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Abstract: The main objective of this work was to determine the worth of installing an electrical
battery in order to reduce peak power consumption. The importance of this question resides in
the expensive terms of energy bills when using the maximum power level. If maximum power
consumption decreases, it affects not only the revenues of maximum power level bills, but also results
in important reductions at the source of the power. This way, the power of the transformer decreases,
and other electrical elements can be removed from electrical installations. The authors studied the
Spanish electrical system, and a particle swarm optimization (PSO) algorithm was used to model
battery sizing in peak power smoothing applications for an electrical consumption point. This study
proves that, despite not being entirely profitable at present due to current kWh prices, implanting a
battery will definitely be an option to consider in the future when these prices come down.

Keywords: swarm optimization; battery sizing; power smoothing; battery management system

1. Introduction

In this work, the authors propose an electrical battery model. Furthermore, the authors
have modelled the electrical consumption and the consequent bills with reference to the
different penalties that apply when the maximum power level is exceeded. This battery
model is cognizant of the state of health losses via a charge and discharge policy for
managing the reduction in maximum power. Therefore, the authors introduce a power
smoothing technique. Despite the fact that there is other research work related to energy
storage policies, all of them are developed from the electric energy producer’s point
of view [1–3]. Generally, these works do not study the problem considering multiple
distributed little electrical energy consumption points.

The authors propose a model that is optimized by employing a particle swarm opti-
mization algorithm. Sandhu et al. [4] employed this type of optimizer in power smoothing
applications for sizing the battery energy storage system according to the level of smooth-
ing power requirement. The optimization attempts to reduce electrical bills by making
maximum power consumption cuts using an electrical battery as a power smoother. There
are similar optimization problems that are solved by conventional algorithms [5], but they
prove that intelligent algorithms must be utilized in order to apply real-world non-linear
restrictions. The most important conventional optimization is the gradient descent-based
optimization. This algorithm is widely applied in artificial neural network training [6,7],
and it has different versions, such as stochastic descent gradient [8,9] or batch gradient de-
scent [10]. This algorithm appropriately solves the neural network training problem as the
loss functions are mathematically known, continuous and derivable. Usually, the gradient
descent algorithm does not manage restrictions. However, restrictions are introduced when
modifying the loss function with regularization techniques, such as L1 and L2, or batch
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normalization techniques [11–13]. These algorithms are able to manage very extensive
dimension optimization problems. Nevertheless, they need many iterations or epochs of
optimization in order to reach an admissible solution. In fact, these algorithms are usually
executed in graphical process units as they need plenty of computational resources. Often,
these algorithms reach, yet do not leave, local minima points. Their convergence decreases
heavily when they reach certain local optima, although momentum techniques are very
common [14]. In this gradient descent algorithm, explicit mathematical expressions are
needed in order to obtain the gradient components. In addition, these expressions must
be finite as they are used to update the weights of the neural network. There are other
conventional optimization algorithms, such as the Nelder–Mead simplex method [15]. This
algorithm has heuristics that can manage discontinuities in cost or loss function. Moreover,
it is able to consider inequality restrictions in loss or cost function and, in addition, it
does not need any explicit mathematical expressions of cost or loss function regarding the
variable set. It also has a very good optimization performance if the initial variable set
values are close to the global solutions. Furthermore, it has some capability to avoid local
minima, but it is not easy for it to avoid all local minima.

In order to solve the optimization problems, a particle swarm optimization (PSO)
algorithm has been developed. This algorithm belongs to the family of heuristic algorithms,
which are commonly used to solve complex multi-objective and non-linear problems. A
very good introduction to, and application of, an example of particle swarm optimization
can be found in [16]. Furthermore, there are other intelligent algorithms that are able
to solve these problems, such as differential evolution [17]. However, the authors have
chosen PSO because the changes in particles or solutions are smoother compared with
that in differential evolution or genetic algorithms. In [18], a PSO-based optimization was
employed to solve a problem regarding material dynamics behaviour identification. This
work shows that this kind of algorithm can solve complex optimization problems.

At first, the PSO algorithm was applied in order to simulate the flocking process of
birds. With time, the algorithm was discovered to be highly successful as an optimizer [19].
This algorithm has solved many optimization problems, as shown in [20]. Unfortunately,
PSO does not guarantee the achievement of the absolute optimal solution. Nevertheless,
this algorithm always improves at each iteration. PSO is similar to a genetic algorithm (GA),
where the system is initialized with a population of random solutions. For each solution,
a randomized velocity is assigned, and the original solutions, which are called particles,
are then flown through the problem space. Each particle keeps track of its coordinates in
the problem space, which are associated with the best solution (fitness) it has achieved so
far [19]. The authors have applied PSO successfully in other optimization problems related
to energy applications, such as [21–23].

The core of the current study consists of evaluating the installation of an electrical
battery in the local council of Arrasate-Mondragon in order to reduce the peak power. The
significance of this work resides in the expensive terms of the energy bill, which are due to
the excessive maximum power levels assigned in electrical contracts and aggravated by
certain maximum power levels. A detailed description of the European electrical energy
market can be found in [24]. Thus, a particle swarm optimization (PSO)-based algorithm
is used for battery sizing in peak power smoothing applications for different electrical
consumption points. Therefore, the original process for the implementation of particle
swarm optimization consists of changing the following steps of Eberhart et al. [19]. First,
the population of particles with random positions and velocities is initialized. Next, the
desired optimization fitness function is evaluated. The particle’s fitness evaluation is then
compared with the best solution achieved so far (pbest). If the current value is better than
the current best, then pbest is set equal to the current value. The current value’s location
is also stored as pbest’s location in the space. The fitness evaluation is compared with the
population’s previous best (gbest). If the current value is better than the current best, then
gbest is reset to the current particle’s array index and value. Subsequently, the velocity and
position of the particle is changed. Finally, loop to the second step until a criterion is met.
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2. Electrical Bill Model

The authors chose the 3.0A tariff since it is the most common one for 15 kW electrical
links. In fact, 3.0A is the tariff that Arrasate-Mondragon’s town council employs as a
studied electrical consumption point [25]. This tariff is very common for low-voltage
electrical consumption points with 15-kW contracted power or more, and it has three
time spans. The time span hours of the day are specified in the Spanish electrical system.
Therefore, each hour is assigned to one of these three time spans [25]. A similar work was
presented by Martinez-Rico et al. [26], but from the point of view of the electrical energy
producer. These time spans have their own energy price and maximum power price. In
this tariff, the maximum contracted power at least in one time span grants 15 kW or more,
see Equation (1):

ℵi(PcHiredi > 15 ∧ 1 ≤ i ≤ 3) ≥ 1 (1)

The 3.0A tariff has several penalties or bonuses depending on the maximum power
reached at each time span. The Spanish electrical system defines all penalties and bonuses
according to the ratio between the maximum power consumption reached at a given
time span (at least for 15 consecutive minutes), known as Pgi, and the maximum power
contracted at that time span, PcHiredi. This ratio is defined as “c”:

c =
max(Pgi)

PcHiredi
(2)

where Pgi is the power consumption at the i-th instant, while PcHiredi is the maximum
power contracted. If the power consumption at the i-th instant Pgi overcomes PcHiredi for
more than 15 consecutive minutes, the electrical consumer must pay this maximum Pgi
power over the whole month for that time span. Note that all days are divided into three
time spans: peak, valley, and medium consumption time spans. Each time span has its own
PcHiredi. All the days in a year and all the hours in a day are classified considering these
three time spans by the Spanish Government.

Based on this ratio, three different cases are defined. The first one occurs when c < 0.85,
and the power is billed as stated:

PcBilli = 0.85·PcHiredi (3)

Second, in the case where 0.85 ≤ c ≤ 1.05 is fulfilled, the maximum power consumed
is considered as the hired power:

PcBilli = max(Pgi) (4)

Finally, if 1.05 < c, the following equation is applied to measure the bill:

PcBilli = 3·max(Pgi)− 2.1·PcHiredi (5)

Due to the variety of penalizations and the number of periods from the tariff, a brute
force optimization is proposed, as it only requires an adjustment of the hired power for
each maximum power consumption period. In the case where no maximum power is
higher than 15 kW, three iterations would be enough to obtain the optimum power to hire.
Equations (6) and (7) illustrate the correct method to resolve this optimization issue:

1 ≤ NIt ≤ 3 (6)

PcHiredi =

{
15.01, NIt = i ∧max(Pgi) ≤ 15

max(Pgi), NIt 6= i ∨max(Pgi) > 15
(7)

where NIt is the number of iterations accomplished by the proposed optimization algorithm.
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To sum up the optimizing modelling for the 3.0A tariff, the function to minimize (Z)
represents the cost of the hired powers:

Z =
3

∑
1
(PcHiredi·PricePi) · DtBill (8)

where PricePi is the price of the hired power for the i period, which is the number of
billed days during the consumption periods considered for the experiments performed in
this study.

3. Battery Modelling
3.1. Charge and Discharge Dynamic Modelling

The depth of discharge (DoD) has been taken into account as the aging factor for each
cycle of the battery to model the battery. Thus, the authors take into account the number of
cycles of each DoD. However, in order to simplify the model, no other aging factors have
been considered, such as temperature. The first restriction of the model is related to the
quantity of energy stored in the battery at the t instant:

Eb(t) = Eb(t− 1)− Pb(t)·∆t (9)

where Pb(t) is the demanded power at the instant t, while ∆t is the sample period of the
power consumption data from the consumption point. The energy stored in the battery is
limited by its nominal capacity (Ebmax). This way, the second restriction is determined:

0 ≤ Eb(t) ≤ Ebmax (10)

Referring to the demanded power at each time, the next restriction is imposed to
define the minimum and maximum possible values:

− PbNom ≤ Pb(t) ≤ PbNom (11)

The battery will be discharged once Pb(t) is positive. On the other hand, the battery
will be charged for the negative values of Pb(t). Furthermore, the Pb(t) value is defined by
a control function, stated below:

Pb(t) = F
(

PbNom, Eb(t− 1), Pc(t), PcMed,α
)

(12)

where PbNom is the nominal power of the battery and Eg(t− 1) is the stored energy at each
previous instant. Pc(t) is the consumed power by the consumption point at t instant, PcMed
is the average consumed power by the consumption point, and α is an aggressiveness
coefficient, the value of which goes from 0 to 1. The control function is composed of the
three Equations (13)–(15)

Pb(t) = α·
(

Pc(t)− PcMed
)
, −PbNom < α·

(
Pc(t)− PcMed

)
< PbNom ∧ Eb(t− 1) 6= 0 (13)

Pb(t) = PbNom, PbNom ≤ α·
(

Pc(t)− PcMed
)
∧ Eb(t− 1) 6= 0 (14)

Pb(t) = −PbNom, −PbNom ≥ α·
(

Pc(t)− PcMed
)
∨ Eb(t− 1) = 0 (15)

The last case is also considered when the battery is discharged. This is to avoid having
the battery completely discharged for a long time, which would make its use impossible
when the cases in Equations (13) and (14) take place, due to the continuous execution of
those two cases without the case in Equation (15) occurring.

As this is a simulation-headed model, additional restrictions are considered when
programming. These restrictions are not directly related to the control function of the battery.
However, they are applied to the function, and then evaluated, and their goal consists of
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maintaining coherence between simulation and reality. On one hand, the energy stored in
the battery must be positive or equal to zero. This is further explained in Equation (16):

Pb(t)·∆t ≤ Eb(t− 1) (16)

This restriction is derived from Equation (10), and it is always accomplished when
the battery is charging. However, it is also necessary to ensure its fulfilment when in the
process of discharging. This is achieved by limiting the demanded power to the battery.
The proposed method is as shown below:

Pb(t) =
Eb(t− 1)

∆t
, Pb(t)·∆t > Eb(t− 1) (17)

The case in Equation (17) will always eventuate once the cases in Equations (13) and (14)
occur, without the case in Equation (16) taking place.

On the other hand, it is mandatory to ensure that the stored energy in the battery
never surpasses its nominal capacity. As in the previous restriction in Equation (17), a new
one is derived from Equation (10), and it must be satisfied in every charging process of
the battery:

− Pb(t)·∆t ≤ Ebmax − Eb(t− 1) (18)

Once again, it is necessary to limit the power supplied to the battery, with the following
method being proposed for this purpose:

− Pb(t) =
Ebmax − Eb(t− 1)

∆t
, −Pb(t)·∆t > Ebmax − Eb(t− 1) (19)

This case needs Equation (15) to happen, while the restriction in Equation (10) does not.

3.2. Modelling Battery Aging

The battery’s aging modelling has been performed with the intention of taking pur-
chase amortization into account in the cost function. Therefore, only the DoD and the
number of cycles for every DoD level from the battery are considered. The battery operat-
ing temperature changes are not relevant in the current study, as the authors assume that
the energy storage systems are going to be in a temperature-controlled environment. A
cycle of a battery is defined as the accumulated discharge equal to 100% of the nominal
capacity of the battery. That is to say, a complete cycle can be discharging the battery until
80% of its capacity, and then charging to 100% five times, the same way discharging the
battery completely and charging it again to 100% equals a cycle. The depth of discharge
(DoD) of a cycle i can be defined as the difference between the maximum and minimum
charges during the cycle, divided by the nominal capacity of the battery [27]:

DoDi =
max(Eb(t)i)−min(Eb(t)i)

Ebmax
(20)

where Eb(t)i is the history of the battery’s charge during the cycle i. This is the method
proposed for the estimation of DoD. It is likely that, in other similar studies, slightly
different definitions of DoD and cycle are given. This is because they are both often
discussed concepts, being dependent on the battery manufacturer and type, so there is no
common definition.

The number of cycles a battery can carry out is proportionally inverse to the DoD
endured in its cycle. This relationship comes from an exponential function that must
be provided by the maker of the battery. Figure 1 shows this exponential function for a
concrete battery model.
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Figure 1. Example of the relationship between the cycles and depth of discharge (DoD) of a commer-
cial battery [28].

As the battery loss of life on each cycle i depends on the endured DoD (DoDi) on that
cycle, the next method is applied to calculate the loss of life (LLi) in each cycle:

LLi =
1

F(DoDi)
(21)

where F is the exponential function that relates DoD with the number of cycles afforded.
The total life loss (LL) of the battery is estimated via Equation (22):

LL =
nCycles

∑
i=1

LLi (22)

where nCycles represents the number of cycles performed. The LL value starts on 0, and
increases to a maximum of 1, which would mean the life span of the battery has reached an
end, and, hence, the battery will no longer be used.

By obtaining the life loss of the battery, its life span, measured as the quantity of years
it might last, is estimated. To do this, Equation (23) is proposed:

Li f etime =
HoU
LL
· 1 Year
8760 hours

(23)

where HoU is the number of hours since the battery was bought until the exact moment
this expression is evaluated, while Li f etime represents the number of years the battery is
estimated to last. This expression is chosen as it is possible that a year has not yet passed
when the expression is evaluated. The value of LL is the one obtained by evaluating the
cycles during the HoU. This way, the annual amortization of the battery is calculated via
the following equation:

Annual amortization =
PriceBattery

Li f etime
(24)
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For the calculation of the battery’s price, Equation (25) is applied, as it is useful to
estimate the price of the kWh of the battery in day d, which represents the day the battery
was acquired, having as a reference 1 January 2018 (see Martinez-Rico et al. [29]):

Priced = 162.3e−0.1029d/365 (25)

Therefore, the price of the battery is defined by Equation (26):

PriceBattery = Ebmax·Priced (26)

3.3. Modelling Electric Grid Demand

Due to the use of the battery, the demanded power from the electric grid is no longer
the same as that demanded by the consumption point. Thus, two new restrictions emerge.
The first is shown below:

Pg(t) =

{
Pc(t)− Pb(t), Pb(t) > 0

Pc(t), Pb(t) ≤ 0
(27)

where Pg(t) is the demanded power from the grid at instant t. This value will be different
to Pc(t) when the battery is discharged. The second restriction is as follows:

0 ≤ Pg(t) (28)

In order to fulfil this restriction, the power supplied by the battery must be limited in
the case of discharge. To accomplish this, the following method is proposed:

Pb(t) = Pc(t), Pb(t) > Pc(t) (29)

To sum up this part, the energy consumed is defined by the next equation:

Eg(t) = Pg(t)·∆t (30)

where Eg(t) is the consumed energy from the grid at instant t.

3.4. Cost Function

The cost function proposed for the optimization problem is acceptable for a multi-
objective optimization as it has three different goals: maximizing the battery life in order to
minimize the annual amortization; minimizing the cost of the hired power; and minimizing
the cost of the energy demanded from the grid.

With Z being the cost of the hired power for the consumption point, and PriceEi being
the price of the energy for period i, the cost function is as follows:

min
3

∑
i=1

(Eg(t)i·PriceEi) +
Ebmax·Priced

Li f etime
+ Z (31)

4. Optimization Process

In the optimization process, the variables to change are the battery capacity Ebmax, the
nominal power of the battery PbNom, and the power smoothing coefficient of the power
smooth policy, α.

The authors propose a particle swarm optimization (PSO) algorithm as optimizer. This
algorithm was proposed by Kennedy and Eberhart [30] and is based on swarm intelligence.
This algorithm tries to optimize the cost function using a particle set. Each particle has
a solution for the optimization problem, and there is a vector that contains three values:
battery capacity, nominal power, and power smoothing coefficient.

The algorithm has a set of particles, and each particle has a proposed solution for the
optimization problem. This solution is the generalized position of the particle xi. Each
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particle has a position given by its solution. Furthermore, each particle has a speed vector,
vi, which is calculated in order to reach better solutions or positions.

During optimization iterations, each particle evaluates its position or solution. This
evaluation is made with the cost function defined previously. Each i-th particle has its
positions and speed vector, and the best position reached by this particle is xi,best. All
particles know the best position, xbest, reached by the whole set of particles until that
iteration. The particle’s position is defined via the following equation at the t-th iteration:

xi(t + 1) = xi(t) + ∆t·t·vi(t + 1) (32)

where vi is the speed at each t iteration. The speed of the i-th particle changes to xi,best and
to the best position xbest reached by whole set. There are three parameters that modulate the
behaviour of the PSO algorithm: the weight of the i-th particle wi, ϕ1,max, and ϕ2,max. The
last two parameters modulate the exploration or exploitation behaviours of the algorithm.
ϕ1,max is the maximum value that can achieve ϕ1, which is a positive uniform random
number at each iteration and particle. ϕ2,max is also the maximum value that can achieve
ϕ2, which is a positive uniform random number at each iteration and particle:

vi(t + 1) = w·vi(t) + ϕ1·(xi,best − xi(t)) + ϕ1·(xbest − xi(t)) (33)

The weight of each particle has been examined in many studies [31–34] as it can
heavily affect the PSO optimizer’s solutions. In this case, the authors have proposed a time
variable weight policy, as suggested in [32]. The weights start at a high value and decrease
time linearly until a minimum value is reached. This time variable policy is described in
Equation (34):

w(t) =
itmax − t

itmax
(wmax − wmin) + wmin (34)

where itmax is the number of iterations needed to change the weight from wmax to wmin. In
fact, the weight decreases when the number of optimization algorithm iterations increases
(see Figure 2).
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5. Study Cases and Consumption Data
5.1. Consumption Data

The authors collected electrical consumption data from the northern Spanish town of
Arrasate-Mondragon. This town council is in the Basque Country and has about 22,000 in-
habitants. The town council of Arrasate has more than 200 electrical consumption points.
Some of them are public illumination systems, while others are different public services
such as sports centres. The consumptions that are taken into account in this work are real
power consumption values measured in real time. The authors proposed the sports centre
of Musakola, Arrasate as being the most important power consumption point to study. The
authors collected 4922 power consumption samples between 20 May 2020 and 11 December
2020, with a sample time of one hour.

A web application was created by the authors that was based on web scraping, in order
to collect all the data from the electrical company (Iberdrola) automatically. The authors
created this application using C# programming language, as it was very easy to develop a
frontend for the town council’s technical personnel. The electrical power consumptions are
shown in Figure 3.

1 

 

 

 

 

Figure 3. Power consumption (kW) per time (hours) at the sports centre in Musakola, Arrasate.

This power consumption point has a three-period electrical bill system [25]. A three-
period bill system specifies three different prices during the day. Generally, the first period
is related to the low general consumption hours of the day, the second one is related to
the medium general consumption hours of the day, and, finally, the third period is related
to the high general consumption hours of the day. Therefore, each period has its own
maximum power. Usually, these powers are in ascending order. In this case, the town
council has the same maximum power levels for each period (see Table 1).

Table 1. Maximum power consumption initially contracted with the electrical company.

First Period Second Period Third Period

Maximum power levels
contracted (kW) 150 150 150
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The battery health loss has been modelled as per [29]. According to the depth of
discharge (DoD), the authors applied a health loss function, which is defined in Table 2.
This table is defined by an Arrhenius curve as per [29] (see Figure 1).

Table 2. DoD vs. maximum number of cycles at each DoD.

DoD Range (%) Admitted Cycles

10 15,000
20 8750
30 5500
40 3800
50 3000
60 2250
70 1750
80 1500

The authors made an exponential regression of this data in order to calculate the health
loss per cycle of discharge for a given DoD, following Equation (35):

15435.1216·e−0.0303·x (35)

where x is the DoD of the discharge cycle of the battery. The authors did not take into
account aging factors such as temperature, so as to keep the battery model simple.

The maximum power level prices per kW and the energy prices in euros per kWh of
power consumption are shown in Table 3 for 1 February 2020. The prices of the three-period
bill system are also displayed (the 3.0A tariff, to be precise, see [25]).

Table 3. Prices of maximum power levels and energy prices.

Energy (EUR/kWh) Maximum Power Level
(EUR/kW per day)

1st period 0.1131 0.1170
2nd period 0.0938 0.0702
3rd period 0.0649 0.0468

The exact time spans of each day for each period and the maximum power levels for
the three-period bill system (the 3.0A tariff bill system) are defined in the Spanish electrical
market law.

5.2. Electrical Battery Economical Return Analysis

Next, the authors reveal the economic returns caused by implanting an electrical
battery in order to smooth the power demand curve. The analysis was carried out using
prices and costs from 20 May 2020. At that time, the relative cost of an energy unit’s capacity
was EUR 126.9976 per kWh [29]. The authors interpolated the cost using the prediction
equation in [29].

The parameter set applied to the PSO optimization algorithm is shown in Table 4.
The particle position initialization follows a uniform random distribution.
The authors executed the same optimization many times in order to verify that the

obtained optimal solution was really the best solution with different initialization points.
The same optimal solution was always achieved. This solution is shown in Figures 4 and 5.
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Table 4. Particle swarm optimization (PSO) optimizer parameter set for the first study case.

Parameter Value

Particle number 40
Iteration number 50
ϕ1 0.5
ϕ2 0.5
dt 1
Initial inertia 1.2
Final inertia 0.3
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It is clear that, nowadays, it is not worth applying battery systems in order to smooth
power peaks. However, the authors carried out a sensitivity analysis of the solutions
changing the price of the battery capacity.

5.3. Sensitivity Analysis of Battery Capacity Price (EUR/kWh)

In this section, the authors pose the following question: Which battery capacity price
is worth a power curve smoothing battery?

In order to answer this question, the authors defined a set of optimization problems.
Each optimization problem has its own capacity price. A PSO optimizer was applied to
each optimization problem. The capacity price was uniformly increased for each case. Each
PSO optimization applies a capacity price as per Equation (36). Therefore, the authors
achieve the optimal battery capacity for a given capacity price:

PricekWh = maxPrice− nIt
maxPrice−minPrice

numO f Iterations
(36)

where numO f Iterations is the number of optimization problems, nIt is the optimization
problem index, and maxPrice and minPrice are the maximum and minimum capacity
prices, respectively.

The particles are initialized around the best solutions achieved in the previous opti-
mization. The initialization process at each optimization problem generates a particle with
a better solution than before. If an initialized particle does not achieve a better solution,
then the best solutions reached in the previous optimization problem are taken.

In order to ensure the coherence of the algorithm in the first iteration, a particle with a
non-optimal fitness is introduced. This way, it is guaranteed that the optimal cost obtained
during the brute force algorithm’s iterations is decreasing. Figure 6 illustrates the flux
diagram of the process.

Table 5 shows the parameters used for the algorithm. The number of particles is
reduced because, as it is executed several times, it ends up being computationally expensive,
and it would otherwise take a lot of time to conclude the sensitivity study.

Table 5. Sensitivity algorithm parameters.

Parameter Value

Brute force iterations 99
Battery maximum kWh cost EUR 126.9974
kWh price change per iteration EUR–1.1700
Battery minimum kWh cost EUR 10
Number of particles 40
Number of iterations 50
ϕ1 0.5
ϕ2 0.5
dit 1
Initial inertia 1.2
Final inertia 0.3

Figure 7 displays the results obtained for the optimal costs of the problem’s solution
for each price of the battery.

According to Figure 7, the total optimal cost starts descending faster as of iteration 20.
With regard to the power term, it stays stable for all iterations. The savings come in terms
of energy. Figure 8 shows the evolution of the battery parameters along the iterations.
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Figure 8. Optimal battery capacities (kWh) and nominal power (kW) along the iterations of the
sensitivity algorithm.

For this study, in which the sample periods are an hour, a nominal power value
higher than the battery’s capacity means that the optimal nominal power is equal to the
battery’s capacity. The parameter α kept a constant value of 1 during all the iterations of
the sensitivity algorithm.
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Regarding the power consumption of the electrical grid, Figures 9–12 show a com-
parison with and without the battery of iterations 30, 50, 80, and 100, respectively, after
implanting a battery.
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Figure 10. Power consumption (kW) comparison with and without the battery (iteration 50).
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Figure 12. Power consumption (kW) comparison with and without the battery (iteration 100).
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According to the previous figures, the bigger the battery, the better the control function
works. In addition, Figure 13 illustrates how all the optimal batteries are submitted to very
deep cycles, increasing the cycle’s depth as the battery’s capacity also increases.
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Another interesting relationship is between the average minimum and maximum
charges along the cycles and the battery’s capacity. From this, it can be observed that, in
batteries with a DoD distinct from 100%, the complete charge of the battery has prevailed
over the complete discharge, or vice versa. Figure 14 represents the average maximum and
minimum charge along the cycles related to the nominal capacity.

Energies 2022, 15, x FOR PEER REVIEW 18 of 20 
 

 

Another interesting relationship is between the average minimum and maximum 

charges along the cycles and the battery’s capacity. From this, it can be observed that, in 

batteries with a DoD distinct from 100%, the complete charge of the battery has prevailed 

over the complete discharge, or vice versa. Figure 14 represents the average maximum 

and minimum charge along the cycles related to the nominal capacity. 

 

Figure 14. Average maximum and minimum charge (kWh) along the cycles related to the nominal 

capacity. 

6. Conclusions 

Performing a profitability analysis after implanting a battery at a consumption point 

has shown that, at the present time, it is still not profitable. 

Subsequently, the sensitivity of the price per kWh of the battery has been analysed 

to determine the prices at which the implantation of a battery could be profitable, and it 

has been observed that, despite it not being profitable at this time, it is likely to become so 

soon enough, with profitability increasing faster as the kWh price decreases. However, 

this profitability has come from the non-consumption of energy obtained from the 

electrical grid rather than from a lower demand for maximum power peaks. 

On one hand, there are set characteristics for the data from the consumption point, 

where there are three different zones. The first zone involved the first 600 consumption 

data, where all the consumption values are inferior to the average consumption. The 

second zone comprised the next 3000 data, where practically all the consumptions are 

superior to the average. The third included the last 1500 data, where most consumptions 

are below the average. In the second zone, the higher consumptions are caused by the fact 

that the battery is continuously undergoing a discharging process, so the moment the 

maximum points are reached, there is no, or very little, energy stored. Therefore, it is 

impossible to reduce the maximum peaks. 

On the other hand, the type of model employed is based on releasing energy 

indiscriminately when the demanded consumption is superior to the average. 

In terms of the aging of the batteries, the sensitivity study concluded that the use of 

short lifespan batteries may be profitable in the future. Despite not being highly profitable, 

the mere fact that a result like this may become profitable means that the price of the kWh 

would lower until the indiscriminate use of these batteries becomes profitable. This 

demonstrates that, in 10 or 20 years, it will be a factor to keep in mind. 

One interesting result that was obtained is the optimal nominal power that has been 

assigned to every optimal battery. Considering that the employed sample period was an 

Figure 14. Average maximum and minimum charge (kWh) along the cycles related to the nominal capacity.



Energies 2022, 15, 729 18 of 20

6. Conclusions

Performing a profitability analysis after implanting a battery at a consumption point
has shown that, at the present time, it is still not profitable.

Subsequently, the sensitivity of the price per kWh of the battery has been analysed
to determine the prices at which the implantation of a battery could be profitable, and it
has been observed that, despite it not being profitable at this time, it is likely to become so
soon enough, with profitability increasing faster as the kWh price decreases. However, this
profitability has come from the non-consumption of energy obtained from the electrical
grid rather than from a lower demand for maximum power peaks.

On one hand, there are set characteristics for the data from the consumption point,
where there are three different zones. The first zone involved the first 600 consumption data,
where all the consumption values are inferior to the average consumption. The second
zone comprised the next 3000 data, where practically all the consumptions are superior to
the average. The third included the last 1500 data, where most consumptions are below
the average. In the second zone, the higher consumptions are caused by the fact that the
battery is continuously undergoing a discharging process, so the moment the maximum
points are reached, there is no, or very little, energy stored. Therefore, it is impossible to
reduce the maximum peaks.

On the other hand, the type of model employed is based on releasing energy indis-
criminately when the demanded consumption is superior to the average.

In terms of the aging of the batteries, the sensitivity study concluded that the use of
short lifespan batteries may be profitable in the future. Despite not being highly profitable,
the mere fact that a result like this may become profitable means that the price of the
kWh would lower until the indiscriminate use of these batteries becomes profitable. This
demonstrates that, in 10 or 20 years, it will be a factor to keep in mind.

One interesting result that was obtained is the optimal nominal power that has been
assigned to every optimal battery. Considering that the employed sample period was an
hour, it was observed during most sensitivity iterations that the optimal nominal power was
slightly lower than the optimal capacity of the battery. Furthermore, the average maximum
charge per cycle was inferior to the maximum capacity of the battery. Therefore, the authors
conclude that, for this particular study, the nominal power of the battery performed as a
limiting mechanism to lower the depth of discharge of the battery.
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