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“Success is not final, failure is not fatal, it is the courage to continue that counts.”
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A B S T R A C T

Artificial Intelligence is a non-stopping field of research that has experienced an in-
credible growth last decades. Some of the reasons for this apparently exponential
growth are the improvements in computational power, sensing capabilities and data
storage which results in a huge increment on data availability. However, this growth
has been mostly led by a performance based mindset that has pushed models to-
wards a black-box nature. The performance prowess of these methods along with the
rising demand for their implementation has triggered the birth of a new research field.
Explainable Artificial Intelligence. As any new field, XAI falls short in cohesiveness.
Added the consequences of dealing with concepts that are not from natural sciences
(explanations) the tumultuous scene is palpable. This thesis contributes to the field
from two different perspectives. A theoretical one and a practical one. The former is
based on a profound literature review that resulted in two main contributions: 1) the
proposition of a new definition for Explainable Artificial Intelligence and 2) the cre-
ation of a new taxonomy for the field. The latter is composed of two XAI frameworks
that accommodate in some of the raging gaps found field, namely: 1) XAI framework
for Echo State Networks and 2) XAI framework for the generation of counterfactu-
als. The first accounts for the gap concerning Randomized neural networks since
they have never been considered within the field of XAI, although some of the main
concerns for not pursuing their application is related to the mistrust generated by
their black-box nature. The second presents a new paradigm to treat counterfactual
generation. The search for counterfactuals is governed by three different objectives
as opposed to the classical approach in which counterfactuals are just generated fol-
lowing a minimum distance approach of some type. This framework allows for an in
depth analysis of a target model by means of counterfactuals responding to: Adver-
sarial Power, Plausibility and Change Intensity. All in all, the achievements this Thesis
reports contribute to the general knowledge on model explainability in a momen-
tum when Artificial Intelligence model must proliferate and become trustworthy in
almost all disciplines and fields.
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My dear, here we must run as fast as we can, just to stay in place.
And if you wish to go anywhere you must run twice as fast as that.

— Lewis Carroll - Alice’s Adventures in Wonderland
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1
I N T R O D U C T I O N

1.1 context

Society has been witness of the different rises and falls of Artificial Intelligence (AI)
in history [2]. From the promises and abandonment of early machine translation
and connectionism 1950-1970. Followed by the conquest and collapse of the reign
of LISP (list-processing) 1980-1990 to the current heights with DL (Deep Learning)
1997-2021. Currently, AI accounts for 3.8% of the whole peer-review research corpus
in 2020 from a 1.3% in 2011 [3]. To match this wonderful trend, the amount of journal
publications grew by 34.5% from 2019 to 2020. Now it constitutes a body of research
of over eighty thousand articles [3]. AI community has the obligation to strengthen
its vulnerabilities so that another winter does not happen.

In the beginning, AI systems were tractable and easy to understand, however, this
trend has long been broken. The upsurge of Deep Learning (DL) comprises a restless
search for empirical prowess that obscures the internals of the models. The vastness
of the parametric space of such systems make them less intuitive and opaque. Hence
the coining of the term black-box [4] which successfully transmits the overall feeling
of mistrust. The opposition to this frenzy of performance is governed by the search
for transparency which invokes a full understanding of the internals of a given model
[5].

The continuous increment in AI’s performance has been pushing the implementa-
tion of algorithms in increasingly more fields. The interaction of this fact with the
growing nature of opaqueness has started to grow concerns among users [6]. Con-
cerns that revolve around the usage of models that do not allow for detailed expla-
nations about their behaviour [7]. Most fields of application would benefit of, if not
demand, explanations that support a model’s output. Something that eases the user’s
task of welcoming this new tool to their toolbox. Furthermore, AI has always been
closely linked to ethics due to its connection to human life. Nowadays, aspects of this
sort are starting to arise in national and international regulations which enforces the
need for Explainable Artificial Intelligence.

Interpretability, tractability and trustworthiness are characteristics that humans
usually seek prior to depositing their trust in something. These characteristics could
be derived from general ethics or Machine Learning ethics when specifically directed
towards the usage of ML [8–10]. AI, as other fields, cannot base its advancement in
performance solely. A single-objective driven research leaves other interesting prop-
erties aside and starts to drift from its primary intent. Performance driven research
is one of the main reasons for the existence of a tradeoff between model interpretabil-
ity and performance. The allusion to this tradeoff is played frequently to advocate
for Neural Networks. However, the existence of such a tradeoff is not as straight-
forward as it appears. Creating an example where a interpretable model (e.g. linear
regression) fails to learn the pattern in a given dataset, while a black-box (e.g. neural

1



2 introduction

network) does learn it accurately is quite simple. However, the opposite is also true,
it is not hard to devise an example where the opposite happens. A neural network
overfits a dataset and is unable to predict correctly while the interpretable model
does. These two cases would present opposite examples of the tradeoff theory. Be-
ing there a tradeoff between performance and interpretability does not mean that a
more complex model always results in more performance and less interpretability.
It means that, given a setting where highly complex relations are to be learned, the
selection among a more complex model (better performance) and a less complex one
(worse performance) will rise the dilemma of the tradeoff. Consequently, the tradeoff
is not solely linked to the concept of performance. It is largely linked to the context
of the model itself. Problems where features are intractable, non-relatable and highly
diverse require complex models to learn the patterns contained within. In such prob-
lems is where this tradeoff appears, a simpler, interpretable model is not able to
capture the whole of it and fails to perform adequately. A more complex black-box
model is able to capture the extent of the problem but is non interpretable.

One way of easing this problem is to lay a bit of attention at interpretability. Ma-
chine Learning (ML) models could greatly benefit from it. By providing subsystems
or techniques that improve the understanding of a model’s predictions, visualize its
learned rules or inform about the vulnerabilities that might divert its prediction, ML
models could improve their interpretation by three main points:

• Bias could be minimized when a better understanding of the workings is present.

• Robustness could be improved by means of a deeper knowledge about the
involved parameters and their repercussion

• Guaranties about the real reasons driving the output of the model could be
verified.

These three outcomes are closely related to AI ethics, namely: Equity, Reproducibility
and Responsibility.

The field of eXplainable AI (XAI) [7] is in charge of giving birth to the set of tech-
niques that will allow to 1) create highly performing models that are explainable and
2) effectively aid humans to trust, understand and manage the upcoming generation
of artificial intelligent partners. However, this is still a toddler of a field that has many
discrepancies that need to be sorted out. The literature about XAI, although, growing
significantly, has not still agreed upon the common grounds in the context of Explain-
able Artificial Intelligence. Due to its intersection with the nature of explanations its
definitions are still a bit vague and need to be addressed. Connected to this gap in
the agreement of the common definitions, a taxonomy should be built. One that ac-
counts for all the work conducted in the field that would serve as a departing point
to any new-comer interested in the field. Product also of these differences in terms
and concepts, a space that needs filling is devised. A space to accommodate for the
metrics needed to evaluate the advances of the field. Finally, coupled with all this a
plethora of methods and frameworks are needed to fulfill the needs of researchers
and users alike



1.2 motivation and objectives 3

1.2 motivation and objectives

As stated before, AI is a growing field that that has seen its troops more than doubled
in the last years. This growth has come hand in hand with the breaking of almost all
the barriers found in the field until the date. However, the paths needed to be taken
in order to achieve these marvels have also brought opaqueness in their functioning,
followed by mistrust from users. Deep Learning is one by one conquering all the per-
formance milestones in the field, from surpassing humans ability in object detection
thanks to ImageNet [11] to the conquest of Go, what was deemed the hardest game
in the world [12], to mastering human machine translation [13] and surpassing the
ability to generate human photo realistic images [14].

All these successful milestones had one thing in common. They are all part of a
context of unbelievable complexity, data diversity and dimension, hence the trade-
off mentioned earlier (interpretability vs accuracy) comes into play again. There is
no doubt that these achievements are a product of the development in computation
power and Deep Learning. Which means, they would not have been possible without
"black box" models. However, such models always bring up concerns of "what if?".
What if a model such as this was deployed in a sensible environment. An environ-
ment in which these model’s decisions would impact human lives. There are two
possible routes to take from this dilemma if we sort out the ones in which the models
are discarded. On the one hand, the problem could be solved by bypassing the model
with a human observer that will always take the final decision. Although the solution
might be effective, it would not be efficient since many of the strengths of the model
would be limited (speed and autonomy). On the other hand, given the right tools,
the internals of a model should be understood. Its boundaries and deficiencies mini-
mized and its working made compliant with regulations. Given that this situation is
getting more and more common each day, XAI’s field is getting strength and it is the
cornerstone of AI implementation in the real world.

Being the development of AI as it has been these last years, most world govern-
ments and agencies have put plans in place to address the gap found in the explain-
ability of the models. Many works [15–21] have summarized the development of the
field of XAI, however, they have not focused in the search for a unified framework
of concepts and metrics that will empower scrutiny and analysis over the field and
its proposed methods. This thesis focuses in two main things. First, the creation of
a framework that will serve its purpose as a guide. A guide meant to recollect and
categorize all the work that has been done during the years under a common set of
definitions and concepts that will ease the future development of the field. Second,
the addressing of the challenges devised in the field by means of the creation of new
techniques and frameworks. Hence, the focus of this thesis can be divided in four
different objectives:

• Surveying the field of XAI: A systematic review of the state of the art that
goes past the simple recollection of the advancements of the field. Attempting
to understand the different reasons involved in the search for XAI. "What is it?",
"Why is it done?", "What for is it done?" and "How is it done?"
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• Proposition of a new set of concept definitions: A set of concepts that sum-
marize the diverse references found in the literature. There are many concepts
and reasons related to the field of XAI that have been mentioned but not sum-
marized nor agreed upon. Concepts of: understandability, comprehesibility, inter-
pretabiliy, explainability and transparency. And reasons covering: trustworthiness,
causality, transferability, informativeness, confidence, fairness, accessibility, interactiv-
ity and privacy awareness.

• Creation of a new taxonomy for the field based on these definitions: A struc-
ture that, based on set of agreed upon terms, is able to account for all the works
conducted in the field.

• Creation of a framework that improves a vulnerability of the field: Given
the analysis obtained from the previous three objectives. This thesis contributes
to filling some technical gaps with the creation of two XAI frameworks. This
frameworks are centered around the idea of including the audience in the loop
of XAI generation. One will attempt at focusing out of the mainstream arena
while the other proposes a new approach that strengthens one of the core
methodologies of XAI by paying a closer attention to humans.

1.3 outline and contributions

This thesis is outlined by following the previously mentioned overall structure. One
chapter accounts for the first three, more theoretical, objectives previously mentioned.
Followed by two other chapters concerning the technical (application) contributions
of the thesis. Finally a last chapter containing the final remarks and future lines of
work. A brief summary of each chapter is described below.

1.3.1 Chapter 2: Background

This contains the theoretical study and contribution of the thesis. It firsts introduces
an analysis of the main concepts of the search for XAI, namely: "What", "Why", "What
for" and "How". This is where a proposition for the definition of Explainable Artificial
Intelligence is risen. Followed by the proposition of a new taxonomy that categorizes
every technique generated during the years. Then the most important works concern-
ing each of the categories of the taxonomy are described.

1.3.2 Chapter 3: On the Post-hoc Explainability of Deep Echo State Networks

This chapter presents the first technical contribution concerning the field of random-
ized neural networks, which have no methods nor frameworks at disposal for seeking
explainability. It briefly presets the underlying theoretical concepts needed for under-
standing randomized neural networks, specifically Echo State Networks (ESN). Then
presents a novel framework to address explainability in the context of ESN and Deep
ESNs with its corresponding experiments proving its validity for different audiences.
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1.3.3 Chapter 4: Exploring the Trade-off in Counterfactual Explanations

The forth chapter introduces the second technical contribution of this thesis. It pro-
poses the paradigm of treating counterfactual generation as a multi-objective problem
by means of generative adversarial networks. This contribution presents a framework
in which counterfactual generation is utilized to audit a target model. Aside from
what it has been proposed previously, this framework considers three main objec-
tives for this search, namely: Adversarial power, Plausibility of the solution and Change
intensity.

1.3.4 Chapter 5: Concluding Remarks

This last chapter summarizes the concluding remarks product of the study carried
throughout this thesis. This chapter also presents the outcomes of this thesis in a
quantifiable manner accounted for in a set of research contributions submitted to
specialized journals and conferences. Finally, it describes the future lines of research
that could be of great importance for the field.

1.4 reading this thesis

As mentioned before, this thesis contemplates two different branches of research. The
first one focuses on a theoretical analysis of the field. The second gathers the technical
contributions presented. Due to the different sub-fields these contributions relate to,
a reader may want to jump around the content of this thesis as it fits their needs.
Chapter 2 contains the theoretical part of the thesis and serves as a backbone to the
motivations for the subsequent two chapters. Its reading could be beneficial to the
overall understanding. However, this is not necessary, specially for the audience with
a certain expertise in the field of Explainable Artificial Intelligence. Then, Chapter 3

and 4 cover the specific analysis carried out upon the fields of Echo State Networks
(former) and counterfactual explanations (latter). Finally, Chapter 5 summarizes the
resulting conclusions of all the work so alternating each chapter with the last one can
be a reasonable way of approaching the reading.





2
B A C K G R O U N D

This first chapter covers the theoretical contribution of this thesis. As introduced
before, the rising trend of contributions and concerns around XAI and related con-
cepts motivates an in depth analysis of the field. This literature outbreak shares its
rationale with the research agendas of national governments and agencies. Although
some recent surveys [15–21] summarize the upsurge of activity in XAI across sectors
and disciplines, this first chapter aims to cover the creation of a complete unified
framework of categories and concepts that allow for scrutiny and understanding of
the field of XAI methods. As we will later show in detail, model explainability is
among the most crucial aspects to be ensured for the fruitful implementation of AI in
the real world. All in all, the novel contributions of this chapter can be summarized
as follows:

1. Grounded on a first elaboration of concepts and terms used in XAI-related
research, we propose a novel definition of explainability that places audience
(Figure 2.1) as a key aspect to be considered when explaining a ML model. We
also elaborate on the diverse purposes sought when using XAI techniques, from
trustworthiness to privacy awareness, which round up the claimed importance
of purpose and targeted audience in model explainability.

2. We define and examine the different levels of transparency that a ML model
can feature by itself, as well as the diverse approaches to post-hoc explainability,
namely, the explanation of ML models that are not transparent by design.

3. We thoroughly analyze the literature on XAI and related concepts published to
date, covering approximately 400 contributions arranged into two different tax-
onomies. The first taxonomy addresses the explainability of ML models using
the previously made distinction between transparency and post-hoc explainabil-
ity, including models that are transparent by themselves, Deep and non-Deep
(i.e., shallow) learning models. The second taxonomy deals with XAI methods
suited for the explanation of Deep Learning models, using classification crite-
ria closely linked to this family of ML methods (e.g. layerwise explanations,
representation vectors, attention).

4. We enumerate a series of challenges of XAI that still remain insufficiently ad-
dressed to date. Specifically, we identify research needs around the concepts
and metrics to evaluate the explainability of ML models, and outline research
directions toward making Deep Learning models more understandable. We
further augment the scope of our prospects toward the implications of XAI
techniques in regards to confidentiality, robustness in adversarial settings, data
diversity, and other areas intersecting with explainability.

The remainder of this chapter is structured as follows: first, Section 2.1 and subsec-
tions therein open a discussion on the terminology and concepts revolving around

7
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explainability and interpretability in AI, ending up with the aforementioned novel
definition of interpretability (Subsections 2.1.1 and 2.1.2), and a general criterion to
categorize and analyze ML models from the XAI perspective. Sections 2.1.5.1 and
2.1.5.2 proceed by reviewing recent findings on XAI for ML models (on transparent
models and post-hoc techniques respectively) that comprise the main division in the
aforementioned taxonomy. We also include a review on hybrid approaches among
the two, to attain XAI. Benefits and caveats of the synergies among the families of
methods are discussed in Section 2.4.3, where we present a prospect of general chal-
lenges and some consequences to be cautious about. Finally, Section 2.5 concludes
the chapter with an outlook aimed at engaging the community around this vibrant
research area, which has the potential to impact society, in particular those sectors
that have progressively embraced ML as a core technology of their activity.

2.1 explainability : what, why, what for and how?

Prior to any further analysis of the literature. It is of paramount importance to firstly
set the basis for what explainability stands for in the field of AI and ML more precisely.
This section revisits the many definitions (what?), reasons (why?, what for?) and the
paths to achieve it (how?) and builds the grounds for the rest of this thesis.

2.1.1 Terminology Clarification

The first issue that impedes the establishment of a common ground in the field of
XAI is the interchangeable use of the terms interpretability and explainability. These
two concepts are distinct and therefore they should be differentiated. On the one
hand, interpretability acts as a passive property of a given model. This property, also
called transparency some times, refers to the level of sense a given model makes for
a human observer. On the other hand, explainability represents an active property. Ex-
plainability describes the actions taken by a given model with the intent of making its
functions clearer or easier to understand for a human observer. Among the most com-
monly used nomenclature, five terms are distinguishable, namely: Understandability,
Comprehensibility, Interpretability, Explainability and Transparency.

• Understandability refers to the ability a given model has to ease a human’s un-
derstanding of its workings. Also called intelligibility, does not need to explain
its internal functioning nor the manner in which the data is processed internally
[22].

• Comprehensibility stands for the ability of a given model to present its internal
knowledge in an understandable way for a human observer [23–25]. This brief
notion can be extracted from the work of Michalski [26]. From the author itself,
“the results of computer induction should be symbolic descriptions of given entities,
semantically and structurally similar to those a human expert might produce observing
the same entities. Components of these descriptions should be comprehensible as single
‘chunks’ of information, directly interpretable in natural language, and should relate
quantitative and qualitative concepts in an integrated fashion”. Given the difficulty of
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its quantification, complexity evaluation is usually closely placed to a model’s
comprehensibility [21].

• Interpretability acts as the inherent ability of a model to present its meaning in
an understandable manner for humans.

• Explainability refers to the interface between a model and a human. The expla-
nation works as an accurate proxy of the model that is also comprehensible to
humans [21].

• Transparency responds to the property of a model that is understandable. Given
that understandability can be measured in different levels, transparent models
are divided in three different categories: simulatable models, decomposable
models and algorithmically transparent models [5].

From the definitions presented above, understandability places itself as the most rel-
evant one for XAI. All the definitions are somehow tied to this notion. Transparency
and interpretability refer to the property of a model of being inherently understand-
able. Comprehensibility moves the scope towards the audience and comprehends their
capability to understand a model. Understandability links these concepts in that it
measures the degree to which a human can understand a decision made by a model
(Transparency and interpretability) or the knowledge contained within the model (com-
prehensibility). This differentiation brings up the importance of introducing the au-
dience in the definition of XAI. The audience bridges understandability by its two
fronts and makes it the backbone of XAI.

2.1.2 What?

The field of philosophy is still discussing the existence for a unified theory of expla-
nation. A theory able to form an approximation of a common structure and intent
around an explanation [27]. However, such an achievement is still uncompleted. The
best of efforts have brought together different approaches extracted from different
knowledge disciplines. The same has happened when addressing interpretability in
AI. There is not a consensus of what these terms (interpretability and explainabil-
ity) really mean yet. However, this fact has not stalled the claims of achievements
referring to interpretable models and techniques that brandish explainability. As a
starting point to from which to build upon it might be helpful to use the definition
of Explainable Artificial Intelligence (XAI) coined by D: Gunning [7].

“XAI will create a suite of machine learning techniques that enables human users to under-
stand, appropriately trust, and effectively manage the emerging generation of artificially
intelligent partners”

This definition is composed by two main elements, namely, understanding and
trust. These two concepts must be addressed beforehand, however it faults at con-
sidering other concerns that revolve around this issue. Causality, transferability, in-
formativeness, fairness and confidence [5, 28–30]. These concepts will be covered
thoroughly later, although it seemed important to mention them in here to support
the claim of incompleteness of the prior definition of XAI.
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As lightly introduced in the paragraph before, a clear and complete definition of
Explainable Artificial Intelligence is still out of reach. To work towards the complete-
ness of this definition, first a clear denotation of explanation is required, since a
broader reformulation of the definition would fall short of compelling the extent of
it.

An explanation can be defined as "the details and reasons that someone gives to make
something clear or easy to understand" (definition by the Cambridge Dictionary of En-
glish [31]). By translating this into the context of Machine Learning: "the details or
reason a model gives to make its functioning clear or easy to understand", two main stress
point can be devised. First, details or reasons ought to be linked to an audience in or-
der to confer any meaning. Second, the degree to which these details or reasons have
completely resolved the doubts from the issue being explained is also completely de-
pendent on the audience to which they have been presented. It follows logically that
in order to solve these discrepancies, a reference to the audience must be included
within the definition of explanations in the context of machine learning models. This
could read as:

Given a certain audience, explainability refers to the details and reasons a model gives to
make its functioning clear or easy to understand.

Explanations are somehow necessarily linked to the concepts of weighting, compar-
ing or convincing an audience by means of logical formalizations or counter argu-
ments [32], hence, its relation to the field of cognitive science and the psychology of
explanations [7] is clear. The validity of whether something has been understood or
not is hard to asses objectively. However, there are accounts in which this gauging
is done easier. The reduction of complexity of a given model can be seen as expla-
nations about the internals of such a model. This reduction should be considered
as an XAI approach, measured by the amount of complexity that has been reduced
from the model as a proxy for how much explanation has been done. Contrarily,
the amount of interpretability that has been gained for these types of approaches is
difficult to assess. For example: a model simplification process can be measured by
counting the amount of structural elements that have been removed from the model
(usually done in DNNs). However, the amount of interpretability gained by means
of visualization techniques when explaining a model is hard to assess. This brings
up the open challenge of conforming general metrics to evaluate these issues. This
challenge is addressed further in Section 2.4.2.

Explainability, as a difference with interpretability, is closely linked to post-hoc
technique since it covers the techniques to transform a non-interpretable model into
an explainable one. The rest of the work will focus on explainability as the main
objective, given the broader scope of the concept. The interpretability of a model
comes from the design of the model itself, while in any case, a model can be the
target to be explained. Trying to convey all the aforementioned, explainable AI can
be defined as:

Given an audience, an explainable Artificial Intelligence is one that produces details or
reasons to make its functioning clear or easy to understand.

This definition presents the first contribution of this thesis and implicitly assumes
that the ease of understanding and clarity targeted by XAI techniques for the model
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at hand reverts on different application purposes, such as a better trustworthiness of
the model’s output by the audience.

2.1.3 Why?

The introduction has presented explainability as one of the main barriers AI is facing
regarding its practical implementation nowadays. The inability to back state-of-the-
art machine learning algorithms with explanations that help understand why they
do as well as they do, is a problem that hinders in two main causes illustrated in
Figure 2.1

The gap between the research community and business sectors conforms the first
cause impeding the full penetration of the newest ML models in sectors that tradi-
tionally have lagged behind the digital transformation of their processes. Banking,
finances, security and health are some of the fields that encounter this problem hand
in hand with their strict regulations and the fear of implementing techniques that
may put at risk their assets.

The second cause revolves around knowledge. AI has empowered human cognitive
abilities by helping infer relations otherwise impossible. Every field dealing with
huge amounts of reliable data has largely benefited from the adoption of AI and ML
techniques. However, performance and results are starting to be considered as the
only interests when staring to latest research studies. There are cases in which this
might be fair, although it is far from the real interests for science and society. The
search for understanding is what opens the gate to further model improvement and
its practical utility.

Target audience
in XAI

Who? Domain experts/users of the model (e.g. medical doctors, insurance agents)
Why? Trust the model itself, gain scientific knowledge

Who? Regulatory entities/agencies

Why? Certify model compliance with the

Who? Users affected by model decisions

Why? Understand their situation, verify

Who? Managers and executive board members

Why? Assess regulatory compliance, understand

Who? Data scientists, developers, product owners...

Why? Ensure/improve product efficiency, research,

corporate AI applications...new functionalities...

fair decisions... legislation in force, audits, ...

?

?

< / >

?

$ $ $

?

?

?

Figure 2.1: Diagram showing the different purposes of explainability in ML models sought
by different audience profiles. Two goals occur to prevail across them: need for
model understanding, and regulatory compliance. Image partly inspired by the
one presented in [33], used with permission from IBM.

The following section analyses the motivation and goals behind the search for
explainable AI models.
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Table 2.1: Goals pursued in the reviewed literature toward reaching explainability, and their
main target audience.

XAI Goal
Main target audience (Fig.
2)

References

Trustworthiness
Domain experts, users of the
model affected by decisions

[5, 17, 28, 34–39]

Causality

Domain experts, managers
and executive board
members, regulatory
entities/agencies

[37, 40–45]

Transferability
Domain experts, data
scientists

[5, 25, 30, 34, 39–41, 46–88]

Informativeness All
[5, 25, 29, 30, 34, 36, 37, 39, 40, 43, 46–49,
52–63, 66–69, 71–82, 89–157]

Confidence
Domain experts, developers,
managers, regulatory
entities/agencies

[5, 37, 47, 49, 51, 57, 64, 75, 91, 92, 99, 111,
120, 122, 158]

Fairness
Users affected by model
decisions, regulatory
entities/agencies

[5, 28, 37, 47, 50, 102–104, 123, 124, 131,
159–161]

Accessibility
Product owners, managers,
users affected by model
decisions

[25, 30, 34, 39, 48, 53, 56, 58, 65, 70–74,
77–79, 89, 96, 97, 106, 108, 110, 111, 114–118,
127, 132]

Interactivity
Domain experts, users
affected by model decisions

[39, 53, 62, 68, 70, 77, 89, 127]

Privacy
awareness

Users affected by model
decisions, regulatory
entities/agencies

[92]

2.1.4 What For?

Many different goals have been described when motivating the search for an ex-
plainable model. Most papers disagree in these goals, and which of them should an
explainable model compel. However, all these different goals might help discrimi-
nate the purpose for which a given exercise of Machine Learning explainability is
performed. Unfortunately, scarce contributions have attempted to define such foals
from a conceptual perspective [5, 16, 28, 48]. To settle a first classification criteria for
the full suit of papers covered in this background, the encountered definitions are
hereby synthesized an enumerated:

• Trustworthiness: Trustworthiness is found by many as a principal aim when
imagining an explainable Artificial Intelligence model [34, 162]. However, declar-
ing a model explainable as per its capabilities of inducing trust might not be
fully compliant with the requirement of model explainability. Trustworthiness
might be considered as the confidence of whether a model will act as intended
when facing a given problem. Although it should most certainly be a property
of any explainable model, it does not imply that every trustworthy model can
be considered explainable on its own, nor is trustworthiness a property easy
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to quantify. Trust might be far from being the only purpose of an explainable
model since the relation among the two, if agreed upon, is not reciprocal. Part
of the reviewed papers mention the concept of trust when stating their purpose
for achieving explainability. However, as seen in Table 2.1, they do not amount
to a large share of the recent contributions related to XAI.

• Causality: another common goal for explainability is that of finding causality
among data variables. Several authors argue that explainable models might
ease the task of finding relationships that, should they occur, could be tested
further for a stronger causal link between the involved variables [163, 164]. The
inference of causal relationships from observational data is a field that has been
broadly studied over time [165]. As widely acknowledged by the community
working on this topic, causality requires a wide frame of prior knowledge to
prove that observed effects are causal. A ML model only discovers correlations
among the data it learns from, and therefore might not suffice for unveiling
a cause-effect relationship. However, causation involves correlation, so an ex-
plainable ML model could validate the results provided by causality inference
techniques, or provide a first intuition of possible causal relationships within
the available data. Again, Table 2.1 reveals that causality is not among the most
important goals if we attend to the amount of papers that state it explicitly as
their goal.

• Transferability: models are always bounded by constraints that should allow for
their seamless transferability. This is the main reason why a training-testing
approach is used when dealing with ML problems [166, 167]. Explainability is
also an advocate for transferability, since it may ease the task of elucidating the
boundaries that might affect a model, allowing for a better understanding and
implementation. Similarly, the mere understanding of the inner relations tak-
ing place within a model facilitates the ability of a user to reuse this knowledge
in another problem. There are cases in which the lack of a proper understand-
ing of the model might drive the user toward incorrect assumptions and fatal
consequences [46, 168]. Transferability should also fall between the resulting
properties of an explainable model, but again, not every transferable model
should be considered as explainable. As observed in Table 2.1, the amount of
papers stating that the ability of rendering a model explainable is to better un-
derstand the concepts needed to reuse it or to improve its performance is the
second most used reason for pursuing model explainability.

• Informativeness: ML models are used with the ultimate intention of supporting
decision making [95]. However, it should not be forgotten that the problem
being solved by the model is not equal to that being faced by its human coun-
terpart. Hence, a great deal of information is needed in order to be able to relate
the user’s decision to the solution given by the model, and to avoid falling in
misconception pitfalls. For this purpose, explainable ML models should give in-
formation about the problem being tackled. Most of the reasons found among
the papers reviewed is that of extracting information about the inner relations
of a model. Almost all rule extraction techniques substantiate their approach on
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the search for a simpler understanding of what the model internally does, stat-
ing that the knowledge (information) can be expressed in these simpler proxies
that they consider explaining the antecedent. This is the most used argument
found among the reviewed papers to back up what they expect from reaching
explainable models.

• Confidence: as a generalization of robustness and stability, confidence should
always be assessed on a model in which reliability is expected. The methods
to maintain confidence under control are different depending on the model. As
stated in [169–171], stability is a must-have when drawing interpretations from
a certain model. Trustworthy interpretations should not be produced by models
that are not stable. Hence, an explainable model should contain information
about the confidence of its working regime.

• Fairness: from a social standpoint, explainability can be considered as the ca-
pacity to reach and guarantee fairness in ML models. In a certain literature
strand, an explainable ML model suggests a clear visualization of the relations
affecting a result, allowing for a fairness or ethical analysis of the model at
hand [103, 172]. Likewise, a related objective of XAI is highlighting bias in the
data a model was exposed to [173, 174]. The support of algorithms and models
is growing fast in fields that involve human lives, hence explainability should
be considered as a bridge to avoid the unfair or unethical use of algorithm’s
outputs.

• Accessibility: a minor subset of the reviewed contributions argues for explain-
ability as the property that allows end users to get more involved in the process
of improving and developing a certain ML model [39, 89] . It seems clear that
explainable models will ease the burden felt by non-technical or non-expert
users when having to deal with algorithms that seem incomprehensible at first
sight. This concept is expressed as the third most considered goal among the
surveyed literature.

• Interactivity: some contributions [53, 62] include the ability of a model to be
interactive with the user as one of the goals targeted by an explainable ML
model. Once again, this goal is related to fields in which the end users are of
great importance, and their ability to tweak and interact with the models is
what ensures success.

• Privacy awareness: almost forgotten in the reviewed literature, one of the byprod-
ucts enabled by explainability in ML models is its ability to assess privacy. ML
models may have complex representations of their learned patterns. Not being
able to understand what has been captured by the model [4] and stored in its
internal representation may entail a privacy breach. Contrarily, the ability to
explain the inner relations of a trained model by non-authorized third parties
may also compromise the differential privacy of the data origin. Due to its criti-
cality in sectors where XAI is foreseen to play a crucial role, confidentiality and
privacy issues will be covered further in Subsection 2.4.4.
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2.1.5 How?

The literature makes a clear distinction among models that are interpretable by de-
sign, and those that can be explained by means of external XAI techniques. This dual-
ity could also be regarded as the difference between interpretable models and model
interpretability techniques; a more widely accepted classification is that of transpar-
ent models and post-hoc explainability. This same duality also appears in the paper
presented in [21]. The distinction its authors make refers to the methods to solve
the transparent box design problem against the problem of explaining the black-box
problem. This work, further extends the distinction made among transparent models
including the different levels of transparency considered.

Within transparency, three levels are contemplated: algorithmic transparency, de-
composability and simulatability1. Among post-hoc techniques we may distinguish:
text explanations, visualizations, local explanations, explanations by example, explanations
by simplification and feature relevance. In this context, there is a broader distinction
proposed by [28] discerning between 1) opaque systems, where the mappings from
input to output are invisible to the user; 2) interpretable systems, in which users can
mathematically analyze the mappings; and 3) comprehensible systems, in which the
models should output symbols or rules along with their specific output to aid in the
understanding process of the rationale behind the mappings being made. This last
classification criterion could be considered included within the one proposed earlier,
hence this paper will attempt at following the more specific one.

2.1.5.1 Levels of Transparency in Machine Learning Models

Transparent models convey some degree of interpretability by themselves. Models
belonging to this category can be also approached in terms of the domain in which
they are interpretable, namely, algorithmic transparency, decomposability and sim-
ulatability. As we elaborate next in connection to Figure 2.2, each of these classes
contains its predecessors, e.g. a simulatable model is at the same time a model that is
decomposable and algorithmically transparent:

• Simulatability denotes the ability of a model of being simulated or thought about
strictly by a human, hence complexity takes a dominant place in this class.
This being said, simple but extensive (i.e., with too large amount of rules) rule
based systems fall out of this characteristic, whereas a single perceptron neural
network falls within. This aspect aligns with the claim that sparse linear models
are more interpretable than dense ones [175], and that an interpretable model is
one that can be easily presented to a human by means of text and visualizations
[34]. Again, endowing a decomposable model with simulatability requires that
the model has to be self-contained enough for a human to think and reason
about it as a whole.

• Decomposability stands for the ability to explain each of the parts of a model (in-
put, parameter and calculation). It can be considered as intelligibility as stated

1 The alternative term simulability is also used in the literature to refer to the capacity of a system or
process to be simulated. However, we note that this term does not appear in current English dictionaries.
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in [176]. This characteristic might empower the ability to understand, interpret
or explain the behavior of a model. However, as occurs with algorithmic trans-
parency, not every model can fulfill this property. Decomposability requires
every input to be readily interpretable (e.g. cumbersome features will not fit
the premise). The added constraint for an algorithmically transparent model to
become decomposable is that every part of the model must be understandable
by a human without the need for additional tools.

• Algorithmic Transparency can be seen in different ways. It deals with the ability
of the user to understand the process followed by the model to produce any
given output from its input data. Put it differently, a linear model is deemed
transparent because its error surface can be understood and reasoned about, al-
lowing the user to understand how the model will act in every situation it may
face [167]. Contrarily, it is not possible to understand it in deep architectures as
the loss landscape might be opaque. [177, 178] Hence, given it cannot be fully
observed, the solution has to be approximated through heuristic optimization
(e.g. through stochastic gradient descent). The main constraint for algorithmi-
cally transparent models is that the model has to be fully explorable by means
of mathematical analysis and methods.
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Figure 2.2: Conceptual diagram exemplifying the different levels of transparency characteriz-
ing a ML model Mϕ, with ϕ denoting the parameter set of the model at hand:
(a) simulatability; (b) decomposability; (c) algorithmic transparency. Without loss
of generality, the example focuses on the ML model as the explanation target.
However, other targets for explainability may include a given example, the output
classes or the dataset itself.

2.1.5.2 Post-hoc Explainability Techniques for Machine Learning Models

Post-hoc explainability targets models that are not readily interpretable by design by
resorting to diverse means to enhance their interpretability, such as text explanations,
visual explanations, local explanations, explanations by example, explanations by simplifica-
tion and feature relevance explanations. Each of these techniques covers one of the most
common ways humans explain systems and processes by themselves.

Further along this river, actual techniques, or better put, actual group of techniques
are specified to ease the future work of any researcher that intends to look up for an
specific technique that suits its knowledge. Not ending there, the classification also
includes the type of data in which the techniques has been applied. Note that many
techniques might be suitable for many different types of data, although the catego-
rization only considers the type used by the authors that proposed such techniques.
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Overall, post-hoc explainability techniques are divided first by the intention of the au-
thor (explanation technique e.g. Explanation by simplification), then, by the method
utilized (actual technique e.g. sensitivity analysis) and finally by the type of data in
which it was applied (e.g. images).

• Text explanations deal with the problem of bringing explainability for a model by
means of learning to generate text explanations that help explaining the results
from the model [174]. Text explanations also include every model that generate
symbols as proxies for the model’s functioning. These symbols may portrait
the rationale of the algorithm by means of a semantic mapping from model to
symbols.

• Visual explanation techniques for post-hoc explainability aim at visualizing the
model’s behavior. Many of the visualization methods existing in the literature
come along with dimensionality reduction techniques that allow for human
interpretable visualizations. Visualizations are considered as the most fruitful
approaches to introduce complex interactions within the variables involved in
the model to users not acquainted to ML modeling. Visual explanations are many
times found coupled with other techniques to improve their understanding.

• Local explanations tackle explainability by segmenting the solution space and
giving explanations to less complex solution subspaces that are relevant for the
whole model. These explanations can be formed by means of techniques with
the differentiating property that these only explain part of the whole system’s
functioning.

• Explanations by example consider the extraction of data examples that relate to
the result generated by a certain model, enabling to get a better understand-
ing of the model itself. Similarly to how humans behave when attempting to
explain a given process, explanations by example are mainly centered in extract-
ing representative examples that grasp the inner relationships and correlations
found by the model being analyzed.

• Explanations by simplification collectively denote those techniques in which a
whole new system is rebuilt based on the trained model to be explained. This
new, simplified model usually attempts at optimizing its resemblance to its
antecedent functioning, while reducing its complexity, and keeping a similar
performance score. An interesting byproduct of this family of post-hoc tech-
niques is that the simplified model is, in general, easier to be implemented due
to its reduced complexity with respect to the model it represents.

• Finally, feature relevance explanation methods for post-hoc explainability clarify
the inner functioning of a model by computing a relevance score for its man-
aged variables. These scores quantify the affection (sensitivity) a feature has
upon the output of the model. A comparison of the scores among different vari-
ables unveils the importance granted by the model to each of such variables
when producing its output. Feature relevance methods can be thought to be an
indirect method to explain a model.
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Figure 2.3: Conceptual diagram showing the different post-hoc explainability approaches
available for a ML model Mϕ.

The above classification (portrayed graphically in Figure 2.3) will be used when
reviewing specific/agnostic XAI techniques for ML models in the following sections
(Table 2.2). For each ML model, a distinction of the propositions to each of these
categories is presented in order to pose an overall image of the field’s trends.
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Table 2.2: Overall picture of the classification of ML models attending to their level of explain-
ability.

Model
Transparent ML Models

Post-hoc
analysisSimulatability Decomposability Algorithmic Transparency

Linear/Logistic Regression
Predictors are human readable

and interactions among them are
kept to a minimum

Variables are still readable, but the
number of interactions and

predictors involved in them have
grown to force decomposition

Variables and interactions are too
complex to be analyzed without

mathematical tools
Not needed

Decision Trees

A human can simulate and obtain
the prediction of a decision tree on

his/her own, without requiring
any mathematical background

The model comprises rules that do
not alter data whatsoever, and

preserves their readability

Human-readable rules that explain
the knowledge learned from data

and allows for a direct
understanding of the prediction

process

Not needed

K-Nearest Neighbors

The complexity of the model
(number of variables, their
understandability and the

similarity measure under use)
matches human naive capabilities

for simulation

The amount of variables is too
high and/or the similarity

measure is too complex to be able
to simulate the model completely,
but the similarity measure and the
set of variables can be decomposed

and analyzed separately

The similarity measure cannot be
decomposed and/or the number

of variables is so high that the user
has to rely on mathematical and

statistical tools to analyze the
model

Not needed

Rule Based Learners

Variables included in rules are
readable, and the size of the rule

set is manageable by a human user
without external help

The size of the rule set becomes
too large to be analyzed without
decomposing it into small rule

chunks

Rules have become so complicated
(and the rule set size has grown so
much) that mathematical tools are
needed for inspecting the model

behaviour

Not needed

General Additive Models

Variables and the interaction
among them as per the smooth
functions involved in the model

must be constrained within human
capabilities for understanding

Interactions become too complex
to be simulated, so decomposition

techniques are required for
analyzing the model

Due to their complexity, variables
and interactions cannot be

analyzed without the application
of mathematical and statistical

tools

Not needed

Bayesian Models

Statistical relationships modeled
among variables and the variables

themselves should be directly
understandable by the target

audience

Statistical relationships involve so
many variables that they must be
decomposed in marginals so as to

ease their analysis

Statistical relationships cannot be
interpreted even if already

decomposed, and predictors are so
complex that model can be only

analyzed with mathematical tools

Not needed

Tree Ensembles

Needed: Usually
Model

simplification or
Feature relevance

techniques

Support Vector Machines

Needed: Usually
Model

simplification or
Local explanations

techniques

Multi–layer Neural Network

Needed: Usually
Model

simplification,
Feature relevance
or Visualization

techniques

Convolutional Neural Network

Needed: Usually
Feature relevance
or Visualization

techniques

Recurrent Neural Network
Needed: Usually
Feature relevance

techniques

2.2 transparent machine learning models

The previous section introduced the concept of transparent models. A model is con-
sidered to be transparent if by itself it is understandable. The models surveyed in
this section are a suit of transparent models that can fall in one or all of the levels
of model transparency described previously (namely, simulatability, decomposability
and algorithmic transparency). In what follows we provide reasons for this statement,
with graphical support given in Figure 2.4.
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Figure 2.4: Graphical illustration of the levels of transparency of different ML models con-
sidered in this overview: (a) Linear regression; (b) Decision trees; (c) K-Nearest
Neighbors; (d) Rule-based Learners; (e) Generalized Additive Models; (f) Bayesian
Models.

2.2.1 Logistic/Linear Regression

Logistic Regression (LR) is a classification model trained to predict a dependent vari-
able (category) that is dichotomous (binary). However, when the dependent variable
is continuous, linear regression would be its homonym. This model takes the assump-
tion of linear dependence between the predictors and the predicted variables. This
specific reason (stiffness of the model) is the one that maintains the model under the
umbrella of transparent methods. However, as stated in Section 2, explainability is
linked to a certain audience, which makes a model fall under both categories depend-
ing who is to interpret it. This way, logistic and linear regression, although clearly
meeting the characteristics of transparent models (algorithmic transparency, decom-
posability and simulatability), may also demand post-hoc explainability techniques
(mainly, visualization), particularly when the model is to be explained to non-expert
audiences.

The usage of this model has been largely applied within Social Sciences for quite
a long time, which has pushed researchers to create ways of explaining the results
of the models to non-expert users. Most authors agree on the different techniques
used to analyze and express the soundness of LR [179–182], including the overall
model evaluation, statistical tests of individual predictors, goodness-of-fit statistics
and validation of the predicted probabilities. The overall model evaluation shows the
improvement of the applied model over a baseline, showing if it is in fact improv-
ing the model without predictions. The statistical significance of single predictors is
shown by calculating the Wald chi-square statistic. The goodness-of-fit statistics show
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the quality of fitness of the model to the data and how significant this is. This can
be achieved by resorting to different techniques e.g. the so-called Hosmer-Lemeshow
(H-L) statistic. The validation of predicted probabilities involves testing whether the
output of the model corresponds to what is shown by the data. These techniques
show mathematical ways of representing the fitness of the model and its behavior.

Other techniques from other disciplines besides Statistics can be adopted for ex-
plaining these regression models. Visualization techniques are very powerful when
presenting statistical conclusions to users not well-versed in statistics. For instance,
the work in [183] shows that the usage of probabilities to communicate the results,
implied that the users where able to estimate the outcomes correctly in 10% of the
cases, as opposed to 46% of the cases when using natural frequencies. Although lo-
gistic regression is among the simplest classification models in supervised learning,
there are concepts that must be taken care of.

In this line of reasoning, the authors of [184] unveil some concerns with the in-
terpretations derived from LR. They first mention how dangerous it might be to
interpret log odds ratios and odd ratios as substantive effects, since they also rep-
resent unobserved heterogeneity. Linked to this first concern, [184] also states that
a comparison between these ratios across models with different variables might be
problematic, since the unobserved heterogeneity is likely to vary, thereby invalidating
the comparison. Finally they also mention that the comparison of these odds across
different samples, groups and time is also risky, since the variation of the heterogene-
ity is not known across samples, groups and time points. This last paper serves the
purpose of visualizing the problems a model’s interpretation might entail, even when
its construction is as simple as that of LR.

Also interesting is to note that, for a model such as logistic or linear regression
to maintain decomposability and simulatability, its size must be limited, and the
variables used must be understandable by their users. As stated in Section 2.1.5.1, if
inputs to the model are highly engineered features that are complex or difficult to
understand, the model at hand will be far from being decomposable. Similarly, if the
model is so large that a human cannot think of the model as a whole, its simulatability
will be put to question.

2.2.2 Decision Trees

Decision trees are another example of a model that can easily fulfill every constraint
for transparency. Decision trees are hierarchical structures for decision making used
to support regression and classification problems [135, 185]. In the simplest of their
flavors, decision trees are simulatable models. However, their properties can render
them decomposable or algorithmically transparent.

Decision trees have always lingered in between the different categories of trans-
parent models. Their utilization has been closely linked to decision making contexts,
being the reason why their complexity and understandability have always been con-
sidered a paramount matter. A proof of this relevance can be found in the upsurge
of contributions to the literature dealing with decision tree simplification and genera-
tion [135, 185–187]. As noted above, although being capable of fitting every category
within transparent models, the individual characteristics of decision trees can push
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them toward the category of algorithmically transparent models. A simulatable deci-
sion tree is one that is manageable by a human user. This means its size is somewhat
small and the amount of features and their meaning are easily understandable. An
increment in size transforms the model into a decomposable one since its size impedes
its full evaluation (simulation) by a human. Finally, further increasing its size and us-
ing complex feature relations will make the model algorithmically transparent loosing
the previous characteristics.

Decision trees have long been used in decision support contexts due to their off-the-
shelf transparency. Many applications of these models fall out of the fields of com-
putation and AI (even information technologies), meaning that experts from other
fields usually feel comfortable interpreting the outputs of these models [188–190].
However, their poor generalization properties in comparison with other models make
this model family less interesting for their application to scenarios where a balance
between predictive performance is a design driver of utmost importance. Tree en-
sembles aim at overcoming such a poor performance by aggregating the predictions
performed by trees learned on different subsets of training data. Unfortunately, the
combination of decision trees looses every transparent property, calling for the adop-
tion of post-hoc explainability techniques as the ones reviewed later in the chapter.

2.2.3 K Nearest Neighbors

Another method that falls within transparent models is that of K-Nearest Neighbors
(KNN), which deals with classification problems in a methodologically simple way:
it predicts the class of a test sample by voting the classes of its K nearest neighbors
(where the neighborhood relation is induced by a measure of distance between sam-
ples). When used in the context of regression problems, the voting is replaced by an
aggregation (e.g. average) of the target values associated with the nearest neighbors.

In terms of model explainability, it is important to observe that predictions gener-
ated by KNN models rely on the notion of distance and similarity between examples,
which can be tailored depending on the specific problem being tackled. Interestingly,
this prediction approach resembles that of experience-based human decision making,
which decides upon the result of past similar cases. There lies the rationale of why
KNN has also been adopted widely in contexts in which model interpretability is a
requirement [191–194]. Furthermore, aside from being simple to explain, the ability
to inspect the reasons by which a new sample has been classified inside a group
and to examine how these predictions evolve when the number of neighbors K is
increased or decreased empowers the interaction between the users and the model.

One must keep in mind that as mentioned before, KNN’s class of transparency
depends on the features, the number of neighbors and the distance function used to
measure the similarity between data instances. A very high K impedes a full simu-
lation of the model performance by a human user. Similarly, the usage of complex
features and/or distance functions would hinder the decomposability of the model,
restricting its interpretability solely to the transparency of its algorithmic operations.
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2.2.4 Rule Based Learning

Rule-based learning refers to every model that generates rules to characterize the
data it is intended to learn from. Rules can take the form of simple conditional if-then
rules or more complex combinations of simple rules to form their knowledge. Also
connected to this general family of models, fuzzy rule based systems are designed for
a broader scope of action, allowing for the definition of verbally formulated rules over
imprecise domains. Fuzzy systems improve two main axes relevant for this thesis.
First, they empower more understandable models since they operate in linguistic
terms. Second, they perform better than classic rule systems in contexts with certain
degrees of uncertainty. Rule based learners are clearly transparent models that have
been often used to explain complex models by generating rules that explain their
predictions [129, 130, 195, 196].

Rule learning approaches have been extensively used for knowledge representation
in expert systems [197]. However, a central problem with rule generation approaches
is the coverage (amount) and the specificity (length) of the rules generated. This
problem relates directly to the intention for their use in the first place. When building
a rule database, a typical design goal sought by the user is to be able to analyze and
understand the model. The amount of rules in a model will clearly improve the
performance of the model at the stake of compromising its intepretability. Similarly,
the specificity of the rules plays also against interpretability, since a rule with a high
number of antecedents an/or consequences might become difficult to interpret. In
this same line of reasoning, these two features of a rule based learner play along with
the classes of transparent models presented in Section 2. The greater the coverage or
the specificity is, the closer the model will be to being just algorithmically transparent.
Sometimes, the reason to transition from classical rules to fuzzy rules is to relax the
constraints of rule sizes, since a greater range can be covered with less stress on
interpretability.

Rule based learners are great models in terms of interpretability across fields. Their
natural and seamless relation to human behaviour makes them very suitable to un-
derstand and explain other models. If a certain threshold of coverage is acquired, a
rule wrapper can be thought to contain enough information about a model to ex-
plain its behavior to a non-expert user, without forfeiting the possibility of using the
generated rules as an standalone prediction model.

2.2.5 General Additive Models

In statistics, a Generalized Additive Model (GAM) is a linear model in which the
value of the variable to be predicted is given by the aggregation of a number of un-
known smooth functions defined for the predictor variables. The purpose of such
model is to infer the smooth functions whose aggregate composition approximates
the predicted variable. This structure is easily interpretable, since it allows the user
to verify the importance of each variable, namely, how it affects (through its corre-
sponding function) the predicted output.

Similarly to every other transparent model, the literature is replete with case stud-
ies where GAMs are in use, specially in fields related to risk assessment. When com-
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pared to other models, these are understandable enough to make users feel confident
on using them for practical applications in finance [198–200], environmental studies
[201], geology [202], healthcare [46], biology [203, 204] and energy [205]. Most of
these contributions use visualization methods to further ease the interpretation of
the model. GAMs might be also considered as simulatable and decomposable models
if the properties mentioned in its definitions are fulfilled, but to an extent that de-
pends roughly on eventual modifications to the baseline GAM model, such as the
introduction of link functions to relate the aggregation with the predicted output, or
the consideration of interactions between predictors.

All in all, applications of GAMs like the ones exemplified above share one common
factor: understandability. The main driver for conducting these studies with GAMs
is to understand the underlying relationships that build up the cases for scrutiny. In
those cases the research goal is not accuracy for its own sake, but rather the need
for understanding the problem behind and the relationship underneath the variables
involved in data. This is why GAMs have been accepted in certain communities as
their de facto modeling choice, despite their acknowledged misperforming behavior
when compared to more complex counterparts.

2.2.6 Bayesian Models

A Bayesian model usually takes the form of a probabilistic directed acyclic graphical
model whose links represent the conditional dependencies between a set of variables.
For example, a Bayesian network could represent the probabilistic relationships be-
tween diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases. Similar to GAMs, these models
also convey a clear representation of the relationships between features and the tar-
get, which in this case are given explicitly by the connections linking variables to
each other.

Once again, Bayesian models fall below the ceiling of Transparent models. Its
categorization leaves it under simulatable, decomposable and algorithmically transpar-
ent. However, it is worth noting that under certain circumstances (overly complex
or cumbersome variables), a model may loose these first two properties. Bayesian
models have been shown to lead to great insights in assorted applications such as
cognitive modeling [206, 207], fishery [201, 208], gaming [209], climate [210], econo-
metrics [211] and robotics [212]. Furthermore, they have also been utilized to explain
other models, such as averaging tree ensembles [213].

2.3 post-hoc explainability techniques for machine learning mod-
els : taxonomy, shallow models and deep learning

When ML models do not meet any of the criteria imposed to declare them trans-
parent, a separate method must be devised and applied to the model to explain its
decisions. This is the purpose of post-hoc explainability techniques (also referred to
as post-modeling explainability), which aim at communicating understandable infor-
mation about how an already developed model produces its predictions for any given
input. In this section we categorize and review different algorithmic approaches for
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post-hoc explainability, discriminating among: 1) those that are designed for their ap-
plication to ML models of any kind; and 2) those that are designed for a specific ML
model and thus, can not be directly extrapolated to any other learner. We now elabo-
rate on the trends identified around post-hoc explainability for different ML models,
which are illustrated in Figure 2.5 in the form of hierarchical bibliographic categories
and summarized next:

• Model-agnostic techniques for post-hoc explainability (Subsection 2.3.1), which
can be applied seamlessly to any ML model disregarding its inner processing
or internal representations.

• Post-hoc explainability that are tailored or specifically designed to explain cer-
tain ML models. We divide our literature analysis into two main branches: con-
tributions dealing with post-hoc explainability of shallow ML models, which
collectively refers to all ML models that do not hinge on layered structures
of neural processing units (Subsection 2.3.2); and techniques devised for deep
learning models, which correspondingly denote the family of neural networks
and related variants, such as convolutional neural networks, recurrent neural
networks (Subsection 2.3.5) and hybrid schemes encompassing deep neural net-
works and transparent models. For each model we perform a thorough review
of the latest post-hoc methods proposed by the research community, along with
an identification of trends followed by such contributions.

• We end our literature analysis with Subsection 2.3.7, where we present a second
taxonomy that complements the more general one in Figure 2.5 by classifying
contributions dealing with the post-hoc explanation of Deep Learning models.
To this end we focus on particular aspects related to this family of black-box ML
methods, and expose how they link to the classification criteria used in the first
taxonomy.
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Figure 2.5: Taxonomy of the reviewed literature and trends identified for explainability tech-
niques related to different ML models. References boxed in black, green and red
correspond to XAI techniques using image, text or tabular data, respectively. In
order to build this taxonomy, the literature has been analyzed in depth to discrim-
inate whether a post-hoc technique can be seamlessly applied to any ML model,
even if, e.g., explicitly mentions Deep Learning in its title and/or abstract.
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2.3.1 Model-agnostic Techniques for Post-hoc Explainability

Model-agnostic techniques for post-hoc explainability are designed to be plugged to
any model with the intent of extracting some information from its prediction proce-
dure. Sometimes, simplification techniques are used to generate proxies that mimic
their antecedents with the purpose of having something tractable and of reduced
complexity. Other times, the intent focuses on extracting knowledge directly from
the models or simply visualizing them to ease the interpretation of their behavior.
Following the taxonomy introduced in Section 2.1, model-agnostic techniques may
rely on model simplification, feature relevance estimation and visualization techniques:

• Explanation by simplification. They are arguably the broadest technique under
the category of model agnostic post-hoc methods. Local explanations are also
present within this category, since sometimes, simplified models are only rep-
resentative of certain sections of a solution space. Almost all techniques taking
this path for model simplification are based on rule extraction techniques. Among
the most known contributions to this approach we encounter the technique of
Local Interpretable Model-Agnostic Explanations (LIME) [34] and all its vari-
ations [219, 221]. LIME builds locally linear models around the predictions of
an opaque model to explain it. These contributions fall under explanations by
simplification as well as under local explanations. Besides LIME and related fla-
vors, another approach to rule extraction is G-REX [217]. Although it was not
originally intended for extracting rules from opaque models, the generic propo-
sition of G-REX has been extended to also account for model explainability
purposes [195, 216]. In line with rule extraction methods, the work in [220]
presents a novel approach to learn rules in CNF (Conjunctive Normal Form) or
DNF (Disjunctive Normal Form) to bridge from a complex model to a human-
interpretable model. Another contribution that falls off the same branch is that
in [223], where the authors formulate model simplification as a model extraction
process by approximating a transparent model to the complex one. Simplifica-
tion is approached from a different perspective in [123], where an approach to
distill and audit black box models is presented. In it, two main ideas are ex-
posed: a method for model distillation and comparison to audit black-box risk
scoring models; and an statistical test to check if the auditing data is missing
key features it was trained with. The popularity of model simplification is evident,
given it temporally coincides with the most recent literature on XAI, including
techniques such as LIME or G-REX. This symptomatically reveals that this post-
hoc explainability approach is envisaged to continue playing a central role on
XAI.

• Feature relevance explanation techniques aim to describe the functioning of an
opaque model by ranking or measuring the influence, relevance or importance
each feature has in the prediction output by the model to be explained. An amal-
gam of propositions are found within this category, each resorting to different
algorithmic approaches with the same targeted goal. One fruitful contribution
to this path is that of [229] called SHAP (SHapley Additive exPlanations). Its au-
thors presented a method to calculate an additive feature importance score for
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each particular prediction with a set of desirable properties (local accuracy, miss-
ingness and consistency) that its antecedents lacked. Another approach to tackle
the contribution of each feature to predictions has been coalitional Game The-
ory [230] and local gradients [239]. Similarly, by means of local gradients [235]
test the changes needed in each feature to produce a change in the output of the
model. In [233] the authors analyze the relations and dependencies found in the
model by grouping features, that combined, bring insights about the data. The
work in [178] presents a broad variety of measures to tackle the quantification of
the degree of influence of inputs on outputs of systems. Their QII (Quantitative
Input Influence) measures account for correlated inputs while measuring influ-
ence. In contrast, in [227] the authors build upon the existing SA (Sensitivity
Analysis) to construct a Global SA which extends the applicability of the exist-
ing methods. In [232] a real-time image saliency method is proposed, which is
applicable to differentiable image classifiers. The study in [126] presents the so-
called Automatic STRucture IDentification method (ASTRID) to inspect which
attributes are exploited by a classifier to generate a prediction. This method
finds the largest subset of features such that the accuracy of a classifier trained
with this subset of features cannot be distinguished in terms of accuracy from
a classifier built on the original feature set. In [226] the authors use influence
functions to trace a model’s prediction back to the training data, by only requir-
ing an oracle version of the model with access to gradients and Hessian-vector
products. Heuristics for creating counterfactual examples by modifying the in-
put of the model have been also found to contribute to its explainability [241,
242]. Compared to those attempting explanations by simplification, a similar
amount of publications were found tackling explainability by means of feature
relevance techniques. Many of the contributions date from 2017 and some from
2018, implying that as with model simplification techniques, feature relevance has
also become a vibrant subject study in the current XAI landscape.

• Visual explanation techniques are a vehicle to achieve model-agnostic explana-
tions. Representative works in this area can be found in [227], which present
a portfolio of visualization techniques to help in the explanation of a black-box
ML model built upon the set of extended techniques mentioned earlier (Global
Sensitivity Analysis). Another set of visualization techniques is presented in
[228]. The authors present three novel SA methods (data based SA, Monte-Carlo
SA, cluster-based SA) and one novel input importance measure (Average Abso-
lute Deviation). Finally, [243] presents ICE (Individual Conditional Expectation)
plots as a tool for visualizing the model estimated by any supervised learning
algorithm. Visual explanations are less common in the field of model-agnostic
techniques for post-hoc explainability. Since the design of these methods must
ensure that they can be seamlessly applied to any ML model disregarding its
inner structure, creating visualizations from just inputs and outputs from an
opaque model is a complex task. This is why almost all visualization meth-
ods falling in this category work along with feature relevance techniques, which
provide the information that is eventually displayed to the end user.
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Several trends emerge from our literature analysis. To begin with, rule extraction
techniques prevail in model-agnostic contributions under the umbrella of post-hoc
explainability. This could have been intuitively expected if we bear in mind the wide
use of rule based learning as explainability wrappers anticipated in Section 2.2.4, and
the complexity imposed by not being able to get into the model itself. Similarly, an-
other large group of contributions deals with feature relevance. Lately these techniques
are gathering much attention by the community when dealing with DL models, with
hybrid approaches that utilize particular aspects of this class of models and therefore,
compromise the independence of the feature relevance method on the model being ex-
plained. Finally, visualization techniques propose interesting ways for visualizing
the output of feature relevance techniques to ease the task of model’s interpretation.
By contrast, visualization techniques for other aspects of the trained model (e.g. its
structure, operations, etc) are tightly linked to the specific model to be explained.

2.3.2 Post-hoc Explainability in Shallow ML Models

Shallow ML covers a diversity of supervised learning models. Within these mod-
els, there are strictly interpretable (transparent) approaches (e.g. KNN and Decision
Trees, already discussed in Section 2.2). However, other shallow ML models rely on
more sophisticated learning algorithms that require additional layers of explanation.
Given their prominence and notable performance in predictive tasks, this section
concentrates on two popular shallow ML models (tree ensembles and Support Vector
Machines, SVMs) that require the adoption of post-hoc explainability techniques for
explaining their decisions.

2.3.3 Tree Ensembles, Random Forests and Multiple Classifier Systems

Tree ensembles are arguably among the most accurate ML models in use nowadays.
Their advent came as an efficient means to improve the generalization capability of
single decision trees, which are usually prone to overfitting. To circumvent this issue,
tree ensembles combine different trees to obtain an aggregated prediction/regression.
While it results to be effective against overfitting, the combination of models makes
the interpretation of the overall ensemble more complex than each of its compound-
ing tree learners, forcing the user to draw from post-hoc explainability techniques.
For tree ensembles, techniques found in the literature are explanation by simplifi-
cation and feature relevance techniques; we next examine recent advances in these
techniques.

To begin with, many contributions have been presented to simplify tree ensembles
while maintaining part of the accuracy accounted for the added complexity. The au-
thor from [122] poses the idea of training a single albeit less complex model from a set
of random samples from the data (ideally following the real data distribution) labeled
by the ensemble model. Another approach for simplification is that in [121], in which
authors create a Simplified Tree Ensemble Learner (STEL). Likewise, [125] presents
the usage of two models (simple and complex) being the former the one in charge of
interpretation and the latter of prediction by means of Expectation-Maximization and
Kullback-Leibler divergence. As opposed to what was seen in model-agnostic tech-
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niques, not that many techniques to board explainability in tree ensembles come by
means of model simplification. It derives from this that either the proposed techniques
are good enough, or model-agnostic techniques do cover the scope of simplification
already.

Following simplification procedures, feature relevance techniques are also used in
the field of tree ensembles. Breiman [291] was the first to analyze the variable im-
portance within Random Forests. His method is based on measuring MDA (Mean
Decrease Accuracy) or MIE (Mean Increase Error) of the forest when a certain vari-
able is randomly permuted in the out-of-bag samples. Following this contribution
[246] shows, in an real setting, how the usage of variable importance reflects the un-
derlying relationships of a complex system modeled by a Random Forest. Finally, a
crosswise technique among post-hoc explainability, [245] proposes a framework that
poses recommendations that, if taken, would convert an example from one class to
another. This idea attempts to disentangle the variables importance in a way that is
further descriptive. In the article, the authors show how these methods can be used to
elevate recommendations to improve malicious online ads to make them rank higher
in paying rates.

Similar to the trend shown in model-agnostic techniques, for tree ensembles again,
simplification and feature relevance techniques seem to be the most used schemes. How-
ever, contrarily to what was observed before, most papers date back from 2017 and
place their focus mostly on bagging ensembles. When shifting the focus towards other
ensemble strategies, scarce activity has been recently noted around the explainability
of boosting and stacking classifiers. Among the latter, it is worth highlighting the con-
nection between the reason why a compounding learner of the ensemble produces an
specific prediction on a given data, and its contribution to the output of the ensemble.
The so-called Stacking With Auxiliary Features (SWAF) approach proposed in [247]
points in this direction by harnessing and integrating explanations in stacking en-
sembles to improve their generalization. This strategy allows not only relying on the
output of the compounding learners, but also on the origin of that output and its con-
sensus across the entire ensemble. Other interesting studies on the explainability of
ensemble techniques include model-agnostic schemes such as DeepSHAP [231], put
into practice with stacking ensembles and multiple classifier systems in addition to
Deep Learning models; the combination of explanation maps of multiple classifiers
to produce improved explanations of the ensemble to which they belong [248]; and
recent insights dealing with traditional and gradient boosting ensembles [292, 293].

2.3.4 Support Vector Machines

Another shallow ML model with historical presence in the literature is the Support
Vector Machine. SVM models are more complex than tree ensembles, with a much
opaquer structure. Many implementations of post-hoc explainability techniques have
been proposed to relate what is mathematically described internally in these mod-
els, to what different authors considered explanations about the problem at hand.
Technically, an SVM constructs a hyper-plane or set of hyper-planes in a high or
infinite-dimensional space, which can be used for classification, regression, or other
tasks such as outlier detection. Intuitively, a good separation is achieved by the hy-
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perplane that has the largest distance (so-called functional margin) to the nearest
training-data point of any class, since in general, the larger the margin, the lower
the generalization error of the classifier. SVMs are among the most used ML models
due to their excellent prediction and generalization capabilities. From the techniques
stated in Section 2, post-hoc explainability applied to SVMs covers explanation by
simplification, local explanations, visualizations and explanations by example.

Among explanation by simplification, four classes of simplifications are made.
Each of them differentiates from the other by how deep they go into the algorithm
inner structure. First, some authors propose techniques to build rule based models
only from the support vectors of a trained model. This is the approach of [96], which
proposes a method that extracts rules directly from the support vectors of a trained
SVM using a modified sequential covering algorithm. In [60] the same authors pro-
pose eclectic rule extraction, still considering only the support vectors of a trained
model. The work in [97] generates fuzzy rules instead of classical propositional rules.
Here, the authors argue that long antecedents reduce comprehensibility, hence, a
fuzzy approach allows for a more linguistically understandable result. The second
class of simplifications can be exemplified by [101], which proposed the addition of
the SVM’s hyperplane, along with the support vectors, to the components in charge
of creating the rules. His method relies on the creation of hyper-rectangles from the
intersections between the support vectors and the hyper-plane. In a third approach to
model simplification, another group of authors considered adding the actual training
data as a component for building the rules. In [129, 249, 251] the authors proposed a
clustering method to group prototype vectors for each class. By combining them with
the support vectors, it allowed defining ellipsoids and hyper-rectangles in the input
space. Similarly in [109], the authors proposed the so-called Hyper-rectangle Rule
Extraction, an algorithm based on SVC (Support Vector Clustering) to find prototype
vectors for each class and then define small hyper-rectangles around. In [108], the
authors formulate the rule extraction problem as a multi-constrained optimization
to create a set of non-overlapping rules. Each rule conveys a non-empty hyper-cube
with a shared edge with the hyper-plane. In a similar study conducted in [250], ex-
tracting rules for gene expression data, the authors presented a novel technique as
a component of a multi-kernel SVM. This multi-kernel method consists of feature
selection, prediction modeling and rule extraction. Finally, the study in [137] makes
use of a growing SVC to give an interpretation to SVM decisions in terms of linear
rules that define the space in Voronoi sections from the extracted prototypes.

Leaving aside rule extraction, the literature has also contemplated some other tech-
niques to contribute to the interpretation of SVMs. Three of them (visualization tech-
niques) are clearly used toward explaining SVM models when used for concrete
applications. For instance, [80] presents an innovative approach to visualize trained
SVM to extract the information content from the kernel matrix. They center the study
on Support Vector Regression models. They show the ability of the algorithm to vi-
sualize which of the input variables are actually related with the associated output
data. In [71] a visual way combines the output of the SVM with heatmaps to guide
the modification of compounds in late stages of drug discovery. They assign colors
to atoms based on the weights of a trained linear SVM that allows for a much more
comprehensive way of debugging the process. In [119] the authors argue that many
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of the presented studies for interpreting SVMs only account for the weight vectors,
leaving the margin aside. In their study they show how this margin is important,
and they create an statistic that explicitly accounts for the SVM margin. The authors
show how this statistic is specific enough to explain the multivariate patterns shown
in neuroimaging.

Noteworthy is also the intersection between SVMs and Bayesian systems, the latter
being adopted as a post-hoc technique to explain decisions made by the SVM model.
This is the case of [253] and [252], which are studies where SVMs are interpreted as
MAP (Maximum A Posteriori) solutions to inference problems with Gaussian Pro-
cess Priors. This framework makes tuning the hyper-parameters comprehensible and
gives the capability of predicting class probabilities instead of the classical binary
classification of SVMs. Interpretability of SVM models becomes even more involved
when dealing with non-CPD (Conditional Positive Definite) kernels that are usually
harder to interpret due to missing geometrical and theoretical understanding. The
work in [105] revolves around this issue with a geometrical interpretation of indefi-
nite kernel SVMs, showing that these do not classify by hyper-plane margin optimiza-
tion. Instead, they minimize the distance between convex hulls in pseudo-Euclidean
spaces.

A difference might be appreciated between the post-hoc techniques applied to
other models and those noted for SVMs. In previous models, model simplification in
a broad sense was the prominent method for post-hoc explainability. In SVMs, lo-
cal explanations have started to take some weight among the propositions. However,
simplification based methods are, on average, much older than local explanations.

As a final remark, none of the reviewed methods treating SVM explainability are
dated beyond 2017, which might be due to the progressive proliferation of DL models
in almost all disciplines. Another plausible reason is that these models are already
understood, so it is hard to improve upon what has already been done.

2.3.5 Explainability in Deep Learning

Post-hoc local explanations and feature relevance techniques are increasingly the most
adopted methods for explaining DNNs. This section reviews explainability studies
proposed for the most used DL models, namely multi-layer neural networks, Convo-
lutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

2.3.5.1 Multi Layer Neural Networks

From their inception, multi-layer neural networks (also known as multi-layer percep-
trons) have been warmly welcomed by the academic community due to their huge
ability to infer complex relations among variables. However, as stated in the intro-
duction, developers and engineers in charge of deploying these models in real-life
production find in their questionable explainability a common reason for reluctance.
That is why neural networks have been always considered as black-box models. The
fact that explainability is often a must for the model to be of practical value, forced
the community to generate multiple explainability techniques for multi-layer neural
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networks, including model simplification approaches, feature relevance estimators, text
explanations, local explanations and model visualizations.

Several model simplification techniques have been proposed for neural networks
with one single hidden layer, however very few works have been presented for neu-
ral networks with multiple hidden layers. One of these few works is DeepRED algo-
rithm [262], which extends the decompositional approach to rule extraction (splitting
at neuron level) presented in [264] for multi-layer neural network by adding more
decision trees and rules.

Some other works use model simplification as a post-hoc explainability approach. For
instance, [59] presents a simple distillation method called Interpretable Mimic Learning
to extract an interpretable model by means of gradient boosting trees. In the same
direction, the authors in [138] propose a hierarchical partitioning of the feature space
that reveals the iterative rejection of unlikely class labels, until association is predicted.
In addition, several works addressed the distillation of knowledge from an ensemble
of models into a single model [83, 294, 295] .

Given the fact that the simplification of multi-layer neural networks is more com-
plex as the number of layers increases, explaining these models by feature relevance
methods has become progressively more popular. One of the representative works in
this area is [63], which presents a method to decompose the network classification
decision into contributions of its input elements. They consider each neuron as an ob-
ject that can be decomposed and expanded then aggregate and back-propagate these
decompositions through the network, resulting in a deep Taylor decomposition. In the
same direction, the authors in [113] proposed DeepLIFT, an approach for computing
importance scores in a multi-layer neural network. Their method compares the acti-
vation of a neuron to the reference activation and assigns the score according to the
difference.

On the other hand, some works try to verify the theoretical soundness of current
explainability methods. For example, the authors in [267], bring up a fundamen-
tal problem of most feature relevance techniques, designed for multi-layer networks.
They showed that two axioms that such techniques ought to fulfill namely, sensitivity
and implementation invariance, are violated in practice by most approaches. Following
these axioms, the authors of [267] created integrated gradients, a new feature relevance
method proven to meet the aforementioned axioms. Similarly, the authors in [64] an-
alyzed the correctness of current feature relevance explanation approaches designed
for Deep Neural Networks (e.g.: DeConvNet, Guided BackProp and LRP) on simple
linear neural networks. Their analysis showed that these methods do not produce
the theoretically correct explanations and presented two new explanation methods
PatternNet and PatternAttribution that are more theoretically sound for both, simple
and deep neural networks.

2.3.5.2 Convolutional Neural Networks

Currently, CNNs constitute the state-of-art models in all fundamental computer vi-
sion tasks, from image classification and object detection to instance segmentation.
Typically, these models are built as a sequence of convolutional layers and pooling
layers to automatically learn increasingly higher level features. At the end of the se-
quence, one or multiple fully connected layers are used to map the output features
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map into scores. This structure entails extremely complex internal relations that are
very difficult to explain. Fortunately, the road to explainability for CNNs is easier
than for other types of models, as the human cognitive skills favors the understand-
ing of visual data.

Existing works that aim at understanding what CNNs learn can be divided into
two broad categories: 1) those that try to understand the decision process by mapping
back the output in the input space to see which parts of the input were discriminative
for the output; and 2) those that try to delve inside the network and interpret how
the intermediate layers see the external world, not necessarily related to any specific
input, but in general.

One of the seminal works in the first category was [296]. When an input image
runs feed-forward through a CNN, each layer outputs a number of feature maps
with strong and soft activations. The authors in [296] used Deconvnet, a network
designed previously by the same authors [145] that, when fed with a feature map
from a selected layer, reconstructs the maximum activations. These reconstructions
can give an idea about the parts of the image that produced that effect. To visualize
these strongest activations in the input image, the same authors used the occlusion
sensitivity method to generate a saliency map [139], which consists of iteratively
forwarding the same image through the network occluding a different region at a
time.

To improve the quality of the mapping on the input space, several subsequent pa-
pers proposed simplifying both the CNN architecture and the visualization method.
In particular, [99] included a global average pooling layer between the last convolu-
tional layer of the CNN and the fully-connected layer that predicts the object class.
With this simple architectural modification of the CNN, the authors built a class acti-
vation map that helps identify the image regions that were particularly important for
a specific object class by projecting back the weights of the output layer on the convo-
lutional feature maps. Later, in [146], the authors showed that max-pooling layers can
be used to replace convolutional layers with a large stride without loss in accuracy
on several image recognition benchmarks. They obtained a cleaner visualization than
Deconvnet by using a guided backpropagation method.

To increase the interpretability of classical CNNs, the authors in [116] used a loss
for each filter in high level convolutional layers to force each filter to learn very
specific object components. The obtained activation patterns are much more inter-
pretable for their exclusiveness with respect to the different labels to be predicted.
The authors in [75] proposed visualizing the contribution to the prediction of each
single pixel of the input image in the form of a heatmap. They used a Layer-wise
Relevance Propagation (LRP) technique, which relies on a Taylor series close to the
prediction point rather than partial derivatives at the prediction point itself. To fur-
ther improve the quality of the visualization, attribution methods such as heatmaps,
saliency maps or class activation methods (GradCAM [297]) are used (see Figure 2.6).
In particular, the authors in [297] proposed a Gradient-weighted Class Activation
Mapping (Grad-CAM), which uses the gradients of any target concept, flowing into
the final convolutional layer to produce a coarse localization map, highlighting the
important regions in the image for predicting the concept.
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(a) Heatmap [173] (b) Attribution [298] (c) Grad-CAM [297]

Figure 2.6: Examples of rendering for different XAI visualization techniques on images.

In addition to the aforementioned feature relevance and visual explanation methods,
some works proposed generating text explanations of the visual content of the image.
For example, the authors in [94] combined a CNN feature extractor with an RNN
attention model to automatically learn to describe the content of images. In the same
line, [283] presented a three-level attention model to perform a fine-grained classifi-
cation task. The general model is a pipeline that integrates three types of attention:
the object level attention model proposes candidate image regions or patches from
the input image, the part-level attention model filters out non-relevant patches to a
certain object, and the last attention model localizes discriminative patches. In the
task of video captioning, the authors in [114] use a CNN model combined with a
bi-directional LSTM model as encoder to extract video features and then feed these
features to an LSTM decoder to generate textual descriptions.

One of the seminal works in the second category is [140]. In order to analyse
the visual information contained inside the CNN, the authors proposed a general
framework that reconstruct an image from the CNN internal representations and
showed that several layers retain photographically accurate information about the
image, with different degrees of geometric and photometric invariance. To visualize
the notion of a class captured by a CNN, the same authors created an image that
maximizes the class score based on computing the gradient of the class score with
respect to the input image [277]. In the same direction, the authors in [273] introduced
a Deep Generator Network (DGN) that generates the most representative image for
a given output neuron in a CNN.

For quantifying the interpretability of the latent representations of CNNs, the au-
thors in [128] used a different approach called network dissection. They run a large
number of images through a CNN and then analyze the top activated images by con-
sidering each unit as a concept detector to further evaluate each unit for semantic
segmentation. This paper also examines the effects of classical training techniques on
the interpretability of the learned model.

Although many of the techniques examined above utilize local explanations to achieve
an overall explanation of a CNN model, others explicitly focus on building global ex-
planations based on locally found prototypes. In [268, 299], the authors empirically
showed how local explanations in deep networks are strongly dominated by their lower
level features. They demonstrated that deep architectures provide strong priors that
prevent the altering of how these low-level representations are captured. All in all,
visualization mixed with feature relevance methods are arguably the most adopted ap-
proach to explainability in CNNs.
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Instead of using one single interpretability technique, the framework proposed
in [300] combines several methods to provide much more information about the net-
work. For example, combining feature visualization (what is a neuron looking for?) with
attribution (how does it affect the output?) allows exploring how the network decides
between labels. This visual interpretability interface displays different blocks such as
feature visualization and attribution depending on the visualization goal. This inter-
face can be thought of as a union of individual elements that belong to layers (input,
hidden, output), atoms (a neuron, channel, spatial or neuron group), content (activa-
tions – the amount a neuron fires, attribution – which classes a spatial position most
contributes to, which tends to be more meaningful in later layers), and presentation
(information visualization, feature visualization). Figure 2.7 shows some examples.
Attribution methods normally rely on pixel association, displaying what part of an
input example is responsible for the network activating in a particular way [298].

(a) Neuron (b) Channel (c) Layer

Figure 2.7: Feature visualization at different levels of a certain network [298].

(a) Original image (b) Explaining electric guitar (c) Explaining acoustic guitar

Figure 2.8: Three different examples of explanation when using LIME on images [74].

A much simpler approach to all the previously cited methods was proposed in
LIME framework [74], as was described in Subsection 2.3.1 LIME perturbs the in-
put and sees how the predictions change. In image classification, LIME creates a
set of perturbed instances by dividing the input image into interpretable compo-
nents (contiguous superpixels), and runs each perturbed instance through the model
to get a probability. A simple linear model learns on this data set, which is locally
weighted. At the end of the process, LIME presents the superpixels with highest
positive weights as an explanation (see Figure 2.8).

A completely different explainability approach is proposed in adversarial detection.
To understand model failures in detecting adversarial examples, the authors in [269]
apply the k-nearest neighbors algorithm on the representations of the data learned
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by each layer of the CNN. A test input image is considered as adversarial if its
representations are far from the representations of the training images.

2.3.5.3 Recurrent Neural Networks

As occurs with CNNs in the visual domain, RNNs have lately been used extensively
for predictive problems defined over inherently sequential data, with a notable pres-
ence in natural language processing and time series analysis. These types of data
exhibit long-term dependencies that are complex to be captured by a ML model.
RNNs are able to retrieve such time-dependent relationships by formulating the re-
tention of knowledge in the neuron as another parametric characteristic that can be
learned from data.

Few contributions have been made for explaining RNN models. These studies can
be divided into two groups: 1) explainability by understanding what a RNN model
has learned (mainly via feature relevance methods); and 2) explainability by modifying
RNN architectures to provide insights about the decisions they make (local explana-
tions).

In the first group, the authors in [285] extend the usage of LRP to RNNs. They pro-
pose a specific propagation rule that works with multiplicative connections as those
in LSTMs (Long Short Term Memory) units and GRUs (Gated Recurrent Units). The
authors in [286] propose a visualization technique based on finite horizon n-grams
that discriminates interpretable cells within LSTM and GRU networks. Following
the premise of not altering the architecture, [301] extends the interpretable mimic
learning distillation method used for CNN models to LSTM networks, so that inter-
pretable features are learned by fitting Gradient Boosting Trees to the trained LSTM
network under focus.

Aside from the approaches that do not change the inner workings of the RNNs,
[290] presents RETAIN (REverse Time AttentIoN) model, which detects influential
past patterns by means of a two-level neural attention model. To create an inter-
pretable RNN, the authors in [288] propose an RNN based on SISTA (Sequential
Iterative Soft-Thresholding Algorithm) that models a sequence of correlated observa-
tions with a sequence of sparse latent vectors, making its weights interpretable as the
parameters of a principled statistical model. Finally, in [289], its authors construct a
combination of an HMM (Hidden Markov Model) and an RNN, so that the overall
model approach harnesses the interpretability of the HMM and the accuracy of the
RNN model.

2.3.6 Hybrid Transparent and black-box Methods

The use of background knowledge in the form of logical statements or constraints
in Knowledge Bases (KBs) has shown to not only improve explainability but also
performance with respect to purely data-driven approaches [302–304]. A positive
side effect shown is that this hybrid approach provides robustness to the learning
system when errors are present in the training data labels. Other approaches have
shown to be able to jointly learn and reason with both symbolic and sub-symbolic
representations and inference. The interesting aspect is that this blend allows for
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expressive probabilistic-logical reasoning in an end-to-end fashion [305]. A successful
use case is on dietary recommendations, where explanations are extracted from the
reasoning behind (non-deep but KB-based) models [306].

Future data fusion approaches may thus consider endowing DL models with ex-
plainability by externalizing other domain information sources. Deep formulation of
classical ML models has been done, e.g. in Deep Kalman filters (DKFs) [307], Deep
Variational Bayes Filters (DVBFs) [308], Structural Variational Autoencoders (SVAE)
[309], or conditional random fields as RNNs [310]. These approaches provide deep
models with the interpretability inherent to probabilistic graphical models. For in-
stance, SVAE combines probabilistic graphical models in the embedding space with
neural networks to enhance the interpretability of DKFs. A particular example of
classical ML model enhanced with its DL counterpart is Deep K-Nearest Neighbors
DkNN [269], where the neighbors constitute human-interpretable explanations of
predictions. The intuition is based on the rationalization of a DNN prediction based
on evidence. This evidence consists of a characterization of confidence termed credibil-
ity that spans the hierarchy of representations within a DNN, that must be supported
by the training data [269].

Mϕ

Black-box
ML model

x y
Transparent design methods

• Decision Tree

• (Fuzzy) rule-based learning

• KNN

Prediction Explanation

Figure 2.9: Pictorial representation of a hybrid model. A neural network considered as a
black-box can be explained by associating it to a more interpretable model such as
a Decision Tree [311], a (fuzzy) rule-based system [23] or KNN [269].

A different perspective on hybrid XAI models consists of enriching black-box mod-
els knowledge with that one of transparent ones, as proposed in [28] and further
refined in [174] and [312]. In particular, this can be done by constraining the neu-
ral network thanks to a semantic KB and bias-prone concepts [174], or by stacking
ensembles jointly encompassing white- and black-box models [312].

Other examples of hybrid symbolic and sub-symbolic methods where a knowledge-
base tool or graph-perspective enhances the neural (e.g., language [313]) model are
in [314, 315]. In reinforcement learning, very few examples of symbolic (graphical
[316] or relational [78, 317]) hybrid models exist, while in recommendation systems,
for instance, explainable autoencoders are proposed [318]. A specific transformer
architecture symbolic visualization method (applied to music) pictorially shows how
soft-max attention works [319]. By visualizing self-reference, i.e., the last layer of
attention weights, arcs show which notes in the past are informing the future and
how attention is skip over less relevant sections. Transformers can also help explain
image captions visually [320].

Another hybrid approach consists of mapping an uninterpretable black-box system
to a white-box twin that is more interpretable. For example, an opaque neural net-
work can be combined with a transparent Case Based Reasoning (CBR) system [321,
322]. In [323], the DNN and the CBR (in this case a kNN) are paired in order to
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improve interpretability while keeping the same accuracy. The explanation by example
consists of analyzing the feature weights of the DNN which are then used in the CBR,
in order to retrieve nearest-neighbor cases to explain the DNN’s prediction.

2.3.7 Alternative Taxonomy of Post-hoc Explainability Techniques for Deep Learning

DL is the model family where most research has been concentrated in recent times
and they have become central for most of the recent literature on XAI. While the
division between model-agnostic and model-specific is the most common distinction
made, the community has not only relied on this criteria to classify XAI methods.
For instance, some model-agnostic methods such as SHAP [229] are widely used to
explain DL models. That is why several XAI methods can be easily categorized in
different taxonomy branches depending on the angle the method is looked at. An ex-
ample is LIME which can also be used over CNNs, despite not being exclusive to deal
with images. Searching within the alternative DL taxonomy shows us that LIME can
explicitly be used for Explaining a Deep Network Processing, as a kind of Linear Proxy
Model. Another type of classification is indeed proposed in [16] with a segmentation
based on 3 categories. The first category groups methods explaining the processing
of data by the network, thus answering to the question “why does this particular in-
put lead to this particular output?”. The second one concerns methods explaining the
representation of data inside the network, i.e., answering to the question “what in-
formation does the network contain?”. The third approach concerns models specifically
designed to simplify the interpretation of their own behavior. Such a multiplicity of
classification possibilities leads to different ways of constructing XAI taxonomies.

Figure 2.10 shows the alternative Deep Learning taxonomy inferred from [16].
From the latter, it can be deduced the complementarity and overlapping of this tax-
onomy to Figure 2.5 as:

• Some methods [277, 285] classified in distinct categories (namely feature rele-
vance for CNN and feature relevance for RNN) in Figure 2.5 are included in a
single category (Explanation of Deep Network Processing with Salience Mapping)
when considering the classification from [16].

• Some methods [85, 147] are classified on a single category (Explanation by sim-
plification for Multi-Layer Neural Network) in Figure 2.5 while being in 2 different
categories (namely, Explanation of Deep Network Processing with Decision Trees and
Explanation of Deep Network Representation with the Role of Representation Vectors)
in [16], as shown in Figure 2.10.

A classification based on explanations of model processing and explanations of
model representation is relevant, as it leads to a differentiation between the execution
trace of the model and its internal data structure. This means that depending of
the failure reasons of a complex model, it would be possible to pick-up the right
XAI method according to the information needed: the execution trace or the data
structure. This idea is analogous to testing and debugging methods used in regular
programming paradigms [351].
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Figure 2.10: (a) Alternative Deep Learning specific taxonomy extended from the categoriza-
tion from [16]; and (b) its connection to the taxonomy in Figure 2.5.

2.4 open issues in the field of xai

We now capitalize on the performed literature review to put forward a critique of
the achievements, trends and challenges that are still to be addressed in the field of
explainability of ML and data fusion models. Actually our discussion on the advances
taken so far in this field has already anticipated some of these challenges. In this
section we revisit them and explore new research opportunities for XAI, identifying
possible research paths that can be followed to address them effectively in years to
come:

• When introducing this thesis in Section 1.1 we already mentioned the existence
of a tradeoff between model interpretability and performance, in the sense that
making a ML model more understandable could eventually degrade the quality
of its produced decisions. In Subsection 2.4.1 we will stress on the potential
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of XAI developments to effectively achieve an optimal balance between the
interpretability and performance of ML models.

• In Subsection 2.1.2 we stressed on the imperative need for reaching a consen-
sus on what explainability entails within the AI realm. Reasons for pursuing
explainability are also assorted and, under our own assessment of the literature
so far, not unambiguously mentioned throughout related works. In Subsection
2.4.2 we will further delve into this important issue.

• Given its notable prevalence in the XAI literature, Subsections 2.3.5 and 2.3.7
revolved on the explainability of Deep Learning models, examining advances
reported so far around a specific bibliographic taxonomy. We go in this same
direction with Subsection 2.4.3, which exposes several challenges that hold in
regards to the explainability of this family of models.

• Finally, we close up this prospective discussion with Subsections 2.4.4 to 2.4.9,
which place on the table several research niches that despite its connection to
model explainability, remain insufficiently studied by the community.

2.4.1 On the Tradeoff between Interpretability and Performance

The matter of interpretability versus performance is one that repeats itself through
time, but as any other big statement, has its surroundings filled with myths and
misconceptions.

As perfectly stated in [352], it is not necessarily true that models that are more com-
plex are inherently more accurate. This statement is false in cases in which the data is
well structured and features at our disposal are of great quality and value. This case
is somewhat common in some industry environments, since features being analyzed
are constrained within very controlled physical problems, in which all of the fea-
tures are highly correlated, and not much of the possible landscape of values can be
explored in the data [353]. What can be hold as true, is that more complex models en-
joy much more flexibility than their simpler counterparts, allowing for more complex
functions to be approximated. Now, returning to the statement “models that are more
complex are more accurate”, given the premise that the function to be approximated
entails certain complexity, that the data available for study is greatly widespread
among the world of suitable values for each variable and that there is enough data
to harness a complex model, the statement presents itself as a true statement. It is
in this situation that the trade-off between performance and interpretability can be
observed. It should be noted that the attempt at solving problems that do not respect
the aforementioned premises will fall on the trap of attempting to solve a problem
that does not provide enough data diversity (variance). Hence, the added complexity
of the model will only fight against the task of accurately solving the problem.

In this path toward performance, when the performance comes hand in hand with
complexity, interpretability encounters itself on a downward slope that until now
appeared unavoidable. However, the apparition of more sophisticated methods for
explainability could invert or at least cancel that slope. Figure 2.11 shows a tenta-
tive representation inspired by previous works [7], in which XAI shows its power
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Figure 2.11: Trade-off between model interpretability and performance, and a representation
of the area of improvement where the potential of XAI techniques and tools
resides.

to improve the common trade-off between model interpretability and performance.
Another aspect worth mentioning at this point due to its close link to model inter-
pretability and performance is the approximation dilemma: explanations made for a ML
model must be made drastic and approximate enough to match the requirements of
the audience for which they are sought, ensuring that explanations are representative
of the studied model and do not oversimplify its essential features.

2.4.2 On the Concept and Metrics

The literature clearly asks for an unified concept of explainability. In order for the
field to thrive, it is imperative to place a common ground upon which the commu-
nity is enabled to contribute new techniques and methods. A common concept must
convey the needs expressed in the field. It should propose a common structure for
every XAI system. This paper attempted a new proposition of a concept of explain-
ability that is built upon that from Gunning [7]. In that proposition and the follow-
ing strokes to complete it (Subsection 2.1.2), explainability is defined as the ability a
model has to make its functioning clearer to an audience. To address it, post-hoc type
methods exist. The concept portrayed in this chapter might not be complete but as it
stands, allows for a first common ground and reference point to sustain a profitable
discussion in this matter. It is paramount that the field of XAI reaches an agreement
in this respect combining the shattered efforts of a widespread field behind the same
banner.

Another key feature needed to relate a certain model to this concrete concept is the
existence of a metric. A metric, or group of them should allow for a meaningful com-
parison of how well a model fits the definition of explainable. Without such tool, any
claim in this respect dilutes among the literature, not providing a solid ground on
which to stand. These metrics, as the classic ones (accuracy, F1, sensitivity...), should
express how well the model performs in a certain aspect of explainability. Some
attempts have been done recently around the measurement of XAI, as reviewed thor-



2.4 open issues in the field of xai 43

oughly in [354, 355]. In general, XAI measurements should evaluate the goodness,
usefulness and satisfaction of explanations, the improvement of the mental model of
the audience induced by model explanations, and the impact of explanations on the
performance of the model and on the trust and reliance of the audience. Measure-
ment techniques surveyed in [354] and [355] (e.g., goodness checklist, explanation
satisfaction scale, elicitation methods for mental models, computational measures for
explainer fidelity, explanation trustworthiness and model reliability) seem to be a
good push in the direction of evaluating XAI techniques. Unfortunately, conclusions
drawn from these overviews are aligned with our prospects on the field: more quan-
tifiable, general XAI metrics are really needed to support the existing measurement
procedures and tools proposed by the community.

This chapter does not tackle the problem of designing such a suite of metrics,
since such a task should be approached by the community as a whole, prior accep-
tance of the broader concept of explainability, which on the other hand, is one of
the aims of the current Thesis. Nevertheless, we advocate for further efforts towards
new proposals to evaluate the performance of XAI techniques, as well as comparison
methodologies among XAI approaches that allow contrasting them quantitatively
under different application context, models and purposes.

2.4.3 Challenges to Achieve Explainable Deep Learning

While many efforts are currently being made in the area of XAI, there are still many
challenges to be faced before being able to obtain explainability in DL models. First,
as explained in Subsection 2.1.2, there is a lack of agreement on the vocabulary and
the different definitions surrounding XAI. As an example, we often see the terms fea-
ture importance and feature relevance referring to the same concept. This is even more
obvious for visualization methods, where there is absolutely no consistency behind
what is known as saliency maps, salient masks, heatmaps, neuron activations, attri-
bution, and other approaches alike. As XAI is a relatively young field, the community
does not have a standardized terminology yet.

As it has been commented in Subsection 2.4.1, there is a trade-off between inter-
pretability and accuracy [16], i.e., between the simplicity of the information given
by the system on its internal functioning, and the exhaustiveness of this description.
Whether the observer is an expert in the field, a policy-maker or a user without
machine learning knowledge, intelligibility does not have to be at the same level in
order to provide the audience an understanding [356]. This is one of the reasons why,
as mentioned above, a challenge in XAI is establishing objective metrics on what
constitutes a good explanation. A possibility to reduce this subjectivity is taking in-
spiration from experiments on human psychology, sociology or cognitive sciences to
create objectively convincing explanations. Relevant findings to be considered when
creating an explainable AI model are highlighted in [357]: First, explanations are bet-
ter when constrictive, meaning that a prerequisite for a good explanation is that it does
not only indicate why the model made a decision X, but also why it made decision
X rather than decision Y. It is also explained that probabilities are not as important
as causal links in order to provide a satisfying explanation. Considering that black
box models tend to process data in a quantitative manner, it would be necessary to
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translate the probabilistic results into qualitative notions containing causal links. In
addition, they state that explanations are selective, meaning that focusing solely on
the main causes of a decision-making process is sufficient. It was also shown that the
use of counterfactual explanations can help the user to understand the decision of a
model [42, 44, 358].

Combining connectionist and symbolic paradigms seems a favourable way to ad-
dress this challenge [174, 304, 317, 359, 360]. On one hand, connectionist methods
are more precise but opaque. On the other hand, symbolic methods are popularly
considered less efficient, while they offer a greater explainability thus respecting the
conditions mentioned above:

• The ability to refer to established reasoning rules allows symbolic methods to
be constrictive.

• The use of a KB formalized e.g. by an ontology can allow data to be processed
directly in a qualitative way.

• Being selective is less straightforward for connectionist models than for sym-
bolic ones.

Recalling that a good explanation needs to influence the mental model of the user,
i.e. the representation of the external reality using, among other things, symbols,
it seems obvious that the use of the symbolic learning paradigm is appropriate to
produce an explanation. Therefore, neural-symbolic interpretability could provide
convincing explanations while keeping or improving generic performance [302].

As stated in [28], a truly explainable model should not leave explanation genera-
tion to the users as different explanations may be deduced depending on their back-
ground knowledge. Having a semantic representation of the knowledge can help a
model to have the ability to produce explanations (e.g., in natural language [174])
combining common sense reasoning and human-understandable features.

Furthermore, until an objective metric has been adopted, it appears necessary to
make an effort to rigorously formalize evaluation methods. One way may be draw-
ing inspiration from the social sciences, e.g., by being consistent when choosing the
evaluation questions and the population sample used [361].

A final challenge XAI methods for DL need to address is providing explanations
that are accessible for society, policy makers and the law as a whole. In particular,
conveying explanations that require non-technical expertise will be paramount to
both handle ambiguities, and to develop the social right to the (not-yet available)
right for explanation in the EU General Data Protection Regulation (GDPR) [362].

2.4.4 Explanations for AI Security: XAI and Adversarial Machine Learning

Nothing has been said about confidentiality concerns linked to XAI. One of the last
surveys very briefly introduced the idea of algorithm property and trade secrets [18].
However, not much attention has been payed to these concepts. If confidential is the
property that makes something secret, in the AI context many aspects involved in a
model may hold this property. For example, imagine a model that some company
has developed through many years of research in a specific field. The knowledge
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synthesized in the model built might be considered to be confidential, and it may
be compromised even by providing only input and output access [363]. The latter
shows that, under minimal assumptions, data model functionality stealing is possible.
An approach that has served to make DL models more robust against intellectual
property exposure based on a sequence of non accessible queries is in [364]. This
recent work exposes the need for further research toward the development of XAI
tools capable of explaining ML models while keeping the model’s confidentiality in
mind.

Ideally, XAI should be able to explain the knowledge within an AI model and it
should be able to reason about what the model acts upon. However, the information
revealed by XAI techniques can be used both to generate more effective attacks in
adversarial contexts aimed at confusing the model, at the same time as to develop
techniques to better protect against private content exposure by using such infor-
mation. Adversarial attacks [365] try to manipulate a ML algorithm after learning
what is the specific information that should be fed to the system so as to lead it to
a specific output. For instance, regarding a supervised ML classification model, ad-
versarial attacks try to discover the minimum changes that should be applied to the
input data in order to cause a different classification. This has happened regarding
computer vision systems of autonomous vehicles; a minimal change in a stop signal,
imperceptible to the human eye, led vehicles to detect it as a 45 mph signal [366].
For the particular case of DL models, available solutions such as Cleverhans [367]
seek to detect adversarial vulnerabilities, and provide different approaches to harden
the model against them. Other examples include AlfaSVMLib [368] for SVM models,
and AdversarialLib [369] for evasion attacks. There are even available solutions for
unsupervised ML, like clustering algorithms [370].

While XAI techniques can be used to furnish more effective adversarial attacks
or to reveal confidential aspects of the model itself, some recent contributions have
capitalized on the possibilities of Generative Adversarial Networks (GANs [371]),
Variational Autoencoders [372] and other generative models towards explaining data-
based decisions. Once trained, generative models can generate instances of what they
have learned based on a noise input vector that can be interpreted as a latent represen-
tation of the data at hand. By manipulating this latent representation and examining
its impact on the output of the generative model, it is possible to draw insights and
discover specific patterns related to the class to be predicted. This generative frame-
work has been adopted by several recent studies [373, 374] mainly as an attribution
method to relate a particular output of a Deep Learning model to their input vari-
ables. Another interesting research direction is the use of generative models for the
creation of counterfactuals, i.e., modifications to the input data that could eventually
alter the original prediction of the model [375]. Counterfactual prototypes help the
user understand the performance boundaries of the model under consideration for
his/her improved trust and informed criticism. In light of this recent trend, we def-
initely believe that there is road ahead for generative ML models to take their part
in scenarios demanding understandable machine decisions. However, there is still a
gap in the conception of these adversarial generators.

Most of the models to date are focused on exploiting a given singular feature
within the model. Lets say, the minimal change needed to turn a model’s prediction.
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Such techniques only treat adversarial analysis as a single objective optimization
process. However, adversarial analysis could be presented as a multi-objective opti-
mization process. This new paradigm would allow for a much broader analysis of
the model at hand, enforcing the conditions that are thought to be possible in its ap-
plication. This proposition is still unexploited in the literature and serves as one the
motivating concepts for the rest of this thesis. The Chapter 4 covers a further analysis
on the matter and presents a technical contribution to prove its relevance.

2.4.5 XAI and Output Confidence

Safety issues have also been studied in regards to processes that depend on the out-
put of AI models, such as vehicular perception and self-driving in autonomous ve-
hicles, automated surgery, data-based support for medical diagnosis, insurance risk
assessment and cyber-physical systems in manufacturing, among others [376]. In all
these scenarios erroneous model outputs can lead to harmful consequences, which
has yielded comprehensive regulatory efforts aimed at ensuring that no decision is
made solely on the basis of data processing [172].

In parallel, research has been conducted towards minimizing both risk and uncer-
tainty of harms derived from decisions made on the output of a ML model. As a
result, many techniques have been reported to reduce such a risk, among which we
pause at the evaluation of the model’s output confidence to decide upon. In this case,
the inspection of the share of epistemic uncertainty (namely, the uncertainty due to
lack of knowledge) of the input data and its correspondence with the model’s output
confidence can inform the user and eventually trigger his/her rejection of the model’s
output [377, 378]. To this end, explaining via XAI techniques which region of the in-
put data the model is focused on when producing a given output can discriminate
possible sources of epistemic uncertainty within the input domain.

2.4.6 XAI in Randomized Neural Networks

Within the field of NN, Randomized Neural Networks have seem some success from
the performance perspective [379–385]. However, their xAI stance is non-existing.
These models present an interesting tradeoff against classical Neural Networks. Ran-
domized Neural Networks substitute iterative training for randomization. Such a
change supposes a great advantage in training time which if backed up by great per-
formance, should leave open a new path to high dimensional model training apart
of classical back-propagation neural networks.

Among Randomized Neural Networks, three main families can be found [385],
namely: Random Weight-Feed Forward Network (RW-FFN), Random Features for
Kernel Methods (RF-KM) and Reservoir Computing (RC). Paying attention to the
body of the taxonomy in Figure 2.5, the gap of research missing for this area can be
found. These models have been always surrounded by a subtle mist of miss-trust due
to their randomized essence. Understanding the reasons of why interchanging long
iterative training with randomized initializations is even possible is paramount for
these families of methods to thrive.
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This gap in the literature ought to be filled. Randomized NNs are starting to grow
in their application, although, they are still in need of supporting xAI methods and
frameworks that help them match the necessities of their fields of application. This
aspect represents the motivation for the next chapter of this thesis. The Chapter 3

of the present thesis will delve into this matter by proposing a new framework that
stands as the first XAI contribution to the field of Randomized Neural Networks.

2.4.7 XAI, Rationale Explanation and Critical Data Studies

When shifting the focus to the research practices seen in Data Science, it has been
noted that reproducibility is stringently subject not only to the mere sharing of data,
models and results to the community, but also to the availability of information about
the full discourse around data collection, understanding, assumptions held and in-
sights drawn from model construction and results’ analyses [386]. In other words, in
order to transform data into a valuable actionable asset, individuals must engage in
collaborative sense-making by sharing the context producing their findings, wherein
context refers to sets of narrative stories around how data were processed, cleaned,
modeled and analyzed. In this discourse we find also an interesting space for the
adoption of XAI techniques due to their powerful ability to describe black-box mod-
els in an understandable, hence conveyable fashion towards colleagues from Social
Science, Politics, Humanities and Legal fields.

XAI can effectively ease the process of explaining the reasons why a model reached
a decision in an accessible way to non-expert users, i.e. the rationale explanation. This
confluence of multi-disciplinary teams in projects related to Data Science and the
search for methodologies to make them appraise the ethical implications of their data-
based choices has been lately coined as Critical Data studies [387]. It is in this field
where XAI can significantly boost the exchange of information among heterogeneous
audiences about the knowledge learned by models.

2.4.8 XAI and Theory-guided Data Science

We envision an exciting synergy between the XAI realm and Theory-guided Data Sci-
ence, a paradigm exposed in [388] that merges both Data Science and the classic
theoretical principles underlying the application/context where data are produced.
The rationale behind this rising paradigm is the need for data-based models to gener-
ate knowledge that is the prior knowledge brought by the field in which it operates.
This means that the model type should be chosen according to the type of relations
we intend to encounter. The structure should also follow what is previously known.
Similarly, the training approach should not allow for the optimization process to
enter regions that are not plausible. Accordingly, regularization terms should stand
the prior premises of the field, avoiding the elimination of badly represented true
relations for spurious and deceptive false relations. Finally, the output of the model
should inform about everything the model has come to learn, allowing to reason and
merge the new knowledge with what was already known in the field.

Many examples of the implementation of this approach are currently available with
promising results. The studies in [389]-[396] were carried out in diverse fields, show-
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casing the potential of this new paradigm for data science. Above all, it is relevant
to notice the resemblance that all concepts and requirements of Theory-guided Data
Science share with XAI. All the additions presented in [388] push toward techniques
that would eventually render a model explainable, and furthermore, knowledge con-
sistent. The concept of knowledge from the beginning, central to Theory-guided Data
Science, must also consider how the knowledge captured by a model should be ex-
plained for assessing its compliance with theoretical principles known beforehand.
This, again, opens a magnificent window of opportunity for XAI.

2.4.9 Guidelines for ensuring Interpretable AI Models

Recent surveys have emphasized on the multidisciplinary, inclusive nature of the
process of making an AI-based model interpretable. Along this process, it is of utmost
importance to scrutinize and take into proper account the interests, demands and
requirements of all stakeholders interacting with the system to be explained. From
the designers of the system to the decision makers consuming its produced outputs
and users undergoing the consequences of decisions made therefrom.

Given the confluence of multiple criteria and the need for having the human in
the loop, some attempts at establishing the procedural guidelines to implement and
explain AI systems have been recently contributed. Among them, we pause at the
thorough study in [397], which suggests that the incorporation and consideration
of explainability in practical AI design and deployment workflows should comprise
four major methodological steps:

1. Contextual factors, potential impacts and domain-specific needs must be taken
into account when devising an approach to interpretability: These include a
thorough understanding of the purpose for which the AI model is built, the
complexity of explanations that are required by the audience, and the perfor-
mance and interpretability levels of existing technology, models and methods.
The latter pose a reference point for the AI system to be deployed in lieu thereof.

2. Interpretable techniques should be preferred when possible: when consider-
ing explainability in the development of an AI system, the decision of which
XAI approach should be chosen should gauge domain-specific risks and needs,
the available data resources and existing domain knowledge, and the suitabil-
ity of the ML model to meet the requirements of the computational task to
be addressed. It is in the confluence of these three design drivers where the
guidelines postulated in [397] (and other studies in this same line of think-
ing [6]) recommend first the consideration of standard interpretable models
rather than sophisticated yet opaque modeling methods. In practice, the afore-
mentioned aspects (contextual factors, impacts and domain-specific needs) can
make transparent models preferable over complex modeling alternatives whose
interpretability require the application of post-hoc XAI techniques. By contrast,
black-box models such as those reviewed in this chapter (namely, support vec-
tor machines, ensemble methods and neural networks) should be selected only
when their superior modeling capabilities fit best the characteristics of the prob-
lem at hand.
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3. If a black-box model has been chosen, the third guideline establishes that ethics-,
fairness- and safety-related impacts should be weighed. Specifically, responsi-
bility in the design and implementation of the AI system should be ensured by
checking whether such identified impacts can be mitigated and counteracted
by supplementing the system with XAI tools that provide the level of explain-
ability required by the domain in which it is deployed. To this end, the third
guideline suggests 1) a detailed articulation, examination and evaluation of the
applicable explanatory strategies, 2) the analysis of whether the coverage and
scope of the available explanatory approaches match the requirements of the
domain and application context where the model is to be deployed; and 3) the
formulation of an interpretability action plan that sets forth the explanation de-
livery strategy, including a detailed time frame for the execution of the plan,
and a clearance of the roles and responsibilities of the team involved in the
workflow.

4. Finally, the fourth guideline encourages to rethink interpretability in terms of
the cognitive skills, capacities and limitations of the individual human. This
is an important question on which studies on measures of explainability are
intensively revolving by considering human mental models, the accessibility
of the audience to vocabularies of explanatory outcomes, and other means to
involve the expertise of the audience into the decision of what explanations
should provide.

We foresee that the set of guidelines proposed in [397] and summarized above will
be complemented and enriched further by future methodological studies, ultimately
heading to a more responsible use of AI. Methodological principles ensure that the
purpose for which explainability is pursued is met by bringing the manifold of re-
quirements of all participants into the process, along with other universal aspects of
equal relevance such as no discrimination, sustainability, privacy or accountability. A
challenge remains in harnessing the potential of XAI to realize a Responsible AI, as we
discuss in the next section.

2.5 summary

This chapter has revolved around eXplainable Artificial Intelligence (XAI), which has
been identified in recent times as an utmost need for the adoption of ML methods
in real-life applications. This first chapter has elaborated on this topic by first clari-
fying different concepts underlying model explainability, as well as by showing the
diverse purposes that motivate the search for more interpretable ML methods. These
conceptual remarks have served as a solid baseline for a systematic review of recent
literature dealing with explainability, which has been approached from two differ-
ent perspectives: 1) ML models that feature some degree of transparency, thereby
interpretable to an extent by themselves; and 2) post-hoc XAI techniques devised to
make ML models more interpretable. This literature analysis has yielded a global
taxonomy of different proposals reported by the community, classifying them under
uniform criteria. Given the prevalence of contributions dealing with the explainability
of Deep Learning models, we have inspected in depth the literature dealing with this
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family of models, giving rise to an alternative taxonomy that connects more closely
with the specific domains in which explainability can be realized for Deep Learning
models. Finally, this chapter has covered the most recognizable challenges still to be
tackled. The following chapter will attempt to work towards the fulfillment of one
of the gaps underlined in this chapter, namely, explainability for randomized neural
networks. Specifically for Echo State Networks.
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O N T H E P O S T- H O C E X P L A I N A B I L I T Y O F D E E P E C H O S TAT E
N E T W O R K S F O R T I M E S E R I E S F O R E C A S T I N G A N D I M A G E
A N D V I D E O C L A S S I F I C AT I O N

Since their inception [398, 399], Echo State Networks (ESNs) have been frequently pro-
posed as an efficient replacement for traditional Recurrent Neural Networks (RNNs).
As opposed to conventional gradient-based RNN training, the recurrent part (reser-
voir) of ESNs is not updated via gradient backpropagation, it is simply initialized at
random, given that certain mathematical properties are met. This randomized nature
renders ESNs within the realm of randomized neural networks, along with random
vector functional links, stochastic configuration networks and random features for
kernel approximation [379, 380]. As a result, their training overhead for real life appli-
cations becomes much less computationally demanding than that of RNNs. Over the
well-known Mackey-Glass chaotic time series prediction benchmark, ESN has been
shown to improve the accuracy scores achieved by multi-layer perceptrons (MLPs),
support vector machines (SVMs), backpropagation-based RNNs and other learning
approaches by a factor of over 2000 [400]. These proven benefits have appointed ESN
as a top contending dynamical model for performance and computational efficiency
reasons when compared to other modeling counterparts.

Unfortunately, choosing the right parameters to initialize these reservoirs falls a bit
on the side of luck and past experience of the scientist [401], and less on that of sound
reasoning. As stated in [402] and often referred thereafter, the current approach for
assessing whether a reservoir is suited for a particular task is to observe if it yields
accurate results, either by handcrafting the values of the reservoir parameters or
by automating their configuration via an external optimizer. All in all, this poses
tough questions to address when developing an ESN for a certain application, since
knowing whether the created structure is optimal for the problem at hand is not
possible without actually training it. Furthermore, despite recent attempts made in
this direction [403, 404], there is no clear consensus on how to guide the search for
good reservoir based models.

Concerns in this matter go a step beyond the ones exposed above about the config-
uration of these models. Model design and development should orbit around a deep
understanding of the multiple factors hidden below the surface of the model. For this
purpose, a manifold of techniques have been proposed under the Explainable Arti-
ficial Intelligence (xAI) paradigm for easing the understanding of decisions issued
by existing AI-based models. The information delivered by xAI techniques allow im-
proving the design/configuration of AI models, extracting augmented knowledge
about their outputs, accelerating debugging processes, or achieving a better outreach
and adoption of this technology by non-specialized audience [405]. Although the ac-
tivity in this research area has been vibrant for explaining many black-box machine
learning models, there is no prior work on the development of techniques of this sort
for dynamical approaches. The need for providing explanatory information about the
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knowledge learned by ESNs remains unaddressed, even though recent advances on
the construction of multi-layered reservoirs (Deep ESN [383]) that make these models
more opaque than their single-layered counterparts have been proposed.

Given the above context and the prior information presented at Chapter 2, this
part of the thesis takes a step ahead by presenting a novel suite of xAI techniques
crafted to issue explanations of already trained Deep ESN models. Although these
techniques are specifically designed for ESN explanation, they hardly fall under the
paradigm of model specific techniques. However, they could be considered under
model-family specific concerning dynamic or recurrent models. Within such a cat-
egory, the methods proposed belong to Post-hoc Explainability. The proposed tech-
niques elicit visual information that permit to assess the memory properties of these
models, visualize their detected patterns over time, and analyze the importance of
an individual input in the model’s output. Mathematical definitions of the xAI fac-
tors involved in the tools of the proposed framework are given, complemented by
examples that help illustrate their applicability and comprehensibility to the general
audience. This introduction of the overall framework is complemented by several
experiments showcasing the use of our xAI framework to three different real applica-
tions: 1) battery cell consumption prediction, 2) road traffic flow forecasting, 3) image
classification and 4) video classification. The results are conclusive: the outputs of the
proposed xAI techniques confirm, in a human-readable fashion, that the Deep ESN
models capture temporal dependencies existing in data that could be expected due to
prior knowledge, and that this captured information can be summarized to deepen
the understanding of a general practitioner/user consuming the model’s output. The
novel ingredients of this chapter can be summarized as follows:

1. Three xAI methods for ESNs:

• Potential memory, which permits to quantitatively assess the estimated
memory retained in a trained ESN, and that can be extrapolated to any re-
cursive model. This technique falls within Visual Explanations from Section
2.3.1.

• Temporal patterns, which examines the correlative patterns captured by
the ESN, and visualizes them to aid the training and explanation process.
This tool allows checking whether the model captures from data what
the practitioner could expect as per his/her expert knowledge or prior
intuition told by the application at hand. This technique also falls within
Visual Explanations from Section 2.3.1.

• Pixel absence effect, which evaluates the effect of each dimension of the
input instance on the output of the model. This improves the granularity
of the analysis, uncovering which parts of the input are most influential
for the prediction. This technique falls within amid Visual Explanations and
Feature Relevance from Section 2.3.1.

2. The aforementioned tools are evaluated over data of distinct nature: time series,
image and video data. The latter one (video) imply transforming images that
flow over time into a multidimensional time series.
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3. Explanations issued by the proposed techniques are proven not only to in-
form further future studies dealing with these recurrent randomized neural
networks, but to also unveil important modeling issues (e.g. the presence of
bias) that are often not easy to detect from sequential data.

The rest of this chapter is organized as follows: Section 3.1 provides the reader
with the required background on ESN literature, and sets common mathematical
grounds for the rest of the work. Section 3.2 introduces the framework and analyses
each of the techniques proposed in its internal subsections. Section 3.3 presents the
experiments designed to ensure the viability of this study with real data. Section 3.4
analyzes and discusses the obtained results. Finally Section 3.5 puts an end to the
chapter by summarizing the contains of the chapter.

3.1 related work

Before proceeding with the description of the proposed suite of xAI techniques, this
section briefly revisits the fundamentals of ESN and Deep ESN models (Subsection
3.1.1), notable advances in the explainability of recurrent neural networks and models
for time series (Subsection 3.1.2), and techniques used for quantifying the importance
of features (Subsection 3.1.3).

3.1.1 Echo State Network: Fundamentals

In 2001, Wolfgang Maass and Herbert Jaeger independently introduced Liquid State
Machines [406] and ESNs [407], respectively. The combination of these studies with
research on computational neuroscience and machine learning [408, 409] brought
up the field of Reservoir Computing. Methods belonging to this field consist of a
set of sparsely connected, recurrent neurons capable of mapping high-dimensional
sequential data to a low-dimensional space, over which a learning model can be
trained to capture patterns that relate this low-dimensional space to a target output.
This simple yet effective modeling strategy has been harnessed for regression and
classification tasks in a diversity of applications, such as road traffic forecasting [410],
human recognition [411] or smart grids [412], among others [383].

Besides their competitive modeling performance in terms of accuracy/error, Reser-
voir Computing models are characterized by a less computationally demanding train-
ing process than other recursive models: in these systems, only the learner mapping
the output of the reservoir to the target variable of interest needs to be trained. Neu-
rons composing the reservoir are initialized at random under some stability con-
straints. This alternative not only alleviates the computational complexity of recur-
rent neural networks, but also circumvents one of the downsides of gradient back-
propagation, namely, exploding and vanishing gradients.

To support the subsequent explanation of the proposed xAI techniques, we now
define mathematically the internals and procedure followed by ESNs to learn a map-
ping from a K-dimensional input u(t) (with t denoting index within the sequence) to
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Figure 3.1: Schematic diagram showing a canonical ESN (upper plot), and the multi-layered
stacking architecture of a Deep ESN model (below).

a L-dimensional output y(t) by a reservoir of N neurons. Following Figure 3.1, the
reservoir state is updated as:

x(t+ 1) =

αf(Winu(t+1)+Wx(t)+Wfby(t)) + (1−α)x(t), (1)

where x(t) denotes the N-sized state vector of the reservoir, f(·) denotes an activation
function, WN×N is the matrix of internal weights, Win

N×K are the input connection
weights, and Wfb

N×L is a feedback connection matrix. Parameter α ∈ R(0, 1] denotes
the leaking rate, which allows to set different learning dynamics in the above recur-
rence [413]. The output of the ESN at index t can be computed once the state of the
reservoir has been updated, yielding:

ŷ(t) = g
(
Wout[x(t); u(t)]

)
= g(Woutz(t)), (2)

where [a; b] is a concatenation operator between vectors a and b, Wout
L×(K+N) is a ma-

trix containing the output weights, and g(·) denotes an activation function. Weights
belonging to the aforementioned matrices can be adjusted as per a training data-set
with examples {(u(t), y(t))}. However, as opposed to other recurrent neural networks,
not all weight inside the matrices Win, W, Wfb and Wout are adjusted. Instead, the
weight values of input, hidden state, and feedback matrices are drawn initially at
random, whereas those of the output matrix Wout are the only ones tuned during
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the training phase, using Moore-Penrose pseudo-inversion (for classification) or reg-
ularized least squares (regression). In this latter case:

min
woutl

T∑
t=1

K+N∑
j=1

woutl,j · zj(t)−yl(t)

2+λ ∥∥woutl

∥∥2
2

, (3)

where l ∈ {1, . . . ,L}; woutl ∈ RK+N; ‖·‖2 denotes L2 norm; zj(t) is the j-th entry of
z(t); and woutl = [woutl,1 , ...,woutl,K+N]

T denotes the l-th row of Wout; and λ ∈ R[0,∞)

permits to adjust the importance of the L2 regularization term in the minimization.
More recently, a multi-layered architecture based on the leaky ESN model de-

scribed above was introduced in [383]. In essence, the Deep ESN model embodies
a stacking ensemble of NL reservoirs, set one after the other, forming a hierarchically
layered series of reservoirs. As a result of this concatenation, the state vector of the
global Deep ESN model is given by [x(1)(t); ...; x(NL)(t)] .

= [x(l)(t)]NLl=1, which can be
conceived as a multi-scale representation of the input u(t). It is this property, together
with other advantages such as a lower computational burden of their training algo-
rithm and the enriched reservoir dynamics of stacked reservoirs [414], what lends
Deep ESNs a competitive modeling performance when compared to other RNNs.

As shown in Figure 3.1, in what follows (l) indicates that the parameter featuring
this index belongs to the l-th layer of the Deep ESN. The first stacked ESN is hence
updated as:

x(1)(t+ 1) =
(
1−α(1)

)
x(1)(t)+

α(1)f
(

W(1)x(1)(t) + W(1),inu(1)(t+ 1)
)

, (4)

whereas the recurrence in layers l ∈ {2, . . . ,NL} is given by:

x(l)(t+ 1) =
(
1−α(l)

)
x(l)(t)+

α(l)f
(

W(l)x(l)(t) + W(l),inx(l−1)(t+ 1)
)

, (5)

and the Deep ESN output yields as:

ŷ(t) = g
(

Wout[x(1)(t); . . . ; x(NL)(t)]
)

, (6)

where Wout
L×(NL·N) is the weight matrix that maps the concatenation of state vectors of

the stacked reservoirs to the target output. Analogously to canonical single-layer ESN,
weights in W(l) and W(l),in for each layer l = 1, . . . ,NL are initialized at random and
re-scaled to fulfill the so-called Echo State Property [415], i.e.:

max
l∈{1,...,NL}

ρ
(
(1−α(l))I +α(l)W(l)

)
< ρmax, (7)

with ρ(·) denoting the largest absolute eigenvalue of the matrix set at its argument,
and ρmax < 1 the so-called spectral radius of the model. Once W(l) and W(l),in have
been set at random fulfilling the above property, they are kept fixed for the rest of
the training process, whereas weights in Wout are tuned over the training data by
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means of regularized least-squares regression as per Expression (3) (or any other low-
complexity learning model alike). Although it has not been covered in the literature,
the readout layer can be designed, selected or tailored as per the needs of the problem
or task at hand. In this work, multiple readout layers are considered to tackle multi-
class (random forests) and regression problems (linear regression).

Despite the simplicity and computational efficiency of the ESN and Deep ESN
training process, the composition of the network itself – namely, the selection of the
number of layers and the value of hyper-parameters such as α(l) is a matter of study
that remain so far without a clear answer [402, 407, 416]. Some automated approaches
have been lately proposed, either relying on the study of the frequency spectrum of
concatenated reservoirs [417] or by means of heuristic wrappers [418]. However, no
previous work can be found on explainability measures that can be drawn from an
already trained Deep ESN to elucidate diverse properties of its captured knowledge.
When the audience for which such measures are produced is embodied by machine
learning experts, the suite of xAI techniques can help them discern what they observe
at its input, quantify relevant features (e.g. its memory depth) and thereby, ease the
process of configuring them properly for the task at hand.

3.1.2 Explainability of Recurrent Neural Networks

This subsection dives deeper than Chapter 2 into the literature of explainability of
RNN. Paying a closer attention to the most relevant concepts needed for this specific
chapter. Several application domains have traditionally shown a harsh reluctance
against embracing the latest advances in machine learning due to the opaque, black-
box nature of models emerging over the years. This growing concern with the need
for explaining black-box models has been mainly showcased in Deep Learning mod-
els for image classification, wherein explanations produced by xAI techniques can
be inspected easily. However, the explainability of models developed for sequence
data (e.g. time series) has also been studied at a significantly smaller corpus of lit-
erature. A notable milestone is the work in [419], where a post-hoc xAI technique
originally developed for image classification was adopted for LSTM architectures,
thereby allowing for the generation of local explanations in sequential data modeling
and regression. Stimulated in part by this work, several contributions have hitherto
proposed different approaches for the explainability of recurrent neural networks,
including gradient-based approaches [420, 421], ablation-based estimations of the rel-
evance of particular sequence variables for the predicted output [422, 423], or the
partial linearization of the activations through the network, permitting to isolate the
contribution at different time scales to the output [424].

In addition to standard Deep Learning approaches resorting to gradient backprop-
agation [425], time series data are also processed by means of other modeling ap-
proaches, mostly traditional data mining methods for time series analysis. By mov-
ing away from Deep Neural Networks, further possibilities emerge for achieving
interpretable methods by design, which allow for a better understandability of its
inner working by the audience without requiring external tools for the purpose [426].
Among them, Symbolic Aggregate Approximation (SAX) [427, 428] and Fuzzy Logic
appear to be the best contenders. SAX works by first transforming the time series
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into its piece-wise aggregate approximation [429]. Then the resulting transformation
is converted into a string of symbols assigned equiprobably among the regions of
the discretization. Finally the obtained representation permits a clear visualization
of the recurrent patterns hand in hand with the stream-like implementation with
minimal overheads. Fuzzy logic, fuzzy sets and computing with words [430–433] are
methods that improve the interpretability of otherwise hard-to-understand systems,
by bringing them closer to how human reasoning operate when inspecting multi-
ple dimensions over time. By transforming continuous values into meaningful levels,
fuzzy computing is able to tackle many types of problems without hindering the
interpretability of data and operations held over them through the model of choice.

Despite the numerous attempts made recently at explaining dynamic systems,
most of them are fabricated in a ad-hoc manner, thus leaving aside other flavors
of time-series and recurrent neural computation whose intrinsically abstract nature
also calls for studies on their explainability. Indeed, this noted lack of proposals to
elicit explanations for alternative models is in close agreement with the conclusions
and prospects made in comprehensive surveys on xAI [405, 434]. This is the pur-
pose of the set of techniques presented in the following section, to provide different
interpretable indicators of the properties of a trained Deep ESN model, as well as
information that permit to visualize and summarize the knowledge captured by its
reservoirs.

3.1.3 Importance Attribution Methods

Due to one of the techniques in the proposed framework (Pixel absence effect), it is
compulsory that importance attribution methods are discussed in this background.
Importance attribution methods were introduced in Chapter 2 under the umbrella of
feature relevance explanation methods. Importance attribution methods are not ex-
clusive to neural networks or randomized neural networks for that matter. There has
been extended use of this concept for Tree Ensembles and Support Vector Machines
[435, 436] constructing a well developed body of research around these techniques.
The assessment of the validity of a machine learning model’s output is paramount
for a well structured system validation/improvement workflow. Feature attribution
methods intend on giving interpretability cues by measuring the importance each
feature has in the final prediction outcome. Many techniques have been proposed in
the last few years to gauge the importance of features in different learning tasks [146,
297, 299, 437–443], yet none of them has been utilized with the recurrent randomized
neural networks that are at the core of this study.

3.2 proposed framework

The framework proposed in this work is composed by three xAI techniques, each
tackling some of the most common aspects that arise when training an ESN model
or understanding their captured knowledge. These techniques cover three main char-
acteristics that help understand strengths and weaknesses of these models:
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1. Potential Memory, which is a simple test that closely relates to the amount of
sequential memory retained within the network. The potential memory can be
quantified by addressing how the model behaves when its input fades abruptly.
The intuition behind this concept recalls to the notion of stored information, i.e.,
the time needed by the system to return to its resting state.

2. Temporal Patterns, which target the visualization of patterns occurring inside
the system by means of recurrence plots [444, 445]. Temporal patterns permit
to examine the multiple scales at which patterns are captured by the Deep
ESN model through their layers, easing the inspection of the knowledge within
the data that is retained by the neuron reservoir. This technique also helps
determine when the addition of a layer does not contribute to the predictive
performance of the overall model.

3. Pixel Absence Effect, which leverages the concept of local explanations [405] and
extends it to ESN and Deep ESN models. This technique computes the predic-
tion difference resulting from the suppression of one of the inputs of the model.
The generated matrix of deviations will be contained within the dimensions of
the input signal, allowing for the evaluation of the importance of the absence
of a single component over the input signal.

The following subsections provide rationale for the above set of xAI techniques,
their potential uses, and examples with synthetic data previewing the explanatory
information they produce.

3.2.1 Potential Memory

One of the main concerns when training an ESN model is to evaluate the potential
memory the network retains within their reservoir(s). Quantifying this information
becomes essential to ensure that the model possesses enough modeling complexity
to capture the patterns that best correlate with the target to be predicted.

Intuitively, a reservoir is able to hold information to interact with the newest inputs
being fed to the network in order to generate the current output. It follows that, upon
the removal of these new inputs, the network should keep outputting the informa-
tion retained in the reservoir, until it is flushed out. The multi-layered structure of
the network does not allow relating the flow through the Deep ESN model directly to
its memory, since the state in which this memory is conserved would most probably
reside in an unknown abstract space. This is the purpose of the proposed potential
memory indicator: to elicit a hint of the memory contained in the stacked reservoirs.
When informed to the audience, the potential memory can improve the confidence of
the user with respect to the application at hand, especially in those cases where a hy-
pothesis on the memory that the model should possess can be drawn from intuition.
For instance, in an order-ten nonlinear auto-regressive-moving average (NARMA)
system, the model should be able to store at least ten past steps to produce a forecast
for the next time step.

Before proceeding further, it is important to note that a high potential memory
is not sufficient for the model to produce accurate predictions for the task under
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consideration. However, it is a necessary condition to produce estimations based
on inputs further away than the number of sequence steps upper bounded by this
indicator.

For the sake of simplicity, let us assume a single-layer ESN model without leaking
rate (α = 1) nor feedback connection (i.e. Wfb = 0N×L). These assumptions simplify
the recurrence in Expression (1) to:

x(t+ 1) = f(Winu(t+ 1) + Wx(t)), (8)

which can be seen as an expansion of the current input u(t+ 1) and its history rep-
resented by x(t). If we further assume that the network is initially1 set to ŷ(0) = 0
when u(0) = 0, the system should evolve gradually to the same state when the input
signal u(t) is set to 0 at time t = T0. The time taken for the model to return to its ini-
tial state is the potential memory of the network, representing the information of the
history kept by the model after training. Mathematically: [Potential memory] Given
an already trained ESN model with parameters

{α(l), W(l),in, W(l), Wfb, Wout},

and initial state set to ŷ(0) = y0 ∈ RL when u(0) = 0, the potential memory (PM) of
the model at evaluation time T0 is given by:

PM(T0) = T0 −t>T0 ‖ŷ(t) − y0‖2 < ε, (9)

where ε is the tolerance below which convergence of the measure is declared.
In order to illustrate the output of this first technique, we consider a single ESN

model with varying number of neurons in its reservoir to learn the phase difference
of 50 samples between an input and an output sinusoid. Plots nested in Figure 3.2
depict the fade dynamics of different ESN models trained with N = 5 (plots 3.2.a and
3.2.b), N = 50 (plots 3.2.c and 3.2.d) and N = 500 neurons (plots 3.2.e and 3.2.f) in
their reservoirs. Specifically, the graph on the top represents the actual signal to be
predicted, while the bottom graphs display the behavior of the output of each ESN
model when the input signal is zeroed at time T0 = 10100, along with the empirical
distribution of the potential memory computed for T0 ∈ (10000, 10100].

When the reservoir is composed by just N = 5 neurons, the potential memory of
the network is low given the quick transition of the output signal to its initial state
after the input is set to 0. When increasing the size of the reservoir to 50 neurons,
a rather different behavior is noted in the output of the ESN model when flushing
its contained knowledge, not reaching its steady state until 20 time steps for the
example depicted in Figure 3.2.c. Finally, an ESN comprising 500 neural units in its
reservoir does not come with a significant increase of its potential memory, however,
the model is able to compute the target output in a more precise fashion with respect
to the previous case. This simple experiment shows that the potential memory is a
useful metric to evaluate the past range of the sequence modeled and retained at its
input. As later exposed in Section 3.4, this technique is of great help when fitting
a model, since only when the potential memory is large enough, does the model
succeed on the testing.

1 For clarity any consideration to the bias term is avoided in this statement.
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Figure 3.2: (Top) Input and target sinusoids used for training an ESN model with α = 0.5
and a single reservoir with N ∈ {5, 50, 500} neurons. In the rest of plots, reservoir
memory dynamics when the input signal is set to 0 at t = 10100, along with the
histogram of PM(T0) values obtained for T0 ∈ (10000, 10100] and ε = 0.05.

3.2.2 Temporal Patterns

One important aspect when designing and building a model is to ascertain whether it
has been able to capture the temporal patterns observed in the dynamics of the data
being modeled. To shed light on this matter, the devised temporal patterns technique
resorts to a well-established tool for the analysis of dynamical systems: Recurrence
Plots [444, 445]. This component of the suite aims at tackling two main problems: 1)
to determine whether the model has captured any temporal patterns; and 2) if the
depth of the model (as per its number of stacked layers) is adding new knowledge
that contributes to the predictive performance of the model.

Before proceeding further with the mathematical basis of this technique, we pause
at some further motivating intuition behind temporal patterns. Given the black-box
nature of neural networks, their training often brings up the question whether the
model is capturing the patterns expected to faithfully model the provided data. From
logic it can be deduced that, the deeper the network is, the more detail it will be able
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to hold on to. However, this does not always result in a better predictive model. Since
any given layer feeds on the previous layer’s high dimension representation (with the
exception of the first layer), the patterns found in these latter representations should
potentially be more intricate, since their input is already more detailed.

This is best understood from a simile with the process of examining a footprint.
The human cortex has much definition to extract information from the visualized
footprint. However, when staring at an already enlarged image, by the effect of a
magnifying glass, the human visual cortex can pick on features they could not detect
before, hence obtaining a similar effect to that of layering multiple reservoirs. The
depth of the network, as well as the magnification optics, have to be appropriately
sized for the task: there is no point in searching for a car using a microscope, as there
is no point on using a deep structure to model a simple phenomenon.

Following the findings from [383, 446] in which their authors already found how
Deep ESN architectures developed multiple time-scale representations that grew with
layering, it seems of utmost importance from an explainability perspective to dispose
of a tool that will help us inspect this property in already trained models. For this
purpose, recurrence plots are used to analyze the temporal patterns found within
the different layers of the network. When the layers capture valuable information,
their recurrence plots show more focused patterns than their previous layers. This
accounts for the fact that each layer is able to better focus on patterns, leaving aside
noise present in data. When this growing detail in the recurrence plots disappears
at a point of the hierarchy of reservoirs, adding more layers seem counterproductive
and does not potentially yield any modeling gain whatsoever.

Mathematically we embrace the definition of recurrence plots in [444]. Specifically,
the recurrence plot R(l,l ′)

t,t ′ between input x(l)(t) and x(l
′)(t ′) is given by:

R(l,l ′)
t,t ′ =

 1 if
∥∥∥x(l)(t) − x(l

′)(t ′)
∥∥∥
2
< ψ,

0 otherwise,
(10)

i.e. as a N×N binary matrix in which value 1 is set for those indices corresponding
to time steps (t, t ′) where the hidden state vectors of the reservoirs l and l ′ are
equal up to an error ψ. Obviously, the case when l = 1 (i.e. the first signal is the
input data u(t)), dimensions of the recurrence plot can be enlarged to cover all its
length. Likewise, the case with heterogeneously sized reservoirs also fits in the above
definition by simply adjusting accordingly the size of the matrix. For our particular
case, recurrence plots run for each of the states of a certain layer pair l, l ′ throughout
the test history portrait the repetitions in phase space that happened throughout a
given time window.

Figure 3.3 exemplifies the output of the recurrence plots when applied to the out-
put layers of an ESN trained to map a noisy sinusoidal signal with an increasing
additive trend to its noiseless version. The first thing that can be extracted from the
figure is that the system being modeled is non-stationary (for the inspected scope).
As shown in the signal and the recurrent plots, both present an upward slope. The
second property to notice is the periodicity of the plots. By observing the processed
and predicted signal (processed-gray, predicted-red), one may note that the four oscil-
lations are captured by the model, and that they are mostly symmetric. A last feature
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Figure 3.3: Representation of an ESN model trained to model a trended sinusoid by means
of recurrence plots with three different layer configurations (1 layer: top, 2 layers:
middle, 3 layers: bottom), displaying the evolution of the patterns seen on the
recurrence plots along with an indication of the mean of the recurrence plots.

shown by the model is that the signal is noisy, hence those dots close to the valleys,
meaning that there are agglomerations of readings in those spots that a clean signal
would not have. The figure clearly shows that the recurrent behavior of the signal can
be inspected on the recurrence plots of its hidden states. This type of analysis helps
detect the properties of the phenomena producing the data under analysis: stationary
or non-stationary nature, periodicity, trend, strong fluctuations, similar/inverse evo-
lution through time, static states and similarity between states but at different rates.
The extraction of such features from the recurrence plot perfectly couples with the
notion of deepening our understanding of these models giving a further insight on
the temporal patterns happening within the data.

This tool serves a two-way purpose that will be further discussed in the experiment
section. First, it allows inspecting whether the model is actually capturing the features
that could be expected from the system; secondly, once these features are captured
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Figure 3.4: Mean absolute error as a function of the number of reservoirs NL (top), and evo-
lution of the average difference between recurrence plots corresponding to layers
l − 1 and l + 1 for NL ∈ {4, . . . , 10} (bottom). There is a clear positive correla-
tion between the test error and the RP difference, suggesting that performance
improvements occur whenever subsequent reservoirs yield a more detailed recur-
rence plot.

correctly, it will allow for a better understanding of the system’s dynamics through
time. For example, the above image 3.3 clearly shows in each best configuration (two
layers) that the model is clearly capturing the system non-stationary condition along
with its low amplitude fluctuations that present a recurrent behavior through time. A
further analysis of this tool when applied to real data will be covered in Section 3.4.

A byproduct derived from this tool is a numerical score that determines whether
an added layer is contributing to the modeling process. A preliminary experiment is
devised to support the claim that the sharpness of a certain layer’s recurrent plot adds
to the validity of such layer’s addition to the predictive power of the model. Given
input and output signals, an ESN of equal characteristics is run for a number of times
and each number of layers. For each layer’s recurrent plot Rl,l

′

t,t ′ , its average value is
computed, which relates to how sharp the recurrence plot is. Results in Figure 3.4
run for the example in Figure 3.3 reveals that the average test error computed over 50
trials correlates with the decrease of the average difference between recurrence plots,
which validates the intuition about the relative usefulness of every layer. In sum-
mary, a clear positive correlation exists between the decrease in recurrent pattern’s
average and prediction error rate, which means that testing whether the average of
the subsequent recurrent plots is decreasing could be of use when determining the
contribution of adding the layer to the ESN.
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3.2.3 Pixel Absence Effect

Finally, we delve into the third technique that comprises the proposed xAI suite for
ESN-based models. The explanation departs from the thought that the analysis of a
predictive model always brings up the question of whether an input is causing any
effect on the model’s prediction. Naturally, the goal is to find out how the inputs
deemed to be the most important ones for the task at hand are actually the ones on
which the model focuses most when eliciting its predictions. However, discovering
whether this is actually true in the trained model is not an easy task.

Intuitively, if a step back is taken from the architecture to simply stare at the dif-
ference caused by the cancellation of a certain input, it should be possible to observe
the individual influence of such input for the issued prediction. Similarly, inputs
could be canceled in groups to evaluate the importance of each neighboring region
of the input space. Given that the result of this technique can be laid directly over
the input of the model, the results can be readily read and understood by any type
of user, disregarding his/her technical background. This capability makes this xAI
approach promising from an explainability standpoint. Indeed, the term pixel in the
name of the technique comes purposely from the noted suitability of the technique to
be depicted along with the input data, applying naturally when dealing with image or
video data. However, this importance attribution technique can be applied to other
input data flavors (e.g. time series) without requiring any modification of its steps.

Before delving further into this technique, it is of paramount importance to under-
stand that the transformation of an image into a time series is needed to harness the
modeling potential of ESN models. For this, the transformation presented by [447] is
adopted: in accordance with Figure 3.5, an gray-scale (RGB) image with dimensions
W ×H (pixels) can be represented as a W ·H-length time series u(t) (corr. u(t)) by
taking its rows/columns and concatenating them serially. For this work, images were
transformed in a row basis, which means that for W rows, each of the pixels in the
given row are left as series of pixels, stitching the last pixel of the given row with the
first pixel of the next, until every row has been concatenated. Implicitly, this transfor-
mation is not unique to image data, since what is being processed is actually a time
series. However, this technique is adopted over image data since it allows reverting
all the computed importance levels back to the image without having to quantify the
relevance of this attribution over time.

u(t)

Time

Channel

. . .

. . .

. . .

. . .

RGB channels

Figure 3.5: Schematic diagram showing the process of converting an RGB image to a K = 3

time series u(t).
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In accordance with the previous notation, this technique is now mathematically
described starting from the input-output a single-layered ESN model in Expression
(2), which is included below for convenience:

ŷ(t) = g
(
Wout[x(t); u(t)]

)
= g(Woutz(t)). (11)

The cancellation of a certain point T� in the input sequence u(t) would affect not
only in the sequence itself, but also in future predictions ŷ(t) ∀t > T� due to the
propagation of the altered value throughout the reservoir. Namely:

ŷ�(t) = g
(

Wout[x�(t); u�(t)]
)

, (12)

where u�(t) denotes the input signal with u(T�) = 0K×1, and ŷ�(t) results from
applying recurrence (1) to this altered signal. The intensity of the effect of the sup-
pression on the output signal at time T� can be quantified as:

e(t; T�) = [el(t; T�)]Ll=1 = ŷ�(t) − ŷ(t), ∀t > T�. (13)

where e(t; T�) ∈ RL×1, and its sign indicates the direction in which the output is
pushed as per the modification of the input. Clearly, when dealing with classification
tasks (i.e. y(t) ∈NL×1), a similar rationale can be followed by conceiving the output
of the ESN-based model as the class probabilities elicited for the input sequence.
Therefore, the intensity computed as per (13) denotes whether the modification of
the input sequence increases (el(t; T�) > 0) or decreases (el(t; T�) < 0) the probability
associated to class l ∈ {1, . . . ,L}.

At this point it is important to remark that, given that this third xAI tool derives
from the perturbation of individual pixels, possible correlations between pixels over
the image are neglected, thereby quantifying importances that do not consider the
plausibility of such perturbations. To solve this matter, the pixel absence analysis can
be extended by boostrapping: pixels to be altered are sampled by boostrapping (in a
sample size Np established beforehand, e.g. ten at a time), for a total of Nb boostraps.
The resulting probability changes are accumulated for each given pixel, giving rise to
an enhanced quantification of the overall importance of every pixel, considering the
effect of pixel-to-pixel interactions on the output of the ESN model. The description
of this technique is summarized in the Pseudocode 1.
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Figure 3.6: Segments of the different time series datasets used in the experiments: (top) in-
put u(t) (black) and output y(t) (red) of a NARMA model of order 10; (middle)
electrical current (black) and temperature (red) from a battery; and (bottom) road
traffic flow (vehicles per hour) collected over time.
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Algorithmus 1 : Bootstrap pixel absence effect
Data : Input series u(t) (e.g. coming from an image-to-time-series

transformation), output ŷ(t) of the model at time t, time T� at which
the xAI tool is queried.

Result : Vector e(t; T�) of accumulated relative output probability differences
1 for nb = 1, . . . ,Nb (number of bootstraps) do
2 Sample uniformly at random Np positions from u(t) (sampled positions)
3 Cancel sampled positions in u(t) by interpolating their values as per their

closest neighboring points in the time series
4 Compute ESN output ŷ�(t) for perturbed input
5 Measure difference between old and new (perturbed) output as per

Expression (13)
6 Update vector e(t; T�) by accumulating differences at the sampled

positions

3.2.4 Benefits of the framework for Different Audiences

All the xAI tools composing the proposed framework yield different insights and
uses depending on the audience to which the issued explanations are presented.
This section elaborates further on the benefits that such explanations can entail to
different user profiles.

To begin with, the output of the potential memory tool can be thought to be a quan-
titative measure of the amount of information retained in the ESN reservoirs through
time. For a data scientist, the size of the ESN’s reservoir(s) is arguably the first param-
eter to be tuned when designing ESN architectures. This being said, this parameter
has to be solved before focusing on other parameters. By being informed about the
potential memory of the model, a data scientist can ascertain whether the reservoir is
large enough for the application at hand whenever intuition and prior expert knowl-
edge can give a hint of the minimum memory that an ESN should possess. A similar
reasoning applies to the case of a general user without a background on machine
learning: prior intuition and knowledge can tell whether an ESN can realistically
model a pattern over time, increasing the confidence of the user on the model’s out-
comes.

In what refers to recurrent patterns, a data scientist can harness its generated recur-
rence plot to further validate the model’s efficacy by matching the features found
in the raw data with the patterns encountered in its recurrent patterns, including
stationarity, recurrence, and other time-dependent properties alike. Likewise, a gen-
eral user can discover information about the behavior of the system being modeled,
since recurrent patterns showcase certain properties that, once identified from the
information displayed in the recurrent plots, are easy to detect from data.

Finally, pixel absence gives further insights about the model’s behavior, and allows
a data scientist to tune the parameters of the model in a more effective manner. Most
interestingly, the output of this tool helps discover biases hidden in data and prop-
agated to the model’s output through the architecture. When the computed feature
importances are shown to a general user, they support the fast interpretation of the
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most relevant parts of the input sequences with respect to the prediction, and the
verification that such influential parts conform to prior knowledge of the user.

3.3 experimental setup

We assess the performance of the set of proposed techniques described previously
by means of several computer experiments where different ESN-based models are
used to model datasets of diverse nature. All experiments have been run several
times before showing the results, verifying that explanations issued by the developed
xAI techniques are stable and do not vary under different randomized values of the
reservoirs’ parameters. As such, experiments are divided in three use cases:

• To begin with, experiments deal with the most explored nature of data in ESN
modeling: time series. When dealing with tasks formulated over time series
data (particularly forecasting), it is of utmost importance to understand the be-
havior of the ESN architecture. To this end, the output of potential memory and
temporal patterns is exemplified when used to explain an ESN-based model for
three different regression tasks: one comprising a variable-amplitude sinusoid,
and two real-world datasets for battery consumption and traffic flow forecast-
ing.

• Second, experiments focus on the explanation of ESN models when used for
image classification. This application is not new [448–450], but considering this
task as a benchmark for the developed xAI suite permits to show their utility
to unveil strengths and weaknesses of these architecture in such a setup.

• Finally, video classification is approached with ESN-based models. Differently
than the other two tasks under consideration, we will not only analyze the
knowledge captured by the ESN-based classifier, but also compare it to a base-
line Conv2DLSTM model [451] used for video classification.

The following subsections describe the setup and datasets used for the tasks de-
scribed above.

3.3.1 Time Series Forecasting

As mentioned before, time series analysis stands at the core of the ESN architecture’s
main objective: modeling sequential data. Therefore, three experiments with different
time series data sources are devised to gain understanding upon being modeled by
means of ESNs. Specifically, such experiments consider 1) a synthetic NARMA sys-
tem of order 10 fed with a variable noisy sinusoidal signal; 2) a dataset composed by
real traffic flow data collected by different sensors deployed over the city of Madrid,
Spain [452], and 3) a dataset of lithium-ion battery sensor readings. A regression task
can be formulated over the above datasets: to predict the next value of the time series
data, given the history of past values.

To begin with, we need a controllable dynamical system producing data to be
modeled via a reservoir-based approach. Opting for this initial case ease the process
of verifying whether the knowledge of the trained reservoir visualized with the xAI
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tools conforms to what could be expected from the dynamical properties underneath.
For this purpose, a first system is chosen featuring a recurrent behavior to see its
implications on the potential memory and temporal patterns. A NARMA system
governed by the following expression meets this recurrent nature sought for the time
series:

y(t+ 1)=tanh(0.3 · y(t) + 0.05 · y(t) ·
9∑
i=0

y(t− i)

+1.5 · u(t− 9) · u(t) + 0.1),

(14)

i.e., a one-dimensional time series u(t) given by:

u(t) = sin(2πFt) + 0.02 ·n(t), (15)

with F = 4 Hz, n(t) ∼ N(0, 1), i.e. a Gaussian distribution with mean 0 and unit
variance. The recurrence as per Expression (14) imposes that any model used for
modeling the relationship between u(t) and y(t + 1) should focus on at least ten
prior time steps when producing its outcome, and should reflect the behavior of the
signal amplitude changes over time. A segment of the time series resulting from the
NARMA system is shown in Figure 3.6 (top plot).

The second and third datasets, however, deal with the task of forecasting the
next value of time series data generated by a real-life recurrent phenomenon. On
one hand, a battery dataset is built with recorded electric current and temperature
measurements of a lithium-ion battery cycled to depletion following different dis-
charging profiles. This type of data allows for an inspection of a multivariate ESN
that presents a very stable working regime, featuring very abrupt changes (as the
middle plot in Figure 3.6 clearly shows). On the other hand, traffic flow data col-
lected by a road sensor in Madrid is used. This data source is interesting since it
contains long-term recurrence dynamics (bottom plot in Figure 3.6), suited to be
modeled via ESN-based approaches. These datasets have been made available in a
public GitHub repository, along with all scripts needed for replicating the experi-
ments (https://github.com/alejandrobarredo/xAI4ESN).

Methodologically the experiments with the time series datasets discussed in Sub-
section 3.3.1 are structured in the following way. First, a potential memory analysis
is carried out for the three datasets, elaborating on how the results relate to the
characteristics of the data being modeled. Then, a follow-up analysis is performed
around the temporal patterns emerging from the reservoir dynamics, also crosscheck-
ing whether such patterns conform to intuition. All figures summarizing the outputs
of these xAI techniques are depicted together in the same page for a better readability
of the results and an easier verification of the claims made thereon.

3.3.2 Image Classification

As mentioned before, ESN models have been explored for image classification in
the past, attaining competitive accuracy levels with a significantly reduced training
complexity [448–450]. To validate whether an ESN-based model is capturing features
from its input image that intuitively relate to the target class to be predicted, the
second experiment focuses on the application of the developed pixel absence technique

https://github.com/alejandrobarredo/xAI4ESN
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Table 3.1: List of action recognition video datasets considered in the experiments, along with
their characteristics

Dataset # classes # videos Frame size Description

KTH [453] 6 600 160× 120 Videos capturing 6 human actions (walking, jogging, running, boxing, hand waving
and hand clapping) performed several times by 25 subjects in 4 different scenarios

WEIZMANN [454] 10 90 180× 144 Videos of 9 different people, each performing 10 natural actions (e.g. run, walk, skip,
jumping-jack) divided in examples of 8 frames

IXMAS [455] 13 1650 320× 240
Lab-generated multi-orientation videos of 5 calibrated and synchronized cameras
recording common human actions (e.g. checking-watch, crossing-arms,
scratching-head)

UCF11 [456] 11 3040

320× 240
Action recognition dataset of realistic action videos, collected from YouTube, having
a variable number of action categoriesUCF50 [457] 50 6676

UCF101 [458] 101 13320

UCFSPORTS [459] 16 800 320× 240 Sport videos, collected from YouTube, having 16 sport categories

HMDB51 [460] 51 6766 320× 240
Videos collected from different sources (mainly YouTube and movies) divided into
51 actions that can be grouped in five types: general facial actions, facial actions
with object, general body movement, body with object, human body interactions

SquaresVsCrosses

(new in this work)
2 2000 28× 28

Synthetic video dataset containing two classes (squares and crosses) with clear spatial
separability. The squares class contains videos of a 2× 2 pixel blob moving randomly
in a square trajectory of equal horizontal and vertical length, and radius centered in
the middle of the frame. The crosses class contains an equally sized 2× 2 blob
moving randomly in a cross motion through the center of the frame.

to an ESN image classifier trained to solve the well-known MNIST digits classification
task [461]. This dataset comprises 60000 train images and 10000 test images of 28× 28
pixels, each belonging to one among 10 different categories.

Since these recurrent models are rather used for modeling sequential data, there
is a prior need for encoding image data to sequences, so that the resulting sequence
preserves most of the spatial correlation that could be exploited for classification. This
being said, a column encoding strategy is selected, so that the input sequence is built
by the column-wise concatenation of the pixels of every image. This process yields,
for every image, a one-dimensional sequence of 28× 28 = 784 points, which is input
to a Deep ESN model with NL = 4 reservoirs of N = 100 neurons each. Once trained,
the Deep ESN model achieves a test accuracy of 86%, which is certainly lower than
CNN models used for the same task, but comes along with a significantly decrease
in training complexity. Training and testing over this dataset was performed in less
than 5 seconds using a parallelyzed Python implementation of the Deep ESN model
and an i7 2.8 GHz processor with 16GB RAM.

In this case results and the discussion held on them focus on the pixel absence effect
computed not only for single pixels (namely, points of the converted input sequence),
but also to 2 × 2, 4 × 4 and 8 × 8 pixel blobs showing the importance the model
granted to regions of the input image with increasing granularity. As elaborated in
Section 3.3.2, the absence effects noted in this dataset exemplify further uses beyond
explainability, connecting with the robustness of the model against adversarial at-
tacks.

3.3.3 Video Classification

With this third kind of data a further step is taken beyond the state of the art, as-
sessing the performance of ESN-based models for video classification. The transfor-
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mation of an image to sequences paves the way towards exploring means to follow
similar encoding strategies for the classification of stacked images, which essentially
gives rise to the structure of a video.

In its seminal approach, the video classification task comprises not only predicting
the class associated to an image (frame), but also aggregating the predictions issued
for every frame over the length of every video. These two steps can be performed
sequentially or, instead, jointly within the model, using for this purpose assorted al-
gorithmic strategies such as joint learnable frame classification and aggregation mod-
els. In this case, similarly to image classification, each video (i.e. a series of frames)
is encoded to a multidimensional sequence data that embeds the evolution of each
pixel of the frames over the length of the video. Specifically, each component uk(t)
of u(t) is a sequence denoting the value of the k-th pixel as a function of the frame
index t. Therefore, the dimension K of the input u(t) to the ESN model is equal to
the number of pixels of the frames composing the video under analysis. Figure 3.7
depicts a diagram of this video encoding process.

In order to assess its predictive accuracy, an ESN-based model with NL = 4 reser-
voirs and N = 500 neurons each is run over several known video classification
datasets and a synthetic dataset built in the attempt of showcasing, Pixel Absence’s
ability to discover biases. These datasets are thoroughly described in Table 3.1. How-
ever, achieving a fair comparison between other video classification models reported
in the literature and the ESN-based model is not straightforward. Most existing coun-
terparts are deep neural networks that exploit assorted video preprocessing strate-
gies (e.g. local space-time features [453] or the so-called universal background model
[462]) and/or massively pretrained weights [463], which permit to finely tune the
network for the task at hand. Including these ingredients in the benchmark would
not allow for a fair attribution of the noted performance gaps to the modeling power
of one or another classification model.
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Figure 3.7: Schematic diagram showing the process of converting a sequence of images
(video) to a multi-dimensional time series u(t).

To avoid this problem and focus the scope of the discussion, the ESN-based ar-
chitecture is compared to a Conv2DLSTM deep neural network [451] having at its
input the original, unprocessed sequence of video frames. The CNN part learns vi-
sual features from each of the frames, whereas the LSTM part learns to correlate
the learned visual features over time with the target class. Models are trained with
just the information available in each of the datasets, without data augmentation nor
pretraining. This comparison allows comparing the strengths of these raw model-
ing architectures without any impact of other processing elements along the video
classification pipeline. Table 3.2 summarizes the characteristics of these models un-
der comparison, as well as the parameters of the ESN-based approaches used in the
preceding tasks.
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In regards to explainability, the developed pixel-absence technique is applied to
the ESN model trained for video classification to extract insights about the model’s
learning abilities in this setup. The discussion about the results of the benchmark is
presented in Subsection 3.3.3.

Table 3.2: Table presenting the parameters of the considered ESN and Conv2DLSTM models.

Experiment NL N α ρmax

NARMA 1 100 0.99 0.95

Battery 5 200 0.90 0.9

Traffic 2 200 0.99 0.9

MNIST 4 100 0.95 0.9

Video 4 500 0.99 0.9

Conv2DLSTM 64 3× 3 kernels + LSTM, tanh activation

+ Dropout (0.2)

+ Dense (256 neurons), ReLu activation

+ Dropout (0.3)

+ Dense(# classes), softmax output

Optimizer: SGD, lr = 0.001

Categorical cross-entropy, 20 epochs

3.4 results and discussion

This section goes through and discusses on the results obtained for the experiments
introduced previously. The section is structured in three main parts: time series fore-
casting (Subsection 3.4.1), image classification (Subsection 3.4.2), and video classifica-
tion (Subsection 3.4.3).

3.4.1 Time Series Analysis

As mentioned before, in this first set of experiments two different studies are carried
out. The first one is centered around the potential memory technique, whereas the
second one focuses on the temporal patterns method.

3.4.1.1 Experiment 1: Potential Memory

Reservoir size is one of the most important parameters when designing an ESN-
based model, mostly because it is a compulsory albeit not sufficient parameter for
the model to be able to model a system’s behavior. It is compulsory because there is
always a minimum amount of memory required to learn a recurrent behavior, yet it is
not sufficient because memory does not model behavior by itself, but only allows for
its persistence. In most cases, this value is set manually, at most blindly automated
by means of wrappers, without any further interpretable information given of the
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appropriateness of its finally selected value. This experiment attempts at bringing
light into this matter.

For this purpose different reservoir sizes were explored when fitting an ESN to the
three datasets to be modeled. For every dataset, the reservoir size varies while keep-
ing the rest of the parameters fixed. The rest of the parameters are chosen through
experimentation. A spectral radius ρmax equal to 0.95 is established, since all system
has long-term interactions between input and target, as well as a leaky rate of 0.99 to
ensure a fast plasticity of the reservoirs.

(a)

(b)

(c)

Figure 3.8: Potential memory analysis of the ESN model trained over the (a) NARMA, (b) bat-
tery and (c) traffic datasets for different reservoir sizes NL = {1, 10, 50, 500, 1000}
and constant reservoir parameters.
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As shown in the images 3.8.a, 3.8.b and 3.8.c, the size of the reservoir can be con-
sidered a major issue when fitting the model, until a certain threshold is surpassed.
The potential memory technique allows monitoring this circumstance by estimating
the model’s memory capacity. After surpassing a memory threshold, the potential
memory of the reservoirs becomes predictable and does not change any longer. This
phenomenon seems to be related with its improvement in error rate, although this
second aspect should be considered with caution, since the process of fitting an ESN-
based model involves several other parameters that interact with each other. In any
case, the technique presented in this first study provides some hints that might help
the user understand when a workable reservoir size is selected.

3.4.1.2 Experiment 2: Temporal Patterns

When designing a deep ESN model, the next question arising along the process deals
with the understanding of whether the model has captured all the dynamics inside
the dataset so as to successfully undertake the modeling task. This second experi-
ment analyzes the extent to which a Deep ESN is able to capture the underlying
patterns of a system by means of the proposed temporal patterns. In this experiment,
different parameters are varied to show the usefulness of this technique. This puts in
perspective two interesting aspects: first, the technique allows for a quick inspection
of whether the model is capturing the patterns of the system. As per the results ex-
posed in what follows, the clarity by which such patterns show up in the plot seems
to be related to how well the model is capturing them.

Figures 3.9.a/d/g, 3.9.b/e/h and 3.9.d/f/i summarize the results for different
reservoir configurations for the three time series datasets under consideration. Fig-
ures are ordered in three different sets {a, b, c}, {d, e, f} and {g, h, i}. The first set
correspond to ESN models with equal parameters and different layer configurations
(1 and 2 layers). The second set analyzes system configurations with two different
ρmax values. The third set regards differences in the value of the α parameter. A
simple visual inspection to these plots uncovers that d.2, e.2 and f.2 present clear
patterns (in comparison to the other configurations), yielding the smallest errors for
each dataset.

From the experimentation, two main findings can be underscored. First, stacking
several reservoirs may jeopardize the tuning process for the other parameters of the
model. Figures 3.9.a, 3.9.b and 3.9.c shows that adding a new layer without chang-
ing any other parameter has decreased the error and even sharpened the patterns
captured by the reservoirs. This effect occurs for every dataset, although it is hard
to see the differences in the patterns due to the complexity of the models being ex-
plained. Figures 3.9.d, 3.9.e and 3.9.f shows the difference between a high and low
ρmax, demonstrating the relevance of this parameter to attain a further level of de-
tail in the patterns captured by the reservoirs. Although plots in Figures 3.9.e and
3.9.f are harder to analyze, both expose more detailed patterns, along with the de-
crease in error for the highest ρmax configuration. Finally, Figures 3.9.g, 3.9.h and
3.9.i examine the differences found when tweaking the α parameter. All three cases
present blurred patterns, along with newly emerging artifacts. Since the α parameter
is linked to the decay, tuning its value may induce new patterns captured in the reser-
voirs that may – or may not – be informative for the audience or even for the overall
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Figure 3.9: Temporal patterns analysis over the (a) and (d) and (g) NARMA; (b) and (e) and
(h) battery; and (c) and (f) and (i) traffic datasets, presenting different configura-
tion parameters. It can be observed that the spectral radius impact directly on the
detail of the recurrence plots, to the extent of causing a significant performance
degradation if not selected properly.

modeling performance of the network. This roughly depends on the dynamics of the
system and the task under consideration.

Apart from the usability of showing interpretable information to the user about
the capability of the model to capture the patterns within data, these plots enable
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another analysis. If we focus on the battery dataset, it is quite clear that the signal
is repetitive, stationary and that the system’s recurrent patterns are also visible in
the recurrence plots. In the case of the traffic data, this phenomenon is much more
important. By just staring at the traffic signal it is not easy to realize that the signal
also contains certain stationary events (weekends) that produce different behaviors
in traffic. By simply staring at the recurrence plots, it is straightforward to realize
the periodic structure of the signal, and how these events happen at equally distant
time steps throughout the signal (as happens with weekends), with a especially large
effect at the top right of the recurrence plot corresponding to a long weekend.

The experiments discussed above should not be limiting in what refers to the dif-
ferent features that can be extracted from recurrence plots. Within these plots, large-
and small-scale patterns can be distinguished. From [445] large-scale patterns are
considered topological features, whereas small-scale ones are regarded as textures.
Manifold topological features can be ascertained from recurrence plots, such as ho-
mogeneity (stationarity), the presence of periodic and quasi-periodic structures that
represent oscillating systems, drifts (non-stationarities evolving at a slow speed over
time) and abrupt changes, that can be of interest to see whether the model is over-fit
to rare events in the modeled sequences. Regarding textures, from the recurrence
plots one can infer rare and isolated correlated states that can be associated with
noise (single dots), phase spaces that are visited at different times (recurrent states
evinced by diagonal lines) and vertical/horizontal lines, which represent an steady
state throughout a given time frame. When occurring in recurrence plots, a proper
interpretation of these events usually requires intuition and domain knowledge, as
we have exemplified in our prior experiments with battery consumption and traffic
data.

3.4.2 Image Classification

As introduced before, this second experiment analyzes a Deep ESN model for image
classification over the MNIST dataset. Once trained, this model is used to examine
the output of the third technique comprising the proposed suite of xAI techniques:
pixel absence effect.

Figure 3.10 shows the results of computing the pixel absence effect for single pix-
els, wherein the color represents the importance of canceling each pixel. Specifically,
the scale on the upper left corner shows the amount of change the cancelation of a
certain pixel has caused on the probability of every class. The blue color indicates
the pixels that are important to predict the image as the desired class. The darker the
blue color of a certain pixel is, the higher the decrease in probability for the desired
class will be. The red color means exactly the opposite. Therefore, the output of this
technique must be conceived as an adversarially driven local explanation technique,
that pursues to explain which regions of a certain input, upon their cancellation, push
the output class probability distribution towards or against a certain desired class.

We exemplify the output of the experiment for a given example of digit 8. The
reason for this choice is that this digit has several coinciding visual features with
other digits. As such, it was expected that a great effect was discerned at the center
of the digit itself, favoring the classification for digit 0 since the elimination of the
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Figure 3.10: Pixel absence effect over a Deep ESN model trained to classify MNIST digits for
single pixels.

center pixels in digit 8 should directly render the image as a 0. However, it is im-
portant to note that this does not happen for ESN architectures that are sensitive to
space transformations. This sensitivity impedes any ability of the model to extract
spatially invariant features from the digit image, thereby circumscribing its knowl-
edge within the sequential column-wise patterns found in examples of its training
set. This conclusion emphasizes the relevance of finding transformation strategies
from the original domain of data to sequences, not only for ensuring a good perfor-
mance of the learned ESN-based model, but also to be able to elicit explanations that
conform to general intuition.

Table 3.3: Accuracy and number of trainable parameters of models tested over each video
classification dataset.

Dataset Deep ESN Conv2DLSTM Difference State of the art Technique

KTH 56% 22% +34% 94.39% Differential gating [464]

WEIZMANN 25% 12% +13% 98.63% Bio-inspired hierarchy [465]

IXMAS 40% 36% +4% 94.16% Structural information [466]

UCF11 54% 26% +28% 84.96% GoogLeNet + RNN [467]

UCF50 75% 63% +12% 95.24% Trajectory descriptors [468]

UCF101 45% 42% +3% 95.10% Trajectory descriptors [469]

HMDB51 25% 17% +8% 65.90% Trajectory descriptors [469]

UCFSPORTS 32% 23% +9% 96.6% Grassmann graph embedding [470]

Trainable parameters Min: 12, 000 Min: +293, 626, 418 Min: 305, 626, 418

Max: 200, 000 Max: 1, 205, 453, 326 Max: +1, 005, 453, 326
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3.4.3 Video Classification

As stated in the design of the experimental setup, the discussion ends up with a
video classification task approached via ESN-based models. Since to our knowledge
this is the first time in the literature that video classification is tackled with ESN
architectures, a benchmark is first run to compare its predictive performance to a
Conv2DLSTM network, in both cases trained only over unprocessed video data pro-
vided in the datasets of Table 3.1. As argued before, it would not be fair to include
preprocessing elements that could bias the extracted conclusions about the modeling
power of both approaches under comparison.

Table 3.3 summarizes the results of the benchmark, both in terms of test predic-
tive accuracy and the size of the trained models (in terms of trainable parameters). It
can be observed that Deep ESN models consistently outperforms their Conv2DLSTM
counterparts in all the considered datasets, using significantly less trainable param-
eters that translate to dramatically reduced training latencies. Clearly, these results
are far from state-of-the-art levels of performance attained by deep neural networks
benefiting from pretrained weights (from e.g. ImageNet). Nevertheless, they serve as
an unprecedented preview of the high potential of Deep ESN models to undertake
complex tasks with sequence data beyond those for which they have been utilized so
far (mostly, time series and text modeling).

The developed pixel absence effect test was run over the trained Deep ESN model
for video classification. The core of the discussion is set on the results for a single
video (local explanation) belonging to the UCF50 dataset, which should ideally deter-
mine what zones of the video frame are most important for the current prediction.

The results from this pixel absence analysis depicted in Figure 3.11 uncovers an
unintended yet interesting result. Although the image shown in this picture is just
one frame of the video, the region of the frame which is declared to be relevant by the
analysis is the same throughout the whole video, the difference being the changing
colors of its constituent pixel blobs. This effect unveils that the Deep ESN model
has learned to focus on the floor to produce its predictions, which suggests that its
knowledge is severely subject to an evident bias in the UCF50 dataset. This bias can
be detected visually by simply observing the images depicted in Figure 9.c, which
are samples of frames of the same class that also contain a similar floor feature that
might cause a bias in the model.

The conclusions drawn above are further elaborated by undertaking a simplified
video classification experiment with a dataset synthetically furnished for the purpose.
This dataset, denoted as SquaresVsCrosses, is composed by videos of two different
classes. Examples of one of these classes consist of a 3× 3-sized blob of pixels with a
square trajectory centered in the middle of the frame, whereas examples of the other
class move over the frame by outlining a cross-shape trajectory. To showcase the bias
problem, two different experiments are run. In the first one, classes are set spatially
disjoint from each other, i.e. the space over the frame in which examples of one class
move over time is totally different than the space delimited by trajectories of the
examples of the other class. This first experiment should exemplify the problem of
spatial bias. The second experiment is run with a dataset in which examples of both
classes occupy the same space over the frame, hence, spatial bias is removed.
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Figure 3.11: Pixel absence analysis of a video frame showing an unintended result that gives
importance to sections of the image that apparently should not be important.

Figure 3.12 illustrate the results for these 2 different dataset configurations, where
3.12.a and 3.12.c correspond to the squares class, and 3.12.b and 3.12.d to the crosses

class. In 3.12.a and 3.12.b, examples of both classes are spatially disjoint: squares
move along the border of the frame, while crosses move in the center of the frame.
These two first plots reveal that there is no entanglement between the classes. Their
pixel absence heat map contains only one color for each class, meaning that all the
pixels contained in the image under analysis push towards one class (the true class)
and are not present in the other. A bias emerge from the trajectory followed by the
blob. Although it should be informative with respect to the class (square or cross),
the shape of the blob does not convey any predictive power when compared to the
trajectory itself.

Contrarily, the second pair of videos in Figure 3.12 – namely, 3.12.c and 3.12.d –
correspond to a dataset where the trajectories of examples of both classes spatially
overlap, hence removing the trajectory bias. The apparent difference is that this time,
both heat maps show mixed colors when analyzing them with the pixel absence tool.
Consequently, some pixels occur more frequently in examples of one class than the
other, hence pushing the prediction towards that class when those pixels are activated.
Contrarily to the case in which spatial bias was present, the analysis showed pixel
importance patterns that are more complex that a simple spatial separation. This
experiment concurs with the intuition surfacing from Figure 3.11, and confirms that
pixel absence might be a suitable tool for bias detection over the data from which the
ESN model has learned. In summary: the use of the pixel absent effect tool can help
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Figure 3.12: Pixel absence analysis of four different videos: (a) and (b) correspond to a model
trained with spatially disjoint classes, whereas (c) and (d) correspond to a model
with spatially overlapping classes.

the user detect sources of bias systematically, so that countermeasures to avoid their
effect in the generalization capability of the model can be triggered.

3.5 summary

This chapter has elaborated on the need for explaining the knowledge acquired from
sequential data with ESN-based models by means of a set of novel post-hoc xAI tech-
niques. Through the lens of the proposed framework, hidden strengths and weak-
nesses have been discovered for these type of models. To begin with, the modeling
power has been assessed over a diversity of data sources, with results well above
what were to be expected given their inherent random nature. However, the suite
of xAI techniques has also revealed that random reservoirs composed by recurrently
connected neural units undergo architectural limitations to model data sources that
call for spatially invariant feature learning, such as image and video. Indeed, ESN-
based models achieve reasonable levels of predictive accuracy given their low training
complexity, specially for video classification without any prior preprocessing, data
augmentation and/or pretraining stages along the pipeline. A deeper inspection of
their learned knowledge by means of the proposed xAI tools has identified huge data
biases across classes in video data, showing that such superior scores might not be
extrapolable to videos recorded in other contextual settings.
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E X P L O R I N G T H E T R A D E - O F F B E T W E E N P L A U S I B I L I T Y,
C H A N G E I N T E N S I T Y A N D A D V E R S A R I A L P O W E R I N
C O U N T E R FA C T U A L E X P L A N AT I O N S U S I N G
M U LT I - O B J E C T I V E O P T I M I Z AT I O N

During the last years Deep Neural Networks (also referred to as Deep Learning) have
started to traverse beyond the theoretical analysis of their properties towards being
implemented and deployed in a multitude of real-world applications. This has been
specially noted in applications dealing with high-dimensional data, over which Deep
Learning has delivered promising results to conquer the broad landscape of Machine
Learning modeling approaches. As such, their superior performance has been noted
in many scenarios dealing with image, video and/or spatial-temporal data, including
agriculture [471], transportation [472] or industry [353], to cite a few. Nowadays the
prevalence of Deep Learning in such areas is beyond any doubt.

Unfortunately, some concerns arise from the mismatch between research studies
dealing with Deep Learning applied to certain modeling tasks (let the model perform
to its best for the task at hand) and the real-world use of models to improve an already
known solution. Most in-field approaches contemplate attempts at improving an al-
ready human-created solution to solve a problem (optimizing a process), whereas
the most common Deep Learning approaches are better suited to find their own so-
lutions to a more high-level problem (predicting an outcome). Together with this
difference, another concern deals with the difficulty to understand and interpret the
mechanisms by which Deep Learning works, particularly when the audience that
makes decisions on their outputs lack any knowledge about Computer Science. This
renders a useless modeling choice for real-world scenarios in which models are used
to improve decision making in processes that are managed by humans and/or where
decisions affect humans. This is the case observed in medical diagnosis, law or social
politics, among others. In other words, actionability of predictions requires a step
beyond a proven good generalization performance of the model issuing them.

In order to bridge this gap to model-based decisions, new frameworks for explain-
ability are required. These frameworks aim at giving insights not only to experts in
the field of application, but also to those commonly in charge of the use and main-
tenance of the deployed models. These two audience profiles differ significantly in
what refers to their capabilities to understand explanations generated for a given
model. These different capabilities entail that approaches to explain Deep Learning
models generate explanations better suited for auditing the models by developers,
leaving them far from the cognitive requirements of experts that ultimately make
decisions in practice.

Recent research is profoundly bothered with bridging this gap. To this end, the
broad scope of model explainability has been approached from manifold areas, in-
cluding robustness by adversarial attacks [473, 474], output confidence estimation
[269, 475, 476], visualization of internal representation [145, 439] or attention-based
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explanations [477]. Even though the research community is thrilling with new ad-
vances in explainability, they do not entirely bridge the aforementioned gap between
theoretical developments and their practical adoption. Most explainability solutions
[478] consider an audience with profound knowledge of the inner workings of the
models, which eases the understanding of explanations, but does not comply with
real-world settings often encountered in model-based decision making processes.

Among the alternatives to reach such a universal understanding of model expla-
nations, counterfactual examples is arguably the one that best conforms to human
understanding principles when faced with unknown phenomena. Indeed, discern-
ing what would happen should the initial conditions differ in a plausible fashion is
a mechanism often adopted by human when attempting at understanding any un-
known [479, 480]. Circumscribing the factual boundaries by which a given model
works as usual can be conceived as a post-hoc explainability method, which grounds
on an adversarial analysis of the audited model. From the practical perspective sev-
eral aspects of the produced counterfactual examples should be considered besides
its plausibility, so that the audience of the model can examine the limits of the model
from a multi-faceted perspective.

This chapter joins the rest of the work presented before in this thesis at making
Deep Learning models more usable in practice via counterfactual-based explanations.
To this end, we propose an adversarial strategy to produce counterfactual examples
for a Deep Learning classifier. As for the chapter before (3), this contribution to the
literature of XAI falls within the scope of Post-Hoc Explainability Techniques. Specif-
ically under Post-Hoc XAI for Deep Learning. This classifier to be audited solves a
task defined over a certain dataset (e.g. discriminate male and female images from
human faces), so that counterfactuals are generated to explain the boundaries of the
model once trained to address the classification task at hand. We further impose that
the generated counterfactual examples are plausible, i.e., changes made on the input
to the classification model have an appearance of credibility without any computer
intervention. To ensure plausibility, the proposed method makes use of GANs (Gener-
ative Adversarial Networks) in order to learn the underlying probability distribution
of each of the features needed to create examples of a target distribution (namely,
human faces). Our framework allows for a search among samples of the first dis-
tribution to find realistic counterfactuals close to a given test sample that could be
misclassified by the model (namely, a face of a male being classified as a female). As
a result, our framework makes the user of the model assess its limits with an adver-
sarial analysis of the probability distribution learned by the model, yet maintaining a
sufficient level of plausibility for the analysis to be understood by a non-expert user.
As a step beyond the state of the art, the proposed framework ensures the production
of multi-faceted counterfactual examples by accounting for two additional objectives
besides plausibility: 1) the intensity of the modification made to an original example to
produce its counterfactual version; and 2) its adversarial power, which stands for the
change in the output of the model that is audited.

In summary, the main contributions of this chapter beyond our preliminary find-
ings reported in [481] can be summarized as follows:

• We present a novel framework to generate multi-faceted counterfactual expla-
nations for targeted classification models. The framework brings together GAN
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architectures for generative data modeling and multi-objective optimization for
properly balancing among conflicting properties sought for the counterfactuals:
plausibility, change intensity and adversarial power.

• The framework is described mathematically, and design rationale for each of its
compounding blocks is given and justified.

• Explanations generated by the framework are showcased for several classifiers
and GAN models for image and volumetric data, discussing on the trade-off
between the properties of the counterfactual set. The explanations generated
by this framework could be categorized under Visual Explanations, since it is the
medium for the explanations. However, the information to be extracted from the
visualizations focuses on the understanding the relevance of the input, hence
this classification would not be wrong either.

• We argue and show that when inspected from a multi-faceted perspective, coun-
terfactual examples can be a magnificent tool for bias analysis and the discovery
of misrepresentations in the data space.

The rest of the chapter is organized as follows: first, Section 4.1 extends the back-
ground covered in Chapter 2 by going deeper on the specific background required
for connecting the four core aspects of our proposed framework: Deep Learning
for image classification, GANs, model explainability and counterfactual explanations.
Section 4.2 details the framework proposed in this study, including a mathematical
statement of the problem tackled via multi-objective optimization and a discussion
on how the output of the framework can be consumed by different audiences. Section
4.3 describes the experimental setup designed to showcase the output of the frame-
work. Section 4.4 presents and discusses the results stemming from the performed
experiments. Finally Section 4.5 summarizes the broad lines taken in this chapter.

4.1 related work

As anticipated at the beginning of the chapter, the proposed framework resorts to
GANs for producing realistic counterfactual examples of classification models. Since
the ultimate goal is to favor the understanding of the model classification bound-
aries by an average user, the framework falls within the XAI (Explainable Artificial
Intelligence) umbrella. This section briefly contextualizes and revisits the state of the
art of the research areas related to the framework: Deep Learning for image classifi-
cation and generative modeling (Subsection 4.1.1), XAI and counterfactual analysis
(Subsection 4.1.2) and multi-objective optimization (Subsection 4.1.3).

4.1.1 Deep Learning for Image Classification and Generative Modeling

When it comes to discrimination tasks over image data, the reportedly superior mod-
eling capabilities of Convolutional Neural Networks (CNNs) are often adopted to
capture spatial correlations in image data [11, 482]. This is achieved by virtue of
trainable convolutional filters which can be trained via gradient backpropagation or
even imported from other networks pretrained for similar tasks, giving rise to image
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classification models of the highest performance. The increasing availability of image
datasets and the capability of processing them efficiently have yielded hierarchically
stacked CNNs that, despite attaining unprecedented levels of accuracy, come at the
cost of more complex, less understandable model structures [483]. The more com-
plex the model is, the harder is to pinpoint the reasons for its decisions. The need for
auditing these black-boxes is the core motivation of the study presented in this paper.

Another task for which CNNs are crucial is generative modeling, e.g. the con-
struction of models capable of characterizing the distribution of a given dataset and
sampling it to create new, synthetic data instances. When the dataset is composed by
images, generative adversarial networks (GANs) are arguably the spearhead in image
generative modeling. GANs were first introduced by Goodfellow in [473], bringing
the possibility of using neural networks (function approximators) to become generators
of a desired distribution. Since their inception, GANs have progressively achieved
photo-realistic levels of resolution and quality when synthesizing images of differ-
ent kinds. In general, a GAN architecture consists of two data-based models, which
are trained in a mini-max game: one of the players (models) minimizes its error
(loss), whereas the other maximizes its gain. In such a setup, multiple models have
flourished to date, each governed by its strengths and vulnerabilities [484]. In con-
nection to the scope of this thesis, some of these were conceived with the intention
of finding the pitfalls of a certain model and the ways to hack it [473, 474]. Other
GAN approaches aim at generating samples of incredibly complex distributions like
photo-realistic human faces [485, 486].

As will be later detailed in Section 4.2, the framework proposed in this chapter
hybridizes these two uses of CNNs by optimizing the output generated by a GAN to
perform a counterfactual analysis of a given classification model to be audited.

4.1.2 Explainable Artificial Intelligence (XAI) and Counterfactual Explanations

Model explainability has recently become a topic of capital importance in Machine
Learning, giving rise to a plethora of different approaches aimed to explain how de-
cisions are issued by a given model [478]. Most research activity noted in this area
is arguably focused on post-hoc XAI tools that produce explanations for single data
instances (what is referred to as local explanations). The LIME tool presented in [443]
is one of this kind, visualizing a model’s internal activations when processing a given
test sample. A similar approach is followed by LRP (Layer-wise Relevance Propaga-
tion) embedded in the SHAP suite [229], which highlights the parts of an input image
that push the output of the model towards one label or another. This provides an un-
derstandable interface of the reasons why the model produces its decision. More
recently, Grad-cam [297] an its successor Grad-cam++ [487] can be considered as the
de facto standard for the explainability of local decisions, particularly in the field of
image classification. These two methods implement a gradient-based inspection of
the knowledge captured by a neural network, giving rise to a quantitative measure
of the importance of parts of the image for the output of the model. Unfortunately,
the dependence of such explanations on the gradient of the model restricts the appli-
cability of these techniques to other techniques beyond neural architectures.
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When pursuing model-agnostic local explanations, a common strategy is to ana-
lyze the model from a counterfactual perspective. Counterfactual exploration is an
innate process for the human being when facing an unknown phenomenon, system
or process. The concept behind counterfactual explanations reduces to providing an
informed answer to a simple question: which changes would make the output of the
unknown to a certain input vary?. Such changes constitute a counterfactual example, al-
ways related to an input to the process or system under focus. Based on this concept,
many contributions have developed to date different XAI approaches to generate
counterfactual examples that allow understanding how Machine Learning models
behave. Some approaches are based on discovering the ability of a given individual
to change the model’s outcome. One example is the work in [488], which presents a
simple but effective distance-based counterfactual generation approach, that can be
used to audit different classifiers (e.g. neural networks and support vector machines).
Later, the counterfactual problem is tackled in [489] departing from the premise that
a user should be able to change a model’s outcome by actionable variables (recourse).
This hypothesis is validated over linear classifiers, but also claimed to be extensi-
ble to non-linear classifiers by means of local approximations. In a similar fashion,
[490, 491] allow the user to guide the generation of counterfactual examples by im-
posing forbidden changes that cannot be performed along the process. A subset of
counterfactual studies are rather focused on the problem of predictive multiplicity
[492, 493]. Multiple classifiers may output the same solution while treating the data
in different ways, hence the generation of counterfactuals can lead to insights into
the question of which of these classifiers is better for the problem at hand. In this
area of research [494–497] have developed different schemes to address this problem.
Connectedness, proximity, plausibility, stability and robustness are yet other concerns
that have pushed the development of techniques for the generation of counterfactuals.
In their search for robust interpretability, [498] came up with a method to generate
self-explaining models based on explicitness, faithfulness and stability.

Following the extensive analysis carried out in [499], it is of utmost importance to
recall the “master theoretical algorithm” [500], from which nineteen other algorithms
concerning counterfactual explanations can be derived. The nineteen algorithms fall
in a categorization of six different counterfactual generation strategies: instance-based,
constraint-based, genetic-based, regression-based, game theory-based and case rea-
soning-based. Instance based approaches are derived from [488, 501], based on fea-
ture perturbance measured by a distance metric. The pitfall of these approaches
(when pure) resides on their inability to validate instance plausibility. Constraint-
based approaches are, in turn, the methods that modulate their counterfactual search
by means of a constraint satisfaction problem. The more general scope of these ap-
proaches allows for an easier adaptation to the problems at hand. Genetic-based
approaches, as the name conveys, guide the search for counterfactuals as a genetic-
oriented optimization problem. Regression-based approaches use the weights of a
regression model as a proxy to produce counterfactual examples. However, these
approaches again fall short at assuring the plausibility and diversity of the pro-
duced counterfactual instances. Game-theory based approaches are driven by game-
theoretical principles (e.g. Shapley values), but also disregard important properties
of its counterfactual outputs. Finally, case reasoning-based approaches seek past solu-
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tions (in the model) that are close to a given instance, and adapt them to produce the
counterfactual. Once again, such adaptations may produce counterfactual instances
that, even if close to a certain input, cannot be claimed to be plausible nor diverse
with respect to the input under consideration.

4.1.3 Multi-objective Optimization

From the previous section it can be inferred that the generation of counterfactual
explanations can be mathematically stated as a multi-objective optimization problem
comprising different objectives that can be conflicting with each other. Plausibility –
i.e., the likelihood of the counterfactual example to occur in practice – can be thought
to conflict with the amplitude of the modifications made to the input of the model.
Likewise, intense changes in the output of the audited model (namely, its adversarial
power), as introduced at the start of this chapter, when fed with the counterfactual
example can jeopardize its plausibility. There lies the contribution of the framework
proposed in this work: the generation of a portfolio of counterfactual examples to a
certain input that optimally balance among these objectives. This portfolio provides
richer information for the user to understand the behavior of the audited model, and
distinguishes this work from the current research on counterfactual analysis. The
conceptual diagram shown in Figure 4.1 illustrates this motivational idea.
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Figure 4.1: Conceptual representation of the rationale behind the confluence of predictive
modeling, generative adversarial learning, explainability and multi/objective op-
timization that lies at the core of the proposed framework.

To this end, the framework presented in this chapter falls between constraint-based,
genetic-based and instance-based counterfactual explanations, combining these three
categories to render a set of multi-criteria counterfactuals. The usage of a GAN archi-
tecture presents the ability of a bounded search within a target distribution, enabling
quantitative measures of the plausibility of the generated counterfactual (via the dis-
criminator) and algorithmic means to sample this distribution (via the generator).
The usage of a multi-objective optimization algorithm yields the ability to guide the
counterfactual generation process as per the desired objectives (plausibility, inten-
sity of the modifications and adversarial power), giving rise to the aforementioned
portfolio of multi-criteria counterfactual explanations. Among them, we will resort
to multi-objective evolutionary algorithms [502, 503], which efficiently perform the
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search for Pareto front approximations of optimization problem comprising multiple
objectives without requiring information about their derivatives whatsoever.

4.2 proposed framework

This section covers the proposed framework, including the intuition behind its con-
ceptual design (Subsection 4.2.1), a detailed description of its constituent parts and
mathematical components underneath (Subsection 4.2.2), and an outline of the target
audiences that can consume the produced counterfactual explanations, supported by
hypothetical use cases illustrating this process (Subsection 4.2.3).

4.2.1 Design Rationale

The explainability framework explores the weaknesses of a target model by means of
counterfactual instances generated by a GAN architecture. One of the key aspects of
this framework is that it focuses on discovering the reality-bound weaknesses of the
target model in the form of examples that, without exiting the realm of plausibility,
are able to confound the target model. For instance, for a classifier mapping human
faces to their gender (male, female), the framework can generate modifications of a
given input face that are still considered to be real, but they make the audited model
change their predicted gender. The overarching motivation of the framework comes
from the human inability to asses the working boundaries of a given model in highly-
dimensional spaces. In such complex areas, such as image classification, the domain
in which images are bound is complex to be characterized, thereby requiring complex
generative modeling approaches capable of modeling it and drawing new samples
therefrom. The generator of a GAN architecture serves for this purpose, whereas
the discriminator of the GAN allows verifying whether an output produced by the
generator is close to the distribution of the dataset at hand, hence giving an idea of
the plausibility of the generated instance.

At this point it deserves pausing at the further insights that the GAN-based frame-
work can provide. Modifications of an input image producing a counterfactual can
be edited by changing the value of variables that affect the output of the GAN gen-
erator. Such variables can represent attributes of the input image that ease the inter-
pretation of the results of the counterfactual study regarding the existence of miss-
representations of the reality captured in the dataset at hand and transferred to the
audited models. For instance, in the face-gender classifier exemplified previously, let
us consider a GAN model with editable attributes (e.g. an AttGAN [504]), includ-
ing color hair, face color or facial expressions. A counterfactual study of a man face
could reveal that for the face to be classified as a woman, the color hair attribute of
all produced counterfactuals share the same value (blonde). Besides the inherent in-
terpretative value of the counterfactuals themselves, our framework can also identify
data biases that may have propagated and influenced the generalization capabilities
of the audited model.
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4.2.2 Structure and Modules

Following the diagram shown in Figure 4.2, the design of the proposed framework
can be split in three main blocks: audited model (classifier), GAN architecture and
multi-objective optimizer. The audited model is fed with the counterfactual example
generated by the discriminator model of the GAN architecture, hence its only pre-
requisite is that the input of the audited model and the output of the discriminator
are of the same dimensions. In what follows we will assume that the target model
to be audited is a CNN used for image classification. Nevertheless, the framework
can be adapted to audit other models and tasks whenever the output of the GAN
discriminator and the input of the audited model are equally sized, and the measure
of adversarial power is redefined to account for the change induced by the counter-
factual in the prediction of the model.

The GAN is the part of the framework in charge of generating the counterfactuals
fed to the audited model. Therefore, two requirements are set in this module: 1) the
discriminator must be trained for a similar data distribution to that of the audited
model; and 2) the generator model must be able to generate samples of such a dis-
tribution as per an attribute vector b that controls specific features of the generated
instance (image). This attribute vector is tuned by the multi-objective optimization
algorithm seeking to maintain plausibility as per the discriminator, changing the out-
put of the audited model and minimizing the intensity of the changes inserted in the
original input image.

At this point it is important to emphasize that the audited model is left aside the
overall training process of the GAN for several reasons. To begin with, for practicality
we assume minimum access to the audited model (black-box analysis). Therefore,
the logits of the audited model are exploited with no further information on its
inner structure. Furthermore, the goal of the discriminator is to decide whether the
generated image follows the distribution of the training set, which must be regarded
as a plausibility check. The task undertaken by the audited model can be assorted,
for instance, to discriminate among male and female, old and young or any other
task.

The above three-objective optimization problem can be formulated mathematically
as follows: let us denote an image on which the counterfactual analysis is to be made
as xa ∼ PX(x), which follows a distribution PX(x) and has an attribute vector a ∈ RN.
The generator of the GAN model is denoted as G(xa, b), whose inputs are the actual
image xa and a desired attribute vector b. In conditional generative models the gen-
erator is generally composed of an encoder Genc and a decoder Gdec. However, for
some architectures, the model directly departs from a decoder, given the assumption
that the latent code is sampled from a known distribution. Leaving the special cases
aside for the sake of a clearer explanation, the image conditionally output by the
generator is given by xb′ = Gdec(Genc(xa), b). Ideally, xa′ ≈ xa, i.e. the reconstructed
image xa′ = Gdec(Genc(xa), a) should resemble xa itself. For non-conditional gener-
ative architectures, the generated image is given by x′ = Gdec(Genc(x)), where the
objective is to have x′ ≈ x. A discriminator D(xb,′) along with a classifier C(xb,′) is
placed next along the pipeline to determine 1) whether the synthesized image x′ is vi-
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Figure 4.2: Block diagram of the proposed framework, which is capable of producing coun-
terfactual instances for an audited model T(·) based on three criteria: plausibility,
adversarial power and change intensity.

sually realistic; and 2) whether the predicted attributes match the input ones. Again,
for non-conditional GAN architectures, only the discriminator D(x′) is necessary.

The overall loss function that drives the learning algorithm of the generator and
discriminator is defined as a linear combination of the reconstruction and Wasserstein
GAN losses. The training loss for encoder Genc(xa) and decoder Gdec(z, b) are given
by:

min
Genc,Gdec

λ1Lrec(xa, xa′) + λ2L
G
att(b, b̂′) +LGadv(x

b′), (16)

where:

Lrec(xa, xa′) = Exa∼PX(x)

[
||xa − xb′||1

]
, (17)

LGatt(b, b̂′) = Exa∼PX(x),b∼PB(b)

N=|b|∑
n=1

H(bn, b̂n
′
)

 , (18)

LGadv(x
b′) = −Exa∼PX(x),PB(b)

[
D(xb′)

]
. (19)

In the above expressions, E[·] denotes expectation; PB(b) indicates the distribution
of possible attribute vectors b = {bn}

N
n=1 ∈ RN[0, 1]; H(bn, b̂n

′
) is the cross-entropy

of binary distributions given by bn and b̂′n ∈ b̂′ = C(xb′); and D(xb′) = 0 if xb′ is
predicted to be a fake.

When it comes to the discriminator D(·) and the classifier C(·), their training loss
is given by:

min
D,C

λ3L
C
att(x

a, a) +LDadv(x
a, b), (20)
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with:

LCatt(x
a, a) = Exa∼PX(x)

 |a|∑
n=1

H(an, ân′)

 , (21)

LDadv(x
a, b)

= −Exa∼PX(x) [D(xa)] + Exa∼PX(x),PB(b)

[
D(xb′)

]
, (22)

where ân′ ∈ C(xa), and coefficients {λi}
3
i=1 permit to balance the importance of the

above terms during the training process of the GAN architecture. For more general
approaches, such as non-conditional GANs, the training loss is given by:

min
Genc,Gdec

λ1Lrec(x, x′) +LGadv(x
′), (23)

where:

Lrec(x, x′) = Ex∼PX(x)
[
||x − x′||1

]
, (24)

LGadv(x
′) = −Ex∼PX(x)

[
D(x′)

]
, (25)

and again, coefficient λ1 ∈ R[0, 1] allows tuning the relative importance of the recon-
struction loss when compared to the adversarial loss. Once these losses have been
defined, the GAN is trained via back-propagation to minimize the losses in Expres-
sions (16) and (20) when measured over a training dataset.

Once trained, we exploit the GAN architecture to find counterfactual examples for
a given test sample xa⊕,⊕ and an audited model T(x), with classes {label1, . . . , labelL}.
Specifically, we model the counterfactual generation process as a perturbation in-
serted into the attribute vector a of the test sample, i.e. b = a + δ, with δ ∈ RN. This
perturbed attribute vector, through Genc and Gdec, yields a plausible image xb,′ that,
when fed to the target model T(·), changes its predicted output. The conflict between
adversarial power, plausibility and intensity of the perturbation from which the coun-
terfactual example is produced gives rise to the multi-objective problem formulated
as:

min
δ∈RN

fgan(xa,⊕, δ;G,D), fadv(xa,⊕, δ;G, T), fatt(δ), (26)

where:

• fgan(xa,⊕, δ;G,D) quantifies the unlikeliness (no plausibility) of the generated
counterfactual instance through G(·), which is given by the difference between
the output of the discriminator D(·) corresponding to xa,⊕ and xb,′ (Wasserstein
distance). The more negative this difference is, the more confident the discrimi-
nator is about the plausibility of the generated counterfactual xb,′;

• fadv(xa,⊕, δ;G, T) informs about the probability that the generated counterfac-
tual does not confuse the target model T(·), which is given by the negative value
of the cross-entropy of the soft-max output of the target model when queried
with counterfactual xb,′; and

• fatt(δ) measures the intensity of adversarial changes made to the input image
xa,⊕, which is given by ||δ||2. As we will later discuss, this measure can be
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replaced by other measures of similarity that do not operate over the perturbed
attribute vector, but rather over the produced counterfactual image (for instance,
structural similarity index measure SSIM between xa,⊕ and xb,′).

To efficiently find a set of input parameter perturbations {δ} balancing among the
above three objectives in a Pareto-optimal fashion, we resort to multi-objective op-
timization algorithms. Specifically, we opt for derivative-free meta-heuristic solvers,
which allow efficiently traversing the search space RN of decision variables δ and re-
taining progressively better non-dominated counterfactual instances without requir-
ing any information of the derivatives of the objectives under consideration.

Algorithmus 2 : Generation of multi-criteria counterfactuals
Input : Target model to be audited T(x); GAN architecture (G,D); attribute

classifier C(x); annotated training set Dtrain; test image xa,⊕ for
counterfactual study; weights {λi}

3
i=1

Output : Multi-criteria counterfactuals balancing between fgan(·), fadv(·) and
fatt(·)

1 Train GAN architecture via back-propagation over training dataset and loss
functions in Expressions (16) and (20)

2 Initialize a population of perturbation vectors δ ∈ RN

3 while stopping criterion not met do
4 Apply search operators to yield offspring perturbation vectors
5 Evaluate fgan(·) (plausibility), fadv(·) (adversarial success) and fatt(·) (change

intensity) of offspring perturbations
6 Rank perturbations in terms of Pareto optimality
7 Retain the Pareto-best perturbations in the population
8 end
9 Select non-dominated perturbations from population
10 Produce counterfactual images by querying the GAN with xa,⊕ and each

selected perturbation vector

Algorithm 2 summarizes the process of generating counterfactuals for target model
T(·), comprising both the training phase of the GAN architecture and the meta-
heuristic search for counterfactuals subject to the three conflicting objectives. The
overall framework departs from the training process of a GAN architecture (line 1)
over a training dataset Dtrain that collects samples (images) annotated with their at-
tribute vectors a (only for conditional GANs). Once trained and similarly to the usual
workflow of population-based heuristic solvers, the algorithm initializes uniformly at
random a population of perturbation vectors (line 2), which are iteratively evolved
and refined (lines 3 to 8) as per the Pareto optimality of the counterfactual images
each of them produces. To this end, evolutionary search operators (crossover and
mutation) are applied over the population (line 4) to produce offspring perturbation
vectors, which are then evaluated (line 5) and ranked depending on their Pareto dom-
inance (line 6). By keeping in the population those perturbation vectors that score best
in terms of Pareto optimality (line 7) and iterating until a stopping criterion is met,
the framework ends up with a population of Pareto-superior perturbation vectors
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(line 9) that can be inspected visually to understand which image components affect
most along the direction of each objective (line 10).

4.2.3 Target Audiences and Examples of Use Cases

To round up the presentation of the proposed framework and and the whole thesis,
we pause briefly at the target audiences envisioned for its use, as well as a sketch
of use cases that could illustrate its use in practical settings. Many examples could
be used to exemplify these scopes, among which three specific areas currently under
active investigation are chosen: bio-metric authentication, the discovery of new ma-
terials and creative industrial applications. These three use cases target two different
audiences: developers and final users.

The use of bio-metric authentication is extensive nowadays in a manifold of sec-
tors managing critical assets. However, auditing machine learning models used for
bio-metric authentication is not straightforward. They can be audited by adversarial
attack testing, but this analysis focuses on subtle (namely, not noticeable) adversarial
perturbations made to an input of the audited model. Therefore, they aim at analyz-
ing the robustness of the model against malicious attacks designed not to be easily
detectable (e.g. one-pixel attacks), rather than at discerning which plausible inputs
can lead to a failure of the authentication system even if not deliberately designed
for this purpose. The framework presented in this chapter can be of great value for
developers to explore the reality-bound limitations of their methods, helping them
determine complementary information requested during the process to increase the
robustness of the model against plausible authentication failures.

New material discovery is also a field in which high-dimensional datasets are
utilized. The addition of our proposed framework might help experts reduce the
amount of non-plausible composites to be synthesized, or to discover diverse alterna-
tive materials with differing properties in terms of elasticity, conductivity or thermal
expansion, to cite a few. This would in turn ease the practice of material experts
by considerably reducing the space of possible materials to be explored and open-
ing new possibilities in their laboratory processes without requiring any technical
knowledge in Artificial Intelligence.

Finally, we highlight the possibilities brought by the proposed framework for the
creative industry. Such a framework could be coupled with a design software so that
it would help in the generation of creative content by proposing new alternatives of
already produced products (e.g. new designs of mechanical components, new audio-
visual pieces, novel architectural proposals) with varying levels of compliance with
respect to plausibility, amount of the change and properties that are specific to the
use case at hand. In essence, the framework could be of great use for aiding the
creative process hand in hand with the expert.

4.3 experimental setup

This section introduces the actual architectures and models that were used to prove
the framework. Five GAN architectures are presented, followed by five third party
classifier that were audited in the experiments. All GAN architectures are extracted
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from the literature as pre-trained cases from the original authors themselves. The
classifiers are trained with the test sets of each of the GAN dataset to assure the
same data domain is maintained and no knowledge leakage is produced. All the
source code for reproducing these experiments will be released at https://github.
com/alejandrobarredo/COUNTGEN-Framework, together with a Python library that can
be used for applying this framework over custom datasets.

4.3.1 Considered GAN Architectures

The architectures utilized fall under three main GAN categories. Although each of
them consists of a particular implementation containing its particular caveats. The
different GAN approaches are: Conditional GAN, Unconditional GAN and a combi-
nation of both.

(a) BicycleGAN (b) AttGAN

(c) ShapeHDGAN (d) StyleGAN2

(e) Conditional GAN

Figure 4.3: Block diagram of the proposed systems comprising the (a) BicycleGAN; (b)
AttGAN; (c) ShapeHDGAN; (d) StyleGAN2; and (e) Conditional GAN (CGAN).

4.3.1.1 BicycleGAN

This first BicycleGAN architecture combines conditional and unconditional GAN ar-
chitectures for the task of image-to-image translation [505]. To this end, BicycleGAN

https://github.com/alejandrobarredo/COUNTGEN-Framework
https://github.com/alejandrobarredo/COUNTGEN-Framework
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generates the output as a distribution of solutions in a conditional generative setting.
The mapping is disambiguated through a latent vector which can be sampled at test
time. The authors present their solution as an improvement for the known mode col-
lapse problem, since it reduces the pitfall of having one-to-many solutions as a result
of utilizing a low-dimensional latent vector.

As shown in the diagram of Figure 4.3a, BicycleGAN combines conditional and
unconditional GAN architectures to generate their own. The first part, highlighted
in green, is that of a cVAE-GAN [506, 507]: the model first encodes the ground truth
into a latent space, and then it is reconstructed by means of a generator trained with
a Kullback–Leibler divergence loss. The second combined model is a cLR-GAN [508–
510]: contrarily to the first part, the cLR-GAN departs from a randomly generated
latent vector, while the encoder is trained from recovering it from the output image
created in the generator. Finally, the combination of these two different constraints
form the BicycleGAN architecture, which enforces the connection between the output
and latent code simultaneously for both directions. This resulting architecture is able
to generate more diverse and appealing images for every image-to-image translation
problem.

The implementation of the network was retrieved from [511] with the pre-trained
models utilized for the experiments covered in the next section. The architecture
consists of a U-Net [512] generator G(·), which in turn contains an encoder-decoder
architecture with symmetric skip connections. The discriminator D(·) is composed as
a combination of two PatchGAN [513] of different scales which resolve the fake/real
prediction for 70× 70 and 140× 140 image patches. Finally, for the standalone en-
coder Genc(·), a ResNet [514] is utilized. Further information about the structure and
training process of the BicycleGAN architecture can be found in [505].

4.3.1.2 AttGAN

This second architecture presents a conditional GAN capable of editing facial at-
tributes of human faces while preserving the overall detail of the image [504]. In the
seminal work presenting this architecture, the training process is performed by con-
ditioning the latent vector to match the vector representing the given facial attributes
for the image at hand. The network is devised such that this vector is real-valued,
which allows for the inference of facial attributes for a given intensity. During infer-
ence, attributes can be changed by modifying the values of the variables in the latent
vector.

Figure 4.3b depicts a diagram of the AttGAN model, which is trained by means
of two constraining conditions. For one, the model attempts to match the input at-
tributes with the predicted attributes at the end of the architecture. For the other, the
model is constrained to match the generated image to that at its input. The latter
is governed by a reconstruction loss. The former, forcing the latent vector to match
the attributes of the images, is governed by a standard cross-entropy loss. The com-
bination of these two constraints result in a model capable of generating faces with
varying attributes and remarkable realism.

The implementation of the network is that available at [515]. The discriminator
D(·) is composed of a stack of convolutional layers followed by fully-connected layers.
The classifier C(·) shares all the convolutional layers from D(·), and follows the same
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structure ended in fully-connected layers. The encoderGenc(·) is composed of several
convolutional layers, while the decoder Gdec(·) is composed of a stack of transposed
convolutional layers. As in BicycleGAN, a symmetrical skip connection is set between
the encoder and decoder. Further information about the architecture and training
process can be accessed in [505].

4.3.1.3 ShapeHD

This third ShapeHDGAN architecture is capable of rendering 3D meshes of objects
from single 2D views. This particular task is of great complexity given that the so-
lution landscape is composed of countless shapes that do not pertain to an object
and renders them implausible. Most existing approaches fail at generating detailed
objects. ShapeHDGAN gives a solution to this problem by virtue of an generative
environment with adversarially learned shape priors that serve the purpose of penal-
izing if the model renders unrealistic meshes.

As shown in Figure 4.3c the model consists of two main components. A 2.5D sketch
estimator and a 3D shape estimator that predicts a 3D object from an image. It con-
sists of three stages. In the first stage, the 2.5D estimator – a encoder-decoder struc-
ture – predicts the object depth, normals and silhouette from a RGB image. Then,
the second stage generates a 3D shape from the previous 2.5D sketch. The last stage
is composed by an adversarially trained CNN that tunes the generated shape into a
real object.

The implementation was retrieved from [516]. The 2.5D sketch estimator is com-
posed by a ResNet-18 encoder Genc(·) mapping a 256× 256 image into 512 feature
maps of size 8× 8. The Gdec(·) model has four stacked transposed convolutional lay-
ers. The predicted silhouette permits to mask the depth and normal estimations to
be then used as the input of the 3D generator. The 3D shape estimator is also com-
posed of an encoder-decoder architecture. The encoder is an adapted from a ResNet-
18 to handle 4 channels and encode them into a 200-dimensional latent vector. The
decoder comprises five stacked transposed convolutional layers, which generate a
128× 128× 128 voxel at its output. Further details are available at [517].

4.3.1.4 StyleGAN2

StyleGAN [14] is a unconditional GAN architecture with one of the most realistic
results for unconditional generative image modeling. For this study, we choose the
StyleGAN2 implementation, which is a revised variant that improves upon the ar-
tifacts of the original StyleGAN model [518] by virtue of small albeit intelligently
devised modifications to the generator model of the original StyleGAN model. The
implementation was retrieved from [519] with the pre-trained models for the experi-
ments carried out in the following sections.

4.3.1.5 Conditional GAN

Finally we decided to add a last model that allows us to explore some variations
within. This time, we selected a well-known conditional GAN architecture [520]
trained over the MNIST image classification dataset. The conditional GAN departs
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from a random noise vector and a single variable that acts as a condition for the
generation process. In this way, the generative network learns to switch between the
learned distributions for each label by means of a input condition. This feature re-
sembles to that of AttGAN, with the difference that in this one, the models does not
start from an encoding.

Figure 4.3e shows the structure of the conditional GAN model. The implementa-
tion was retrieved from the public python library GANS2 [521] which includes a set
of ready-to-build, plug-and-play GAN architectures.

4.3.2 Audited Classification Models

After introducing the GAN models under consideration, we now introduce the mod-
els that will be audited by means of our GAN-based counterfactual generation frame-
work. For the experiment utilizing BicycleGAN, a classifier is trained to predict the
type of footwear corresponding to the image fed at its input (Shoe versus NoShoe).
For the case considering AttGAN, the classifier to be audited predicts whether the
human face input to the model corresponds to a male or to a female. When the frame-
work considers ShapeHDGAN, the classifier is trained to distinguish between a chair

and a Xbox. For StyleGAN2, the classifier discriminates whether the input image is a
cathedral or an office. Finally, the classifier audited by our framework configured
with the cGAN aims to address a multi-class classification problem over the same
MNIST dataset, yet ensuring that different data partitions are used for training the
cGAN model and the classifier itself.

These third-party models consist of several convolutional layers, ending in a series
of fully-connected layers that connect the visual features extracted by the former
with the categories defined in the dataset under consideration. Every classifier model
was trained with the test data that was not used for training the corresponding GAN
architecture, thereby ensuring no information leakage between the generators and the
third-party models to be audited. Table 4.1 summarizes the topological configuration
of the models for which counterfactuals are generated by our framework, as well as
the training parameters set for every case.

The accuracy achieved by the trained classifiers over a 20% holdout of their dataset
are reported in Table 4.2, together with the number of classes, total examples to train
and validate the audited model, and the class balance ratio. As can be observed in
this table, the audited models reach a very high accuracy (over 95% in most cases),
so that the adversarial success of the produced counterfactual examples can be rather
attributed to the explanatory capabilities of the devised framework than to a bad
performance of the audited classifier.

4.3.3 Multi-objective Optimization Algorithm

We recall that the optimizer is in charge for tuning the output of the GAN generator to
1) maximize the difference in the result of the audited classifier (adversarial power); 2)
minimize the amount of changes induced in the produced counterfactual parameters
(change intensity); and 3) maximize the Wasserstein distance between the real and
fake examples (plausibility).
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Table 4.1: Structure and training parameters of the models audited by the proposed frame-
work.

GAN
Audited classifier T(x)

Network architecture Training parameters

BicycleGAN
Conv2d(64, 3× 3, ReLu) + Conv2d(32, 3× 3, ReLu)
+ Dense(1, Sigmoid)

Adam, binary
cross-entropy loss

AttGAN
Conv2d(16, 3× 3, ReLu) + Dropout(0.1)
+ Conv2d(4, 3× 3, ReLu) + Dense(1,Sigmoid)

Adam, binary
cross-entropy loss

ShapeHDGAN
Conv2d(32, 3× 3, ReLu) + BatchNorm
+ MaxPooling(2× 2) + Conv2d(8, 3× 3, ReLu) + BatchNorm
+ MaxPooling(2× 2) + Dense(100,ReLu) + Dense(1, Sigmoid)

SGD(0.01, 0.9), binary
cross-entropy loss

StyleGAN2

Conv2d(16, 3× 3, ReLu) + Dropout(0.1)
+ Conv2d(4, 3× 3, ReLu) + Dense(1,Sigmoid)

Adam, binary
cross-entropy loss

cGAN
Conv2d(32, 3× 3, ReLu) + BatchNorm
+ MaxPooling(2× 2) + Dense(100,ReLu)
+ Dense(10,SoftMax)

SGD(0.01, 0.9), categorical
cross-entropy loss

Conv2d(A,B,C): convolutional layer with A filters of size B and activation C.

SGD(l,m): Stochastic Gradient Descent with learning rate l and momentum m.

In all cases the batch size is set to 16 instances, and the number of epochs is 10.

Flattening operations are not displayed for clarity.

Table 4.2: Dataset and accuracy of the different classifiers put to the test

GAN Dataset # Examples Classes Class Balance Accuracy Source

BicycleGAN Edges2Shoes 300 2 45%/55% 94% [513]

AttGAN CelebA 900 2 49%/51% 98% [522]

ShapeHDGAN ShapeNet 600 2 49%/51% 96% [523]

StyleGAN2 Style 540 2 49%/51% 98% [524]

cGAN MNIST 9000 10 10% each 96% [525]

The search for counterfactual instances optimally balancing among these objec-
tives can be efficiently performed by using a multi-objective evolutionary algorithm.
Among the multitude of approaches falling within this family of meta-heuristic
solvers, we select NSGA2 [526] with a population size of 100 individuals, 100 off-
spring produced at every generation, polynomial mutation with probability 1/N

(with N denoting the number of decision variables, which vary depending on the
experiment and GAN under consideration) and distribution index equal to 20, SBX
crossover with probability 0.9 and distribution index 20, and 50 generations (equiv-
alent to 5000 evaluated individuals per run). The use of this optimizer allows for
a genetic search guided by non-dominated sorting in the selection phase, yielding
a Pareto-dominant set of counterfactual examples that constitute the output of the
framework. For its implementation we rely on the jMetalPy library for multi-objective
optimization [527].
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4.4 results and discussion

We now discuss on the results obtained from the experiments described above, artic-
ulating the discussion around the provision of an informed response to three main
research questions:

Q1. Is counterfactual generation an optimization problem driven by several objec-
tives?

Q2. Do the properties of the generated counterfactual examples conform to general
logic for the tasks and datasets at hand?

Q3. Do multi-criteria counterfactual explanations serve for broader purposes than
model explainability?

Answers to each of these research questions will be summarized after an analysis
and discussion held over the produced counterfactual examples for each of the au-
dited models detailed in Table 4.1. For every experiment, we draw at random one an-
chor image xa,⊕ from the test partition of the audited model and inspect the produced
set of counterfactual variants both visually and quantitatively as per the three objec-
tives under consideration. This examination of the results will be arranged similarly
across experiments, portraying the output of the framework in a three-dimensional
plot comprising the Pareto front approximated by the multi-objective solver. Each
of the axes of this plot is driven by one of such objectives: change intensity fatt(·),
adversarial power fadv(·) and plausibility fgan(·), all defined in Subsection 4.2.2.
It is important to note that for easing the visualization of the fronts, plausibility
and adversarial power are inverted by displaying 1− fgan(·) and 1− fadv(·), so that
1− fgan(·) > 0.5 denotes the region over which the counterfactual can be considered
to be plausible. Similarly, the higher 1− fadv(·) is, the larger the difference between
the outputs of the audited model when fed with the anchor image xa,⊕ and its coun-
terfactual variant will be (larger adversarial power).

In the depicted Pareto front approximations for every experiment, several specific
counterfactual examples scattered over the front are highlighted with colored mark-
ers. These markers refer to the images plotted on the right of the figure, so that it
is possible to assess the counterfactual image/voxel corresponding to each of such
points. The first image shown in the top row of images shown on the right of the
figure represents the reference (anchor) image xa,⊕, which is the departing point for
the counterfactual generation. The first image shown in the bottom row of images is
always the image belonging to the opposite class (or a targeted class in the case of
the MNIST dataset) whose soft-max output corresponding to its class is lowest (worst
predicted example of the other class existing in the dataset). Below every image, a
bar diagram can be observed representing the value of the objectives corresponding
to the image at hand.

We now proceed with a detailed discussion for every experiment.
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4.4.1 Experiment #1: BicycleGAN-based Counterfactual Generation for Auditing a Shoe

Versus NoShoe footwear classifier

The outcomes of this experiment are shown in Figure 4.4. In this figure a coloring
pattern is distinguishable over all the counterfactual examples highlighted in the
approximated front. The image of the man shoe that serves as the anchor image xa,⊕

appears to be complete. However, original colors are removed and uniformized all
over the image. This fact informs about the influence of the color on the predicted
label of the model.
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Figure 4.4: Pareto front of the counterfactual examples generated for a Shoe example by the
proposed framework configured with a BicycleGAN model.

Returning to our intuition exposed in Section 4.2, two concerns must be kept in
mind when analyzing these results. First, understanding the constraints of the dataset
in use is of paramount importance. The data with which the classifier was trained is
composed by different footwear instances. However, this dataset accounts just for a
limited subset of the different possible footwear instances available in reality for both
classes. This fact will make the predictions of the classifier change sharply between
one class and the other when the instance for which it is asked does not conform to
the class-dependent distribution of the training dataset. The second concern refers to
the spread in the prediction scores. The solution front shows quite a nice spread in
the prediction scores at first glance. However, this spread of solutions in the objective
space does not entail that the corresponding counterfactual instances are visually di-
verse. Figure depicts just 8 out of the 100 solutions in the approximated Pareto front,
but they suffice to showcase that every generated counterfactual is very similar to
each other with the exception of color. This suggests that the classifier is very sus-
ceptible to the color feature, and that the shape of the footwear is so relevant for the
task that the counterfactual generation process needs to retain this feature to ensure
plausibility. This bias is one of the insights provided by the proposed framework in
this first experiment.
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(a) NoShoes class (b) Shoes class
0.3
(dark)

1.0
(light)

Figure 4.5: Analysis of the average RGB luminance `(RGB) of the Shoe vs NoShoe dataset used
to train the target classifier for the BicycleGAN experiment, together with some
few examples of every class.

The aforementioned statement is supported by Figure 4.5, which depicts the mean
luminance of RGB pixels averaged over all the training examples of every class used
for the audited model. Luminance has been computed as:

`(RGB) = (0.2126 · R+ 0.7152 ·G+ 0.0722 ·B) /255, (27)

where `(RGB) ∈ R[0, 1] denotes a measure of luminance (0: dark, 1: light) of a pixel
with R (red), G (green) and B (blue) channel values. As it can be observed in the
bottom left plot of this figure, shoe instances have a clear bias in terms of footwear
shape and image orientation, whereas the central part of the footwear for both classes
is darker that the background. This is the reason why our proposed framework oper-
ates exclusively on the color feature and maintains the shape of the footwear when
attempting at producing a counterfactual example for a shoe, yielding differently
(brighter) colored yet identically shaped variants of the anchor.

4.4.2 Experiment #2: AttGAN-based Counterfactual Generation for Auditing a Man Versus
Woman gender classifier

The outcome of the devised framework corresponding to this second experiment is
shown in Figure 4.6. In this case, the reference image xa,⊕ is an instance of the Man

class from the Celebrity dataset.
We begin by inspecting the shape of the produced Pareto front approximation in

the right plot of the figure. It can be observed that diverse counterfactual explanations
are found in the trade-off between plausibility and adversarial power, as well as
between the intensity of the change and plausibility. By contrast, adversarial power
and change intensity seem not to be conflicting with each other. The reason for the
uncoupled behavior of these two objectives may reside in the characteristics of the
dataset and GAN in use: a small perturbation in the attribute vector imprints already
enough changes in the generated counterfactual image to mislead the audit classifier,
whereas larger perturbations degrade their plausibility. This is clear as per the range
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Figure 4.6: Pareto front of the counterfactual examples generated for a male example by the
proposed framework configured with a AttGAN model. Every nested couple of
images on the right represents the original produced counterfactual (small image
located in the left corner of every plot) and its contrast adjusted version using
histogram equalization [528].

of plausibility values covered by the points in the front with varying change intensity,
which are always kept below the plausibility boundary (1− fgan(·) 6 0.5).

When qualitatively examining the generated counterfactuals, the plots nested on
the right of the figure reveal that once again, the luminance is a deciding factor
for adversarially modifying the anchor image. Leaving aside modifications over the
color space, it is important to note that the plausibility of counterfactuals seems to be
tightly linked to the insertion of glasses or a smiling pose. On the contrary, counter-
factuals that produce an intense drift towards the Female class in the audited classifier
insert long blonde hair into the anchor image. In this experiment, these patterns are
related with the constraints imposed by the dataset. However, differently from the
previous experiment, the produced counterfactuals are not exiting the data domain
over which the model was trained, but are rather exploiting biases existing in the
data. Most counterfactuals seen in the front have blonde hair, glasses or a smile pose,
whether alone or combined.

In order to explore the reason for such a recurring set of counterfactual features,
Figure 4.7 depicts bar diagrams showing the differences in terms of occurrence over
the training examples of different combinations of the three attributes, differentiating
between counts corresponding to the male and female classes. It is straightforward
to note that the majority of examples featuring any of the combinations of these three
attributes belong to the female class. Given a face, if it contains those three attributes,
it is quite probably a female. This is why the framework produces counterfactuals
with these features.

4.4.3 Experiment #3: ShapeHDGAN-based Counterfactual Generation for Auditing a Chair
Versus Xbox voxel classifier

This third case of the devised set of experiments comprises an audited classifier that
discriminates whether the voxel at its input is a chair or a Xbox. Therefore, it operates
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Figure 4.7: Diagram showing the occurrence within the training dataset of the audited model
of different feature combinations, split between male and female examples.

over three-dimensional data, increasing the complexity to qualitatively evaluate the
produced counterfactuals with respect to previous experiments.
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Figure 4.8: Pareto front of the counterfactual examples generated for a chair example by the
proposed framework configured with a Shape3DGAN model.

The results elicited for a chair target instance xa,⊕ are shown in Figure 4.8. A first
inspection of the counterfactual voxels highlighted in the approximated Pareto front
suggests that it is hard to analyze what the audited classifier observes in these inputs
to get fooled and predict a Xbox. It appears that a more dense middle part is capable
of misleading the classifier. Voxels being generated by the framework resemble a
chair, but possess a clearly more dense middle part. It is quite revealing to see how
a chair and an xbox can be of any resemblance. Interestingly, a concern to bring up
here is that of scale. These voxels (both the generated ones and the dataset over which
the ShapeHDGAN model was trained) are normalized, which in turn means that the
size of the object has been lost. Scaling can be an interesting option to improve the
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resolution of small objects. In this case, however, it can be the reason to make this
classifier prone to error.

Figure 4.9: Local explanations (heatmaps via Grad-cam++) corresponding to the anchor voxel
(leftmost pair of images) and two of the counterfactuals depicted in Figure 4.8.

This last statement can be buttressed by analyzing which structural parts of the
counterfactual voxel are of highest importance for the audited classifier to produce its
prediction. This can be done by resorting to gradient-based local post-hoc explanation
methods such as Grad-cam++ [487]. As can be seen in the examples depicted in
this Figure, most of the observational focus of the model is placed on the vertical
rectangular part of the chair, which conforms to intuition given that the actual shape
of a Xbox is rectangular. Therefore, counterfactuals for a chair instance wherein the
vertical part (backrest) is reinforced can bias the audited model without jeopardizing
their plausibility.

4.4.4 Experiment #4: StyleGAN2-based Counterfactual Generation for Auditing a classifier
of Cathedral Versus Office classifier

The results of this fourth experiment (Figure 4.10) unveils a link between the lumi-
nance of the overall counterfactual image and its ability to mislead the model. How-
ever, in this time the spread of counterfactuals over the adversarial power dimension
of the Pareto front is notably lower than in the previous experiments. If the results
are compared with those of 4.4, in this case the missing spread observed in the front
is validated with what can be visually discerned in the counterfactuals given by the
framework.

This is supported by the analysis of the visual differences between the anchor
image and the produced counterfactuals shown in Figure 4.11. Specifically, the plot
shows the heatmap of mean absolute differences (averaged over the RGB channels)
and the SSIM (Structural Similarity Index Measure [529]) among the original anchor
image and its counterfactual version. As can be inferred from the visuals in the first
row of the figure, the framework is exploiting a burned-out background with minor
structural changes in the image. This seems reasonable with the spread found in the
front: it shows that these changes in the background of the image can completely
fool the model, but there are not changes that would account for a well spread front
since the structural differences among both classes are large. Furthermore, cathedral
instances undergo a misrepresentation bias in the dataset, in the sense that none
of the cathedral training examples has a totally overcast sky. This suggests that
whitening the background of the image may grant a chance for the counterfactual to



104 exploring the trade-off in counterfactual explanations

Change intensity
0.0

0.2
0.4

0.6
0.8

1.0

Adversarial power

0.0
0.2

0.4
0.6

0.8
1.0

P
la

u
si

b
il

it
y

0.0

0.2

0.4

0.6

0.8

1.0

Anchor

Change intensity

Adversarial Power

Plausibility

Closest adv.

Change intensity

Adversarial Power

Plausibility

Figure 4.10: Pareto front of the counterfactual examples generated for a Cathedral example
by the proposed framework configured with a StyleGAN2 model.

mislead the audited classifier, yet without any guarantee for success given the scarce
similarity between images belonging to both classes.

4.4.5 Experiment #5: CGAN-based Counterfactual Generation for Auditing a MNIST Clas-
sifier

In correspondence to Q3, this last experiment is devised to elucidate whether the
output of the proposed framework can be used for any other purpose than model
explainability. To this end, we run and assess visually the counterfactuals generated
for the digit classification dataset defined over the well-known MNIST classifier. The
characterization of every class defined in it is done by a naïve conditional GAN.

Figure 4.12 portrays the output of the framework when generating counterfactuals
for an anchor image xa,⊕ corresponding to digit 4. From what can be observed in the
samples extracted from the front, visual information corresponding to digits 4 and
8 appear to be interfering with the capability of the audited model to discriminate
among them. This intuition is buttressed by the fact that the closest element is a
sample corresponding to digit 8, as displayed in the first bottom image of the plot.
Indeed, once again misrepresented visual artifacts in the dataset are opening a path to
generate plausible counterfactuals, since most instances generated by the framework
are digits with incomplete shapes. This may come from the fact that the MNIST
dataset is mostly composed by digits that are correctly written.

We prove the converse to this statement by running again the experiment with an
additionally inserted class in the dataset that contains digits of every class over which
a part has been erased. This narrows the opportunities for the framework to generate
counterfactuals by erasing selected shape fragments of the anchor digit. This is con-
firmed in Figure 4.13, which depicts the output of the framework in this alternative
setting: the counterfactual instances generated can be declared to be plausible with
respect to this extended dataset, yet a visual inspection of their corresponding digits
concludes that they do not resemble a numerical digit. In summary: the output of
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Difference heatmap (averaged over RGB channels)
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0.231 0.84 0.717 0.83 0.904

0.231 0.823 0.763 0.838 0.845 0.86

0.231 0.697 0.925 0.712 0.729 0.716 0.741

0.232 0.721 0.823 0.801 0.742

Structural Similarity (SSIM) values

0.746 0.794 0.786

Figure 4.11: Comparison between the original counterfactuals and the anchor image follow-
ing the colored markers in Figure 4.6: the upper triangular part of the matrix is
composed by heatmaps depicting the mean absolute difference of the RGB pixels
of every pair of images in comparison, whereas the lower triangular part denotes
the SSIM value quantitatively reflecting the similarity between the images.

our framework can tell which domain over the image (color, shape) can be leveraged
to make the audited model more robust against input artifacts.

4.5 summary

This chapter has proposed a novel framework that leverages the generative strength
of GAN architectures and the efficient exploration capabilities of multi-objective op-
timization algorithm to traverse search spaces of large dimensionality. The devised
framework combines these two branches of Artificial Intelligence to produce multi-
criteria counterfactual explanations for a given input example and a black-box model
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Figure 4.12: Pareto front of the counterfactual examples generated for an MNIST digit classi-
fication model by the proposed framework configured with a CGAN model.
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Figure 4.13: (a) Sample of the unfinished digits generated for supplementing the MNIST
dataset as an additional class. These digits are designed to cover the gap found
in the initial phase of experiment #5, which showed a weakness of the MNIST
dataset concerning non-finished digits. (b) Output of the framework when audit-
ing the same model trained over the augmented dataset. In this case, images of
the produced counterfactual instances do not conform to what human thinking
expects to be a digit.

to be audited. Specifically, a GAN model is used to furnish a generative model that
characterizes the distribution of input examples which, together with its discrim-
inator module and its conditional dependence on an attribute vector, synthesizes
examples that can be considered plausible. The trained GAN is therefore used as a
proxy evaluator of the plausibility of new data instances that change the output of
the audited model (counterfactuals). Our designed framework seeks the set of coun-
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terfactual examples that best balance between plausibility, and adversarial power, incor-
porating a third objective (change intensity) that may be also in conflict, depending on
the dataset at hand.

Five experiments have been run and discussed to answer three research questions
aimed to understand the contribution of the framework to the explainability and
understanding of the model being audited. The conclusions drawn with respect to
such questions are given below:

• Q1. Is counterfactual generation an optimization problem driven by several objectives?

As evinced by the Pareto front approximations obtained for the five experi-
ments, counterfactual explanations are clearly governed by multiple objectives
of relevant importance for the search. Depending on the dataset, some of such
objectives could not be conflicting with each other. Nevertheless, the task of
finding good counterfactual explanations must be approached as a search com-
prising different goals for the sake of a more enriched interface for the user of
the audited model.

• Q2. Do the properties of the generated counterfactual examples conform to general logic
for the tasks and datasets at hand?

Definitely: our discussion on the results obtained for every experiment we have
qualitatively inspected images and voxel volumes corresponding to the pro-
duced counterfactual instances. Artifacts observed in such adversarial images
not only can be explained departing from common sense as per the task ad-
dressed by the audited model (e.g. color variations or emphasized structural
parts of the voxels), but also exploit differences and similarities found among
the data classes feeding the model at hand.

• Q3. Do multi-criteria counterfactual explanations serve for broader purposes than model
explainability?

Indeed, counterfactual analysis may contribute to the discovery of hidden bi-
ases resulting from misrepresentations in the training dataset of the audited
model. Our discussions have empirically identified that counterfactual explana-
tions can reflect such misrepresentations which, depending on the context, can
be understood as a hidden compositional (attribute-class) bias or a potential
vulnerability for adversarial attacks.

On a closing note, the framework presented in this chapter has showcased that
counterfactual explanations must be tackled as a multi-faceted challenge due to the
diversity of audiences and profiles for which they are generated. Understanding how
a black-box behaves within the prediction boundaries of its feature spaces empowers
non-expert users and improves their trust in the model’s output. However, an ad-
vance use of this explanatory interface should regard other aspects to respond the so
much for how much? question in counterfactual analysis. This is in essence the ultimate
purpose of the framework proposed in this chapter.





5
C O N C L U D I N G R E M A R K S

As covered in this thesis, XAI is a growing field of paramount importance for the soci-
ety. The ever-growing complexity of AI models, coupled with the increasing demand
for their application in a plethora of real-life environments, have produced the birth
of this field to which this thesis has contributed. It has attempted to unify a field pre-
viously disperse, by means of a new definition of XAI followed by a recollection of
the most important aspects related to the pursuit of XAI. It has also contributed to the
body of research conducted under the umbrella of XAI by presenting two different
frameworks that not also attempt at improving the knowledge about the functioning
of methods, but they include specifications for multiple audiences within the loop.
This last part, as discussed in the second chapter, is paramount since explanations
have conceptually no sense if they are not coupled with an objective audience. Specif-
ically, the contributions of this thesis can be devised in four separated blocks:

• A new definition of Explainable Artificial Intelligence After the reviewing
more than 500 works, this thesis has contributed to designing a new definition
of Explainable Artificial Intelligence that attempts at taking into consideration
all the works reviewed.

Given an audience, an explainable Artificial Intelligence is one that produces details
or reasons to make its functioning clear or easy to understand.

This new definition combines the previous definition coined by Gunning in
[7] and extends it with the concept of audience to make it more complete and
accountable for the concerns of the literature.

• A new taxonomy This thesis has introduced a new taxonomy that collapses of
the works reviewed under the field of XAI in ML in two branches (Transparent
Models and Post-Hoc Explanations) that subsequently develop:

– Transparent Models: consider the more classical ML models that are read-
ily interpretable, namely: Logistic/Linear Regression, Decision Trees, K-
Nearest Neighbors, Rule-base Learners, General Additive Models and Baye-
sian Models.

– Post-Hoc Explanations: account for all the techniques that are created with
the intent of explaining a non transparent model. These can be divided in
two:

* Model-Agnostic: techniques suitable for any model. They do not take
into consideration the internals of the models themselves, in turn,
they analyze they behaviour and come up with information about the
model. This information is again categorized between: Explanation by
simplification, Feature relevance explanations,Local explanations and Visual
explanations

109
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* Model-Specific: techniques that take into consideration the internals of
the models, hence, are only suitable for specific models. Among these
techniques categories for five specific models can be found: Ensem-
bles and Multiple Classifier Systems, Support Vector Machines, Multi-Layer
Neural Networks, Convolutional Neural Networks and Recurrent Neural
Networks

Given the growth rate discrepancies of Deep Learning and Non-Deep Machine
Learning techniques, a purely Deep Learning XAI taxonomy is presented. This
technique is divided in four different categories that account for Post-Hoc tech-
niques within DL:Explanation of Deep Network Processing, Explanation of Deep Net-
work Representation, Explanation Producing Systems and Hybrid Transparent and
black-box Methods.

• A new framework for Echo State Networks Extracted from the previous chap-
ter of this thesis, a gap for randomized neural networks was devised. No tech-
niques had been proposed for this field specifically. Randomized Neural Net-
works, and ESNs specifically have presented incredible performances compared
with other state of the art techniques. However, the essence of their weights
been randomly assigned has always risen concerns among practitioners and
users at the time of application. This framework introduces three techniques to
audit ESNs: Potential Memory, Temporal Patterns and Pixel-Absence Relevance.

– Potential Memory: Deals with the matter of reservoir size by analyzing the
dynamic response of the network. It allows to have an input of whether
the choosen size is appropriate for the problem or not.

– Temporal Patterns: Opens a window into the reservoirs dynamics and abil-
ities to capture the data. This technique hints the user on whether the
network is capturing the dynamics of the data introduced.

– Pixel-Absence Relevance: This technique analyses the joint contributions of
each of the inputs of the ESN in order to asses their relative importance.
Being specifically devised for image and video inputs due to its simpler
representation for the human user.

• A new framework for model analysis by means of counterfactual genera-
tion Another concern raised during the analysis of the literature is the single-
objective focus followed for counterfactual analysis coupled with fail to look
for counterfactuals that do not just intent to confound the models, but it is
more focused on getting information about it. In this manner, this framework
presents the idea of treating a counterfactual analysis as a multi-objective prob-
lem in which three main objectives are considered: Adversarial power, Plausibility
and Change Intensity. This framework combines the strengths of GANs, Convo-
lutional networks and Genetic optimizers to give birth to a technique able to
detect vulnerabilities (bias, data misrepresentations and working boundaries) in the
target model and data used to train it.

This thesis summarizes the research carried during the last three years. Other than
simply contributing to the body of literature of the field of XAI, it brought up two
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main concerns that ought to be taken care of by the community. XAI should not
only be focused on what is mainstream nowadays. Forfeiting what is not yet in the
spearhead of the field narrows the sight for new discoveries and paths that ought to
be promising. With the inclusion of a framework for ESNs and a new paradigm for
Counterfactual generation, this thesis attempts to lessen this deficiency. Furthermore,
this dissertation has clearly underlined the importance of keeping the audience in
the focus of XAI. After all, XAI’s birth is not due to technical matters, but to humans
necessities and keeping the humans within the loop means not loosing the essence
of it.
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5.2 future research lines

The findings resulted from this thesis have open the way of several research paths.
The different paths devised could be categorized in three branches. One considering
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the more theoretical approach and mainly based on the work presented in Chapter 2.
Another branch concerned around the further exploration of Reservoir Computing
and Randomized Neural Networks 3. And a final branch related with the contents of
Chapter 4 surrounding the matters of counterfactual generation.

• Theoretical lines Our reflections about the future of XAI, conveyed in the discus-
sions held throughout this thesis (mainly Chapter 2), agree on the compelling
need for a proper understanding of the potentiality and caveats opened up by
XAI techniques. It is our vision that model interpretability must be addressed
jointly with requirements and constraints related to data privacy, model con-
fidentiality, fairness and accountability. A responsible implementation and use
of AI methods in organizations and institutions worldwide will be only guaran-
teed if all these AI principles are studied jointly. To work with such a prospect,
research along the lines of: a) Generating objective methodologies to asses ex-
plainability, privacy awareness, fairness and accountability b) Methodologies
that improve upon our abilities to design models well balanced among perfor-
mance and interpretability.

• Randomized Neural Networks Several research paths are planned for the future
departing from the findings reported in Chapter 3. To begin with, different ways
will be investigated to leverage the design flexibility of the reservoirs towards in-
ducing expert knowledge contained in a transparent model in the initialization
parameters of a Deep ESN. In this regard, elements from model distillation will
be explored to convey such expert knowledge, possibly by driving the reservoir
initialization process not entirely at random. Furthermore, explanations gener-
ated by the proposed tools can be used for other machine learning models that
are also partly governed by random processes (e.g. random vector functional
link networks, or random convolutional kernels). Another interesting research
direction is to derive new strategies to transform spatially correlated data into
sequences, as results reported in Chapter 3 have found out that an inherent loss
of information is held as a result of transforming spatially correlated data into
sequences. Finally, a close look will be taken at the interplay between explain-
ability and epistemic uncertainty, the latter especially present in reservoir com-
puting models. As in other randomization based machine learning approaches
for sequential data, it is a matter of describing memoirs from the past in a
statistically consistent, understandable fashion.

• Counterfactual generation Finally, Chapter 4 has brought up some ideas for new
research lines that seem promising. The framework proposed in this thesis pre-
sented an equally balanced multi-objective search for the generation of coun-
terfactuals. It may be interesting to explore the different vulnerabilities such a
framework could find by imposing unbalanced objective constraints. The other
promising research line is related to the actual objectives utilized for this frame-
work. Adding new objectives could serve further interests in a model-auditing
setup. For example, instead of looking for adversarial power, looking for what
makes the model uncertain could enlighten the features that are less character-
istic of each class.
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