[1][0][iomega]=0.; T[1][1][iomega]=-3.; T[1][2][iomega]=0.; //equation 2
T[2][0][iomega]=0.; T[2][1][iomega]=0.; T[2][2][iomega]=-20.; //equation 3
T[3][0][iomega]=0.; T[3][1][iomega]=0.; T[3][2][iomega]=0.; //equation 4

//W[j-1][i-1][iomega]:j=1,m2;i=1,niy;iomega=1,nw
 //equation 1
 W[0][0][iomega]=-1.;//y_1
 W[0][1][iomega]=0.;//y_2
 W[0][2][iomega]=1.;//w_1
 W[0][3][iomega]=0.;//w_2
 W[0][4][iomega]=0.;//w_3
 W[0][5][iomega]=0.;//w_4
 //equation 2
 W[1][0][iomega]=0.;
 W[1][1][iomega]=-1.;
 W[1][2][iomega]=0.;
 W[1][3][iomega]=1.;
 W[1][4][iomega]=0.;
 W[1][5][iomega]=0.;
 //equation 3
 W[2][0][iomega]=0.;
 W[2][1][iomega]=0.;
 W[2][2][iomega]=0.;
 W[2][3][iomega]=0.;
 W[2][4][iomega]=1.;
 W[2][5][iomega]=1.;
 //equation 4

26

 W[3][0][iomega]=0.;
 W[3][1][iomega]=0.;
 W[3][2][iomega]=0.;
 W[3][3][iomega]=0.;
 W[3][4][iomega]=1.;
 W[3][5][iomega]=0;
 //scenario 3
 iomega=2;
//T[j-1][i-1][iomega]: j=1,m2;i=1,nix;iomega=1,nw
T[0][0][iomega]=-2.; T[0][1][iomega]=0.; T[0][2][iomega]=0.; //equation 1
T[1][0][iomega]=0.; T[1][1][iomega]=-2.4; T[1][2][iomega]=0.; //equation 2
T[2][0][iomega]=0.; T[2][1][iomega]=0.; T[2][2][iomega]=-16.; //equation 3
T[3][0][iomega]=0.; T[3][1][iomega]=0.; T[3][2][iomega]=0.; //equation 4

//W[j-1][i-1][iomega]:j=1,m2;i=1,niy;iomega=1,nw
 //equation 1
 W[0][0][iomega]=-1.;//y_1
 W[0][1][iomega]=0.;//y_2
 W[0][2][iomega]=1.;//w_1
 W[0][3][iomega]=0.;//w_2
 W[0][4][iomega]=0.;//w_3
 W[0][5][iomega]=0.;//w_4
 //equation 2
 W[1][0][iomega]=0.;
 W[1][1][iomega]=-1.;
 W[1][2][iomega]=0.;
 W[1][3][iomega]=1.;
 W[1][4][iomega]=0.;
 W[1][5][iomega]=0.;
 //equation 3
 W[2][0][iomega]=0.;
 W[2][1][iomega]=0.;
 W[2][2][iomega]=0.;
 W[2][3][iomega]=0.;
 W[2][4][iomega]=1.;
 W[2][5][iomega]=1.;
 //equation 4
 W[3][0][iomega]=0.;
 W[3][1][iomega]=0.;
 W[3][2][iomega]=0.;
 W[3][3][iomega]=0.;
 W[3][4][iomega]=1.;
 W[3][5][iomega]=0.;
}

A.4 File param-farmer.cpp
//This is the last version of the code param-farmer.cpp
//Copyright (C) 2011 by Gloria Pérez and M. Araceli Garín. All rights reserved.
//No part of this code may be reproduced, modified or transmitted, in any form or by any means
//without the prior written permission of the authors.
#include "pm.h"
#include "const-farmer.h"

 void param(double c1[nix],double c2[niy][nw],
 double p[nw], double b1[m1], double b2[m1], double A[m1][nix],
 double h1[m2][nw], double h2[m2][nw],double T[m2][nix][nw],
 double W[m2][niy][nw], double dobj[ncols],double drowlo[nrows],
 double drowup[nrows],double dcollo[ncols],double dcolup[ncols],
 int nrowindx[nelement],int mcolindx[nelement],

double dels[nelement],int &nocero)
{
 int Newnelement=0; int Newnrows=0; int Newncols=0;
 int i,iomega,j;

27

//Matrix A: first stage matrix coefficients
 if (m1!=0)
 {
 for (j=0;j<m1;j++)
 {
 for (i=0;i<nix;i++)
 {
 dels[Newnelement]=A[j][i];
 mcolindx[Newnelement]=i;
 dobj[mcolindx[Newnelement]]=c1[i];
 dcollo[mcolindx[Newnelement]]=0.;
 dcolup[mcolindx[Newnelement]]=1e31;
 nrowindx[Newnelement]=j;
 Newnelement++;
 }
 drowlo[Newnrows]=b1[j];
 drowup[Newnrows]=b2[j];
 Newnrows++;
 }
 }
 Newncols=nix;

//Matrices T and W: second stage matrix coefficients
// x-variables, Matrix T
if (m2!=0){
 for (iomega=0;iomega<nw;iomega++)
 {
 for (j=0;j<m2;j++)
 {
 for (i=0;i<nix;i++)
 {
 dels[Newnelement]=T[j][i][iomega];
 mcolindx[Newnelement]=i;
 nrowindx[Newnelement]=Newnrows;
 dobj[mcolindx[Newnelement]]=c1[i];
 dcollo[mcolindx[Newnelement]]=0.;
 dcolup[mcolindx[Newnelement]]=1e31;
 Newnelement++;
 }
// y-variables, Matrix W
 for (i=0;i<niy;i++)
 {
 dels[Newnelement]=W[j][i][iomega];
 mcolindx[Newnelement]=Newncols+i;
 nrowindx[Newnelement]=Newnrows;
 dobj[mcolindx[Newnelement]]=c2[i][iomega]*p[iomega];
 dcollo[mcolindx[Newnelement]]=0.;
 dcolup[mcolindx[Newnelement]]=1e31;
 Newnelement++;
 }
 drowlo[Newnrows]=h1[j][iomega];
 drowup[Newnrows]=h2[j][iomega];
 Newnrows++; //Total constraints
 }
 Newncols=Newncols+niy; //Total variables
 }
}
 nocero=Newnelement; //Total nonzero elements
}

28

A.5 File principal-farmer-cplex.cpp

//This is the last version of the code principal-farmer-cplex.cpp
//Copyright (C) 2011 by Gloria Pérez and M. Araceli Garín. All rights reserved.
//No part of this code may be reproduced, modified or transmitted, in any form or by any means
 //without the prior written permission of the authors.
#include "pm.h"
#include "const-farmer.h"
extern void models(double *,double (*)[nw],
double *,double *,double *, double (*)[nix], double (*)[nw],
double (*)[nw],double (*)[nix][nw], double (*)[niy][nw]) ;
extern void param(double *,double (*)[nw],
double *,double *,double *, double (*)[nix], double (*)[nw],
double (*)[nw],double (*)[nix][nw], double (*)[niy][nw],
double *,double *,double *,double *,double *,int *,
int *,double *,int &);
double c1[nix];double c2[niy][nw];
double p[nw]; double b1[m1]; double b2[m1];
double A[m1][nix]; double h1[m2][nw];double h2[m2][nw];
double T[m2][nix][nw];double W[m2][niy][nw];
double drowlo[nrows]; double dcollo[ncols];
double drowup[nrows]; double dcolup[ncols];
double dobj[ncols],dels[nelement];
int mcolindx[nelement]; int nrowindx[nelement];
int main()
{
ofstream results("resul-farmer.dat"); //output file
int i,iomega,j,nocero;
double tiempo1, tiempo0, tiempo01;
double p[nw];
results<<"Farmer' Problem: OUTPUT \n";
//STEP 0. MODEL GENERATION
tiempo0=CoinCpuTime();
results<<"CPU time for loading data model "<<CoinCpuTime()<<"\n";
models(c1,c2,p,b1,b2,A,h1,h2,T,W);
//STEP 1. INTRODUCTION OF THE COEFFICIENTS IN THE ARRAYS OF COIN
nocero=0;
param(c1,c2,p,b1,b2,A,h1,h2,T,W,dobj,drowlo,
drowup,dcollo,dcolup,nrowindx,mcolindx,dels,nocero);
//STEP 2. DEFINE THE MODEL IN CPLEX within COIN-OR
OsiCpxSolverInterface sol1;
//Load the matrix coefficients by indices or alternatively, you can
//read the data from a .mps file
// In this case you do not need models and param functions
// sol1.readMps("model-farmer.mps");
CoinPackedMatrix AA(true,nrowindx,mcolindx,dels,nocero);
sol1.loadProblem(AA,dcollo,dcolup,dobj,drowlo,drowup);
results<<"CPU input time COIN "<<CoinCpuTime()<<"\n";
tiempo01=CoinCpuTime();
results<<"Number of variables:"<<sol1.getNumCols()<<"\n";
results<<"Number of constraints:"<<sol1.getNumRows()<<"\n";
results<<"Number of nonzero elements:"<<nocero<<"\n";
double dens=(nelement*100.0)/((ncols*1.0)*(nrows*1.0));
results<<"Matrix density:"<<dens<<"\n";
results<<"***\n" ;
//Set max(-1), min(1) or without objective function (0);
sol1.setObjSense(1);
//STEP 3. OBTAINING OPTIMAL LINEAR SOLUTION AND INITIALIZATION OF CPLEX SOLVER
//Add the set of integer variables. For example the first stage
//variables
int setInt[nix];
for(i=0;i<nix;i++) setInt[i]=i;
for(i=0;i<nix;i++) sol1.setInteger(setInt[i]);
//OBTAINING A LINEAR SOLUTION

29

sol1.initialSolve();
if (sol1.isProvenPrimalInfeasible()){results<<"The linear problem is infeasible "<<"\n";
goto l969;}
if (!sol1.isProvenOptimal()){results<<" The optimum is not found"<<"\n";
goto l969;}
//-zlp, since it is a minimization model
results<<"Optimal Linear solution:"<<-sol1.getObjValue()<<"\n";
results<<" First stage variables x** \n";
for (j=0;j<nix;j++) results<< sol1.getColSolution()[j]<< " ";
results<<"\n ";
results<<" Second stage variables y** \n";
for (iomega=0;iomega<nw;iomega++){
results<<"Scenario "<<iomega+1<<"\n";
for (j=0;j<niy;j++) results<<
sol1.getColSolution()[nix+iomega*niy+j]<< " ";
results<<"\n ";
}
// OBTAINING AN OPTIMAL MIXED-INTEGER SOLUTION WITH CPLEX
sol1.branchAndBound();
//WRITE DATA in mps file
sol1.writeMps("model-farmer");
if (sol1.getObjValue()>1e31){results<<"MIP Unbounded";
goto l969;}
if (!sol1.isProvenOptimal()){results<<" The optimum is not found";
goto l969;}
results<<"***\n" ;
//-sol1.getColSolution()[j], since it is a minimization model
results<<"Optimal mixed-integer solution:"<<-sol1.getObjValue()<<"\n";
results<<" First stage variables x** \n";
for (j=0;j<nix;j++) results<< sol1.getColSolution()[j]<< " ";
results<<"\n ";
results<<" Second stage variables y** \n";
for (iomega=0;iomega<nw;iomega++){
results<<"Scenario "<<iomega+1<<"\n";
for (j=0;j<niy;j++) results<<
sol1.getColSolution()[nix+iomega*niy+j]<< " ";
results<<"\n ";
}
results<<"CPU output time COIN"<<CoinCpuTime()<<"\n";
tiempo1=CoinCpuTime();
results<<"*******************************\n" ;
results<<"TOTAL Time COIN: "<<tiempo1-tiempo01<<"\n";
l969: results.close();
return 0;}
//visual c++ version
#include "model-farmer.cpp"
#include "param-farmer.cpp"

Appendix B. File Makefile

Copyright (C) 2006 International Business Machines and others.
All Rights Reserved.
This file is distributed under the Common Public License.
$Id: Makefile.in 726 2006-04-17 04:16:00Z andreasw $

You can modify this example makefile to fit for your own program. #
Usually, you only need to change the five CHANGEME entries below. #

To compile other examples, either changed the following line, or
add the argument DRIVER=problem_name to make
#DRIVER =
DRIVER = farmer-cplex

30

CHANGEME: This should be the name of your executable
EXE = $(DRIVER)
CHANGEME: Here is the name of all object files corresponding to the source
code that you wrote in order to define the problem statement
#OBJS = $(DRIVER).o
OBJS = principal-farmer-cplex.o \
 model-farmer.o \
 param-farmer.o
SYSTEM = x86_sles10_4.1
Directory with COIN header files
COININCDIR = /home/CoinAll/include
Directory with COIN libraries
COINLIBDIR = /home/CoinAll/lib
Directory with CPLEX
CPLEXDIR= /usr/ilog/CPLEX_Studio_AcademicResearch122/cplex
Directory with CPLEX header files
CPLEXINCDIR = $(CPLEXDIR)/include/ilcplex
Directory with CPLEX libraries
CPLEXLIBDIR =$(CPLEXDIR)/lib/$(SYSTEM)/static_pic/libcplex.a
CPLEXBINDIR =$(CPLEXDIR)/bin/$(SYSTEM)
CHANGEME: Additional libraries
ADDLIBS =
CHANGEME: Additional flags for compilation (e.g., include flags)
ADDINCFLAGS =
CHANGEME: Directory to the sources for the (example) problem definition
files
SRCDIR = .

Usually, you don't have to change anything below. Note that if you #
change certain compiler options, you might have to recompile the #
COIN package. #

C++ Compiler command
CXX = g++
C++ Compiler options
CXXFLAGS = -O3 -fomit-frame-pointer -pipe -DNDEBUG -pedantic-errors -Wimplicit -Wparentheses -Wreturn-type
-Wcast-qual -Wall -Wpointer-arith -Wwrite-strings -Wconversion -m32 -O -fPIC -fexceptions -DIL_STD
additional C++ Compiler options for linking
CXXLINKFLAGS = -Wl,--rpath -Wl,$(COINLIBDIR) -Wl,$(CPLEXLIBDIR)
Libraries necessary to link with Clp and Cpx
LIBS = -L$(COINLIBDIR) -lCbcSolver -lCbc -lCgl -lOsiClp -lOsiCbc -lOsi -lClp -lCoinUtils -lOsiCpx
-L$(CPLEXBINDIR) -lcplex122 \
 -lm
Necessary Include dirs (we use the CYGPATH_W variables to allow
compilation with Windows compilers)
INCL = -I`$(CYGPATH_W) $(COININCDIR) $(CPLEXINCDIR)` $(ADDINCFLAGS)
The following is necessary under cygwin, if native compilers are used
CYGPATH_W = echo
Here we list all possible generated objects or executables to delete them
CLEANFILES = \
 principal-farmer-cplex.o pricipal-farmer-cplex \
 model-farmer.o model-farmer \
 param-farmer.o param-farmer
all: $(EXE)
.SUFFIXES: .cpp .c .o .obj

31

$(EXE): $(OBJS)
 bla=;\
 for file in $(OBJS); do bla="$$bla `$(CYGPATH_W) $$file`"; done; \
 $(CXX) $(CXXLINKFLAGS) $(CXXFLAGS) -o $@ $$bla $(ADDLIBS) $(LIBS)
clean:
 rm -rf $(CLEANFILES)
.cpp.o:
 $(CXX) $(CXXFLAGS) $(INCL) -c -o $@ `test -f '$<' || echo '$(SRCDIR)/'`$<
.cpp.obj:
 $(CXX) $(CXXFLAGS) $(INCL) -c -o $@ `if test -f '$<'; then $(CYGPATH_W) '$<'; else $(CYGPATH_W)
'$(SRCDIR)/$<'; fi`
.c.o:
 $(CC) $(CFLAGS) $(INCL) -c -o $@ `test -f '$<' || echo '$(SRCDIR)/'`$<
clean_o:
 rm -rf $*.o
.c.obj:
 $(CC) $(CFLAGS) $(INCL) -c -o $@ `if test -f '$<'; then $(CYGPATH_W) '$<'; else $(CYGPATH_W)
'$(SRCDIR)/$<'; fi`

Appendix C. File resul-farmer.dat

Farmer' Problem: OUTPUT
CPU time for loading data model 0
CPU input time COIN 0
Number of variables:21
Number of constraints:13
Number of nonzero elements:111
Matrix density:39.5714

Optimal Linear solution:108390
 First stage variables x**
170 80 250
 Second stage variables y**
Scenario 1
0 0 310 48 6000 0
 Scenario 2
0 0 225 0 5000 0
 Scenario 3
0 48 140 0 4000 0

Optimal mixed-integer solution:108390
 First stage variables x**
170 80 250
 Second stage variables y**
Scenario 1
0 0 310 48 6000 0
 Scenario 2
0 0 225 0 5000 0
 Scenario 3
0 48 140 0 4000 0
 CPU output time COIN 0.004

TOTAL Time COIN: 0.004

32

Appendix D. On using interactive CPLEX

In the installation of Windows, and in the directory C:\ILOG\CPLEX_Studio_AcademicResearch122\cplex\bin\x86_win32 is the
executable file cplex.exe. Copy it in the working directory C:\coin-projects\farmer-cplex.

In the Linux environment, and in the directory /home/ILOG/CPLEX_Studio_AcademicResearch122/cplex/bin/x86_sles10_4.1 is also
the executable cplex. Copy it in your working directory.

In both environments, an in the working directory, you must have the corresponding .mps file with the data of the example (you can
obtain it from the partial execution of the code principal-farmer-cplex.cpp). It is named model-farmer.mps.

If you execute this program (in Windows, clicking two times over the file cplex.exe, and in Linux typing in the prompt S ./cplex). In
both cases you will see the prompt CPLEX>

Now, you must type:
CPLEX> read model-farmer.mps

And then,
CPLEX> mipop

You will solve the minimization farmer’ problem whose coefficients are in the file model-farmer.mps, and will see the following screens,

33

To change the optimization direction to maximizing, set CPLEX>change sense obj max

The input file "model-farmer.mps" is

NAME OsiDefaultName
ROWS
 N obj
 L c1
 L c2
 L c3
 G c4
 G c5
 L c6
 L c7
 G c8
 G c9
 L c10
 L c11
 G c12
 G c13
COLUMNS
 MARK0000 'MARKER' 'INTORG'
 x1 obj 150
 x1 c1 1
 x1 c2 -3
 x1 c6 -2.5
 x1 c10 -2
 x2 obj 230
 x2 c1 1
 x2 c3 -3.6
 x2 c7 -3
 x2 c11 -2.4
 x3 obj 260
 x3 c1 1
 x3 c4 -24
 x3 c8 -20
 x3 c12 -16
 MARK0001 'MARKER' 'INTEND'
 x4 obj 79.3333333333333
 x4 c2 -1
 x5 obj 70
 x5 c3 -1
 x6 obj -56.6666666666667
 x6 c2 1
 x7 obj -50
 x7 c3 1
 x8 obj -12
 x8 c4 1
 x8 c5 1
 x9 obj -3.33333333333333
 x9 c4 1
 x10 obj 79.3333333333333
 x10 c6 -1
 x11 obj 70
 x11 c7 -1
 x12 obj -56.6666666666667
 x12 c6 1
 x13 obj -50
 x13 c7 1
 x14 obj -12
 x14 c8 1
 x14 c9 1
 x15 obj -3.33333333333333
 x15 c8 1
 x16 obj 79.3333333333333
 x16 c10 -1
 x17 obj 70
 x17 c11 -1
 x18 obj -56.6666666666667
 x18 c10 1
 x19 obj -50
 x19 c11 1

34

 x20 obj -12
 x20 c12 1
 x20 c13 1
 x21 obj -3.33333333333333
 x21 c12 1
RHS
 rhs c1 500
 rhs c2 -200
 rhs c3 -240
 rhs c4 -12000
 rhs c6 -200
 rhs c7 -240
 rhs c8 -12000
 rhs c10 -200
 rhs c11 -240
 rhs c12 -12000
RANGES
 rng c4 12000
 rng c5 6000
 rng c8 12000
 rng c9 6000
 rng c12 12000
 rng c13 6000
BOUNDS
 LI bnd x1 0
 LI bnd x2 0
 LI bnd x3 0
ENDATA

Gratefulnesses
This research has been partially supported by the projects ECO2008-00777 ECON from the Ministry of Education and Science, and
Grupo de Investigación IT-347-10 from the Basque Government, Spain.

References
[1] J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming. Springer, 1997.
[2] IBM ILOG CPLEX http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/, 2011.
[3] INFORMS. COIN-OR: Computational Infrastructure for Operations Research. http://www.coin-or.org, 2011.
[4] R. Laugee-Heimer. The COmmon INfrastructure for Operations Research, IBM Journal of Research and Development, 47(1): 55-66,
2003.
[5] Microsoft. Visual C++ Express Edition 2010. http://www.microsoft.com.
[6] G. Pérez and M.A. Garín. On downloading and using COIN-OR for solving linear/integer optimization problems. Working paper
series Biltoki. DT.2010.05. Edited by Dpto. Economía Aplicada III. Universidad del País Vasco, UPV/EHU (Spain), 2010.
http://econpapers.repec.org/paper/ehubiltok/201005.htm,

	caratula_dt201108
	2011.08

