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Abstract
The aim of this paper is twofold. First, we show the evolution of the vortex filament
equation (VFE) for a regular planar polygon in the hyperbolic space. Unlike in the
Euclidean space, the planar polygon is open and both of its ends grow up exponentially,
which makes the problemmore challenging from a numerical point of view. However,
using a finite difference scheme in space combined with a fourth-order Runge–Kutta
method in time and fixed boundary conditions, we show that the numerical solution
is in complete agreement with the one obtained by means of algebraic techniques.
Second, as in the Euclidean case, we claim that, at infinitesimal times, the evolution
of VFE for a planar polygon as the initial datum can be described as a superposition
of several one-corner initial data. As a consequence, not only can we compute the
speed of the center of mass of the planar polygon, but the relationship also allows us
to compare the time evolution of any of its corners with the evolution in the Euclidean
case.
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1 Introduction

Consider the binormal flow

Xt = κb, (1)

where t is the time, κ the curvature, and b the binormal component of the Frenet–
Serret formulas. This equation first appeared in the work of Da Rios in 1906, as an
approximation of the dynamics of a vortex filament (represented by X) under Euler
equations, and was later rederived by Arms and Hama in 1965 (Rios 1906; Arms and
Hama 1965). This model is commonly known as the vortex filament equation (VFE).
The flow, also called the localized induction approximation (LIA), can be expressed
as

Xt = Xs ∧+ Xss, (2)

where s is the arc-length parameter and ∧+ is the usual cross-product. The tangent
vector T = Xs satisfies

Tt = T ∧+ Tss, (3)

and, during the time evolution, it preserves its magnitude, so we can assume that it
takes values in the unit sphere, i.e., T ∈ S

2. Equation (3) is called the Schrödinger
map equation onto the sphere and can be expressed in a more geometric way as

Tt = JDsTs, (4)

where Ds is the covariant derivative and J is the complex structure of the sphere. By
writing it in this way, (3) can be extended to more general definition domains and
images (Khesin 2013). For instance, when the target space is chosen as the hyperbolic
plane H2 = {(x1, x2, x3) : −x21 + x22 + x23 = −1, x1 > 0}, i.e., a unit sphere in the
Minkowski 3-space R1,2 = {(x1, x2, x3) : ds2 = −dx21 + dx22 + dx23 }, the equivalent
of (3) is (see Ding 1998)

Tt = T ∧− Tss, (5)

and that of (2) is

Xt = Xs ∧− Xss, (6)

where X ∈ R
1,2, T ∈ H

2 and the Minkowski cross product ∧− is defined by (see
Ratcliffe 2006)

a ∧− b = (−(a2b3 − a3b2), a3b1 − a1b3, a1b2 − a2b1), a,b ∈ R
1,2;
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in this paper, we use the term hyperbolic to refer to the case when T ∈ H
2; and

Euclidean, when T ∈ S
2. The Minkowski pseudo-scalar product is given by

a ◦− b = −a1b1 + a2b2 + a3b3,

which defines

|a|20 = a ◦− a. (7)

Thus, depending on whether | · |0 is positive, zero, or positive imaginary, the corre-
sponding vector can be classified as space-like, light-like, or time-like, respectively.
Since T ∈ H

2, the corresponding X is called a time-like curve (Ratcliffe 2006; López
2008). Note that depending on the sign of the first component of a time-like vector, it
can be further classified as positive or negative time-like; for instance, in the definition
ofH2 given above, we have considered only the positive time-like vectors. Let us also
define the hyperbolic angle between two positive (respectively, negative) time-like
vectors a and b as the unique nonnegative real number σ(a,b), such that

a ◦− b = −|a|0|b|0 cosh(σ (a,b)). (8)

In this work, we deal with vectors that are positive time-like; for simplicity of notation,
we refer to them as time-like. On the other hand, for a sufficiently smooth curve X
with curvature κ and torsion τ , the equivalent of the Frenet–Serret formulas in the
hyperbolic setting is given by

⎛
⎝
T
n
b

⎞
⎠

s

=
⎛
⎝
0 κ 0
κ 0 τ

0 −τ 0

⎞
⎠ .

⎛
⎝
T
n
b

⎞
⎠ , (9)

where the normal vector n and binormal vector b are space-like and, along with T,
form an orthonormal system (López 2008). In addition, the corresponding filament
function,

ψ(s, t) = κ(s, t)ei
∫ s
0 τ(s′,t)ds′

, (10)

transforms (5)–(6) into the defocusing nonlinear Schrödinger (NLS) equation (Hasi-
moto 1972):

ψt = iψss − i

2
ψ(|ψ |2 + A(t)), A(t) ∈ R. (11)

As is well known, (11) is a completely integrable system with infinitely many con-
servation laws. The simplest of these conservation laws is the one associated with
the space L2. The rest of them involve an increasing number of derivatives of the
solution with a jump of 1/2 derivative from one law to the next one, if the regularity
is measured using the class of Sobolev spaces. For each of these conservation laws,
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explicit solutions can be constructed. Moreover, the inverse scattering method can be
used to build the solution for generic regular data. In this paper, we are motivated by
a geometric problem and the possibility of having an initial condition with corners.
Thanks to Hasimoto transformation, this implies considering initial data given by a
sequence of Dirac delta functions, so that it belongs to the Sobolev space Hs , with
s < −1/2, and none of the conservation laws mentioned above can be used.

Note that VFE is time-reversible, i.e., if X(s, t) is a solution, then so is X(−s,−t).
Bearing this in mind, an important property of VFE and hence of the Schrödinger map
is that it has a one-parameter family of regular self-similar solutions that develop a
corner-shaped singularity in finite time. In other words, at the time of the formation of
the singularity, i.e., t = 0, the curve X has a corner, its tangent vector is a Heaviside-
type function, and ψ is a Dirac delta located at s = 0. This was shown in Gutiérrez
et al. (2003) for the Euclidean case, and the hyperbolic case was studied in de la Hoz
(2007) (from now on, it will be referred to as the one-corner problem). Moreover, the
well-posedness of the problem in the elliptic case has been established through a series
of papers by Banica and Vega (2013, 2015).

On the other hand, the numerical study of the self-similar solutions was first done
in Buttke (1998), and later in de la Hoz et al. (2009), where both the Euclidean and
hyperbolic cases were considered. In de la Hoz et al. (2009), not only the formation of
the singularity was captured, but the authors also started with a corner-shaped initial
datum and recovered the self-similar solutions numerically. In all the cases, the choice
of boundary conditions was found to be crucial.

Although the problem of a curve with one corner that is otherwise smooth is well
understood both theoretically and numerically, the case of a polygonal curve has gained
attention only recently (Jerrard and Smets 2012, 2015). In de la Hoz and Vega (2014),
a regular planar polygon with M sides (which, from now on, will be referred to as
the planar M-polygon) was considered as an initial curve in the Euclidean case, and
using algebraic and numerical techniques, it was shown that the evolution of T, and
that of X after removing the vertical height, is 2π/M2-periodic in time. Moreover, at
intermediate times that are rational multiples of 2π/M2, i.e., tpq = (2π/M2)(p/q),
with gcd(p, q) = 1, the planar M-polygon evolves in such a way that it has Mq
sides if q is odd, and Mq/2 sides if q is even, a behavior that is reminiscent of the
so-called Talbot effect in optics (Berry and Klein 1996; Erdoğan and Tzirakis 2013;
Olver 2010). Let us also mention that at a macroscopic level, effects similar to those
mentioned above were also observed in the case of real fluids (Grinstein and Gutmark
1999; Grinstein et al. 1995).

Another interesting aspect of the evolution of the planar M-polygon is the trajectory
of any of its corners, which seems to be a multifractal and resembles the graph of
Riemann’s non-differentiable function (Duistermaat 1991):

∞∑
k=1

sin(πk2)

πk2
, t ∈ [0, 2]. (12)

Recall that, for a given M , apart from the formation of new sides, the planar M-polygon
evolves in the vertical direction with a constant speed cM . Hence, bearing in mind the
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symmetries of the problem, the curve X(0, t) is planar. In de la Hoz and Vega (2014),
it was denoted by zM (t), after removing the vertical height from it and projecting
the resulting curve onto the complex plane. Then, strong numerical evidence was
given, showing that, as M tends to infinity, zM (t) converges to the complex version
of Riemann’s non-differentiable function:

φ(t) =
∞∑

k=1

eπ ik2t

iπk2
, t ∈ [0, 2]. (13)

Recently, considering an M-sided polygon with nonzero torsion as the initial datum,
new variants of φ(t) have been discovered in the trajectory ofX(0, t), whose structure
depends on the torsion introduced in the problem (de la Hoz et al. 2020). Thus, by
showing the existence of φ and its variants, it has been proved numerically that, in
the Euclidean case, the time evolution of the smooth solutions of VFE, i.e., the circle,
the helix and the straight line, is not stable. In other words, a particle can be placed
on a curve arbitrarily close to a circle, helix or straight line, but, in the right topology,
its trajectory converges to the graph of φ (or its variants). Moreover, this topology
is motivated by some recent works on the well-posedness of VFE, which shows the
existence of a new conservation law precisely at the critical scale of the problem
s = −1/2, and that can be used for the solutions of the NLS equation associated with
the self-similar solutions of VFE (Banica and Vega 2019, 2020a, b).

Hence, we see that the evolution of M-sided polygons reveals many fascinating
properties of VFE. With this motivation, another interesting problem is to look at the
equivalent of a planar M-polygon in the hyperbolic setting and compare the evolutions
of the two. It turns out that, in the absence of torsion, the corresponding polygon is
a time-like curve that is characterized by a parameter l > 0 representing the angle
between any of its two sides. We refer to the polygonal curve as a planar l-polygon
(alternatively, in Fillastre 2014, it is called an elementary l-convex polygon).

Note that, unlike in the Euclidean case, the planar l-polygon is open and both of
its endpoints tend to infinity (see Fig. 1). Furthermore, the corresponding tangent
vector T lies on a unit hyperbola, and ψ(s, 0) is the l-periodic sum of Dirac deltas
with coefficients that depend on the initial configuration of the planar l-polygon. Let us
mention that, due to the mix of lack of regularity and periodicity, the well-posedness is
quite challenging for this kind of problems. Recently, taking an initial datum consisting
of polygonal lines that are asymptotically close to two straight lines at infinity, it has
been proved that the problem is well-posed (Banica and Vega 2020b). Moreover, using
the appropriate topology, it has been shown in Banica andVega (2019) that the solution
also satisfies a conservation law.

The aim of this paper is twofold. First, we observe the evolution of (5)–(6) for a
planar l-polygon as the initial datum; fromnowon, itwill be referred to as the l-polygon
problem. In this regard, as in the Euclidean case, the algebraic solution is obtained by
working at the level of the NLS equation. However, solving the problem numerically
appears to be more challenging. In particular, in our numerical simulation, as we
truncate the infinitely long l-polygon, the role of boundary conditions becomes very
important. Moreover, as observed in the one-corner problem, due to the exponential
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Fig. 1 A planar l-polygon with vertices located at sn = nl, n ∈ Z, (black squares) and the asymptotes
(dotted red lines)

growth of the tangent vector, working with all the values of the parameter l becomes
very difficult numerically.Bearing this inmind,wepropose a numerical scheme (which
will be explained in the following lines) and showagood agreement between the results
thus obtained and the ones from the theoretical arguments. Then, as in de la Hoz and
Vega (2018), we answer up to what extent the l-polygon problem and the one-corner
problem are related. Consequently, not only can we compute the speed of the center of
mass of the planar l-polygon, but the relationship also helps in comparing the trajectory
of any of the corners of a regular planar polygon in both the Euclidean and hyperbolic
cases.

The structure of this paper is as follows. In Sect. 2, we define the problem by
formulating the main theoretical arguments that justify our numerical experiments.
In particular, in Sect. 2.1, we introduce the parametric form of the initial data, and
the relevant properties, such as symmetries. In Sect. 2.2, we observe that, as in the
Euclidean case, the Galilean invariance of the NLS equation helps in obtaining the
solution up to a function that depends on time.However, the function is nowdetermined
using the conservation law established for polygonal lines in Banica and Vega (2019),
an approach that was also employed in de la Hoz et al. (2020). Let us not forget that,
in the case of curves with vanishing curvature, it is desirable to work with the parallel
framewhere the normal plane is spanned by the vectors e1, e2, whose space derivatives
depend only on T (Bishop 1975). In the hyperbolic setting, the corresponding parallel
frame is given by (22), where e1, e2 are the unit space-like normal and binormal
vectors, respectively. Thus, by integrating the generalized Frenet–Serret formulas at
times that are rational multiples of l2/(2π), we obtain the evolution of the curve X
and of the tangent vector T, up to a rigid movement. This is illustrated in Sect. 2.3,
where knowing the rotations in the Minkowski 3-space (from now on, referred to
as hyperbolic rotations) is found to be quite essential (Özdemir and Erdoğdu 2014).
Moreover, the rigid movement can be determined by using the symmetries of the
regular planar l-polygon and, in this way, we recover T completely. However, X is
computed only up to a movement in the YZ-plane, which is obtained numerically in
Sect. 3.2.
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In Sect. 3, we study the numerical evolution of (5)–(6) for different values of the
parameter l. Bearing in mind that, unlike in the Euclidean case, a planar l-polygon is
of infinite length, we consider a planar l-polygon with only M sides in our numerical
simulations, i.e., such that its length is L = l M . We have found that Dirichlet bound-
ary conditions on the tangent vector, with a finite difference discretization in space,
combined with a fourth-order Runge–Kutta method in time, give the best numerical
results, both in terms of computational cost and accuracy. These ideas are offered in
Sect. 3.1. In Sect. 3.2, we begin by calculating the movement of the center of mass in
the YZ-plane, which allows us to compare the numerical solution with its algebraic
counterpart (obtained in Sect. 2.3). On the other hand, the trajectory of a corner of
the l-polygon initially located at s = 0 (i.e., X(0, t)), although resembling Riemann’s
non-differentiable function, is quite different from its equivalent in the Euclidean case.
Moreover, it converges to the function, as the parameter l tends to zero. In Sect. 3.2.2,
we provide strong numerical evidence to prove this claim. Section 3.3 is about the
behavior of the tangent vector T near irrational times and its comparison with the
tangent vector in the Euclidean case.

Section 4 is based on the relationship between the l-polygon problem and the one-
corner problem. In this regard, let us first briefly recall the main ideas of the one-corner
problem. In de la Hoz (2007), the existence of the solutions of (6) for the following
initial datum is proved:

X(s, 0) = A−sχ(−∞,0](s) + A+sχ[0,∞)(s), A± ∈ H
2, (14)

where the unit vector can be chosen as A± = (A1,±A2,±A3)
T , thanks to the

rotation invariance of VFE. The self-similar solutions of (6) satisfying X(s, t) =√
tX(s/

√
t, 1), t > 0, solve (see de la Hoz 2007; Buttke 1998)

1

2
X(s/

√
t, 1) − s

2
√

t
X′(s/

√
t, 1) = X′(s/

√
t, 1) ∧− X′′(s/

√
t, 1). (15)

Then, from (9) and (15), κ(s, t) = c0/
√

t and τ(s, t) = s/(2t) can be obtained, where
the constant c0 characterizes the one-parameter family of smooth curves X that can
be described using (9), Xs = T, and the initial conditions

X(0, t) = 2c0
√

t(0, 0, 1)T ,

T(0, t) = (1, 0, 0)T , n(0, t) = (0, 1, 0)T , b(0, t) = (0, 0, 1)T .
(16)

The parameter c0 is the curvature ofX(s, 1), which, in turn, solves the following ODE
(de la Hoz 2007):

X′′′(s, 1) +
(

−c20 + s2

4

)
X′(s, 1) − s

4
X(s, 1) = 0. (17)
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With some abuse of notation, if we define the Fourier transform of X(s, 1) by

X̂(ξ) = 1√
2π

∫ ∞

−∞
X(s, 1)e−isξds,

then it satisfies

ξ X̂′′(ξ) + 3X̂′(ξ) + 4ξ3X̂(ξ) + 4c20ξ X̂(ξ) = 0. (18)

That being said, in Sect. 4.1, following the approach in de la Hoz and Vega (2018),
we provide very strong numerical evidence to establish the connection between the
two problems. As a consequence, in Sect. 4.2, an explicit expression for the speed of
the center of mass of the planar l-polygon is given, according to which it moves in the
vertical direction. Moreover, we also make some remarks on the trajectory of X(0, t).

In Sect. 5, we discuss the main conclusions. Finally, recall that in de la Hoz (2007),
a precise expression for the first component of the tangent vector A± was obtained:

A1 = eπc20/2, (19)

which also relates c0 to the time-like angle θ between A+ and A−:

cosh(θ) = −1 + 2A2
1 = −1 + 2eπc20 . (20)

Thus, to conclude this paper, in Appendix A, we provide calculations to obtain a
compact expression for A1, A2, and A3.

2 A Solution of Xt = Xs ∧− Xss for a Planar l-Polygon

One of the main goals of this paper is to obtain the solutions of (6) and explain their
dynamics, when regular planar l-polygons are considered as initial data. In this regard,
by assuming uniqueness as in the Euclidean case, we prove the following theorem.

Theorem 1 Assume that there exists a unique solution of the initial value problem

Xt = Xs ∧− Xss, (21)

with X(s, 0) being a regular planar l-polygon. Then, at a time tpq which is a rational
multiple of l2/2π , i.e., tpq ≡ (l2/2π)(p/q), with p ∈ Z, q ∈ N, gcd(p, q) = 1, the
solution is a skew lq-polygon, such that, in s ∈ [d, d + l), for any d ∈ R, X(s, tpq)

has q times as many sides (if q odd) or q/2 times as many sides (if q even) as X(s, 0).
All the new sides have the same length, and the time-like angle lq between any two
adjacent sides is constant. Moreover, the polygon at a time tpq is the solution of the
generalized Frenet–Serret formulas
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⎛
⎝
T(s, tpq)

e1(s, tpq)

e2(s, tpq)

⎞
⎠

s

=
⎛
⎝

0 α(s, tpq) β(s, tpq)

α(s, tpq) 0 0
β(s, tpq) 0 0

⎞
⎠ .

⎛
⎝
T
e1
e2

⎞
⎠ , (22)

where α(s, tpq) + iβ(s, tpq) = (s, tpq) and (s, tpq) is the l-periodic function
defined over the first period s ∈ [0, l) as

(s, tpq) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lq√
q

q−1∑
m=0

G(−p, m, q)δ(s − lm
q ), if q odd,

lq√
2q

q−1∑
m=0

G(−p, m, q)δ(s − lm
q ), if q even,

(23)

with

G(a, b, c) =
c−1∑
n=0

e2π i(an2+bn)/c, a, b ∈ Z, c ∈ Z\{0}

being a generalized quadratic Gauß sum. The mutual time-like angle lq between any
two sides of the new polygon is given by

lq =
{
2 arcosh(cosh1/q(l/2)), if q odd,

2 arcosh(cosh2/q(l/2)), if q even.
(24)

Remark that bothX(s, tpq) andX(s, 0) have obviously a countable infinite number
of sides. Therefore, in this paper, whenever we say loosely speaking that X(s, tpq)

has q times as many sides as X(s, 0), etc., it must be understood that s is being taken
over any half-open interval of length l. On the other hand, let us mention that the
determination of lq follows from the conservation law established for polygonal lines
in Banica and Vega (2019).

2.1 Problem Definition

Given the parameter l > 0, an arc-length parameterized planar l-polygon can be
understood as a curve with curvature given by

κ(s) = c0

∞∑
k=−∞

δ(s − lk), s ∈ R. (25)

Here, the vanishing argument of the equally spaced Dirac deltas corresponds to the
location of the corners, and the coefficient c0 > 0 depends on the initial configuration
of the curve. In particular, bearing in mind (20), we choose
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c0 =
[
2

π
ln

(
cosh

(
l

2

))]1/2
. (26)

Note that, in the absence of torsion, from (10), ψ(s, 0) is the curvature of the initial
polygonal curve, i.e.,ψ(s, 0) = κ(s), which is l-periodic. Moreover, since (5)–(6) are
invariant under hyperbolic rotations, we can assume without loss of generality that the
corresponding initial planar polygonal curve X(s, 0) and its tangent vector T(s, 0) lie
on the XY-plane. Thus, by denoting the plane by OXY, for sn = nl, n ∈ Z, we write
the piecewise constant tangent vector T ≡ (T1, T2, T3)T as

T(s, 0) = (cosh (l/2 + sn) , sinh (l/2 + sn) , 0)T , s ∈ (sn, sn+1). (27)

As a result, the vertices of the planar l-polygon X ≡ (X1, X2, X3)
T can be expressed

as

X(sn, 0) = (l/2)

sinh(l/2)
(sinh (sn) , cosh (sn) , 0)T , (28)

and, for s ∈ (sn, sn+1), the point X(s, 0) lies in the segment that joins X(sn, 0) and
X(sn+1, 0) (see Fig. 1). Note that we have chosen T(s, 0) as (27), so that the vertex
corresponding to X(0, 0) in (28) lies on the y-axis.

Thus,X(s, 0) is a curve with infinite length and, from (8), it follows that the hyper-
bolic angle between any two of its sides is constant and equal to l. Since one of the
main concerns in this paper is to address the numerical evolution of a planar l-polygon,
we work with a truncated curve with a finite number of sides.

2.1.1 Spatial Symmetries of X and T

The invariance of (5)–(6) under hyperbolic rotations follows from the invariance of
the Minkowski cross-product under them (Özdemir and Erdoğdu 2014). Thus, given a
hyperbolic rotationmatrixR, such thatR·T(s, 0) = T(s, 0) andR·X(s, 0) = X(s, 0),
if the solution is unique, then R · X(s, t) = X(s, t), R · T(s, t) = T(s, t), for all t . In
particular, since X(s, 0) and T(s, 0), which are given, respectively, by (28) and (27),
are invariant under a rotation of time-like angle nl about a space-like z-axis for all
n ∈ Z, it can be concluded that X(s, t) and T(s, t) are invariant under hyperbolic
rotations, for all t .

One important consequence of these symmetries is that for any time t , X(s + nl, t)
always lies in the same orthogonal plane to the z-axis. Furthermore, as in the Euclidean
case, (5)–(6) are mirror invariant, and, consequently, X(s, t) − X(−s, t) is a positive
multiple of (1, 0, 0)T . This property plays an important role when constructing the
algebraic solution.
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2.2 Problem Formulation and the Behavior at Rational Multiples of the Time
Period

First, let us mention that, at the level of the NLS equation, the hyperbolic case is
not much different from the Euclidean case; however, the obtention of X and T
depends entirely on hyperbolic rotations (Özdemir and Erdoğdu 2014; Ratcliffe 2006).
In this regard, following the approach in de la Hoz and Vega (2014), we observe
that, by definition, ψ(s, 0) is l-periodic, and since (11) is invariant with respect
to space translations, ψ(s, t) is also l-periodic, for all t ∈ R. On the other hand,
ψ(s, 0) = eirksψ(s, 0), r = 2π/l, l > 0; thus, from the Galilean invariances of (11),
ψ(s, t) = eirks−i(rk)2tψ(s −2rkt, t), for all k. Furthermore, sinceψ is periodic, using
its Fourier coefficients, it can be expressed as

ψ(s, t) = ψ̂(0, t)
∞∑

k=−∞
ei(rk)2t+i(rk)s, (29)

where ψ̂(0, t) is a constant depending on time t . Due to the gauge invariance, we can
take it to be real (see de la Hoz and Vega 2014), and its value is computed explicitly
by using a conservation law that will be explained in the following lines. Remark that
ψ(s, t) is periodic in time with period 2π/r2, or, l2/2π , which we denote by T f in
this paper.

Next, evaluating (29) at rational multiples of the time period T f , i.e., at t = tpq =
2π
r2

p
q , p ∈ Z, q ∈ N, gcd(p, q) = 1, gives (see de la Hoz and Vega 2014, Section 3.3

for the intermediate steps)

ψ(s, tpq) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l√
q

ψ̂(0, tpq)

q−1∑
m=0

eiθm δ
(

s − ml
q

)
, if q odd,

l√
q/2

ψ̂(0, tpq)

q/2−1∑
m=0

eiθ2m+1δ
(

s − (2m+1)l
q

)
, if q/2 odd,

l√
q/2

ψ̂(0, tpq)

q/2−1∑
m=0

eiθ2m δ
(

s − 2ml
q

)
, if q/2 even,

(30)

for s ∈ (0, l). This implies that, at any rational time tpq , a single side of the l-polygon
at t = 0 will evolve into q sides, if q is odd, and q/2 sides, if q is even. Since it holds
true for any k ∈ Z, this would imply that the resulting polygon will have q or q/2
times as many sides as the initial l-polygon. The new Dirac deltas thus formed are
equally spaced and, as a result, all the sides of the new polygon are of equal length.
Furthermore, the coefficients of Dirac deltas have equal modulus and are given by

cq =
{

l√
q ψ̂(0, tpq), if q is odd,
l√
q/2

ψ̂(0, tpq), if q is even.
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Note that the conservation law established for the polygonal lines in Banica and Vega
(2019) holds true for both the focusing and the defocusing NLS equation. Therefore,
by following the approach in de la Hoz et al. (2020), we obtain cq = c0/

√
q , if q is

odd, and cq = c0/
√
2q , if q is even, and

ψ̂(0, tpq) = c0/l. (31)

On the other hand, (26) holds true whenever a corner is created; for instance, in our
case, at rational times tpq . Then, from (20) and denoting the time-like angle between
any two tangent vectors by lq ,

cosh
(

lq
2

)
= eπc2q/2. (32)

Moreover, since cq is independent from k, the angle lq is the same for all sides and,
thus, using (26), (31), (32) it can be expressed as

lq =
{
2 arcosh(cosh1/q(l/2)), if q odd,

2 arcosh(cosh2/q(l/2)), if q even.
(33)

2.3 Algebraic Solution

In order to construct the algebraic solution, as in de la Hoz and Vega (2014), we
integrate the Frenet–Serret formulas (22), taking

(s, tpq) = lq
cq

ψ(s, tpq) = α(s, tpq) + iβ(s, tpq), (34)

for q odd, and similarly for q even. Then, by expressing α+iβ = lqeiθ , the integration
yields

H =
⎛
⎝

cosh(lq) cos(θ) sinh(lq) sin(θ) sinh(lq)

cos(θ) sinh(lq) 1 + cos2(θ)(cosh(lq) − 1) sin(θ) cos(θ)(cosh(lq) − 1)
sin(θ) sinh(lq) sin(θ) cos(θ)(cosh(lq) − 1) 1 + sin2(θ)(cosh(lq) − 1)

⎞
⎠ ,

(35)

which is a hyperbolic rotation of angle lq about a space-like axis (0,− sin(θ), cos(θ))T

(Özdemir and Erdoğdu 2014). In other words,H describes the transition from a vertex
located at sk = −L/2+ k(l/q), k = 0, 1, . . . , Mq − 1. By choosing the basis vectors
T̃(s), ẽ1(s), ẽ2(s), such that they form an identity matrix at s = s−

0 , we obtain their
values for the remaining Mq sides by a subsequent action of H corresponding to
(s, tpq). Additionally, X̃, i.e., X up to a rigid movement, can be computed from T̃
through

X̃(sk+1) = X̃(sk) + l
q T̃(s+

k ), k = 0, 1, . . . , Mq, (36)
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where X̃(s0) can be assigned any value, for example, X̃(s0) = (0, 0, 0)T .
Next, we determine the correct rotation by using the symmetries of the regular

planar l-polygon. In order to align the polygon orthogonal to the z-axis, we use the
fact that, at any time t , X(lk), lies in the XY-plane, for k ∈ Z, so the resulting curve
is rotated about the z-axis in such a way that X(l) − X(−l) is a positive multiple of
(1, 0, 0)T . This can be done efficiently in the following way:

(1) Compute the unit time-like vectors w+ = X̃(l)−X̃(0)
|X̃(l)−X̃(0)|0 , w

− = X̃(−l)−X̃(0)
|X̃(−l)−X̃(0)|0 .

(2) Compute the unit space-like vector û = w+∧−w−
|w+∧−w−|0 .

(3) If the space-like vectors û and ẑ = (0, 0, 1)T are such that (see Ratcliffe 2006)

(a) (û)3 > |û|0, then the time-like angle ν1 = arcosh
(
(û)3/|u|0

)
, and v̂ = û∧− ẑ

is a space-like vector,
(b) (û)3 < |û|0, then the angle ν1 = arccos

(
(û)3/|u|0

)
, and v̂ = û ∧− ẑ is a

time-like vector,
(c) (û)3 = |û|0, then ν1 = 0, and L1 is the identity matrix.

(4) Compute time-like vectorsw+
rot = L1 ·w+,w−

rot = L1 ·w−, andw = w+
rot −w−

rot

|w+
rot −w−

rot |0 .
Then, ν2 = arcosh(w ◦− (1, 0, 0)T ) is the time-like angle, and L2 is the corre-
sponding rotation about the axis given by w∧−(1,0,0)

|w∧−(1,0,0)|0 .
(5) Compute the desired rotation L = L2 · L1, and T = L · T̃, X = L · X̃.
Thus, we obtain X and T correctly oriented. Although the computation of T is com-
plete, in order to fully determineX, we need to compute the movement of its center of
mass, which is done in the next section. Finally, from (30), (31) and (34), we conclude
the proof of Theorem 1.

3 Numerical Solution

As mentioned previously, in order to simulate numerically the evolution, we consider
an l-polygon of length L that is now characterized by two parameters l and M , such
that L = l · M . For our purposes, we take M even, so that the initial curve X(s, 0),
s ∈ [−L/2, L/2], has a vertex located at s = 0 and the symmetries described in
Sect. 2.1.1 apply. This also allows us to capture the time evolution of a corner initially
located at s = 0, i.e., X(0, t). Remark that M is finite, but we are approximating an
infinitely long polygon; so, in principle,more accurate resultswould be expectedwith a
larger value of M . However, both M and l cannot be large, since due to the exponential
growth of the Euclidean norm of the tangent vector T, for a fixed M , a large value of l
causes the solution to blow up in a short time, making the numerical scheme unstable.
This was also observed in the one-corner problem, where large values of c0 lead to
similar effects (de la Hoz et al. 2009). On the other hand, a large M value forces us
to consider only small values of l. Let us not forget that, as we work with a truncated
l-polygon, the role of the boundary conditions also becomes very important.

Our goal is to solve (5)–(6) numerically for the initial data given by (27)–(28), for
s ∈ [−L/2, L/2]. There have been several papers dedicated to the numerical treatment
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of (5)–(6) (Buttke 1998; de la Hoz et al. 2009; de la Hoz and Vega 2014). For instance,
for the Euclidean regular M-polygons, the coupled system is solved with a pseudo-
spectral method in space and a fourth-order Runge–Kutta method in time (de la Hoz
and Vega 2014; de la Hoz et al. 2020). In our case, a Chebyshev spectral discretization
with an explicit scheme in time poses a severe restriction |�t | = O(1/N 4), where
N is the number of nodes. On the other hand, due to its low order of accuracy, a
second-order semi-implicit backward difference formula applied on the stereographic
projection of (5) does not serve our purpose, as we are interested in the evolution for all
rational times, unlike in de la Hoz et al. (2009). Thus, after trying several numerical
methods, we have found that both in terms of efficiency and computational cost, a
fourth-order finite difference discretization in space with a fourth-order Runge–Kutta
method in time and with fixed boundary conditions on T yield the best results.

3.1 Numerical Method

We divide the interval [−L/2, L/2] into N + 1 equally spaced nodes s j = −L/2 +
j L/N , j = 0, 1, . . . , N , with a step size �s = L/N . The time interval [0, T f ] has
been discretized into Nt + 1 equally spaced time steps tn = n�t , n = 0, 1, . . . , Nt ,
with �t = T f /Nt . We denote X(n)

j ≡ X(n)(s j ) ≡ X(s j , tn), where X(0)
j can be

computed from (28) by using linear interpolation, and T(n)
j ≡ T(n)(s j ) ≡ T(s j , tn),

where T(s j , ·) = T(s, ·), for s j ≤ s < s j+1, if s < 0, and s j < s ≤ s j+1, if s > 0.
Thus, we obtain N values of the piecewise constant tangent vector, each corresponding
to N segments, respectively.

In order to approximate thefirst and secondderivatives,weuse a fourth-order central
difference scheme for the inner points, and in order to keep the same order of accu-
racy over the whole discretized domain, we employ a fourth-order forward/backward
difference scheme for the boundary and its neighboring points; this results in banded
differentiation matrices of size (N + 1) × (N + 1). Let us mention that, in order to
maintain the dimensions of the vectors X(n)

j and T(n)
j consistent, we obtain the N + 1

values of the piecewise continuous tangent vector T(0)
j in the following way:

T̃(0)
0 = T(0)

0 , T̃(0)
j+1 = (T(0)

j + T(0)
j+1)/2, j = 0, 1, . . . , N − 2,

T̃(0)
N = T(0)

N−1, T(0)
j = T̃ j/|T̃ j |0.

Hence, by fixing the boundary conditions for the tangent vector T, which can be
introduced explicitly, we solve the following initial-boundary value problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Tt (s, t) = T(s, t) ∧− Tss(s, t),

Xt (s, t) = Xs(s, t) ∧− Xss(s, t) = T(s, t) ∧− Ts(s, t),

T(−L/2, t) = (cosh (l/2 − L/2) , sinh (l/2 − L/2) , 0)T ,

T(+L/2, t) = (cosh (l/2 + L/2) , sinh (l/2 + L/2) , 0)T , t ∈ [0, T f ],
(37)
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with initial conditions X(s, 0), T(s, 0) given by (27), (28), respectively. By using
the space discretization mentioned above, we integrate (37) numerically by means
of a fourth-order Runge–Kutta method in time. Moreover, in the numerical imple-
mentation, at the end of each time step tn , we renormalize the tangent vector, so that
T(n) ∈ H

2.
To determine the stability constraints of the numerical scheme, we compute the

maximumvalue of the time step�t forwhich the solution does not blowup. Thus, after
giving different values to the parameters N , M , l, we obtain �t/�s2 = 0.5302 . . .,
i.e., �t = O(�s2).

Let us remark that, in the case of regular polygons in the Euclidean space, the space
derivatives are approximated at N nodes by using the fft algorithm in MATLAB (de
la Hoz and Vega 2014; de la Hoz et al. 2020). Due to the symmetries of the tangent
vector, itwas possible to do this by using only one side of the M-sided polygon, needing
a computation cost of O((N/M) log(N/M)). However, in the current scenario with
fixed boundary conditions, we work with all the sides of the truncated l-polygon,
and the space derivatives are approximated with finite difference matrices of size
(N + 1) × (N + 1), hence making the problem challenging from a computational
point of view as well.

3.2 Numerical Results

Recall that, given any rational time, the computation of the algebraic solutions Xalg
and Talg is entirely based on the assumption of uniqueness. In the following lines,
we will see that, up to some numerical errors, the numerical solutions, denoted by
Xnum and Tnum, match very well the ones obtained from the theoretical arguments.
However, remark that, in order to compare the two solutions, we need to specify the
movement ofXalg at any rational times. This is done by computing the center of mass,
which is given by the mean of X, i.e.,

Xmean(t) = 1

L

∫ L/2

−L/2
X(s, t)ds.

Thus, with the discretization mentioned above, we approximate the integral numeri-
cally by using the trapezoidal rule. Being our aim to analyze Xmean componentwise,
we note, from the symmetries mentioned in Sect. 2.1.1, that, for any given time t , the
first component is equal to zero, while the second and third components, i.e., Xmean

2,0 ,
and Xmean

3,0 , are calculated as the mean of N values of X2 and X3, respectively.
Here, Xmean

3,0 describes the position of the center of mass along the z-axis, i.e., the
vertical height of the polygonal curve X. After carrying out numerical simulations
for different values of M and l, it has been observed that Xmean

3,0 (t) can be very well
approximated by means of a constant multiplied by t . More precisely,

Xmean
3,0 (t) ≈ Xmean

3,0 (T f )

T f
t = cnuml t, (38)
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(a) (b)

Fig. 2 Errors for M = 96, l = 0.1, N/M = 29

where cnuml is the mean speed computed numerically, and its exact value is obtained
as a consequence of Theorem 2.

On the other hand, the values of Tnum (hence, those of Xnum) corresponding to the
inner grid points are found to be far more accurate than the ones close to the boundary.
This is due to the exponential growth of the tangent vector and to the fact that we
are approximating piecewise continuous functions using a finite difference scheme.
For instance, Fig. 2a shows the error |T3,num(s, t)− T3,alg(s, t)|, considering the third
component of the algebraic and numerical solutions of T, for M = 96, l = 0.1,
N/M = 29, s ∈ [−L/2, L/2], at t = T f . The error is of O(10−5) in the magnified
part, whereas it is of O(10−2) near the boundary. This indicates that the inner part of
the polygon is more accurate than the one close to the endpoints. Therefore, for a good
approximation of Xmean, we choose to work with the inner points of the discretized
domain, where, in order to make a reasonable choice of the “inner points,” we define

Xmean
3,r (t) = 1

Nr

N−2r N/M−1∑
j=2r N/M

X3(s j , t), r = 0, 1, . . . , M/4 − 1, (39)

for Nr = N −(4r N/M), i.e., themean of X3(s j , t), for s j ∈ [−L/2+2rl, L/2−2rl].
Then, for each r , we compute the errormaxn(|Xmean

3,r (t (n))−cl t (n)|), i.e., themaximum
difference between Xmean

3,r (t) and its exact linear approximation cl t . Figure 2b shows
that the error is smaller when the nodes closer to the boundary are avoided. It also
shows that, after a certain value of r , the error does not vary much; consequently,
without loss of generality, we choose r = M/8, i.e., s j ∈ [−L/4, L/4], j = N/4 +
1, N/4 + 2, . . . , 3N/4. Note that although using the symmetries, Xmean

3,0 (t (n)) can be
computed by using only N/M values, we prefer to work with N/2 elements, due to
the unevenness of errors discussed above.

In order to further strengthen our claim to (38), we compute the error maxn(|Xmean
3,r

(t (n))−cl t (n)|), for different values of l and a fixed r . Since a regular planar l-polygon
is characterized by the parameter l, the speed of the center of mass depends only on
it. However, we are approximating the infinitely long l-polygon with the parameter
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Table 1 Error maxn(|Xmean
3,r (t(n)) − cl t

(n)|), for M = 96 and different N/M , l, where Xmean
3,r (t(n)) is

computed using (39), for r = M/8

l N/M = 26 N/M = 27 N/M = 28 N/M = 29 (cl − 1)

0.15 2.0578 × 10−7 1.1334 × 10−7 6.3398 × 10−8 3.7051 × 10−8 9.3645 × 10−4

0.12 8.4311 × 10−8 4.6133 × 10−8 2.6124 × 10−8 1.5543 × 10−8 5.9957 × 10−4

0.1 4.0669 × 10−8 2.2237 × 10−8 1.2801 × 10−8 7.7110 × 10−9 4.1646 × 10−4

0.05 2.5460 × 10−9 1.5103 × 10−9 9.2425 × 10−10 6.1407 × 10−10 1.0415 × 10−4

0.025 1.6008 × 10−10 1.2481 × 10−10 8.8786 × 10−11 7.1406 × 10−11 2.6040 × 10−5

After doubling N/M , the error reduces by a factor close to two, showing first-order convergence

M and, as a consequence, better results are obtained for larger values of M . In our
simulations, we work with moderately large values of M , and different values of l and
N/M . Table 1 displays the corresponding errors, and it is evident that, whenever the
number of grid points is doubled, the error decreases by a factor slightly lower than
two, hence suggesting a convergence of the order of O((N/M)−1). For small values
of l, cl is very close to 1, so we provide the value of cl − 1, for each l. Note that cl

converges to 1, as l goes to zero, i.e., X(s, 0) tends to a hyperbola.
Furthermore, it is possible to approximate Xmean also from the algebraic solution,

hence minimizing the numerical errors. Using the approach in de la Hoz and Vega
(2018, Section 4), we compute it as

Xmean(t) =
∫ t

0
mean(Xt )(t

′)dt ′ =
∫ t

0

[
1

L

∫ L/2

−L/2
Xt (s, t ′)ds

]
dt ′. (40)

For any rational time tpq , the first integral is given precisely by

∫ L/2

−L/2
Xt (s, tpq)ds = lq

sinh(lq)

Mq−1∑
k=0

Talg,k ∧− Talg,k+1, (41)

where Talg,k = Talg(s
+
k , ·), and, taking a large q, the integral with respect to time

in (40) can be approximated with third-order accuracy. Taking M = 8, l = 0.6,
q = 7560, the interval [0, T f ] has been divided into q equally spaced segments, and
we have plotted the integral in (41), whose first component is zero, and the other
two seem to have a very oscillatory behavior, as shown in Fig. 3a, b. However, after
integrating in time, the oscillations disappear, and we obtain the components ofXmean,
where the second component is periodic and the third component is a straight line
whose slope converges to cl with q, as shown in Fig. 3c, d.

3.2.1 Comparison Between the Numerical and Algebraic Solutions

For given M and l, we subtract the movement of the center of mass from Xnum and
compare it withXalg. Recall that the algebraic solutionXalg corresponds to the vertices
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(a) (b) (c) (d)

Fig. 3 Second and third components of (40) and (41), computed for M = 8, l = 0.6, q = 7560. After
integrating with respect to time, the oscillations completely disappear, and we obtain a periodic curve and
a straight line, respectively

Table 2 Values of the error max j ,n(‖Xnum(s j , t(n)) − (0, Xmean
2,r (t(n)), cl t

(n)) − Xalg(s j , t(n))‖), for
r = M/8, j = N/4 + 1, . . . , 3N/4 + 1, n = 0, 1, . . . , 1260, M = 48

l N/M = 26 N/M = 27 N/M = 28 N/M = 29 N/M = 210

0.2 2.1238 × 10−3 1.3533 × 10−3 8.6836 × 10−4 5.8715 × 10−4 4.1921 × 10−4

0.15 6.6274 × 10−4 4.0982 × 10−4 2.5702 × 10−4 1.6740 × 10−4 1.1695 × 10−4

0.1 1.6388 × 10−4 1.0164 × 10−4 6.3520 × 10−5 4.3188 × 10−5 3.0973 × 10−5

0.05 2.3886 × 10−5 1.5006 × 10−5 9.4398 × 10−6 6.6809 × 10−6 4.9127 × 10−6

0.025 4.9348 × 10−6 3.0992 × 10−6 1.9590 × 10−6 1.4149 × 10−6 1.0525 × 10−6

of the polygonal curve, and the non-vertex values can be computed using linear inter-
polation. We calculate the error max j,n(‖Xnum(s j , t (n)) − (0, Xmean

2,r (t (n)), cl t (n)) −
Xalg(s j , t (n))‖), where ‖ · ‖ is the Euclidean norm. On the other hand, given the size
of the discretization, it is computationally very difficult to compare the solutions at all
the Nt +1 time instants; therefore, we do it for a fairly large amount, e.g., Nt = 1260.
Continuing as previously, in Table 2, we show the errors for M = 48, r = M/8 and
different values of l, N/M ; their plots in logarithmic scale in Fig. 4a confirm that the
errors decrease by a factor close to 1.6, when halving the space step size. Although the
convergence is slow, bearing in mind that max ‖Xalg‖ � 1, the results are satisfactory
and show that, as N grows larger, the numerical solution converges to the algebraic
one. It also gives strong evidence that, up to the vertical height, the evolution of X
is T f -periodic in time. Figure 4b shows the inner N/2 points of Xnum for M = 48,
l = 0.2, N/M = 211, and it can be clearly observed that, besides the planar curve at
the initial, middle and final times of the time period, three times as many sides appears
at one-third of the time period.

On the other hand, Fig. 5a shows T1,num , the first component of the tangent vector,
at different rational times. From the magnified part, it is clear that, at half the time
period, the tangent vector is continuous at s = 0, i.e., there is no corner at that time,
which is also consistent with (30), for q = 2; moreover, the oscillations causing the
errors are more prominent toward the boundary. At the end of one time-period, up to
the numerical errors, the solution matches the one at the initial time, thus showing the
time periodicity of Tnum (in yellow).

It is worth emphasizing that, despite the challenges posed by the nature of the
problem, e.g., lack of regularity in the initial data, exponential growth of the tangent
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(a) (b)

Fig. 4 A Plot of the error max j ,n(‖Xnum(s j , t(n)) − (0, Xmean
2,r (t(n)), cl t(n)) − Xalg(s j , t(n))‖), for

different values of N/M , l, M = 48. The plot shows that, even if slowly, convergence indeed occurs as
N/M increases. BXnum(s, t), for l = 0.2, M = 48, N/M = 211. Besides the constant vertical movement,
at half the time period and at the end of it, the planar polygon reappears, and at one-third of the time period,
three times as many sides are formed in the non-planar polygon

(a) (b)

Fig. 5 A For M = 48, l = 0.2, N/M = 211, the magnified part around s = 0 confirms that, at t = t1,2, the
tangent vector is continuous at s = 0, so there is no vertex located at s = 0, as indicated in (30) for q = 2.
At t = t1,1, it matches the one at t = 0, thus, showing time periodicity. The oscillations are more prominent
near the boundary, shown in the magnified part on the right-hand side. B The error max j ‖Talg(s j , T f ) −
Tnum(s j , T f )‖, for j = M/2 − M/2n + 1, . . . , M/2 + M/2n , n = 1, 2, . . . , log2(M/6), l = 0.025. The
error for an amount of sides equal to 24 is much smaller if they are part of an l-polygon with M = 48
sides (in red), than if they correspond to an l-polygon with M = 24 sides (in blue), and so on. Thus, as M
increases, so does the amount of sides for which very accurate results are achieved

vector near the boundary, etc., we are able to capture the evolution of the central part
of the polygonal curve very accurately with the numerical simulations. Moreover, for
a given l > 0, this can be further improved by increasing M . For instance, in Fig. 5b,
taking l = 0.025, we have considered the corresponding l-polygons with M sides, for
M = 24, 48, 96, 192, and have compared the corresponding Talg and Tnum at t = T f ,
for different amounts of inner sides. More precisely, we have calculated the error
max j ‖Talg(s j , T f ) − Tnum(s j , T f )‖, for j = M/2− M/2n + 1, . . . , M/2+ M/2n ,
n = 1, 2, . . . , log2(M/6), where Tnum is computed by taking the mean of the central
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part of each side. The plot shows that if we fix the amount of sides on the x-axis, then
the error decreases when these sides are considered as being part of an l-polygon with
a larger number of sides. For example, when the amount of sides is equal to 24, the
error is much smaller if they are part of an l-polygon with M = 48 sides (in red), than
if they correspond to an l-polygon with M = 24 sides (in blue). This process can be
continued further, and we observe the same behavior; hence, there is strong numerical
evidence that the convergence indeed occurs when M tends to infinity.

3.2.2 Trajectory X(0, t)

The choice of the initial data (i.e., an even number of sides for X) allows us to capture
the time evolution of X(0, t). Due to the mirror symmetries of X given in Sect. 2.1.1,
during the time evolution, the z-axis and X(−L/2 + kl/2, t), for k = 0, 1, . . . , 2M ,
always lie in the same plane, for all t ≥ 0, where an even value of k corresponds to
the vertices, and an odd value, to the middle point of the sides. Indeed, the numerical
simulations clearly show that X(0, t) lies in the YZ-plane, whereas X(−L/2+ kl, t),
for k = 0, 1, 2, . . . , M , lies in the YZ-plane rotated counterclockwise by a time-like
angle L/2−lk about the space-like z-axis. Thus, without loss of generality, we choose
to observe the trajectory of X(0, t), and, after projecting it onto C, we define

z(t) = X2(0, t) + i X3(0, t). (42)

As X is periodic in time up to a constant vertical movement, we introduce, for a given
l,

zl(t) = z(t) − icl t, t ∈ [0, T f ], (43)

which is T f -periodic. Figure 6a, b shows, respectively, z(t) and zl(t), for M = 192,
l = 0.05, N/M = 211, which remind us of the multifractal structures obtained in the
case of regular planar polygons in the Euclidean space (de la Hoz and Vega 2014).
This motivates us to compare zl(t) with the graph of

φ(t) =
∞∑

k=1

eiπk2t

iπk2
, t ∈ [0, 2]. (44)

Let us mention that φ(t) appeared in Duistermaat (1991), where its real part f (t) =∑∞
k=1

sin(πk2t)
πk2

, also called Riemann’s non-differentiable function, was considered.
Its geometrical and regularity properties have been studied recently in Eceizabarrena
(2020).

Recall that, in the numerical simulations, for large values of M , the value of l needs
to be chosen very small; hence, we can have zl(t) only for certain values of l. However,
the computation of X(0, t) through the algebraic solution does not depend on M , and
it is free from numerical errors. As a result, we can work with any value of l (bearing
in mind that, due to the exponential growth of T, l cannot be very large), and compute
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(a) (b)

Fig. 6 A z(t) as in (42), for M = 192, l = 0.05. B zl (t) as in (43), for M = 192, l = 0.05, t ∈ [0, T f ]

z(t) algebraically. Bearing this in mind, let us define

{
zl,alg(t) = −(X2,alg(0, t) + Xmean

2,alg(t)) + i X3,alg(0, t),

zalg(t) = zl,alg(t) + icl t, t ∈ [0, T f ],
(45)

where Xmean
2,alg(t) is the second component of (40). On the other hand, we will work

with

φ(t) = −
∞∑

k=1

e2π ik2t

k2
, t ∈ [0, 1], (46)

rather than with (44). From now on, the purpose of working with X(0, t) will be
twofold. First, we would like to see its dependence on the parameter l, and second,
we would want to compare its structure with the one for the M-sided regular planar
polygon in the Euclidean space, with M ≥ 3 (de la Hoz and Vega 2014) (in the rest of
Sect. 3.2.2, in order to avoid any confusion, we use Me rather than M to refer to the
number of sides of such polygons). In order to address the latter issue, we choose the
value of l such that the corresponding parameter c0 is kept the same in both problems.
More precisely, from (26), (Banica and Vega 2020b, (4)),

[
2

π
ln

(
cosh

(
l

2

))]1/2
=

[
− 2

π
ln

(
cos

(
π

Me

))]1/2

⇐⇒ l = 2 arcosh

(
sec

(
π

Me

))
. (47)

Figure 7 shows zl,alg(t) (blue) for the values of l corresponding to Me = 3, 4, 5, 6 and
10, and φ(t) (red); the respective intervals for t have been divided into 7561 points.
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(a) (b) (c)

(d) (e) (f)

Fig. 7 zl,alg(t) (blue) as in (45), and φ(t) (red) as in (46). zl,alg(t) has been generated for different values
of l, computed using (47), for Me = 3, 4, 5, 6 and 10. The respective intervals of the parameter t are divided
into 7561 points (Color figure online)

Observe that, although similar, the shape of zl,alg , for Me = 3, is different from its
Euclidean counterpart (see (de la Hoz and Vega 2014, Figure 3)); this is discussed
further in Sect. 4.2. On the other hand, except for a scaling, the zl,alg(t) corresponding
to the value Me = 10 looks very close to φ(t). In order to further compare the two
for different values of l, we compute φ − λl zl,alg − μl , where λl ∈ R and μ ∈ C are
given by the least squares fitting method; more precisely,

⎧⎨
⎩

λl = �
(
mean[(zl,alg(t) − mean(zl,alg(t)))(φ̄(t) − mean(φ̄(t)))]

mean(|φ(t) − λl mean(zl(t))|2)
)

,

μl = mean(φ(t)) − λl(zl,alg(t)).
(48)

Thus, for l in (47) corresponding to Me = 3, 4, . . . , 20, Fig. 8a shows a log–log plot of
the scaling factor λl in (48), which behaves linearly with respect to l. More precisely,
it can be approximated with a straight line−1.989 l +2.994, shown in red in the same
plot. This allows us to claim that the scale of zl,alg , when compared to φ, decreases as
l−2, as l tends to zero. Moreover, in Fig. 8b, we plot the absolute error maxt |(φ(t) −
λl zl,alg(t) − μl)| (in circled points) and the relative error maxt |(φ(t) − λl zl,alg(t) −
μl)/φ(t)| (in starred points), where the maximum is taken over 7560 values. Clearly,
as l gets smaller, both errors decrease, thus showing that zl,alg converges to φ. Finally,
to illustrate the comparison visually, in Fig. 9a, b, we have plotted scaled zl,alg (blue)
superimposed on φ (red), for Me = 3, 10, respectively.
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(a) (b)

Fig. 8 A A log–log plot of λl in (48), for different values of l as in (47) , which can be approximated
with a straight line −1.989 l + 2.994 (in red). This implies that, when compared with φ(t), the size of
zl,alg becomes smaller with a rate tending to l−2. B The maximum relative error (starred) and the absolute
error (circled) between φ(t) in (46) and zl,alg(t), for different values of l. The sum for φ(t) is taken over
k = 1, 2, . . . , 2048, and both φ(t) and zl,alg(t) have been evaluated at 7561 points (Color figure online)

(a) (b)

Fig. 9 A comparison of φ(t) (red) and the scaled zl,alg(t) (blue) for two different l values. Clearly, as l
decreases, the scaled zl,alg(t) tends to φ(t) (Color figure online)

3.3 T(s, tpq), q � 1

Having observed the evolution of regular M-polygons in the Euclidean case at rational
times tpq , with q � 1, we are curious about the behavior of a planar l-polygon (de
la Hoz and Vega 2014; de la Hoz et al. 2020). In this respect, as in de la Hoz and
Vega (2014), we have examined two cases; first, we consider tpq with a small q and

compute the evolution at t = tpq + ε, |ε| � 1. More precisely, we take ε = T f
q ′ , such

that q ′ � 1, gcd(q, q ′) = 1, and p
q + 1

q ′ = pq ′+1
qq ′ . Therefore, at tpq + ε, there will be

qq ′ or qq ′/2 times as many sides. We consider the stereographic projection of Talg,
projecting it from (−1, 0, 0) onto the complex plane C; Fig. 10a shows it for M = 8,
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Fig. 10 Stereographic projection of Talg(s, tpq ) onto C, for M = 8, l = 0.6

l = 0.6, p = 1, q = 3, q ′ = 7999. Note that 8 × 23997 values of the tangent vector
form spiral-like structures whose center corresponds to the values of T at t = T f /3.
These spirals can be compared with the Cornu spiral which also appeared in de la Hoz
(2007); de la Hoz and Vega (2014). Next, we look at the rational times tpq , with a large

q, such that there is no pair p̃, q̃ , with both q̃ and | p
q − p̃

q̃ | being small. In particular,

for the same parameters as before, we have taken t = ( 1
3 + 1

31 + 1
301

)
T f = 10327

27993T f .
The stereographic projection of Talg is shown in Fig. 10b, where the spiral structures
at a smaller scale can be observed, thus exhibiting a fractal-like phenomenon.

4 Relationship Between the l-Polygon and One-Corner Problems

Following the approach in the Euclidean case, we conjecture that, at infinitesimal
times, the l-polygon problem can be seen as a superposition of several one-corner
problems (de la Hoz and Vega 2018). In order to compare them, we solve the one-
corner problem for t = t1,q , q � 1, and rotate it in such a way that it is oriented
with respect to the l-polygon problem. We denote the resulting solution by Xrot and
Trot , where Xrot = K · Xc0 , Trot = K · Tc0 , with Xc0 , Tc0 being the solution of the
one-corner problem, for some rotation matrix K. Recall that

lim
s→−∞Tc0 = A− = (A1,−A2,−A3)

T , lim
s→∞Tc0 = A+ = (A1, A2, A3)

T ,

where −A2
1 + A2

2 + A2
3 = −1, and they are given by (61), (74), (75). Thus, the matrix

K can be computed by enforcing that lims→±∞ Trot (s) corresponds to the tangent
vector of the l-polygon at s = 0±, t = 0:

lim
s→−∞Trot (s) = (cosh (l/2) ,− sinh (l/2) , 0)T ,

lim
s→∞Trot (s) = (cosh (l/2) , sinh (l/2) , 0)T .
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Fig. 11 A Error between Talg and Trot for q = 502, 1002, . . . , 64002 (in blue), q = 128002 (in red),
l = 0.6. B The stereographic projection of Talg and Trot onto C at t = t1,q , q = 64002, M = 8, l = 0.6.
The two curves are visually indistinguishable from each other (Color figure online)

Furthermore,

Xrot ≡ (Xrot,1, Xrot,2, Xrot,3)
T = K · (Xc0,1, Xc0,2, Xc0,3)

T + l/2

sinh(l/2)
X(0, 0),

Trot ≡ (Trot,1, Trot,2, Trot,3)
T = K · (Tc0,1, Tc0,2, Tc0,3)

T ,

(49)

whereX(0, 0) corresponds to the location of the corner of the planar l-polygon in (28).

4.1 Numerical Experiments

To solve the two problems numerically, depending on whether q is even or odd, we
have different discretizations; however, we restrict ourselves to the case when q/2
is odd, as the other two cases can be addressed in a similar way (de la Hoz and
Vega 2018). For the l-polygon problem, given a value of q, we compute the algebraic
solution Talg(s, t1,q) at those s = sk ∈ [−l/2, l/2] which belong to the middle points
of the sides of the corresponding hyperbolic polygon. Thus, for q/2 odd, sk = 2lk/q,
k = −(q − 2)/4, . . . , (q − 2)/4, �s = 2l/q. On the other hand, after discretizing the
interval [−l/2, l/2] with a step size �s = l/24q, we solve the one-corner problem
numerically. In this way, Tc0(s, t1,q) can be computed for the same s = sk as in the
l-polygon problem, and then, from (49), we obtain Trot (s, t1,q).

Figure 11a shows the error log10(
∥∥Talg(sk, t1,q) − Trot (sk, t1,q)

∥∥) against sk , for
M = 8, l = 0.6, and q = 502, 1002, 2002, . . . , 128002,where the Euclidean distance
‖ · ‖ is computed for each sk . Note that, for a given q, the minimum error is attained
at s = 0, and, in general, the best results (in red) are gotten when the largest value of
q is taken. It is possible to check that the maximum of the errors taken over all the
values of sk decreases as O(1/

√
q) = O(t1,q). Figure 11b shows simultaneously the

stereographic projection of Talg and Trot onto C, at t = t1,q , q = 64002; remark that
the red curve is visually indistinguishable from the blue one.

We can also recover the coefficient c0 in (25). In order to do it, from the one-corner
problem, we write the curvature at s = 0 and t > 0 as c0(t) = √

t |Ts(0, t)|0 (de la
Hoz 2007; de la Hoz et al. 2009). Then, as in de la Hoz and Vega (2018), at t = t1,q ,
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Table 3 Error |c0 − √
t1,q

∣∣Talg(�s, t1,q ) − Talg(−�s, t1,q )
∣∣
0 /(2�s)|, where c0 = 0.1680 . . ., l = 0.6,

�s = 2l/q

q Error q Error q Error

502 4.4527 · 10−5 4002 5.5847 · 10−6 32002 6.9837 · 10−7

1002 2.2306 · 10−5 8002 2.7930 · 10−6 64002 3.4920 · 10−7

2002 1.1164 · 10−5 16002 1.3967 · 10−6 128002 1.7461 · 10−7

we approximate the derivative with respect to s using a finite difference. Without loss
of generality, after taking q ≡ 2 mod 4, we write

c0 = lim
q→∞

q≡2 mod 4

√
t1,q

∣∣Talg(2l/q, t1,q) − Talg(−2l/q, t1,q)
∣∣
0

4l/q
, (50)

where Talg(s, t1,q) is continuous at s = 0, 2l/q,−2l/q. Next, using (35), we obtain

{
Talg(2l/q, t1,q) = (

cosh(lq), cos(θ1) sinh(lq), sin(θ1) sinh(lq)
)T

,

Talg(−2l/q, t1,q) = (
cosh(lq),− cos(θq−1) sinh(lq),− sin(θq−1) sinh(lq)

)T
,

and, by substituting them in (50) and computing the limit, we get c0 as in (26) (see (de
la Hoz and Vega 2018, Section 2) for the intermediate steps). In Table 3, we display
the error between c0 and its approximated value, computed using (50), for l = 0.6 and
different values of q. Clearly, the error reduces as O(1/q), thus showing a complete
agreement between the two.

Next, we compare the time evolution of a point in both problems and compute
X(0, t) and Xrot (0, t), for t ∈ [0, t1,20]. More precisely, using (16),

Xrot (0, t) ≡ K · (Xc0,1(0, 0), Xc0,2(0, 0), Xc0,3(0, 0))
T + l/2

sinh(l/2)
X(0, 0)

= 2c0

√
t

A2
2 + A2

3

(0, A3, A2)
T + l/2

sinh(l/2)
X(0, 0).

(51)

BothX(0, t) andXrot (0, t) lie in the YZ-plane, and after plotting simultaneously their
projection onto C, we note that, for small times, X(0, t) (in blue) can be very well
approximated by a straight line (in red) with slope A2/A3 (Fig. 12a).

In our numerical simulations, we have taken M = 8, l = 0.6, but the results hold
true for any M ≥ 2, where M has been chosen to be even, in order to take advantage
of the symmetries of the hyperbolic polygon. Thus, there is strong numerical evidence
that, at small times, the l-polygon problem can be seen a superposition of several
one-corner problems.

123



Journal of Nonlinear Science (2022) 32 :9 Page 27 of 34 9

(a) (b)

Fig. 12 A The time evolution for short times can be well approximated with a straight line with slope
A2/A3. Here, we have taken M = 8, l = 0.6, t ∈ [0, t1,20]. B A log–log plot of A2/A3 as a function of
c0. Clearly, A2/A3 tends to 1, as c0 tends to 0

4.2 Further Remarks

Note that the quantity A2/A3 also determines the angle ϕ that the curve Xrot (0, t)
makes with the plane containingXrot (s, 0). Interestingly, ϕ is the angle corresponding
to the corner of zl(t) located at t = 0, and this holds true for the Euclidean case as
well. To compare the two cases simultaneously, we have computed A2/A3 for several
different values of c0, using (74)–(75) in the hyperbolic case, and (Gutiérrez et al.
2003, (57)) in the Euclidean case. The values thus obtained are plotted in Fig. 12b,
where it can be observed that A2/A3 is greater (respectively, smaller) than the one in
the hyperbolic (respectively, Euclidean) case, and tends to one, as c0 approaches zero;
in fact, from (74)–(75), A2(0)/A3(0) = 1. On the other hand, in the hyperbolic case,
we have

ϕ = arctan

(
A2

A3

)
= arctan

(�{ϒ}
�{ϒ}

)
= arg(iϒ̄), (52)

with ϒ = eiπ/4�(1− ic20/4)�(1/2+ ic20/4). Thus, for a given c0, ϕ is larger (respec-
tively, smaller) than π/2 and, in the limit, it converges to π/2, as in the case of
Riemann’s function.

The relationship between the l-polygon problem and the one-corner problem has
several deep implications, and it is a leap forward in understanding the evolution of
corner-shaped initial data. Thanks to this relationship, using similar arguments as in
de la Hoz and Vega (2018, Section 3.1), the speed of the center of mass cl can be
obtained by computing the integral of Xrot,3(s/

√
t, 1) = Xrot,3(s, t). Consequently,

we have the following result.
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Theorem 2

∫ ∞

−∞
Xrot,3(s) ds = 2πc20√

1 − e−πc20

. (53)

Therefore, we can express cl in terms of c0 (and in terms of l):

cl = 2πc20

l

√
1 − e−πc20

= 4 ln cosh(l/2)

l
√
1 − sech2(l/2)

= − ln(1 − tanh2(l/2))

l/2 tanh(l/2)
. (54)

We omit the proof as it follows similar steps to those in de la Hoz and Vega (2018,
Theorem 3.1). Furthermore, by solving (16)–(17) numerically, as in de la Hoz and
Vega (2018, Section 3.3), we also have a numerical proof for (53)–(54).

5 Conclusions

In this paper, we have studied the evolution of (5)–(6) for a regular planar l-polygon.
The motivation to work with such kind of initial data comes in fact from the one-
corner problem in the hyperbolic case (de la Hoz 2007) and recent work on the regular
polygons in the Euclidean case (de la Hoz and Vega 2014). In de la Hoz (2007), it was
observed that, due to the exponential growth of the Euclidean length of the tangent
vector, the numerical treatment of the one-corner problem in the hyperbolic case poses
restrictions on the value of the parameter c0, and the same is observed in the planar
l-polygon case as well. After trying several different numerical schemes, we have
concluded that a finite difference scheme with fixed boundary conditions on T gives
the best results, which are also in agreement with their algebraic counterparts. The
evolution is periodic in time with a period l2/2π , and, at intermediate rational times
tpq = (l2/2π)(p/q), gcd(p, q) = 1, depending on the parity of q, the polygonal
curve has q or q/2 times as many sides. As in the Euclidean case, this intermittent
behavior of formation/annihilation of the corners can be seen as a nonlinear Talbot
effect (de la Hoz and Vega 2014, 2018).

We have also analyzed the multifractal trajectory of a cornerX(0, t), by comparing
it with Riemann’s non-differentiable function and its equivalent in the Euclidean case,
and this has been supported with adequate numerical experiments. Furthermore, as in
de la Hoz and Vega (2018), we have established a relationship between the one-corner
problem and the l-polygon problem, and, as a consequence, a precise expression for
the speed of the center of mass of an l-polygon has been obtained. Finally, we have
obtained explicit expressions for the components of the tangent vector A±, whose
knowledge has been essential in this work.
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Appendix A. Expression for A± = (A1,±A2,±A3)
T

For the one-corner problem in the Euclidean case, a precise expression for each of the
components of the tangent vector A+ = (A1, A2, A3)

T was given in Gutiérrez et al.
(2003), and later in de la Hoz (2007), an expression for A1, i.e., (19), was obtained
for the hyperbolic case as well. In the following lines, using a completely different
approach, we rederive A1 by means of the Laplace transform, and continuing the
calculations in de la Hoz (2007), we calculate A2 and A3, whose knowledge has been
extremely useful in Sect. 4.

A.1. Computation of A1 Using the Laplace Transform

Recall that the proof of Theorem 2 mainly involves working with the even solution
of (18), which is also analytic. However, in the following lines, we consider the odd
solution, which behaves like δ′ near the origin and can be expressed as

χ̂(ξ) = b0δ
′ + b1 sgn(ξ) + b2 sgn(ξ)ξ + · · · ,

where the coefficients b0 = 1, b1 = −c20, b2 = −c40/(1 − 4c20), . . ., are obtained
by introducing χ̂(ξ) into (18). If we write the first component of X̂(ξ) as X̂1(ξ) =
−i A1χ̂(ξ) and define

Ŵ1(η) = Ŵ1(ξ
2) = ξ2 X̂1(ξ), η > 0,

then it solves

Ŵ ′′ + Ŵ

(
1 + c20

η

)
= 0 ⇔ ηŴ ′′ + ηŴ + c20Ŵ = 0, (55)

with

Ŵ1(0) = 0, Ŵ ′
1(0) = lim

η→0

Ŵ1(η)

η
= i A1c20. (56)
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On the other hand, the Laplace transform of Ŵ1(η),

L(t) = L{Ŵ1(η)} =
∫ ∞

0
Ŵ1(η)e−tηdη, t > 0, (57)

satisfies

t2L′(t) + 2tL(t) + L′(t) − c20L(t) = 0. (58)

Furthermore,

L(0) =
∫ ∞

0
Ŵ1(η)dη = 2

∫ ∞

0
ξ3 X̂1(ξ)dξ

=
∫ ∞

−∞
ξ3 X̂1(ξ)dξ = i X ′′′

1 (0) = ic20, (59)

where we have used the fact that X̂1 is odd. Rewriting (57) as

L(t) =
∫ ∞

0
Ŵ1(η)e−tηdη = 1

t

∫ ∞

0
Ŵ ′

1(η)e−tηdη

= Ŵ ′
1(0)

t2
+ 1

t2

∫ ∞

0
Ŵ ′′

1 (η)e−tηdη,

we have

t2L(t) = Ŵ ′
1(0) +

∫ ∞

0
Ŵ ′′

1 e−tηdη,

which, as t → ∞, becomes

lim
t→∞ t2L(t) = Ŵ ′(0). (60)

Hence, from (58)-(59), we have an initial value problem whose solution L(t) satisfies

lim
t→∞ t2L(t) = lim

t→∞ t2
L(0)

1 + t2
ec20 arctan(t) = ic20ec20π/2.

Combining this with (56) and (60), we conclude that

ic20 A1 = Ŵ ′(0) = ic20ec20π/2 �⇒ A1 = ec20π/2. (61)

The above approach works the same for the Euclidean case as well; hence, the corre-
sponding expression for A1 can be obtained.
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A.2. Computation of A2 and A3

By continuing the computations of de la Hoz (2007, Theorem 1), we can also obtain
the expressions for A2, A3. In this regard, writing them componentwise, the solutions
of the Frenet–Serret formulas with κ = c0, τ = s/2, i.e., T ≡ (Tj ), n ≡ (n j ),
b ≡ (b j ), satisfy

|n j |2 + |b j |2 − |Tj |2 =
{

−1, if j = 1,

1, if j = 2, 3,

where

T(0) = (1, 0, 0)T , n(0) = (0, 1, 0)T , b(0) = (0, 0, 1)T .

Recall that, from de la Hoz (2007, Theorem 1), A j = lims→∞ Tj (s), j = 1, 2, 3,
with

Tj (s) = i(1 + θ j ϑ̄ j )(s), j = 2, 3, (62)

where θ j and ϑ j satisfy (de la Hoz 2007, (49)) and θ ′
j ϑ̄

′
j − (c20/4)θ j ϑ̄ j = E j and can

be represented as

{
θ j (s) = a1, jβ1(s) + a2, jβ2(s),

ϑ j (s) = b1, jβ1(s) + b2, jβ2(s),
(63)

where E j is chosen later, and β1(s), β2(s) are as in de la Hoz (2007, (55)). Hence, our
first goal is to compute a1, j , a2, j , b1, j , b2, j , for j = 2, 3.

Differentiating (63) gives

{
θ ′

j (s) = a1, jβ
′
1(s) + a2, jβ

′
2(s),

ϑ ′
j (s) = b1, jβ

′
1(s) + b2, jβ

′
2(s),

(64)

and, from de la Hoz (2007, p. 77), for j = 2, 3, the asymptotics of θ j (s) and ϑ j (s)
are given by

⎧⎨
⎩

θ j (s) = (a1, jγ1 + a2, jγ2)e−i
c20
2 log s + O(1/s), s → ∞,

ϑ j (s) = (b1, jγ1 + b2, jγ2)e−i
c20
2 log s + O(1/s), s → ∞,

(65)

where

γ1 = 2e−πc20/4�(1 + ic20/2), γ2 = −2eπc20/4�(1 + ic20/2).
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By taking E2 = c20/2, T2(0) = 0 in (62), we get

θ ′
2(0)ϑ̄2(0) = c20/4, (66)

and from de la Hoz (2007, (53))

n j − ib j = (2i/c0)θ j ϑ̄
′
j , (67)

so, if θ2(0) = 1, then, by using (62), (66), we obtain

θ ′
2(0) = ic0/2, ϑ̄2(0) = −1, ϑ̄ ′

2(0) = −ic0/2. (68)

Thus, by evaluating (63), (64) at s = 0, and using β1(0) = −β2(0), β ′
1(0) = β ′

2(0),
and (68),

{
(a1,2 − a2,2)β1 = 1, (a1,2 + a2,2)β ′

1 = ic0/2,

(b1,2 − b2,2)β1 = −1, (b1,2 + b2,2)β ′
1 = ic0/2,

(69)

where

β1 ≡ β1(0) = 2e−πc20/8�(1 + ic20/4),

β ′
1 ≡ β ′

1(0) = −(c20/2)e
iπ/4e−πc20/8�(1/2 + ic20/4).

As a result,

a1,2 = ic0β1 + 2β ′
1

4ββ ′
1

, a2,2 = ic0β1 − 2β ′
1

4ββ ′
1

, b1,2 = ic0β1 − 2β ′
1

4ββ ′
1

,

b2,2 = ic0β1 + 2β ′
1

4ββ ′
1

. (70)

Similarly, for j = 3, taking E3 = c20/2, θ3(0) = i and continuing in the same way
yields

a1,3 = i
−c0β1 + 2β ′

1

4ββ ′
1

, a2,3 = −i
c0β1 + 2β ′

1

4ββ ′
1

, b1,3 = −i
c0β1 + 2β ′

1

4ββ ′
1

,

b2,3 = i
−c0β1 + 2β ′

1

4ββ ′
1

. (71)

Remember that our aim is to compute A j , which, from (62) and (65), implies com-
puting

lim
s→∞ θ j (s)ϑ̄ j (s) = (

a1, j (s)γ1 + a2, j (s)γ2
) (

b1, j (s)γ1 + b2, j (s)γ2
)

, j = 2, 3.
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Therefore, from (70),

lim
s→∞ θ2(s)ϑ̄2(s) =

(
ic0
4β ′

1
(γ1 + γ2) + 1

2β1
(γ1 − γ2)

)

×
(

ic0
4β ′

1
(γ1 + γ2) − 1

2β1
(γ1 − γ2)

)
, (72)

and by using the following identities for y ∈ R:

|�(1 + iy)|2 = y2|�(iy)|2, |�(iy)|2 = π

y sinh π y
,

|�(1/2 + iy)|2 = π

cosh π y
, �(1 + iy) = �(1 − iy),

(73)

we obtain

|γ1 − γ2|2 = 4πc20
(1 + e−πc20/2)2

1 − e−πc20
, |γ1 + γ2|2

= πc20
e−πc20/4

sinh(πc20/4)
, (γ1 − γ2)(γ1 + γ2) = −4c20π.

Consequently, we can write

A2 = lim
s→∞ T2(s) = lim

s→∞ T2(s)(1 + θ2(s)ϑ̄2(s))

= 2

πc0
eπc20/4 sinh(πc20/2)�{eiπ/4�(1 − ic20/4)�(1/2 + ic20/4)}

= 2

πc0
eπc20/4 sinh(πc20/2)� {ϒ} , (74)

with ϒ = eiπ/4�(1− ic20/4)�(1/2+ ic20/4) =
√

π

2 eiπ/4B(1− ic20/4, 1/2+ ic20/4),
where B(·, ·) is the beta function. Finally, using (71) and following the same steps as
above, we can conclude that

A3 = 2

πc0
eπc20/4 sinh(πc20/2)�{ϒ}. (75)
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