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ABSTRACT: We present a benchmark study of density functional
approximation (DFA) performances in predicting the two-photon-
absorption strengths in z-conjugated molecules containing electron-
donating/-accepting moieties. A set of 48 organic molecules is chosen
for this purpose, for which the two-photon-absorption (2PA) parameters
are evaluated using different DFAs, including BLYP, PBE, B3LYP, PBEO,
CAM-B3LYP, LC-BLYP, and optimally tuned LC-BLYP. Minnesota
functionals and wB97X-D are also used, applying the two-state
approximation, for a subset of molecules. The efficient resolution-of-
identity implementation of the coupled-cluster CC2 model (RI-CC2) is
used as a reference for the assessment of the DFAs. Two-state models
within the framework of both DFAs and RI-CC2 are used to gain a
deeper insight into the performance of different DFAs. Our results give a
clear picture of the performance of the density functionals in describing
the two-photon activity in dipolar 7-conjugated systems. The results show that global hybrids are best suited to reproduce the
absolute values of 2PA strengths of donor—acceptor molecules. The range-separated functionals CAM-B3LYP and optimally tuned
LC-BLYP, however, show the highest linear correlations with the reference RI-CC2 results. Hence, we recommend the latter DFAs
for structure—property studies across large series of dipolar compounds.

1. INTRODUCTION organic dyes; dendrimers; nanoparticles; and metal—organic
frameworks.'™'” Among the factors that significantly affect the
2PA response of molecular systems, one can highlight, inter alia,
bond length alternation,””*" solvent polarity,””*® spatial
confinement,”* > and long-range charge-transfer pro-
cesses.””*® Gaining a thorough understanding of the relation-
ship between molecular structure and optical response is of
pivotal importance for designing new materials with desirable
properties and exploring novel applications. Theoretical
chemistry plays an important role in this area of re-
search.”****7*? Advanced electronic-structure calculations
allow not only the optical properties of molecules and materials
to be predicted accurately,™ but also allow the elucidation of
results of experimental measurements. This holds in particular
for the analysis of spectroscopic signatures in nonlinear
absorption spectra. However, simulations of 2PA spectra can
be challenging for computational chemistry, especially when

Light—matter interactions have been the subject of intensive
research both experimentally and theoretically for decades. The
electric polarization of a molecular system exposed to a relatively
weak electric field scales linearly with its amplitude and can be
well described at the molecular level by the electric polarizability.
However, in the presence of a strong electric field, generated,
e.g., by a coherent intense light beam, nonlinear optical effects
can be manifested. Depending on the specific nonlinear process,
these can be described by first-, second-, or higher-order electric
hyperpolarizabilities. One of the most widely studied nonlinear
processes is the two-photon-absorption (2PA) phenomenon, in
which two photons are simultaneously absorbed, leading to an
excitation to a different state (rotational, vibrational, electronic,
etc.). This phenomenon was theoretically predicted in 1931 by
Maria Géoppert-Mayer' and subsequently experimentally
verified in 1961 by Keiser and Garrett” thanks to the invention
of lasers.” Nowadays, 2PA is an important and powerful

spectroscopic tool, commonly used in photodynamic ther- Received:  October 20, 2021 JCTC ==
apy,*™° bioimaging,” ™" three-dimensional optical data stor- Published: January 26, 2022
age,lz’13 microfabrication,'* and two-photon lasing,b to name a

few areas of application. Technological advances trigger the
quest for new materials with large 2PA cross sections. Studies in
this field focus mainly on dipolar, quadrupolar, and octupolar
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Scheme 1. Structures of Compounds 1—-20 Studied in the Present Work
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relatively large chemical systems are considered. The methods
used for simulations should not only predict excitation energies
and 2PA cross sections with high accuracy but also account for
many different factors that are important for bringing the results
of the simulations closer to real experimental conditions, such as

. . I 7,22,33,35,41—49
vibronic contributions and solvent effects.

1047

Over the past few decades, the potential of various
computational approaches to predict 2PA spectra has been
Response theory combined with coupled-cluster
wave functions allows accurate 2PA spectra for a wide palette of

50
assessed.

chemically diverse compounds to be obtained.”’ ~>* Unfortu-
nately, this approach can quickly become computationally very
expensive when applied to larger molecules (i.e., composed of

https://doi.org/10.1021/acs.jctc.1c01056
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Scheme 2. Structures of Compounds 21—40 Studied in the Present Work
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dozens of atoms) and combined with the necessary split-valence often used to model 2PA spectra. These functionals include pure
triple- or quadruple-{ basis sets. In such cases, density functional DFT exchange for short-range electron—electron interactions
theory (DFT) constitutes an attractive alternative. However, and the exact Hartree—Fock exchange for long-range
selecting the density functional approximation (DFA) that interactions.””>> Compared to many other DFAs, RSFs improve
ensures reliable results is by no means a trivial task. Therefore, the accuracy of excitation energies to Rydberg and charge-
taking into account the multitude of available DFASs, evaluating transfer states.’*”®' However, also RSFs can yield substantial
their performance in calculations of 2PA spectra against errors for 2PA cross sections as has been demonstrated in several
correlated wave function based methods is mandatory in order papers.*®®>~% Nevertheless, even though RSFs underestimate
to employ DFT with confidence. Range-separated functionals 2PA cross sections, the errors appear to be more systematic than
(RSFs), with CAM-B3LYP at the forefront, are nowadays very those for semilocal and hybrid functionals. It should be noted
1048 https://doi.org/10.1021/acs.jctc.1¢01056
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Scheme 3. Structures of Compounds 41—48 Studied in the Present Work
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that only a moderate number of organic molecules have been
studied thus far with the use of different DFAs.

Improvements in the performance of RSFs in simulations can
be achieved by a system-specific tuning of the range-separation
parameter @. Several techniques have been developed so far,
adopting different constraints and targeting different molecular
properties. Most commonly, the range-separation parameter is
adjusted to impose Janak’s theorem,’” leading to optimally
tuned RSFs (OT-RSFs).**~"° Numerous studies have reported
that OT-RSFs perform very well for donor—acceptor systems
and, compared to the standard versions of RSFs, provide an
improved description of the energetics involving frontier
orbitals, the position and intensity of one-photon-absorption
bands in UV—vis spectra, and charge-transfer effects.”’ "

Lin and Van Voorhis proposed triplet-tuned RSFs (TT-
RSFs), in which @ is chosen to minimize the difference of the
singlet—triplet excitation energy obtained with the ASCF and
TD-DFT approaches.”* It was shown that TT-RSFs yield
slightly superior singlet and triplet excitation energies compared
with the ones obtained with OT-RSFs. For nonlinear optical
phenomena, several studies have tested the applicability of the
OT-based scheme. Most of those were limited to the
computation of the static nonlinear optical properties, such as
the static polarizability and first hyperpolarizability. The
performance of OT-RSFs for computing those molecular

1049

properties is mixed and highly unsystematic, depending strongly
on the size and chemical nature of the systems.”>~*’

Recently, Besalu-Sala, Luis, and co-workers have proposed a
different type of tuning tailored for the computation of the static
second hyperpolarizability, namely, the Ta-RSF scheme.”” In
contrast to the OT- and TT-based approaches, it relies on the
empirical correlation between the static polarizability (obtained
with the default parametrization of the RSF) and the values of ®
needed to reproduce CCSD(T) results for a collection of 60
molecular systems with a wide variety of first hyperpolariz-
abilities. While Ta-RSF reproduces the reference results with a
remarkable precision for the broad variety of chemical systems
studied, Ta-LC-BLYP has so far only been used to compute a
single component of the second hyperpolarizability tensor, and
its performance for rotationally averaged properties is therefore
largely unknown.

Taken together, the developments summarized above
demonstrate the necessity to perform an extensive comparative
study to validate the performance of range-separated functionals
in predicting 2PA spectra. The present contribution aims at
filling this gap. More specifically, the goal of the present work is
to evaluate the performance of selected DFAs, including OT-
RSFs, in predicting electronic 2PA transition strengths for the
series of 48 organic molecules shown in Schemes 1—3. The
chosen compounds are examples of donor—acceptor (D—A)
and donor—acceptor—donor (D—A—D) systems (covering a

https://doi.org/10.1021/acs.jctc.1c01056
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wide range of donor/acceptor strengths for the substituents)
whose third-order (resonant and nonresonant) properties have
been thoroughly studied experimentally.*'~*’ The choice of
these systems stems from the fact that D—A and D—A-D
architectures are widely employed in the design of two-photon
active materials. Especially the D—A motif leads to bright low-
lying states with large dipole moment changes upon excitations
(intramolecular charge-transfer transitions; see Figures S1 and
S2): features highly beneficial for large two-photon-absorption
cross sections. As will be demonstrated in the remainder of this
work, many of the chosen D—A and D—A—D compounds
exhibit significant two-photon strengths, thus making them
suitable candidates for this study. No studies have to date
reported the performance of OT-RSFs for determining the 2PA
cross sections, further justifying the need for assessing these
types of functionals. In order to achieve these goals, the
resolution-of-identity CC2 model®* will be used as reference
method and a thorough analysis of electronic-structure
parameters will be performed to pinpoint the origins of the
differences in performance for various DFAs.

The remainder of the paper is organized as follows. In section
2, we briefly summarize the theoretical foundations for 2PA and
the generalized few-state models that we will use to analyze the
results. In section 3 we summarize the computational details.
Subsequently, we present and discuss our findings in section 4.
Finally, in section 5 we give some concluding remarks.

2. THEORY

2.1. Description of 2PA in Hermitian and Non-
Hermitian Theories. Within the framework of Hermitian
(H) and non-Hermitian (NH) theories, the rotationally
averaged two-photon transition strengths for the 10) — IJ)
transition, in the case of a single beam of linearly polarized
monochromatic light, are given by’

Sor v = LZ MM + M*M™)
15
7% (1)

1

5 PANH E E M M

02] " [M]W gu ; juu éw]
noov

+ MY ML ] (1b)
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WwrvEXxyz

M2, and MpZ; denote the pvth component of the right and
left second-order transition moments, respectively, in the non-
Hermitian description. In the case of the Hermitian counterpart,
there is no difference between the left and right transition
moments; hence it is represented by M*", without any subscript.
The sum-over-states expressions for the transition moments are

given by
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where @y represents the excitation energy for the 10) — IK)
transition and y "~ = (KIXIL) in eqs 2a—2c is the x-component of
the first-order transition dipole moment for the IK) — IL)
transition. The superscripts on u distinguish the right (L0) and
left (OL) first-order transition moments.

2.2. Generalized Few-State Model (GFSM) from
Hermitian and Non-Hermitian Theories. The expressions
for 53}“ in egs la and 1b do not reflect directly the effect of
dipole orientation on 2PA. This can be made more explicit by
inserting eqs 2a—2c into eqs la and 1b and separating the
magnitude of the transition moments from the angle
(orientation) terms, thus leading to the GFSM expressions.é‘ 83
The final equation for the 2PA strength for a GFSM for the
Hermitian theories is*

4
6GFSM — | OK” K]” OL” L]l
0JKL ; ; 415AEKAEL R

% (cos 9]015 cos 0] + cos 9;}]5 cos o + cos GILK] cos O3

(3)
and that for the non-Hermitian theories is®
2
Sop. = ————(a+p)
JKL
; ZL: 1SAEAE; (4)

with
a = NN 16 1 (cos 9]1120 cos QOLL] + cos 9]% cos 91%

+ cos HJLK] cos Ogy)

B = 1 011 (cos 9;}_0 cos HOKKJ + cos HJOLK cos HLIB]
+ cos 9]I§] cos QLO(If

In the above expressions, AE, = %a)] — wy and the term 91'%

represents the angle between the transition dipole moment
vectors fipq and .

Expressions for different few-state models can be derived from
eqs 3 and 4 by choosing a given number of intermediate states K
and L. For a two-state model (2SM), as used in this work, K and
L can be either the ground state 0 or the final excited state J. The
sum over K and L thus reduces to four terms: o0, Gojoy = Sojj0r
and &y, for which we will use the short-hand notation dqg, 5y =
Oy, and &y, respectively, in this work. Explicit expressions for
Hermitian theories are then given by

4 00(2y,,0]12 2 n00
Soo=00 0 =———— Pl (1 + 2 cos
VO 1S(AE,)? J s)
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Syr=082M— T Y12 cos 0Y cos 6
o] 0j0] ISAEOAE] M Pl 1 00 0]
+ cos 6)) (6)
4 ) 2 0]
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In the context of truncated sum-over-state (SOS) approaches,
it should be mentioned that wave function based correlated
methods introduce errors in the description of valence states
located above the ionization threshold. Hence, considering a

https://doi.org/10.1021/acs.jctc.1c01056
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large number of the excited states in the SOS series can cause
. .86
inaccuracies.

3. COMPUTATIONAL DETAILS

The geometries of all 48 compounds shown in Schemes 1—3
were optimized in the gas phase by using the B3LYP functional®’
and the cc-pVTZ basis set®® employing the Gaussian 16
program.”” The optimized ground-state geometries were
confirmed to be minima by evaluation of the Hessian. Gas-
phase electronic structure calculations were performed with the
GAMESS US program”™ at the optimized geometries to
determine the one- and two-photon-absorption spectral
parameters.”’ The palette of exchange—correlation functionals
used consisted of semilocal functionals (BLYP’>”* and PBE™*),
global hybrids (B3LYP®” and PBE0”*"°), and range-separated
hybrids (CAM-B3LYP** and LC-BLYP**). The value of the
range-separation parameter @ was set to 0.33 in the latter two
functionals. The aug-cc-pVDZ basis set was employed in all
DFA-based calculations. In addition, RI-CC2 calculations were
performed with the use of the TURBOMOLE program.**”” In
these calculations, the aug-cc-pVDZ basis set”® and the
corresponding recommended auxiliary basis set’® were used to
determine the electronic structure and 2PA cross sections. The
RI-CC2-based results will serve as reference when evaluating the
performance of the DFAs. In a recent study, we have
demonstrated that this method reproduces experimental trends
in 2PA spectra for a family of donor—acceptor-substituted
organic dyes.’* Moreover, higher-level calculations have verified
the satisfactory performance of the CC2 method in predicting
2PA cross sections of organic chromophores.®>””

Additionally, the optimal tuning of the LC-BLYP functional
was performed, resulting in a functional labeled as OT-LC-
BLYP. For all but three of the systems studied, we have used the
constraint of providing the closest agreement to Janak’s theorem
for both the neutral, IPY, and anionic, IPN*!, species:

69,70

J(@) = \/[SI:IVOMO(W) + P (040)] + [Eaduio(@) + PV (wy0)]

(8)

with the J(w) function being minimized with respect to the
attenuation parameter @. N is here the number of electrons in
the neutral molecule, and £)oyo is the energy of the highest
occupied molecular orbital. The optimal value of the parameter,
@, Was located by using the golden-section search.'”’ Three of
the molecules had negative IPV*! values at the LC-BLYP level of
theory, and for these systems we only used the constraint for the
IP of the neutral system.

In this study, we have kept the values of IPN(wy) and
IPM*!(@y,¢) frozen during the minimization of the J(w) function.
They were obtained with the default value of the attenuation
parameter in LC-BLYP, as used in the Gaussian 16 program,®’
namely, @g.¢ = 0.47 bohr™". The use of fixed values for IP" (@)
and IPM*'(@wg,) has a minor impact on the value of the
optimized @, Optimization with the unfrozen IPs yields @,
up to 0.04 bohr™" lower, but this has been shown to only have
minor consequences for the computed first hyperpolarizabilites
(not exceeding 20%).%°

4. RESULTS AND DISCUSSION

We will start with an analysis of the two-photon-absorption
strengths computed with response theory using both the
reference RI-CC2 method and different DFAs (BLYP, B3LYP,
PBE, PBEO, (OT)-LC-BLYP, and CAM-B3LYP) for the whole

1051

set of 48 molecules. This is followed by a more detailed analysis
using a two-state model (2SM) on a subset of these molecules.
We then discuss in greater detail the results obtained using OT-
LC-BLYP, before we end by a comparison with some more
heavily parametrized DFAs. Note that the compounds in
Schemes 1—3 have been ordered by increasing values of 5™ as
obtained at the RI-CC2/aug-cc-pVDZ level of theory.
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Figure 1. Comparison of two-photon-absorption strengths computed
using RI-CC2 method and density functional approximations (double
logarithmic scale is used with base 10). See Table 1 for the linear
regression data.

4.1. Analysis of 2PA Strengths. Figures 1 and 2 compare
5*" values obtained by using RI-CC2 and different DFAs (see
also Figures $3—516). Relative 2PA strengths when going from
one molecule to the next in the series are presented in Figures
S14 and S1S. As can be seen, PBEO provides results that on
average are closest to those obtained by RI-CC2. Nevertheless,
even the PBEQ values are far from satisfactory and many
molecules present unsystematic errors relative to the RI-CC2
reference. Indeed, the differences between 2PA strengths as
predicted by RI-CC2 and PBEO range from a few thousand
atomic units to over 300 000 au (see Tables S1 and S2). On the
basis of the analysis of the data shown in Figures 1 and 2 and
collected in Tables S1 and S2, it is clear that the performances of
all DFAs used to calculate 5*"* for the selected set of compounds
are in general poor. Interestingly, all range-separated functionals
(RSFs), ie, CAM-B3LYP, LC-BLYP, and OT-LC-BLYP,
underestimate 5*** for all molecules, the only exception being
CAM-B3LYP for molecule 1. The remaining four functionals
(BLYP, B3LYP, PBE, and PBEO) both over- and underestimate
2PA strengths with respect to RI-CC2. Among the DFAs
considered, the pure GGA functionals BLYP and PBE provide in
most cases the largest values of 5" whereas the smallest values
are in most cases obtained with LC-BLYP.

When passing from molecule 1 to molecule 48, the results
obtained by all DFAs demonstrate their nonmonotonic behavior
(see Figure 2). The qualitative trends predicted by BLYP and
PBE as well as by B3LYP and PBEO are in each case very similar.
Quantitatively, BLYP and PBE provide very similar 2PA
strengths. The 2PA strengths provided by B3LYP are somewhat
larger than those obtained with PBEO, with molecule 47 as the
only exception. It is clear from Figure 2 that there are some
significant irregularities in the predicted 2PA strengths for the

https://doi.org/10.1021/acs.jctc.1c01056
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Figure 2. Two-photon-absorption strengths computed using RI-CC2 method and density functional approximations (logarithmic scale is used with

base 10).

DFAs. In particular, the performances of BLYP, B3LYP, PBE
and PBEQ are poor for molecules with a terminal cyano group
(molecules 4, 13, 24).

In Table 1, we collect the data for the linear regression plots
between the 2PA strengths calculated with RI-CC2 and each

Table 1. Data from the Linear Regression Plots between the
2PA Strengths Calculated with RI-CC2 and Each DFA”

DFA m a ?
BLYP 1.01 31732 0.85
PBE 1.02 30336 0.85
B3LYP 1.05 2162 0.90
PBEO 1.04 4195 0.91
CAM-B3LYP 0.45 —1009 0.99
LC-BLYP 0.20 2824 0.95
OT-LC-BLYP 0.29 2852 0.96

“m is the slope, a is the intercept, and r* is the Pearson coefficient.
Units (a) are au. See also Figure 1.

DFA. Each type of DFA (pure GGA, hybrid, or RSF) behaves
differently, suggesting that the amount of Hartree—Fock

exchange plays an essential role in the accuracy of the different
DFAs. The best agreement with RI-CC2 2PA strengths is
obtained by using hybrid functionals (which show a slope close
to 1 and a small intercept), whereas all RSFs severely
underestimate 2PA strengths by approximately 45, 20, and
29% for CAM-B3LYP, LC-BLYP, and OT-LC-BLYP, respec-
tively. Even though RSFs clearly understate the absolute 2PA
strengths, they mostly predict the same change in relative 2PA
strength as RI-CC2 (notice the relatively high Pearson
coefficient, especially in the case of CAM-B3LYP).

4.2. Few-State-Model Analysis. To gain insight into the
reasons for the abilities of different DFAs to predict §*™ values
of the studied molecules, we employed the generalized few-state
model®>** described in section 2.2. We will focus on molecules
35—46, which is a subset composed of prototypical push—pull
dipolar compounds with large 2PA strengths. For this subset, we
compared 6°" values obtained from a 2SM for the lowest bright
7 excited state in these systems (see Table S3). The 2SM has
in general been shown to work well for dipolar structures,”’ but
we will nevertheless compare the 2SM-based 2PA strengths with
the results obtained using response (RSP) theory. We present

RI-CC2 =3 B3LYP 3 LC-BLYP mm PBEQ mmmm
BLYP C—2 CAM-B3LYP mmmm PBE C—— OT-LC-BLYP ===
3.0
25
o
(%]
& 20+ |
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Figure 3. Ratios between two-photon-absorption strengths 5*** computed with two-state model (2SM) and with response theory (RSP) using the

aug-cc-pVDZ basis set.
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Figure 6. Ratios between §;; computed at DFT and RI-CC2 levels using the aug-cc-pVDZ basis set.

the ratios between 6°**’s calculated with the 2SM and response
theory in Figure 3.

The values of §*"*(2SM) are for all molecules higher than the
values of 5"(RSP). This overestimation is however less than a
factor of 2 for all molecules, except molecule 41 for B3LYP,
PBEQ, and CAM-B3LYP. With the exception of molecule 41, RI-
CC2 and LC-BLYP provide 2SM results that are most consistent
with the response theory values (6**(2SM)/8***(RSP) < 1.5).
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The remaining functionals are less systematic, as there are
several instances where the ratio between 6***(2SM) and
5*"A(RSP) exceeds 1.5. A three-state model does not give better
agreement with the response theory results, as can be seen from
Figure S16. For the above reasons, the 2SM was selected for
further analysis for all structures of the chosen subset.

We will now proceed with an analysis of all terms contributing
to the two-photon-absorption strength within a two-state

https://doi.org/10.1021/acs.jctc.1c01056
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Figure 9. Ratios between excited-state dipole moment (lyj;l) values computed at DFT and RI-CC2 levels using the aug-cc-pVDZ basis set.

approximation, i.e., §o0, 8o 50, and Jyy, respectively; see section
2.2 for definitions. Table S5 collects the percentage contribu-
tions of these terms to the §°"*(2SM). Note that &y = &, and
hence only their sum is presented in Table S5 as one
contribution, §y,jo. In all cases, dy; + I is negative whereas
Ooo and Jy; are positive, with the smallest contribution coming
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from &go. For all molecules studied, the absolute values of dy;
prevail over the other two terms for RI-CC2 as well as for the
BLYP, B3LYP, and PBE functionals. For the CAM-B3LYP, LC-
BLYP, PBEO, and OT-LC-BLYP functionals, either &y; + jy or
0Oy has the largest absolute value depending on the molecule.
Therefore, a proper description of these two terms is important

https://doi.org/10.1021/acs.jctc.1c01056
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Figure 10. Ratios between excitation energies (AEy;) computed at DFT and RI-CC2 levels using the aug-cc-pVDZ basis set.

for a correct determination of 6***(2SM) and hence also for
5*PA(RSP).

Comparisons of the values for 65y, 3o; + ), and j; obtained
using the RI-CC2 method and different DFAs are given in
Figures 4—6. The BLYP, PBE, B3LYP, and PBEO functionals
overestimate both 6y and dp; compared to the RI-CC2 reference
for the entire subset of molecules. In many cases, this
overestimation exceeds a factor of 1.5. For all molecules,
BLYP and PBE overestimate 5; whereas CAM-B3LYP, LC-
BLYP, and OT-LC-BLYP underestimate 6;;. BLYP and PBE
always provide the largest values of 6, and J; as well as of &y,
whereas LC-BLYP always provides the lowest values. In order to
select functionals that work best for describing all three
contributions to §***(2SM), we have calculated the absolute
values of deviation of the ratios between the DFT and RI-CC2
results from 1, that is, |1 — A(DFT)/A(CC2)|, where A is &y, 6y,
or §j;. The results are collected in Table S13. The analysis shows
that for molecules 35—46 the values of 6, &j, and &j; provided
by OT-LC-BLYP, CAM-B3LYP, and PBEQ, respectively, are in
the best agreement with RI-CC2 results.

We take a closer look at the spectroscopic parameters of
molecules 35—46, i.e., the ground-state dipole moment (),
the transition moment (due to the fact that right and left
transition moments differ for non-Hermitian theories, we will
discuss their product)

0/,,JO

gy 0l = \/Mx w+ )

0/ Jo
LU

z

the excited-state dipole moment (lﬂﬂl) , and the excitation
energy (AEy;). As can be seen from Figures 7—10, the values of
|ttol, Ittoygol, and AE,; obtained using all exchange—correlation
functionals are in good agreement with the RI-CC2 data, as the
ratios between DFT and RI-CC2 results range from 0.5 to 1.3.
Slightly worse behavior was observed for Iyl (0.4 < lu;|(DFT)/
lu;l(CC2) < 1.6). BLYP, PBE, B3LYP, and PBEO overestimate
|ttool and underestimate lpqy5l and AEy; for compounds 35—46.
The behavior of CAM-B3LYP, LC-BLYP, and OT-LC-BLYP in
the descriptions of lugl and lpgppl varies depending on the
molecule in question. In contrast, the excited-state dipole
moments provided by CAM-B3LYP, LC-BLYP, and OT-LC-
BLYP are always underestimated, whereas the remaining
functionals do not display a systematic behavior. Note also
that, for all molecules, BLYP and PBE (LC-BLYP) predict values
for lugol, luoy.jol, and AEy; (1) that differ the most from RI-CC2
reference values. The values of luql and AEy; provided by OT-
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LC-BLYP for compounds 35—46 are on average closest to the
reference data (see Table S13). The same applies to LC-BLYP
and lpgy. ol as well as to PBEO and luy)l.

4.3. Analysis of Optimally Tuned LC-BLYP Results. We
will now consider in greater detail the performance of the
optimally tuned LC-BLYP (OT-LC-BLYP). As can be seen from
Figure 2, the OT-LC-BLYP functional gives slightly better
agreement with RI-CC2 for 6*"*(RSP) compared to LC-BLYP
for all molecules except 4, 13, and 24. Nevertheless, the values
provided by OT-LC-BLYP are significantly underestimated
compared to the RI-CC2 results. The 2PA strengths calculated
using a2SM and OT-LC-BLYP for most of molecules from 35 to
46, except 41, are in good agreement with the corresponding
RSP results, as the ratios between 6°**(2SM) and 5°"A(RSP)
range from 126 to 1.57 (Figure 3). OT-LC-BLYP always
predicts the values of 6y, 5, and Jj; to be higher than the ones
obtained with LC-BLYP, in most cases giving improved
performance compared to LC-BLYP. Moreover, considering
only the two dominating contributions to 5*"*(2SM), &,;and &y,
it is clear that OT-LC-BLYP works best, since it shows the best
systematic behavior in predicting 6,y and J;; among all DFAs for
molecules 35—46 (i.e, 5y and §; of all these compounds are
always underestimated by OT-LC-BLYP) and provides values
that in most cases are in fairly good agreement with RI-CC2
data. These two facts give OT-LC-BLYP an advantage over
other DFAs in studies of 6*"A(2SM), since the systematic
behavior of OT-LC-BLYP allows error cancellations to be
minimized. This also applies to the calculated response theory
values of 5**4, as the two-state model is a reliable approximation
to the RSP values for most of the molecules considered in the
case of OT-LC-BLYP. Note that, according to eq 3, luol, Iy,
and AE; directly contribute to &y and & We can therefore
pinpoint the underestimated excited-state dipole moment as the
main source of the underestimation of Jy; and 6;; and hence also
5*"A(RSP) by OT-LC-BLYP. This is in agreement with previous
observations.”® A similar analysis and conclusions can be made
for the other RSFs. In fact, a recent benchmark study of ground-
and excited-state dipole moments of organic molecules by
Jacquemin demonstrates that RSFs suffer from underestimated
values of dipole moment differences corresponding to zz*
transitions.'”" For a systematic analysis of the performance of
DFAs in predicting ground- and excited-state dipole moments of
small and medium-sized molecules, we refer to extensive
benchmark works.'%*~'%*
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Table 2. Relative Errors in §°"* within the Two-State Approximation and in Dipole Moment in the S, Excited State with Respect

to CC2 Reference”

B3LYP (20%) PBEO (25%)

MN1S (44%)

MO06-2X (54%) CAM-B3LYP (65%) wB97X-D (100%)

62PA 52PA 62PA

molecule i lul
35 56.69 12.42 41.37 10.11 —6.96
36 —16.46 —5.30 —22.86 —6.49 —49.24
37 1.22 —1.81 —7.99 —3.65 —43.26
39 40.71 8.62 43.03 7.06 —12.99
42 23.86 7.70 13.40 5.79 —25.03
43 28.58 5.77 18.56 4.58 —19.22

Il
—2.49

—15.80
—-18.77

—4.29
=5.72
—6.26

2PA 2PA 2PA
[ o ()

[l lul Il
—25.93 —6.95 —34.38 —-10.76 —54.63 —19.19
—53.82 —16.27 —62.22 —19.67 —69.55 —22.93
—47.7§ —16.08 —60.41 —21.40 —70.48 —26.21
—29.37 —8.06 —-37.93 —11.89 —57.48 —20.35
—40.74 -9.78 —45.42 —12.01 —61.50 —19.23
—-33.83 —9.68 —42.10 —13.51 —60.66 —22.09

“Shown are the values for two-photon S, — S, transition. In parentheses are the percentages of Hartree—Fock exchange at long range of the DFA.

4.4, Analysis of Heavily Parametrized Functionals. As
highlighted above, RSFs yield systematically underestimated
values of two-photon transition strengths in comparison with
RI-CC2 reference values and this observation can be linked to
large errors in excited-state dipole moments. In order to explore
this matter further, we selected two highly parametrized
Minnesota functionals (M06-2X'%® and MN15'%°) and
wB97X-D."”” Since calculations of 2PA strengths using these
functionals are not possible using publicly available software
releases, we have estimated the 2PA strengths using the two-
state approximation, as we have already shown that this model
captures the main features of the 2PA strengths. The necessary
excited-stated diopole moments were calculated using the Z-
vector method'?'” (as implemented in the Gaussian 16
program®”).

1,2-Diphenylethene and 1,2-diphenylethyne derivatives (35—
37, 39, 42, 43) were selected for this analysis as they represent
typical push—pull systems with significant charge transfer in the
lowest-lying electronic singlet excited state. A summary of the
analysis is shown in Table 2. Three key conclusions can be
drawn from this analysis: (1) DFAs having the largest errors in
the 2PA strengths also have the largest errors in the excited-state
dipole moments compared to RI-CC2; (2) the range-separated
@B97X-D functional does not provide any systematic improve-
ment over other RSFs; (3) for the studied subset of molecules,
we notice a systematic underestimation of the 2PA strengths by
the Minnesota functionals, but with much smaller errors relative
to RI-CC2 than the RSFs, with MN1S being slightly more
accurate than its predecessor, M06-2X.

The best-performing DFAs for this set of molecules are found
to be global hybrids with a variable percentage of Hartree—Fock
exchange: B3LYP (20%), PBEO (25%), and MN1S (44%).
However, the trends are not systematic. Molecules 35 and 39
require a relatively large percentage of HF exchange (44%),
whereas 36 and 37 require smaller amounts (19% or less). On
the other hand, properties of molecules 42 and 43 are better
reproduced by PBEO, which has 25% Hartree—Fock exchange.
For none of these systems do the long-range corrected DFAs
provide accurate 2PA strengths, and the larger the amount of HF
exchange at long range, the worse the results. These conclusions
are at odds with a recent benchmark study by Andruniow et al.,*®
who found that long-range corrected DFAs (in particular, CAM-
B3LYP) give the most accurate 2PA strengths for a set of eight
chromophores. Since the current set of molecules includes
donor—acceptor molecules with a large variation in 2PA
strengths (ranging from 5000 to 10° au), we conclude that the
current set poses a greater challenge for current DFAs. In fact, no
DFA provides accurate absolute 2PA strengths relative to RI-
CC2 and is, at the same time, robust under two-state-model
approximations.
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Nayyar et al. studied two-photon-absorption spectra of a
series of substituted symmetric oligophenylvinylenes using
several DFAs: HSE06, B3LYP, M05, BMK, M05-2X, and
CAM-B3LYP.* These authors arrived at a somewhat different
conclusion, i.e., only for some of the molecules studied did the
CAM-B3LYP functional predict smaller values of the 2PA cross
section than those predicted by B3LYP. Note that the set of
oligophenylvinylenes was particularly problematic for the CAM-
B3LYP functional, which predicted spurious multiple maxima in
the absorption spectra, in contradiction to experimental data. It
was demonstrated by Nayyar et al. that the B3LYP functional
delivers the best estimates of 2PA cross sections with respect to
the reference experimental data. The trends obtained in this
work also suggest that B3LYP predicts values for 2PA cross
sections closer to CC2, albeit due to cancellation of errors.

5. SUMMARY AND CONCLUSIONS

The two-photon-absorption strengths of a collection of
medium-sized molecules have been studied using RI-CC2 and
a selection of density functional approximations (DFAs). The
molecules represent donor—z—acceptor architectures, and the
lowest-energy bright zz* state studied here indicates intra-
molecular charge-transfer character. Excitation to this electronic
state is dominated by the one-electron HOMO — LUMO
orbital transition. Given the type of excitation studied, we used
the single-reference CC2 method, combined with the medium-
sized aug-cc-pVDZ basis set, as the reference level to analyze
performances of various DFAs.

Although the general wisdom has been that range-separated
DFAs are best suited to study multiphoton absorption,"' """ the
present study shows that they severely underestimate 2PA
strengths due to a concomitant underestimation of the excited-
state dipole moment. Despite providing abysmal absolute 2PA
strengths, this class of DFAs shows the highest linear
correlations with RI-CC2 results, as shown by the Pearson
coefficient values. The best performing range-separated func-
tionals are CAM-B3LYP and OT-LC-BLYP. On the other hand,
global hybrids are more successful in reproducing the absolute
values of 2PA strengths of many donor—acceptor molecules
from the series but with worse Pearson coefficient values than in
the case of range-separated functionals. Hence, we recommend
the latter DFAs for “structure—property” studies across large
series of dipolar compounds at the price of underestimated two-
photon strengths.

The current set of molecules poses a challenge that no studied
DFA successfully passed. None of the DFAs provided accurate
absolute 2PA strengths for both response theory and a few-state-
model approximation, although some of the highly parametrized
functionals, e.g., MN 1S5, showed systematic errors and predicted
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properties closer to reference ones. We are convinced this test
set will prove valuable for developers of DFAs within the time-
dependent density functional theory framework.
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