
����������
�������

Citation: Demmig-Adams, B.;

López-Pozo, M.; Polutchko, S.K.;

Fourounjian, P.; Stewart, J.J.; Zenir,

M.C.; Adams, W.W., III. Growth and

Nutritional Quality of Lemnaceae

Viewed Comparatively in an

Ecological and Evolutionary Context.

Plants 2022, 11, 145. https://doi.org/

10.3390/plants11020145

Academic Editors: Viktor Oláh,

Klaus-Jürgen Appenroth and K.

Sowjanya Sree

Received: 14 November 2021

Accepted: 4 January 2022

Published: 6 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Growth and Nutritional Quality of Lemnaceae Viewed
Comparatively in an Ecological and Evolutionary Context
Barbara Demmig-Adams 1,*, Marina López-Pozo 2, Stephanie K. Polutchko 1 , Paul Fourounjian 1,3,
Jared J. Stewart 1 , Madeleine C. Zenir 1 and William W. Adams III 1

1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA;
Stephanie.Polutchko@Colorado.EDU (S.K.P.); paul@internationallemnaassociation.org (P.F.);
Jared.Stewart@Colorado.EDU (J.J.S.); Madeleine.Zenir@colorado.edu (M.C.Z.);
William.Adams@colorado.edu (W.W.A.III)

2 Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48049 Bilbao,
Spain; marinalopezpozo@hotmail.com

3 International Lemna Association, Denville, NJ 07832, USA
* Correspondence: Barbara.Demmig-Adams@Colorado.EDU; Tel.: +1-303-492-5541

Abstract: This review focuses on recently characterized traits of the aquatic floating plant Lemna
with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of
the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen
in other fast-growing plants. In addition, Lemna’s response to elevated CO2 was evaluated in the
context of the source–sink balance between plant sugar production and consumption. These and
other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial
plants adapted to different environments. It was concluded that the unique features of aquatic plants
reflect adaptations to the freshwater environment, including rapid growth, high productivity, and
exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant
micronutrients. It was further concluded that the insensitivity of growth rate to environmental
conditions and plant source–sink imbalance may allow duckweeds to take advantage of elevated
atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor
declines in the growth of new tissue. It is proposed that declines in nutritional quality under
elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by
plant–microbe interaction, for which duckweeds have a high propensity.

Keywords: chlorophyll fluorescence; electron transport chain; inflammation; lutein; photosystem;
photosynthetic capacity; relative growth rate

1. Introduction

The smallest known flowering plants are found in the Lemnaceae family and are
recognized (see recent comprehensive review by Acosta et al. [1]) for their attractive
combination of extremely high growth rates [2,3] with high nutritional quality, including a
high protein content, with all essential amino acids for humans, as well as a high content
of essential human micronutrients [4]. The Lemnaceae, commonly known as duckweeds,
water lentils, or water lenses, are comprised of five genera, including Lemna and Wolffia [1].
The high protein content of Lemnaceae is associated with their propensity for the efficient
uptake and accumulation of nitrogen and other mineral nutrients, which makes them
good at wastewater recycling [5–9] and contributing to a high nitrogen-use efficiency in
agricultural contexts [10].

Additional traits of interest include duckweed’s ability to accumulate high levels of
starch as well as their relatively low susceptibility to the undesirable effects of elevated
atmospheric carbon dioxide levels (for details, see sections dedicated to these topics below).
Moreover, duckweed’s rapid growth and diminutive size allow for a high volumetric yield
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in tight quarters such as greenhouses, urban rooftop growth facilities, and spacecrafts,
where duckweed’s insensitivity to microgravity is another boon [1,11]. Our review places
the above traits, as well as additional traits recently described by our group, into the context
of the ecology and evolution of Lemnaceae in comparison with terrestrial plants as well as
other floating aquatic plants.

The traits of Lemna recently characterized by us, which are the focus of this review,
include:

• The pronounced tolerance of a wide range of growth light intensities and a remarkable
capacity to accumulate high levels of antioxidant micronutrients, such as the essential
carotenoid zeaxanthin, due to an unusual pigment composition not seen in fast-
growing land plants.

• The response to elevated CO2 as evaluated in the context of plant metabolic regula-
tion of the source–sink balance (balance between the plant’s sugar production and
consumption), carbon-to-nitrogen ratio, and redox homeostasis (balance of oxidants
and antioxidants).

2. Exceptions to Common Trade-Offs: Araceae and Lemnaceae
2.1. Trade-Off between the Ability to Grow in Deep Shade and Full Sun

Many land plants exhibit a trade-off between the ability to tolerate deeply shaded
growth environments on the one hand and extremely high light levels on the other. Specif-
ically, fast-growing species are typically sun-loving and unable to grow in deep shade.
Exceptions are found in the family Araceae, which belongs to the same order (Alismatales,
water plantains) as the Lemnaceae. The Alismatales include many floating or submersed
aquatic and wetland species found in marshy and marine habitats [12]. Araceae is the most
species-rich family of the Alismatales and is remarkable for the highly diverse habitats
in which its species thrive, ranging from open freshwater to deserts, and its diverse life
forms, including hemi-epiphytes, epiphytes, terrestrial species, and aquatic plants [13]. It
has been noted that some Araceae exhibit a high level of flexibility in the organization of
the photosynthetic membrane [14] (see also below).

Plants can suffer damage from intense light unless they process absorbed light ei-
ther in photosynthesis (which converts excitation energy to chemical energy) or via safe
alternative processes (that, e.g., convert excitation energy to harmless thermal energy;
see [15,16]). Many species in the Araceae can grow equally well in deep shade and in full
sun (see [16,17]). For example, the hemi-epiphyte Monstera deliciosa (Araceae) germinates in
deep shade on the rainforest floor, climbs the nearest tree, and eventually completes its life
cycle in the sun-flooded forest canopy after shedding its connection to the soil. In full sun,
M. deliciosa exhibits low rates of photochemical energy utilization but record rates of the
alternative, non-photochemical dissipation of absorbed light as thermal energy [17]. This
latter process is catalyzed by antioxidants with critical roles in fighting radiation damage
in both plants and humans (for details, see sections below).

2.2. Common Trade-Off between Fast Growth and Antioxidant Accumulation

Terrestrial plants typically show a trade-off between growth rate and the accumulation
of radiation-fighting antioxidants, especially the carotenoid zeaxanthin [16]. Fast-growing
terrestrial species tend to accumulate less zeaxanthin, whereas slow-growing species tend
to accumulate more zeaxanthin (Figure 1; [16,18]). This difference in response is the
expected result of the above-described link to the fraction of absorbed light processed
in photosynthesis. Fast-growing species use a greater fraction of the light they absorb
at peak irradiance to support growth and accumulate less of the antioxidant zeaxanthin,
which harmlessly removes light not usable for growth, i.e., excess light [16,18]. Conversely,
slow-growing species (e.g., M. deliciosa) use a lesser fraction of absorbed light for growth
and accumulate more zeaxanthin (Figure 1; [16,18]). The Araceae are thus no exception
to the general rule of a trade-off between fast growth and accumulation of high levels of
zeaxanthin [17,19].
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Figure 1. Diurnal time course of changes in (A,B) zeaxanthin level and (C,D) photons absorbed and
utilized through photosynthetic electron transport in (A,C) the fast-growing annual crop Helianthus
annuus (sunflower) versus (B,D) the slow-growing perennial Vinca major. Data from [18]; re-drawn
from [16].

2.3. Zeaxanthin—Essential Human Micronutrient and Hard to Come by in the Diet

The essential micronutrient zeaxanthin is not easy to come by in the human diet for the
very reason that leaves produce zeaxanthin to fight radiation damage only when necessary.
The green parts of plants (such as leafy greens) only accumulate zeaxanthin when they
need to actively dispose of excessive, potentially damaging light and quickly remove the
dissipator zeaxanthin as soon as light levels drop. This dynamic process gives plants the
advantage of allowing photosynthesis to return to highly efficient utilization of absorbed
light (Figure 1; reviewed in [16]). Food sources of zeaxanthin, other than leafy greens,
include egg yolks and yellow corn, which owe their color to the presence of zeaxanthin and
the closely related xanthophyll lutein (see, e.g., [20]). However, neither eggs nor corn are
particularly suitable for production in limited spaces. In particular, operation of a chicken
farm or corn field is not feasible on a spacecraft and may also not be an attractive approach
in an urban setting or a greenhouse.

The essential dietary carotenoid zeaxanthin is not only needed to fight radiation dam-
age and system-wide inflammation in humans but also to support mental acuity in healthy
young adults (Figure 2; [21,22]). Zeaxanthin enhances basic membrane function in the brain,
which supports mental acuity and detoxifies free radicals and other oxidants, which lessens
radiation damage and the system-wide inflammation linked to less-than-optimal function,
disorders, and diseases. Additional essential micronutrients act synergistically with zeax-
anthin in fighting radiation damage and inflammation; zeaxanthin thus works best in a
total package—provided by whole foods—with additional plant antioxidants that recycle
zeaxanthin for a longer lifetime in inflammation fighting (Figure 2; [22]). Figure 2 places
antioxidants with overlapping essential functions in plants and humans into the cycle of
oxygen and carbon dioxide exchange, organic nutrients (e.g., protein and antioxidants),
and inorganic nutrients (human waste) between photosynthetic and non-photosynthetic



Plants 2022, 11, 145 4 of 23

organisms. Thereby, Figure 2 highlights that duckweed is an excellent plant component for
a regenerative life support system on, e.g., a spacecraft (see also [23,24]).
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Figure 2. Schematic depiction of the functions of zeaxanthin in plants and humans with both
overlapping and analogous aspects.

As reviewed in Demmig-Adams et al. [21], airline pilots (exposed to ionizing radia-
tion) who reported eating more zeaxanthin exhibited less inflammation; similarly, healthy
young subjects given zeaxanthin for six months showed less inflammation and enhanced
cognitive performance in complex tasks, greater speed at completing those tasks, and better
memory and attention. Sufficient dietary zeaxanthin would thus appear to be especially
critical for long-duration human spaceflight. As further illustrated in the following section,
duckweed provides a renewable food source that can be grown in limited space and can be
exceptionally rich in zeaxanthin.

2.4. Lemna: An Unusual, Fast-Growing Hyperaccumulator of Zeaxanthin

Among land plants, it is the relatively slow-growing evergreens that typically exhibit
the highest zeaxanthin concentrations [16,25]. An extreme example is evergreen conifers
that arrest growth completely when they overwinter at high altitude where soil water
freezes in the winter. While green needles can absorb a lot of light, they dissipate 100%
of it as thermal energy via zeaxanthin as long as water lost from the needles during
CO2 uptake for photosynthesis cannot be replaced [26,27]. As stated above, fast-growing
terrestrial annuals instead typically utilize a significant amount of the light they absorb in
photosynthesis and do not dissipate as much. When subjected to environmental stresses
that can curb their growth rate, such as limiting nutrient levels in the soil [28,29], annuals
typically strongly downregulate chlorophyll levels (and thus light-harvesting capacity)
and only exhibit moderate increases in zeaxanthin levels employed in energy dissipation.
When grown under extreme light conditions (with respect to high intensity and long
photoperiod) that resulted in a comparably low chlorophyll content per area, L. gibba
accumulated significantly more zeaxanthin [23,24] than spinach grown under limiting
nutrient supply [29,30].

Further characterization of Lemna’s exceptionally strong zeaxanthin accumulation led
to the identification of a carotenoid composition that is unusual for fast-growing plants
(Figure 3). A comparison of Lemna with several terrestrial species via principal component
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analysis showed that Lemna fell into the olive-green ellipse of slow-growing plants with high
levels of zeaxanthin (and lutein) rather than the blue-green ellipse of other fast-growing
plants (Figure 3; [24,25]). In other words, Lemna combines an exceptionally high growth
rate with an unusual carotenoid composition and accumulation of as much zeaxanthin as
seen in slow-growing land plants (see below).
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Figure 3. Principal component analysis showing (A) clusters of groups based on similarity (score
plot) and (B) how each characteristic used influences a principal component, PC (loading plot).
Characteristics used were the various leaf pigments of slow-growing terrestrial species either in
shaded environments (black squares) or full sunlight (olive-green triangles), fast-growing (annual
and biennial) species (turquoise diamonds) in full sunlight, and duckweed (Lemna minor) that was
growing in full sunlight (olive-green circles) near Boulder, CO, USA (for details, see [24,25]). Data
from [24,25].

Once again, the traits of duckweed are thus a mix of those seen in slow-growing
terrestrial evergreens (with greater maximal zeaxanthin levels) and fast-growing terrestrial
annual plants (with lower maximal zeaxanthin levels). Future research is needed to confirm
that the high growth rate and the unusually pronounced accumulation of zeaxanthin in
Lemna (Figure 4) is associated with thin leaves that likely cause a relatively greater portion
of the frond cross-section to be exposed to high light when plants are grown under a
high growth light intensity. Terrestrial plants often feature multi-layered canopies, of
which only the top leaves receive unfiltered light. Additionally, terrestrial plants typically
also feature multi-layered leaves, where only the top cell layer receives unfiltered light.
When grown in full sun, leaves of terrestrial plants thus exhibit pronounced high-light
acclimation [31], with the highest levels of xanthophylls, and especially zeaxanthin, in their
top-most layers [32]. In contrast, duckweed and other floating plants consist of relatively
thinner leaves/fronds that presumably experience less attenuation of light from top to
bottom. This scenario is supported by the side-by-side comparison of a terrestrial weed
with duckweed [24] growing in a high-light exposed location, where the terrestrial weed
exhibited a much higher chlorophyll level per unit leaf area typical for that seen in leaves
with multiple chloroplast-rich layers of mesophyll cells.
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intensity. The size of the respective pies represents the molar ratio of the sum of all carotenoids to
chlorophyll. Data from [24]; adapted from [16]. A, antheraxanthin, β-C, β-carotene, L, lutein, N,
neoxanthin, V, violaxanthin, Z, zeaxanthin.

One can think of duckweed fronds as structures that allow a thin layer of chloroplasts
to be uniformly exposed to unfiltered light, which may require unusually high levels
of excess-light dissipation and zeaxanthin accumulation under exposure to high light
intensities. Hypothetically, duckweed could simply lower its chlorophyll content (and
antenna size) enough to avoid absorbing much excess light. However, the maintenance of
sufficient chlorophyll levels, accompanied by strong protection from zeaxanthin as needed,
may be advantageous to duckweeds that can rapidly shift between being at the top versus
in a deeper layer when growing in dense mats.

In addition to being bound to specific designated sites in chlorophyll-binding light-
harvesting complexes, additional zeaxanthin can be dissolved in the phospholipid bilayer of
plants’ photosynthetic membranes outside of chlorophyll-binding proteins (as first reported
in [33] and recently reviewed in [34]). The report of a ratio greater than 0.5 (mol/mol) for
zeaxanthin to chlorophyll a + b [24] suggests that a substantial fraction of the zeaxanthin
accumulated in golden-hued duckweed fronds (Figure 4) growing under continuous high
light levels may be dissolved in these membranes rather than being bound to protein
complexes. At the same time, this high zeaxanthin content is not associated with sus-
tained lowering of photosystem II efficiency [23,24] as is seen in many plants (see [35]
for Arabidopsis thaliana and [16] for evergreens) under environmental stresses. Such a
scenario—high zeaxanthin levels uncoupled from sustained lowering of photochemical
efficiency—is especially desirable for optimal human nutrition without plant productivity
losses. Other aquatic floating flowering plant species (beyond Lemnaceae) have also been
reported to exhibit very high levels of xanthophylls [36], although xanthophylls were not
separated into zeaxanthin versus other di-hydroxy xanthophylls (like lutein) during these
analyses. This possibility that other aquatic plants share the above-described features
of duckweed is consistent with a report by Rice [37] that noted aquatic taxa possessed
unique photosynthetic features, including pigment composition. Future research should
assess these features of aquatic species, which could be of interest for human nutrition, e.g.,
with respect to zeaxanthin levels. It is noteworthy that many aquatic floating plants are
described as edible and/or medicinal plants (see, e.g., [38]).
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2.5. Remote Sensing of Duckweed Zeaxanthin Content and Biomass Production

Chloroplast-containing plant organs emit chlorophyll fluorescence, a signal that pro-
vides information about the fraction of absorbed light utilized in photosynthesis versus the
fraction dissipated alternatively (non-photochemically) in the form of thermal energy. The
fraction of absorbed light utilized in photosynthetic electron transport has been used, in
conjunction with other parameters, to predict plant productivity (see, e.g., [39]). In terres-
trial plants, this relationship is complex ([40,41]; see also the discussion in [24]). However,
a simple, linear positive correlation exists in Lemna between this utilization of absorbed
light as ascertained from chlorophyll fluorescence (as photosystem II activity per photons)
and Lemna biomass production per photons (Figure 5A; [24]). In addition, the activity of
non-photochemical, photoprotective energy dissipation assessed from chlorophyll fluores-
cence is positively and linearly correlated with xanthophyll cycle conversion to zeaxanthin
(Figure 5B; [23,24]). Chlorophyll fluorescence measurements thus allow non-destructive,
remote estimates of zeaxanthin level (see also [16]).
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3. Comparative Evaluation of Adaptations in Aquatic and Terrestrial Plants
3.1. Rapid Growth in Duckweeds and Other Aquatic Plants

Lemna grows very fast [3] even under conditions of limited light supply [23,24]. We
suggest that this unique feature may be associated with minimal self-shading within its
relatively thin photosynthetic organs (fronds) and their single layer of fronds (no tiered
structure) across the water surface, which should permit all chloroplasts to contribute
significantly to sugar production. Other floating flowering plants also grow remarkably
fast [42,43], which may be related to a high allocation of resources to photosynthetic tissue
as discussed by Rice [37]. Terrestrial plants growing in soil must invest a sizeable fraction of
their photosynthetically produced sugar into building (i) root structures to provide a stable
anchor in the soil, for water (and nutrient) acquisition, and for the storage of carbohydrates
and (ii) reinforced stem structures for support of the shoot system and transport of water,
nutrients, and sugar between their photosynthetic organs and the roots. In contrast,
floating plants have minimal non-photosynthetic tissue and can thus re-invest most of their
photosynthate into more photosynthetic tissue. The main carbohydrate sink for duckweed
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is vegetative growth, its expanding daughter fronds that also contribute to photosynthetic
productivity. Duckweed lacks typical stems or roots that would act as substantial sinks for
photosynthate, and its roots can be green and contribute to photosynthesis. It has also been
pointed out that Lemnaceae have undergone substantial genome reduction—including
gene clusters that control growth [44] in response to the environment in terrestrial plants.
Unabated growth of new tissue under a wide variety of environmental conditions is thus
duckweed’s main sink activity.

3.2. Continuum of Plant Adaptations to Water Availability

Another perspective from which to view the fast growth of aquatic plants is their rather
continuous access to water. Variable access to water is one of the major environmental
variables for terrestrial plants. Many, but not all, terrestrial species curb stomatal opening,
and growth, under limiting water as a defense strategy [45]. Such a response would appear
less necessary for species that float on water, and duckweeds indeed impose much less
control on either stomata or growth rate [44]. A review by Dolferus [46] entitled “To grow or
not to grow: A stressful decision for plants” concludes that highly responsive modulation
of growth rate—with either slower or faster growth—is one of the major ways for terrestrial
plants to respond to changes in water availability. Table 1 compares the response of aquatic
floating plants with the continuum of responses of different groups of terrestrial plants.

Table 1. Water-acquisition strategies, growth patterns, and species examples that illustrate the
continuum of plant adaptations to water availability.

Habitat Water-Acquisition Strategy Growth Pattern Example

Aquatic plants Continuous access to water body until it dries up Fast growth Lemnaceae

Terrestrial
plants

Continuous access to water until source dries up Very fast growth and life cycle
completion Desert ephemerals

Continuous access to water, increased root volume,
osmotic adjustment

Relatively fast growth
throughout life cycle Annuals and biennials

Continuous access to water table Steady growth throughout the
seasons Palm and mesquite

Enhanced acquisition of minimal soil water via
large root volume, osmotic adjustments

Slow growth despite minimal
soil water

Desert shrub Encelia,
creosote bush

Storage of water in plants Very slow growth Succulents, cacti

Tolerance of seasonal loss of water Seasonal complete growth
arrest Conifers in frozen soil

The high growth rate seen in many aquatic plants [42,43] is reminiscent of the high
growth rates of terrestrial plants that maintain constant access to water throughout their
life cycle (Table 1). Desert ephemerals are an example of terrestrial plants with an extremely
high growth rate that rapidly complete their accelerated life cycle after infrequent major
rainfall events in arid environments [47]. Other examples for terrestrial plants with high
growth rates are annuals and biennials that also complete their life cycle in a relatively
short period of time and grow where they can maintain access to water. These species
may employ evasive approaches to keep internal water content high, e.g., by performing
osmotic adjustment to maintain metabolic activity [48] and increasing their investment in
water-mining root structures [49] (Table 1). These terrestrial plants do not put the brakes on
growth until water becomes scarce, and then switch to seed production—reminiscent of the
production of vegetative storage forms (turions) in Lemnaceae. Yet, other terrestrial plants,
such as palm trees or mesquite, have deep roots that access the ground-water table [50–54],
which supports steady growth despite low rainfall or moisture level in the air. Pronounced
osmotic adjustment [55] and expansion of root volume [56] is also employed by terrestrial
plants that grow very slowly in areas with extremely low water availability (Table 1).

Those terrestrial plants that tolerate—rather than evade—internal water deficits ex-
hibit trade-offs between growth rate and stress tolerance/antioxidant content. In extreme
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natural environments, growth is suspended entirely, such as in cold environments with
seasonally frozen soils (Table 1), where the green needles of overwintering confers exhibit
very high levels of zeaxanthin [26,27]. Many perennial species adapted to seasonally harsh
environments grow incrementally over multiple years—by growing actively during favor-
able seasons and arresting growth during unfavorable seasons. In an agricultural context,
unabated growth is desirable, and floating plants with their fast, continuous growth thus
offer attractive opportunities that rival those of terrestrial annuals and biennials.

3.3. Plant Source–Sink Balance and the Response to Light, CO2, and Nutrient Supply

While both CO2 and light are necessary inputs for photosynthesis, the proverbial “too
much of a good thing” with respect to CO2 and/or light can have negative impacts on
plant nutritional quality, growth, and plant lifespan. A report by Myers et al. [57] entitled
“Increasing CO2 threatens human nutrition” addressed possible adverse effects on plant
protein as well as other nutrients. Whereas these impacts on plant nutritional quality
for the consumer appear to be rather universal for C3 species, other possible impacts of
elevated CO2 vary among species and with environmental conditions and include possible
disruption of photosynthetic productivity as well as accelerated senescence (for a recent
review, see [58]). In the following, we examine the possibility that duckweed may be
less sensitive to the possible adverse effects of elevated CO2 on plant productivity than
many other species. We first discuss the effect of elevated CO2 on protein (as well some
micronutrients) in the context of plant source–sink balance. Photosynthetic organs are the
plant’s only source of newly formed carbohydrates, whereas all sugar-consuming tissues
are sugar sinks. The maximal capacity of photosynthesis is regulated by the demand for
sugar from the plant’s sink tissues [30,59,60]. This regulation by demand is well described
for terrestrial plants; excess carbohydrate build up in the leaves leads to downregulation of
photosynthetic capacity, which can be the case under conditions of elevated atmospheric
CO2 and especially in combination with additional environmental factors that cause source–
sink imbalances (see, e.g., [61]). Lemna exhibits some of the responses described for land
plants with respect to the content of protein and micronutrients under very high light
and/or CO2 supply (see below).

Under moderate supply of light and earth-ambient CO2, light drives photosynthetic
electron transport and allows CO2 to be fixed into sugar as the fuel for growth. A combi-
nation of high light supply and elevated CO2 produces more sugar than is consumed by
sink tissues, which leads to feedback inhibition (Figure 6) with build-up of carbohydrate in
leaves, backed-up electrons in the photosynthetic electron transport chain, and formation
of increased levels of reactive oxygen species (ROS) that are potent repressors of photosyn-
thetic and other genes [62–65]. An extreme level of foliar carbohydrate build-up and ROS
production under elevated CO2 can curb the growth of new tissue and accelerate plant
senescence [66].
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3.4. Comparative Evaluation of Plant Response to Light Supply

Unlike most terrestrial plants, Lemna exhibited the same growth rate in low and high
light (Figure 7; [24]), which can be viewed as an absence of growth reductions in low light
or as an absence of growth reductions in highly excessive light. In the example of Figure 7,
Lemna exhibited the same relative growth rate, measured as daily area expansion of new
tissue, when grown under low light (50 µmol photons m−2 s−1) as when grown with a
20× greater light supply (1000 µmol photons m−2 s−1) for 24 h a day (Figure 7), which
exceeds the total daily light supply on the longest, brightest day on earth. However, plants
did accumulate more dry biomass (presumably carbohydrate) per frond area under the
high light level. Likewise, Lemna aequinoctialis fronds growing under continuous light (24 h
photoperiod) accumulated more biomass than fronds growing under a 12 h photoperiod of
an intermediate light intensity of 200 µmol photons m−2 s−1 [67].

At the same time, Lemna did show some downregulation of maximal photosynthetic
capacity (as a correlate of the number of photosynthetic enzymes) as well as pronounced
downregulation of light-harvesting capacity (chlorophyll content) under the latter very high
light supply (Figure 7; [24]). This downregulation can be viewed as economy on part of a C3
plant, whereby greater light exposure and more CO2 are able to support the same growth
rate (area expansion) and more biomass accumulation with a lesser investment in proteins
for light collection and CO2 fixation while releasing nitrogen from these photosynthetic
proteins for use in area expansion [68]. A consequence of this downregulation is a lower
nutritional quality in the form of a lower fraction of the accumulated biomass that consists
of protein. The percentage of protein of dry biomass dropped from 46% in low light to
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under 24% in high light. It has been suggested [69] that the CO2-fixing protein ribulose-
bisphosphate carboxylase oxygenase may serve in a dual role as not only the CO2-fixing
enzyme in photosynthesis but also a vegetative storage protein in duckweed fronds. This
dual role offers an explanation as to why duckweed vegetative protein would show a
response to the demand for carbohydrate from sink tissues.
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Figure 7. Effect of growth light intensity on (A) relative growth rate, (B) photosynthetic capacity,
(C) chlorophyll content, and (D) biomass per frond area as well as (E) percentage of protein of this
biomass for Lemna gibba. Data from [23]. n.s., not significant. Asterisks indicate significant differences
at p < 0.01 (**) or p < 0.001 (***).

Figures 8 and 9 illustrate responses of Lemna duckweed to a combination of high light
and elevated CO2 with respect to a suite of similar features related to plant productivity,
photosynthesis, and nutritional quality for the consumer. Under an extremely high CO2
level (0.7%) in the presence of high light (700 µmol photons m−2 s−1 for 24 h a day)
and replete (sufficient) nutrient supply, duckweed grew new tissue at a relative growth
rate of frond area expansion with a dry biomass content per area that were both similar
under high versus ambient CO2 (Figure 8A,B). This finding is consistent with the high
growth rate, i.e., high sink activity in the form of new tissue growth, of duckweed, and
supports the notion that duckweed is remarkably insensitive to the adverse effects of
CO2 on photosynthetic productivity. In contrast, there was—as expected—evidence for
photosynthetic downregulation in the form of a somewhat lower photosynthetic capacity,
much lower chlorophyll content, and much lower zeaxanthin content on a frond area basis
(Figure 9) under high versus ambient CO2. These findings are consistent with the principle
that the plant can support growth and biomass accumulation with less CO2-fixing protein
in the presence of high CO2 levels. Photosynthetic downregulation targets not only the
CO2-fixing enzymes but also several proteins involved in light collection and processing,
including chlorophyll-binding proteins [60]. In turn, lower chlorophyll levels reduce light
absorption and the need for the dissipation of excess excitation energy by zeaxanthin and
other carotenoids. This downregulation of photosynthesis was thus associated with lower
nutritional quality of the plant (Figures 8 and 9) in the form of a lower content of protein,
zeaxanthin, lutein, and β-carotene (provitamin A). Lutein [70] and β-carotene [71] have
additional roles in plant photoprotection and also act synergistically with zeaxanthin as
membrane-soluble antioxidants that fight inflammation in humans [20–22].
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p < 0.001 (***).

While Lemna is thus susceptible to effects of high CO2 that are undesirable for the
consumer, it exhibited no decline in the growth of new tissue under conditions of favorable
nutrient supply. This relatively modest response to high light and CO2 supply may,
once again, be associated with the low responsiveness of duckweeds’ growth rate to
environmental conditions. Furthermore, we saw no difference in plant response to CO2
over a wide range of CO2 levels from 0.086% (2 × earth-ambient; not shown) up to 0.7%.

3.5. Comparative Evaluation of Plant Response to a Combination of High CO2, High Light Supply,
and Limiting Mineral Nutrient Supply

Source–sink imbalance is further exacerbated by a combination of elevated CO2 and/or
high light supply (which increase source strength) with additional environmental factors
that decrease sink strength. An example of such an additional factor is a limited mineral nu-
trient supply [29,73]. The growth of sink tissues is highly sensitive to a shortage of mineral
nutrients, especially nitrogen [74]. In terrestrial plants, the combination of elevated CO2
and/or high light supply with low nitrogen supply exacerbates source–sink imbalance and
downregulates the synthesis of photosynthetic protein [75,76], as well as other metabolic
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processes [61]. Growth under elevated CO2 can also lead to premature leaf senescence
when sugars accumulate to levels that inhibit photosynthetic gene expression [77] (see
also [75,78–80]). Both growth declines and accelerated senescence can be viewed in the
context of sugar signals controlling plant progression through the life cycle [81]. Carbo-
hydrate accumulation can be a signal that sufficient resources are available for flowering
and completion of the life cycle, and such signals are generated earlier in a plant’s life
cycle when limited mineral nutrients enhance carbohydrate accumulation [81]. In fact, it
was proposed that some level of nitrogen fertilization of nutrient-limited natural plant
communities may mitigate the negative effects of elevated CO2 [82].

Duckweeds likewise respond with enhanced carbohydrate accumulation to a com-
bination of high light supply and/or elevated CO2 coupled with low nutrient levels in
the medium. Pronounced starch accumulation in fronds growing in a nutrient-deficient
medium [83–85] was further exacerbated by extended photoperiods [86]. However, several
traits of duckweeds may lessen the overall impact of such combinations of environmen-
tal factors. Duckweeds exhibit a higher tolerance than terrestrial plants to carbohydrate
build-up and can accumulate [5] considerable starch levels before showing photosynthetic
downregulation [23,83,86,87]. In terrestrial plants, a limited capacity for nitrogen uptake
and utilization caused enhanced sink limitation [66,88], whereas a high propensity for
efficient nitrogen uptake alleviated sink limitation. Compared to terrestrial plants, Lemna
exhibits highly efficient uptake [89,90] and conversion of nitrogen to amino acids [91] and
accumulates much larger quantities of protein in its fronds [4,83].

Effective nutrient uptake and the propensity to accumulate high protein levels allows
duckweed to reclaim polluted waters [6,8] and convert wastewater to high-quality animal
feed [5,7,9,92]. The quantity of edible protein produced by duckweed per hectare of
production area greatly exceeds that of soybean [5,93] since duckweeds accumulate high
levels of vegetative storage protein in their fronds [4,93], whereas soybean accumulates
high levels of protein only in its seeds, which represent a small fraction of the plant. Highly
efficient nutrient uptake and accumulation of vegetative storage protein, resulting in
exceptionally high plant protein contents, is also seen in other aquatic floating plants [94,95].
Many of these other aquatic plants are also edible; more than 70 wetland plants of India
were identified as edible or medicinal plants by Swapna et al. ([38], e.g., ten species in the
Asteraceae, six each in the Poaceae and Commelinaceae, and six in the order Alismatales,
with four Araceae and two Hydrocharitaceae; see also [96]). From an ecological perspective,
a combination of effective uptake and the storage of nitrogen as vegetative storage protein
in aquatic environments may be advantageous in small- to mid-sized freshwater bodies that
receive an intermittent influx of nutrients. Duckweeds were shown to continue growing in
low-nutrient media for a certain amount of time by utilizing internal nutrient stocks [83].
Efficient nutrient uptake and storage, as vegetative protein, should enable the plants to
take advantage of the pulses of nutrient availability in support of the continuous growth
of new fronds until dense duckweed mats dramatically reduce the light available to algae
and submerged aquatic plants that compete for nutrients. The properties shared by aquatic
floating plants that set them apart from most terrestrial plants thus reflect adaptations to
the unique aquatic environment with its inherent variability and opportunities.

3.6. Comparative Evaluation of Plant Response to Combinations of High CO2, High Light Supply,
and High Mineral Nutrient Supply

Remarkably, high nitrate supply can also decrease photosynthetic rates of terrestrial
plants, especially when combined with conditions that result in carbohydrate build-up,
such as extended photoperiods [97] or elevated CO2 [98,99]. Under these conditions,
excessive ROS production in the chloroplast is combined with the production of additional
oxidants in other cell compartments that participate in nitrate metabolism. Specifically,
a high activity of the nitrate-reducing enzyme nitrate reductase produces high levels of
messengers (both ROS and reactive nitrogen species, RNS; [99]) that modulate nitrogen
metabolism [100–102] and can also trigger plant senescence ([66,103]; see also [104,105]).
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Such findings led to a suggestion that “in a future environment with high CO2 levels the
use of fertilizers containing low concentrations of nitrate could improve . . . [nitrogen]
assimilation” in terrestrial crops [106]. A similar warning and recommendations were
issued by Bloom [107] in a communication entitled “As carbon dioxide rises, food quality
will decline without careful nitrogen management.” Ammonium metabolism does not
have the same propensity as nitrate metabolism for the generation of ROS and RNS [108]
and the resulting disruption of redox homeostasis. On the other hand, the accumulation
of ammonium in plant tissue can disrupt cellular pH balance (and some other aspects
of metabolism) in many terrestrial plants [109]. However, some plants, including those
growing in marshes, are adept at using ammonium [107]. The preference of duckweeds
(and other aquatic plants) for the uptake of ammonium over nitrate also has the potential
to avoid high rates of nitrate reduction and its adverse effects, and duckweed’s efficient
conversion of ammonium to vegetative storage protein limits ammonium accumulation
and resulting toxicity.

4. Plant–Microbe Interaction and the Abiotic Environment

Whereas adverse effects of high CO2 in the absence of nutrient deficiency or other
abiotic stresses can presumably be mitigated by avoiding high light intensities or long
photoperiods, the additional presence of unfavorable nutrient conditions will likely require
other measures. Plant–microbe interaction may offer the mitigation of adverse effects of
combinations of environmental factors that exacerbate the source–sink imbalance. The
extent of plant response to the presence of microorganisms depends on environmental
conditions [110] such as CO2 level (see, e.g., [111–114]) and nitrogen availability (see,
e.g., [115,116]). Lemna minor exhibited a decline in growth rate, which was strongly exac-
erbated under elevated CO2 levels (twice-ambient), starting several days following the
transfer from replete nutrient medium to very low nutrient levels in Schenk and Hilde-
brandt [72] medium diluted by a factor of 1/20 [117].

While experimental manipulation of the plant microbiome is challenging in terrestrial
plants growing in soil, some evidence is available for enhanced plant productivity in the
presence of fungal partners of terrestrial plants [118,119]. Inoculation of terrestrial plant
roots with arbuscular mycorrhizal fungi increased root volume and activity, triggering
photosynthetic upregulation in some systems [118,120]. Conversely, the elimination of
the mycorrhizal system of cucumber resulted in declining photosynthesis rates ([121]; see
also [122]). Transcriptomic analysis of such systems revealed differential gene expression
in pathways of photosynthesis, hormone metabolism, carbohydrate metabolism, amino
acid metabolism, stress response, signal transduction, and antioxidation [119].

Legumes that feature symbioses with N2-fixing bacteria had greater photosynthesis
rates under elevated CO2 and maintained higher protein content and higher overall ratios of
nitrogen to carbon in their tissues [123]. In contrast, most non-leguminous C3 crops exhibit
increased carbon-to-nitrogen ratios under elevated atmospheric CO2 [124,125]. Lemnaceae
exhibit robust interaction with microorganisms [126–128], and duckweed photosynthesis
rate as well as growth rate can be stimulated by the plant microbiome [127–132]. Whereas
plant–microbe interaction can thus clearly benefit the plant, the existence of additional
layers of complexity should be noted. Microorganisms may engage in competition with
plants for mineral nutrients in certain environments; the same bacterial strains that strongly
promoted duckweed growth under some conditions reduced plant growth under limiting
levels of mineral nutrients other than nitrogen [127,130,133]. Duckweeds are an attractive
model system for the study of plant–microbe interaction due to the ease of inoculation and
manipulation of the rhizosphere as well as the fact that their small size and high growth
rates favor multi-factorial design of growth experiments in different growth environments
with plants fully acclimated to these conditions. Other aquatic floating plants also form
alliances with microorganisms, especially potential N2-fixing clades (see, e.g., [134]).

An integrative review of literature on (i) plant performance under high CO2 and (ii)
plant–microbe interaction and symbioses between photosynthetic and non-photosynthetic
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organisms [58] suggests that microorganisms can enhance plant photosynthetic produc-
tivity and nutritional quality (Figures 10 and 11) by (i) serving as an additional sugar sink
that prevents carbohydrate build-up [130,132,135–138] and resulting excess ROS formation
(see above), (ii) balancing nutrient supply (limiting or excess; see above) and producing
growth factors [139], (iii) producing gene regulators that safely re-route electrons and,
thereby, further counteract disruption of redox homeostasis under both limiting nutrient
supply and very high nitrate supply (see, e.g., [108,140]). Alternative outlets for elec-
trons include cyclic electron flow in the chloroplast [141–146]. Since mitochondria and
cell membrane-associated processes also produce excess oxidants under elevated CO2
levels, the maintenance of cellular redox homeostasis [64] requires coordination of electron
flow in chloroplasts and mitochondria. Plant-specific mitochondrial alternative oxidase
(AOX) is a key player in this coordination [147–151] and serves as a safe outlet for electrons
when environmental shifts threaten to disrupt metabolism [147,152,153]. Plant AOX levels
increased in response to high CO2 and light supply [147,148,154] as well as under limit-
ing nitrogen [155]. Furthermore, the plant rhizosphere microbiome interacts with plant
AOX [140].
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Plant–microbe interaction may thereby allow plants to take advantage of high light
and CO2 for growth and biomass accumulation by maintaining a high photosynthetic
capacity with high levels of photosynthetic protein, chlorophyll, and chlorophyll-protecting
antioxidants. This suggestion is supported by recent findings that the inoculation of
previously sanitized L. minor with pond water supporting populations of L. minor pre-
vented the decline in relative growth rate seen upon transfer to 1/20 strength Schenk
and Hildebrandt medium in un-inoculated controls [117]. Moreover, inoculated fronds
accumulated greater levels of dry biomass with the same ratio of protein to biomass as
uninoculated fronds under either ambient or twice-ambient CO2 [117]. By supporting a
sustained high photosynthetic capacity, microorganisms can thus favor the production of a
steady stream of carbohydrate for consumption by both microorganisms and growing plant
tissue and discourage metabolic imbalances that trigger photosynthetic downregulation
and/or accelerated senescence.

5. Conclusions

The unique features of aquatic plants reflect adaptations to the freshwater environment
and include rapid growth, high productivity, and strong accumulation of high-quality
vegetative storage protein as well as essential human micronutrients. These micronutrients
include carotenoids with wide-ranging roles in human health and a unique carotenoid
composition of Lemna. Other aquatic plants may share this latter trait and should be further
tested for edibility and nutritional quality. The relative insensitivity of duckweed’s growth
rate to environmental conditions and plant source–sink imbalance may allow duckweeds
to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of
biomass production and relative insensitivity to declines in the growth of new tissue. It may
be possible to mitigate the declines in nutritional quality under elevated CO2 associated
with regulatory adjustments in photosynthetic metabolism by plant–microbe interaction.
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