

1

Index

1. Abstract .. 2

2. Introduction ... 2

3. Context ... 3

3.1. Wheeled robots .. 3

3.2. Arduino .. 3

3.2.1. Hardware .. 3

3.2.2. Software ... 5

4. Implementation ... 5

4.1. Library .. 5

4.2. Path planning ... 6

4.3. Obstacle avoidance ... 8

5. Results and conclusions ... 9

6. Future scope ... 9

7. Bibliography ...10

I. Appendix ..10

Figure index

Figure 1. Image of the robot used. ... 4

Figure 2. No obstacles flowchart. ... 7

Figure 3. Flowchart with obstacles. .. 8

file:///C:/Users/rolat/Documentos/UNI/ERASMUS%202020-21/UC/Classes/CAPSTONE/Report/Finalreport.docx%23_Toc89088233
file:///C:/Users/rolat/Documentos/UNI/ERASMUS%202020-21/UC/Classes/CAPSTONE/Report/Finalreport.docx%23_Toc89088234
file:///C:/Users/rolat/Documentos/UNI/ERASMUS%202020-21/UC/Classes/CAPSTONE/Report/Finalreport.docx%23_Toc89088235

2

1. Abstract

The aim of this project is to get a wheel robot to reach a destination successfully while avoiding

any obstacles it may find in its way. The robot is equipped with an ultrasonic sensor to detect any

obstacle and an Inertial Measurement Unit (IMU) that measures the velocity and acceleration to

determine its position. To achieve that goal, a control system has been designed and

implemented that creates a path from the starting point to the destination and, if it finds an obstacle

in its way, it is able to avoid it and go back to the path.

2. Introduction

This document contains the necessary aspects for the development of a path planning program

with obstacle avoidance using Arduino Uno robot kit. It has been structured in four parts.

The first part presents the context of the project, its objectives, and benefits. In this section it can

be found the state of art of wheeled robots and the characteristics of the particular robot used and

the software used to program it.

In the second part, the methodology followed to design and implement the program is collected.

Later, the results and the conclusions are gathered, including the problems faced.

Finally, this report includes an insight of future work that can be done to improve the program or

take it to the next level of complexity. There is also an appendix with the code developed.

3

3. Context

3.1. Wheeled robots

A wheeled robot is a type of mobile robot, that is, a robot that can move from a location to another

without human assistance.

The development of mobile robots answered the need to broaden the area of robotics

applications, which had hitherto been limited by the scope of a mechanical structure attached at

one of its ends. It is also about increasing autonomy and reducing human interference to the

greatest extent possible.

They started being implemented in industry in the sixties with line following navigation. Nowadays,

mobile robots have the intelligence to observe unknown environments and react and according

to that.

3.2. Arduino

The robot used for this project is based on Arduino. Arduino is an open-source platform that is

used for building electronics projects. It consists of both a microcontroller, a physical

programmable circuit board, and an IDE, Integrated Development Environment, used to write and

upload code into the board.

The Arduino family offers a while variety of boards, being Arduino Uno one of the most popular,

that is, the one used on this project.

3.2.1. Hardware

The Arduino Uno microcontroller board contains 6 analog inputs, 14 digital input/output pins (six

of which can be used as PWM outputs), a 16 MHz ceramic resonator, a power jack, a USB

connection, a reset button and an ICSP header.

4

In order to build the robot, several sensors and actuators have been connected to the board, using

a base to shape it.

The robot is what is called a differential wheeled robot. That means that the movement is based

on two separately controlled wheels. There are two motors on either side of the robot connected

each to a wheel. The motors receive a voltage from the board, and they can be set to different

speeds on a range from 0 to 255, minimum and maximum speed respectively. There is also an

additional wheel for support with free turning.

There is an IMU, Inertia Measurement Unit, which includes an accelerometer, a gyroscope and a

magnetometer. The first, measures proper acceleration; the second, the orientation and, the third,

the magnetic field. Combining the data of all three an approximation of the position and velocity

can be obtained.

As the robot must be able to avoid obstacles it must first be able to detect them. An Ultrasonic

sensor is used for that purpose. It uses ultrasonic sound waves to determine the distance to the

nearest object.

Figure 1. Image of the robot used.

5

3.2.2. Software

The Arduino Integrated Development Environment (IDE) is an open-source software used to write

code and upload it to the board. It is written in functions from C and C++ and it also includes a

software library with many common input and output procedures. The code is uploaded by

connecting the board to the computer using a USB connection.

4. Implementation

4.1. Library

A library is a collection of functions that can be called several times during a program instead of

having to implement them repeatedly. They are also useful to use them in different independent

programs.

In this project a library has been created with basic wheeled robot functions so that they can be

reused in other projects if there is a need for so.

There are three functions that have been added to the library: Moving, turn and distance.

Moving

This function is in charge of the forward and backwards movement of the robot. It asks for an

input of the desired speed, in a range from -255 to 255. When the input is positive the robot will

move forward and when it is negative it will move backwards. Using that information, the pins of

the board connected to that movement of the robots will send that signal.

Turn

In order for the robot to turn, this function needs two information: the direction to turn and the

speed at which it should be done. When turning to one side the opposite wheel must go faster

6

than the inside one. The corresponding speeds are sent to the motors and the robot is able to

turn.

Distance

The distance to an object must be read from the ultrasonic sensor. This information is gathered

using two pins the echo pin and the trigger pin. First, an ultrasound is generated by setting the

trigger pin to HIGH. Then, the travel time is measured using the pulseIn()function.

Knowing that the speed of the sound is 340 m/s, the distance to the object can be calculated with

the following formula:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑚) = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ⋅
0.034

2

4.2. Path planning

The aim of the project is to get to a certain goal. To do so, the robot must find the fastest path to

arrive to the destination. To simplify, it has been considered that the robot can only move in either

the x axis or the y axis at a time, that is, it cannot move diagonally.

The flowchart in Figure 2 shows the sequence of steps and decisions that the robot takes to reach

the goal.

First, the robot goes along the y axis until it reaches the height of the goal. There, the robot

decides to turn right or left. If the value of the goal in x axis is negative it will turn left and if it is

positive it will turn right. Once turned, it will go along the x axis until it reaches the final destination.

To achieve so, the location of the robot must be known at all times. Since the robot does not

include a GPS or any other sensor that will monitor the position, that information must be obtained

using the IMU readings. The gyroscope, accelerometer and magnetometer readings can be used

to extract the orientation of the robot. To do so, the Madgwick filter has been used, an algorithm

7

developed by Sebastian Madgwick as part of his PhD research (Madgwick,n.d.). From it, the

quaternion representation is derived and with them a rotation matrix can be formed to transform

the accelerometer readings from the IMU body frame to the world frame:

𝑥𝑓𝑚𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑅 ∙ 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔

Once the transformed accelerometer output is acquired, it can be used to obtain the speed using

numeric integration, and the position integrating again:

𝑠𝑝𝑒𝑒𝑑 += 𝑥𝑓𝑚𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔 ∙ ∆𝑇𝑖𝑚𝑒

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 += 𝑠𝑝𝑒𝑒𝑑 ∙ ∆𝑇𝑖𝑚𝑒 + 0.5𝑥𝑓𝑚𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔 ∙ ∆𝑇𝑖𝑚𝑒 ∙ ∆𝑇𝑖𝑚𝑒

Figure 2. No obstacles flowchart.

8

4.3. Obstacle avoidance

There is an added complexity when the robot must also avoid obstacles in its way. In the path

towards the goal there are two possibilities in which it can find an obstacle, when it is already

done with the y axis and when it is not. In the first scenario, the robot must go around the object

and go back to the original path. On the other one, however, it is more efficient to do a different

path going through the x axis first. Every time the robot moves the distance to any object is read

from the ultrasonic sensor, that way it will avoid being crashed.

Figure 3. Flowchart with obstacles.

9

5. Results and conclusions

There were several problems that had to be overcame in the development of this project. First,

there was a problem with getting the robot to go on a straight line. As explained earlier, there are

two different motors that control each wheel. Theoretically, if both motors are set to the same

speed, the robot should move in a straight line. In reality, there were some disparities between

both motors, which caused one wheel to move faster than the other and making the robot turn

slowly to one side. To solve this issue, a coefficient had to be implemented in the speed of the

fastest wheel.

In addition, due to the fact that the position is obtained integrating, it will always have some kind

of error that will increment with time. That is the reason why, a range of acceptability had to be

set.

The project has been implemented in a wood floor. It has been tried with different goals and

different positions for the obstacle. In overall, the robot was able to reach the goal within an error

range of approximately 20 cm. The error increases the farther the goal is and it is also more

precise if there is no obstacle in its way.

6. Future scope

This project leaves scope for many improvements. A very easy way to improve it would be adding

a GPS device. As it is now, there is only so much accuracy that be obtained. An IMU is not very

reliable for position estimation and a GPS would improve that. Furthermore, it would also allow

this project to be done at a larger scale with the goal in a much further position.

Another addition that would help with the accuracy would be an IR proximity sensor. That would

allow to count the RPM (revolutions per minute) of the wheels, making it possible to predict the

reach of the robot better.

10

7. Bibliography

[1] Arduino Uno REV3. Arduino Online Shop. (n.d.). Retrieved November 29, 2021, from

https://store-usa.arduino.cc/products/arduino-uno-rev3/?selectedStore=us.

[2] Banzi, M., & Shiloh, M. (2014). Getting started with Arduino: The Open Source

Electronics Prototyping Platform. Make Community.

[3] Madgwick , S. (n.d.). Open source imu and AHRS algorithms. x-io. Retrieved November 29,

2021, from https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/.

[4] Ollero Baturone Aníbal. (2007). Robótica: Manipuladores y robots móviles. Marcombo

Boixareu.

[5] Tzafestas, S. G. (2014). Introduction to mobile robot control. Elsevier.

[6] What is an Arduino? Sparkfun. (n.d.). Retrieved November 29, 2021, from

https://learn.sparkfun.com/tutorials/what-is-an-arduino/all.

I. Appendix

This appendix includes the code that has been implemented in this project.

// ROBOT LIBRARY

// wrobot.h

#ifndef WROBOT_H

#define WROBOT_H

#include "Arduino.h"

#include <MatrixMath.h>

 class wrobot

 {

 public:

 wrobot (bool a);

 // Functions in the library:

 void moving(int wantedspeed);

11

 void turn(char dir,int wantedspeed);

 int distance();

 private:

 };

#endif

// wrobot.cpp

#include "Arduino.h"

#include "wrobot.h"

#include <math.h>

wrobot::wrobot(bool a)

{

}

void wrobot::moving(int wantedspeed) {

// Moves the robot forward or backwards

 int pin_r;

 int pin_l;

 if (wantedspeed >= 0) { // Positive speed -> forward

 pin_r = 5;

 pin_l = 6;

 }

 else { // Negative speed -> backward

 pin_r = 10;

 pin_l = 11;

 wantedspeed = -wantedspeed;

 }

 pinMode(pin_r, OUTPUT);

 pinMode(pin_l, OUTPUT);

12

 if (wantedspeed >= 0 && wantedspeed <= 255) // Check that the speed is in the accepted

range

 {

 analogWrite(pin_r,wantedspeed);

 analogWrite(pin_l,0.84*wantedspeed);

 }

}

void wrobot::turn(char dir,int wantedspeed){

 // Turns in the direction requested

 // r - Right , l - left

 int pin_l = 5;

 int pin_r = 6;

 int speedr, speedl,ttime;

 pinMode(pin_r, OUTPUT);

 pinMode(pin_l, OUTPUT);

 analogWrite(pin_r,0); // First,the robot stops

 analogWrite(pin_l,0);

 delay(100);

 ttime = 850; // Time needed to turn 90º

 if (wantedspeed >= 0 && wantedspeed <= 255) // Check that the speed is in the accepted

range

 {

 if (dir=='r')

 {

 speedr = wantedspeed/3;

 speedl = wantedspeed;

 }

 if (dir=='l')

 {

 speedr = wantedspeed*1.03;

 speedl = wantedspeed/3;

 }

 analogWrite(pin_r,speedr);

 analogWrite(pin_l,speedl);

13

 delay(ttime);

 analogWrite(pin_r,0); // After turning it stops

 analogWrite(pin_l,0);

 }

}

int wrobot::distance(){

 // Measures the distance to any obstacles

 const int trigPin = 7; // Trigger Pin of Ultrasonic Sensor

 const int echoPin = 6; // Echo Pin of Ultrasonic Sensor

 long duration; // variable for the duration of sound wave travel

 int dist; // variable for the distance measurement

 pinMode(trigPin, OUTPUT); // Sets the trigPin as an OUTPUT

 pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 // Sets the trigPin HIGH (ACTIVE) for 10 microseconds

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);

 // Calculating the distance

 dist = duration * 0.034 / 2; // Speed of sound wave divided by 2 (go and back)

 return dist;

}

// CAPSTONE PROJECT

// Path planning robot with obstacle avoidance

// Author: Olatz Rodriguez Arechabala

// Project.ino

#include "wrobot.h" // Created library

#include <MatrixMath.h> // Library for matrices operations

#include <math.h> // Library for mathematical operations

#include <Arduino_LSM9DS1.h> // IMU library

14

// Initialize "wrobot.h" library:

wrobot wrobot(true);

// VARIABLE DEFINITIONS

float pos[2]; // Position of the robot

float goal[2]; // Goal that wants to be reached

// MadgwickAHRSupdate definitions:

// Definitions

#define sampleFreq 512.0f // sample frequency in Hz

#define betaDef 0.1f // 2 * proportional gain

// Variable definitions

volatile float beta = betaDef; // 2 * proportional gain (Kp)

volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor

frame relative to auxiliary frame

long t=0;

// SET UP

void setup() {

 delay(5000);

 goal[0] = 50; // Goal

 goal[1] = 90;

 getposition(); // Getting initial position (0,0)

 delay(100);

}

// MAIN PROGRAM

void loop() {

 // Is the robot at the goal?

 thegoal:

 if (isatgoal(pos,1,goal)== true){

 if (isatgoal(pos,0,goal)==true){

15

 goto goalreached;

 }

 }

 while (isatgoal(pos,1,goal)== false){ // While the robot is not at the y axis goal

keep going

 if (obstacle() == true){ // If it finds an obstacle jump to ThereisanObstacle

later in the code

 goto ThereisanObstacle;

 }

 wrobot.moving(100);

 getposition(); // Keep checking position

 }

 wrobot.moving(0);

 getposition();

 wrobot.turn(wheretoturn(pos,0,goal),100); //Turn the robot to the direction to go

on x axis

 while (isatgoal(pos,0,goal)== false){ // Get to the goal on x axis

 if (obstacle() == true){ // Look for obstacles

 goto ThereisanObstacle;

 }

 wrobot.moving(100);

 getposition();

 }

 goto thegoal; // If there were no obstacles the robot should have reached the goal

 // The robot has faced an obstacle:

 ThereisanObstacle:

 wrobot.moving(0);

 getposition();

 // Has the robot already reached the goal on y axis?

 if (isatgoal(pos,1,goal)){ // If it has it must surround it

 wrobot.turn('r',100);

 wrobot.moving(100);

 delay(1000);

 wrobot.moving(0);

 getposition();

16

 wrobot.turn('l',100);

 getposition();

 while (isatgoal(pos,0,goal)== false){

 wrobot.moving(100);

 getposition();

 }

 wrobot.moving(0);

 wrobot.turn('l',100);

 while (isatgoal(pos,1,goal)== false){

 wrobot.moving(100);

 getposition();

 }

 wrobot.moving(0);

 goto thegoal;

 }

 else{ // If the robot was still on the y axis part of the path...

 wrobot.turn(wheretoturn(pos,0,goal),100); // It turn to the direction where the

goal on x axis is

 getposition();

 while (isatgoal(pos,0,goal)== false){ // Reach the x axis goal first

 wrobot.moving(100);

 getposition();

 }

 wrobot.moving(0);

 getposition();

 wrobot.turn(wheretoturn(pos,1,goal),100);

 getposition();

 while (isatgoal(pos,1,goal)== false){

 wrobot.moving(100);

 getposition();

 }

 goto thegoal;

 }

 goalreached:

 wrobot.moving(0); //Goal reached

}

17

// SUBPROGRAMS & FUNCTIONS

bool isatgoal(float posi[2], int xory, float goal[2]){ // 0: x - 1: y

 // Verifies if the robot is at the goal of one of the axis with a margin of 5 cm

 // If it is it returns true if not false

 bool atgoal;

 if ((posi[xory] < goal[xory] + 5.0)&(posi[xory] > goal[xory] - 5.0)){

 atgoal = true;

 }

 else{

 atgoal = false;

 }

}

char wheretoturn(float posi[2], int xory, float goal[2]){

 // It checks which direction to turn

 // If position (x or y) > goal (x or y) the robot must turn right

 // If position (x or y) < goal (x or y) the robot must turn left

 char rol; // Right or left

 if ((goal[xory] - posi[xory]) > 0){

 rol = 'r';

 }

 else{

 rol = 'l';

 }

}

bool obstacle(){

 // It verifies if the robot has an obstacle at a distance of 15 cm or closer

 // It returns true or false

 bool anobstacle;

 if (wrobot.distance()<15){

 anobstacle = true;

18

 }

 else{

 anobstacle = false;

 }

 return anobstacle;

}

void getposition(){

// Updates the position of the robot

// For that it turns the IMU readings into acceleration, speed and position

 float ax, ay, az, gx, gy, gz, mx, my, mz;

 long prevt;

 mtx_type R[3][3];

 mtx_type readacc[3][1],acc[3][1], deltaspeed[3][1],speed[3][1], deltasp[3][1],

deltapos[3][1], position[3][1];

 mtx_type deltatime;

 prevt = t;

 t = millis();

 deltatime = (t - prevt)/1000; // Time passed

 // Initialize matrices

 for (int i = 0; i < 3; i++) {

 acc[i][0] = 0;

 speed[i][0] = 0;

 position[i][0] = 0;

 }

 // Read the IMU

 if (IMU.accelerationAvailable()) {

 IMU.readAcceleration(ax, ay, az);

 }

 if (IMU.gyroscopeAvailable()) {

 IMU.readGyroscope(gx, gy, gz);

 }

 if (IMU.magneticFieldAvailable()) {

19

 IMU.readMagneticField(mx, my, mz);

 }

 MadgwickAHRSupdate(gx,gy,gz,ax,ay,az,mx,my,mz); // Function to obtain quartenion

angles

 //Rotation matrix

 R[0][0] = 2*(sq(q0)+sq(q1))-1;

 R[0][1] = 2*(q1*q2-q0*q3);

 R[0][2] = 2*(q1*q3+q0*q2);

 R[1][0] = 2*(q1*q2+q0*q3);

 R[1][1] = 2*(sq(q0)+sq(q2))-1;

 R[1][2] = 2*(q2*q3-q0*q1);

 R[2][0] = 2*(q1*q3-q0*q2); ;

 R[2][1] = 2*(q2*q3+q0*q1);

 R[2][2] = 2*(sq(q0)+sq(q3))-1;

 readacc[0][0]=ax;

 readacc[1][0]=ay;

 readacc[2][0]=az;

 // acc = R*readacc

 Matrix.Multiply((mtx_type*)R, (mtx_type*)readacc, 3, 3, 1, (mtx_type*)acc);

 // speed += acc*deltatime

 MatrixConstant((mtx_type*) acc, 3, 1, deltatime,(mtx_type*) deltaspeed);

 Matrix.Add((mtx_type*) speed, (mtx_type*) deltaspeed, 3, 1, (mtx_type*) speed);

 //position += speed*deltatime +0.5 * acc * sq(deltatime)

 MatrixConstant((mtx_type*) speed, 3, 1, deltatime,(mtx_type*) deltasp);

 MatrixConstant((mtx_type*) acc, 3, 1, deltatime*deltatime*0.5,(mtx_type*) deltapos);

 Matrix.Add((mtx_type*) position, (mtx_type*) deltapos, 3, 1, (mtx_type*) position);

 pos[0]=position[0][0];

 pos[1]=position[1][0];

20

}

float invSqrt(float x) {

// Fast inverse square-root

// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root

 float halfx = 0.5f * x;

 float y = x;

 long i = *(long*)&y;

 i = 0x5f3759df - (i>>1);

 y = *(float*)&i;

 y = y * (1.5f - (halfx * y * y));

 return y;

}

void MadgwickAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az,

float mx, float my, float mz) {

 // Algorithm developed by Sebastian Madgwick (https://x-io.co.uk/open-source-imu-and-

ahrs-algorithms/)

 float recipNorm;

 float s0, s1, s2, s3;

 float qDot1, qDot2, qDot3, qDot4;

 float hx, hy;

 float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3,

_2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;

 // Rate of change of quaternion from gyroscope

 qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);

 qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);

 qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);

 qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);

 // Compute feedback only if accelerometer measurement valid (avoids NaN in

accelerometer normalisation)

 if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {

21

 // Normalise accelerometer measurement

 recipNorm = invSqrt(ax * ax + ay * ay + az * az);

 ax *= recipNorm;

 ay *= recipNorm;

 az *= recipNorm;

 // Normalise magnetometer measurement

 recipNorm = invSqrt(mx * mx + my * my + mz * mz);

 mx *= recipNorm;

 my *= recipNorm;

 mz *= recipNorm;

 // Auxiliary variables to avoid repeated arithmetic

 _2q0mx = 2.0f * q0 * mx;

 _2q0my = 2.0f * q0 * my;

 _2q0mz = 2.0f * q0 * mz;

 _2q1mx = 2.0f * q1 * mx;

 _2q0 = 2.0f * q0;

 _2q1 = 2.0f * q1;

 _2q2 = 2.0f * q2;

 _2q3 = 2.0f * q3;

 _2q0q2 = 2.0f * q0 * q2;

 _2q2q3 = 2.0f * q2 * q3;

 q0q0 = q0 * q0;

 q0q1 = q0 * q1;

 q0q2 = q0 * q2;

 q0q3 = q0 * q3;

 q1q1 = q1 * q1;

 q1q2 = q1 * q2;

 q1q3 = q1 * q3;

 q2q2 = q2 * q2;

 q2q3 = q2 * q3;

 q3q3 = q3 * q3;

 // Reference direction of Earth's magnetic field

22

 hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz

* q3 - mx * q2q2 - mx * q3q3;

 hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 +

_2q2 * mz * q3 - my * q3q3;

 _2bx = sqrt(hx * hx + hy * hy);

 _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my

* q3 - mz * q2q2 + mz * q3q3;

 _4bx = 2.0f * _2bx;

 _4bz = 2.0f * _2bz;

 // Gradient decent algorithm corrective step

 s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz

* q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz *

q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 +

q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);

 s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f

* q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3)

+ _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz *

(q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f -

q1q1 - q2q2) - mz);

 s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f

* q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f

- q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 -

q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) +

_2bz * (0.5f - q1q1 - q2q2) - mz);

 s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-

_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-

_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1

* (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);

 recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step

magnitude

 s0 *= recipNorm;

 s1 *= recipNorm;

 s2 *= recipNorm;

 s3 *= recipNorm;

 // Apply feedback step

 qDot1 -= beta * s0;

 qDot2 -= beta * s1;

 qDot3 -= beta * s2;

 qDot4 -= beta * s3;

 }

23

 // Integrate rate of change of quaternion to yield quaternion

 q0 += qDot1 * (1.0f / sampleFreq);

 q1 += qDot2 * (1.0f / sampleFreq);

 q2 += qDot3 * (1.0f / sampleFreq);

 q3 += qDot4 * (1.0f / sampleFreq);

 // Normalise quaternion

 recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);

 q0 *= recipNorm;

 q1 *= recipNorm;

 q2 *= recipNorm;

 q3 *= recipNorm;

}

void MatrixConstant(mtx_type* A, int m, int n, mtx_type k,mtx_type* B)

// Multiplies a matrix by a constant

{

 for (int i = 0; i < m; i++)

 for (int j = 0; j < n; j++)

 B[n * i + j] = A[n * i + j] * k;

}

void arrayadd(float a[2],float b[2], float c[2]){

 // Adds 2 arrays

 for (int i=0;i<2;i++)

 c[i] = a[i] + b[i];

}

