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1. Introduction

Let R be a commutative ring with identity. Following [17, Ch. 30], for a polynomial 
p(λ) =

∑n
k=0 pkλ

k ∈ R[λ] its derivative is p′(λ) =
∑n

k=1 kpkλ
k−1. Recall that if X ∈

Rn×n is a square matrix of order n with entries in R and Mij(X) is the minor obtained 
from X by deleting the ith row and jth column then the adjugate of X, Adj(X), is the 
matrix whose (i, j) entry is (−1)i+jMji(X); that is,

Adj(X) =
[
(−1)i+jMji(X)

]
1≤i,j≤n

.

Formula (1) below, from now on TM formula, was proved, with w = v and the nor-
malization w∗v = 1, for a Hermitian matrix A ∈ Cn×n by Thompson and McEnteggert 
(see [34, pp. 212-213]). Inspection of the proof shows that the formula also holds for nor-
mal matrices over C (see [29]). With the same arguments we can go further. Recently, 
Denton, Parke, Tao, and Zhang pointed out that the TM formula has an extension to 
a non-normal matrix A ∈ Rn×n, so long as it is diagonalizable (see [13, Rem. 4]). Even 
more, as shown in Remark 5 of [13] it holds for matrices over commutative rings (see [18]
for an informal proof). A more detailed proof of this result will be given in Section 2. 
However, for matrices over fields (or over integral domains) with repeated eigenvalues, 
(1) does not provide meaningful information (see Remark 2.4). We will exhibit in Sec-
tion 2 a generalization of the TM formula which holds for matrices over arbitrary fields 
with repeated eigenvalues. This new TM formula will be used to generalize the so-called 
eigenvector-eigenvalue identity (see (23)) for non-diagonalizable matrices over arbitrary 
fields. In addition we will provide a complete characterization of the similarity invariants 
of Adj(A) in terms of those of A, generalizing a result about the eigenvalues and the 
minimal polynomial in [19]. Then in Section 3 three additional consequences of the TM 
formula will be analysed.

2. The TM formula and its generalization

Let A ∈ Rn×n be a square matrix of order n with entries in R. An element λ0 ∈ R
is said to be an eigenvalue of A if Ax = λ0x for some nonzero vector x ∈ Rn×1 ([7, 
Def. 17.1]). This vector is said to be a right eigenvector of A for (or associated with) λ0. 
The left eigenvectors of A for λ0 are the right eigenvectors for λ0 of AT , the transpose 
of A. That is to say, y ∈ Rn×1 is a left eigenvector of A for λ0 if yTA = λ0y

T .3 The 
characteristic polynomial of A is pA(λ) = det(λIn − A) and λ0 is an eigenvalue of A if 
and only if pA(λ0) is a zero divisors of R ([7, Lem. 17.2]).

3 If R = C is the field of complex numbers, the left eigenvectors are the right eigenvectors of A∗ = ĀT , 
the conjugate transpose of A. That is, y ∈ Rn×1 is a left eigenvector of A ∈ Cn×n for λ0 if y∗A = λ0y

∗. 
Since in this section we will work with matrices over arbitrary commutative rings or fields we will adopt 
the “transpose notation” in the understanding that for complex matrices T must be replaced by ∗.
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The following result, in a slightly different form, was proved by D. Grinberg in [18].

Theorem 2.1. Let A ∈ Rn×n and let λ0 ∈ R be an eigenvalue of A. Let v, w ∈ Rn×1 be 
a right and a left eigenvector, respectively, of A for λ0. Then

wT vAdj(λ0In −A) = p′A(λ0)vwT . (1)

The proof in [18] is based on the following Lemma which is interesting in its own 
right.

Lemma 2.2. Let A ∈ Rn×n be a matrix and let w ∈ Rn×1 be a left eigenvector of A for 
the eigenvalue 0. For j = 1, . . . , n, let (AdjA)j be the jth column of Adj(A). Then, for 
all i, j = 1, . . . , n,

wi(AdjA)j = wj(AdjA)i, (2)

where w = [w1 w2 · · · wn ]T .

This is Lemma 3 of [18]. The author himself considers the proof to be informal. So 
a detailed proof of Lemma 2.2, following Grinberg’s ideas,4 is given next for reader’s 
convenience. Note that when R is a principal domain one-line proof can be given, by 
simply observing that each row of the adjugate is a multiple of wT over the field of 
fractions of R.

Proof of Lemma 2.2. Let us take i, j ∈ {1, . . . , n} and assume that i �= j; otherwise, 
there is nothing to prove. We assume also, without loss of generality, that i < j. Let w =
[w1 w2 · · · wn ]T and, for k = 1, . . . , n, let ak be the kth row of A. Define B ∈ Rn×n

to be the matrix whose kth row, bk, is equal to ak if k �= i, j and bk = wkak if k = i, j. 
A simple computation shows that wi(AdjA)j = (AdjB)j and wj(AdjA)i = (AdjB)i. 
We claim that (AdjB)j = (AdjB)i. This would prove the lemma.

It follows from wTA = 0 that

n∑
k=1

wkak = 0

and so

bi + bj = −
n∑

k=1,k �=i,j

wkbk. (3)

Let

4 Grinberg’s permission was granted to include the proofs of this Lemma and Theorem 2.1.
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P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

i j

1
. . .

1
i −w1 · · · −wi−1 −1 −wi+1 · · · −wj−1 0 −wj+1 · · · −wn

1
. . .

1
j −w1 · · · −wi−1 0 −wi+1 · · · −wj−1 −1 −wj+1 · · · −wn

1
. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix is invertible in R (its determinant is 1) and by (3),

B̃ = PB =
[
bT1 · · · bTi−1 bTj bTi+1 · · · bTj−1 bTi bTj+1 · · · bTn

]T
.

Then, Adj(B̃) = Adj(B) Adj(P ) and, since P is invertible, Adj(P ) = (detP )P−1 = P−1. 
Hence Adj(B) = Adj(B̃)P and for k = 1, . . . , n

(AdjB)ki =
n∑

�=1

(Adj B̃)k�P�i.

But in the ith column of P the only nonzero entry is −1 in position (i, i). Thus, 
(AdjB)ki = −(Adj B̃)ki. We recall now that B̃ is the matrix B with rows ith and jth 
interchanged and that Mij(X) is the minor of X obtained by deleting the ith row and 
jth column of X. Thus, if b�(k) is the �th row of B with the kth component removed; 
i.e. b�(k) = [b� 1 · · · b� k−1 b� k+1 · · · b� n ], we have

Mik(B̃) = det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(k)
...

bi−1(k)
bi+1(k)

...
bj−1(k)
bi(k)

bj+1(k)
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (−1)j−i−1 det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(k)
...

bi−1(k)
bi(k)

bi+1(k)
...

bj−1(k)
bj+1(k)

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (−1)j−i−1Mjk(B).
bn(k) bn(k)
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Therefore

(AdjB)ki = −(Adj B̃)ki = (−1)k+i+1Mik(B̃)
= (−1)k+i+1(−1)j−i−1Mjk(B)
= (−1)k+jMjk(B) = (AdjB)kj ,

as claimed. �
There is a “row version” of Lemma 2.2 which can be proved along the same lines.

Lemma 2.3. Let A ∈ Rn×n be a matrix and let v ∈ Rn×1 be a right eigenvector of A for 
the eigenvalue 0. For j = 1, . . . , n let (AdjA)j be the jth row of Adj(A). Then, for all 
i, j = 1, . . . , n,

vi(AdjA)j = vj(AdjA)i, (4)

where v = [v1 v2 · · · vn ]T .

The proof of Theorem 2.1 which follows is very much that of Grinberg in [18]. It is 
included for completion and reader’s convenience.

Proof of Theorem 2.1. Let B = λ0In − A and pB(λ) = det(λIn − B) its charac-
teristic polynomial. Then pB(λ) = λn +

n∑
k=1

(−1)kckλn−k where, for k = 0, . . . , n, 

ck =
∑

1≤i1<···<ik≤n

detB(i1 : ik, i1 : ik), and B(i1 : ik, i1 : ik) = [bij ,i� ]1≤j,�≤k
is the 

principal submatrix of B formed by the rows and columns i1, . . . , ik. In particular, 
cn−1 =

n∑
j=1

Mjj(B) where Mjj(B) is the principal minor of B obtained by deleting the 

jth row and column. Thus p′B(0) = (−1)n−1
n∑

j=1
Mjj(B).

On the other hand, pB(λ) = det(λIn −B) = det(λIn − λ0In + A) = (−1)n det((λ0 −
λ)In −A) = (−1)npA(λ0 − λ). It thus follows from the chain rule that

p′A(λ0) = (−1)n+1p′B(0) =
n∑

j=1
Mjj(B).

Hence, proving (1) is equivalent to proving

wT vAdj(B) =
n∑

j=1
Mjj(B)vwT . (5)

It follows from Av = λ0v and wTA = λ0w
T that Bv = 0 and wTB = 0, respectively. So 

we can apply to B properties (2) and (4). If wk and vk are the kth components of w and 
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v, respectively, we get from (2) wk(AdjB)ij = wj(AdjB)ik for all i, j, k ∈ {1, . . . , n}. 
Then vkwk(AdjB)ij = wjvk(AdjB)ik and by (4), vk(AdjB)ik = vi(AdjB)kk. Hence,

vkwk(AdjB)ij = viwj(AdjB)kk, i, j, k = 1, . . . , n.

Summing over k and taking into account that (AdjB)kk = Mkk(B), we get

wT v(AdjB)ij =
n∑

k=1

Mkk(B)viwj , i, j = 1, . . . n.

This is equivalent to (5) and the theorem follows. �
Remark 2.4. Assume that R is an integral domain and note that in this case the rank of 
A ∈ Rm×n, rank(A), is the rank of A computed as a matrix over the field of fractions 
of R. It is an interesting consequence of (1) that wT v = 0 implies p′A(λ0) = 0. The 
converse is not true in general. For example, if A = λ0I2 then v = [1 0]T satisfies both 
Av = λ0v and vTA = λ0v

T , but vT v = 1 and p′A(λ0) = 0. However, if p′A(λ0) = 0 and 
rank(λ0In−A) = n −1 then, necessarily, wT v = 0 because Adj(λ0In−A) is not the zero 
matrix. In particular, when R is a field, it follows from (1) that if wT v = 0 then λ0 is an 
eigenvalue of algebraic multiplicity at least 2. On the other hand, it is easily checked that 
if λ0 is an eigenvalue of algebraic multiplicity bigger that 1 and geometric multiplicity 
1 (see below the definitions of these two notions) then wTv = 0 for any right and left 
eigenvectors, v and w respectively, of A for λ0. This is the case, for example, of A = [ 0 0

1 0 ]. 
For this matrix, the TM formula (1) does not provide any substantial information about 
Adj(λ0In − A) because, in this case, wT v = 0 and p′A(λ0) = 0. Thus, the TM formula 
(1) is relevant for matrices with simple eigenvalues. �

Our next goal is to provide a generalization of the TM formula (1) which is meaningful 
for nondiagonalizable matrices over fields. We will use the following notation. F will 
denote an arbitrary field. If A ∈ Fn×n then p1(λ), . . . , pr(λ) will be its (possibly repeated) 
elementary divisors in F ; that is the elementary divisors of its characteristic matrix 
λIn − A as a matrix polynomial ([16, Ch. VI, Sec. 3]). These are powers of monic 
irreducible polynomials of F [λ] (the ring of polynomials with coefficients in F). We will 
assume that for j = 1, . . . , r,

pj(λ) = λdj + aj1λ
dj−1 + aj2λ

dj−2 + · · · + ajdj−1λ + ajdj
. (6)

Let ΔA denote the determinant of A and Λ(A) the set of eigenvalues (the spectrum) of A
in, perhaps, an extension field, F̃ , of F . Thus λ0 ∈ Λ(A) if and only if it is a root in F̃ of 
pj(λ) for some j ∈ {1, 2, . . . , r}. In particular, pA(λ) =

∏r
j=1 pj(λ) is the characteristic 

polynomial of A.
As usual, if λ0 ∈ Λ(A) then its algebraic multiplicity (ma(λ0)) is the multiplicity of λ0

as a root of pA(λ), and its geometric multiplicity (mg(λ0)) is the number of irreducible 
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polynomials pj(λ) with λ0 as a root. Note that if 0 ∈ Λ(A) and pj(0) = 0 then pj(λ) = λdj

because pj(λ) is a power of an irreducible polynomial.
We review now some basic notions and results about the structure of linear operators 

on n-dimensional vector spaces. Our main reference is [16, Ch. VII]. First, if 0 ∈ Λ(A)
and pj(0) = 0 then (see [16, Ch. VII, Th. 8]), associated to the elementary divisor 
pj(λ) = λdj , there is a cyclic (or Krylov) subspace Ij of dimension dj whose minimal 
polynomial is pj(λ); i.e., pj(A)x = 0 for all x ∈ Ij and there is no polynomial of 
degree less that dj satisfying this property. Then Ij admits a Krylov basis; that is, 
Ij =< x, Ax, . . . , Adj−1x > for some vector x ∈ Fn×1 whose minimal polynomial is 
pj(λ) = λdj ; i.e. Adjx = 0 and Akx �= 0 for k < dj . Such a vector is said to be a generating 
vector of Ij . Now, if pj(λ) is the only elementary divisor which is multiple of λ (that 
is, mg(0) = 1) then, for k = 1, . . . , dj , kerAk =< Adj−kx, Adj−k+1x, . . . , Adj−1x >. In 
particular, kerAdj =< x, Ax, . . . , Adj−1x >= Ij and Adj−1x is a right eigenvector of 
A for the eigenvalue 0. Conversely, if a right eigenvector u of A for the eigenvalue 0 is 
given and mg(0) = 1 then we can always construct a Krylov basis of kerAdj by solving 
the linear systems Axdj−2 = u and Axj = xj+1, j = 1, . . . , dj − 3 (see [16, Ch. VII, Sec. 
7]). In fact, as already seen, kerAdj always admits a Krylov basis < v, Av, . . . , Adj−1v >

where Adj−1v is an eigenvector of A for the eigenvalue 0. Since mg(0) = 1, u = αAdj−1v

for some nonzero scalar α ∈ F . Setting xk = αAkv for k = 0, 1, . . . , dj − 2, we get 
Axk = xk+1 and so < x1, . . . , xdj−2, u > is a Krylov basis of kerAdj as claimed. The 
relationship between any two Krylov basis for kerAdj is analysed below in Lemma 2.5. If 
u is an eigenvector of A for the eigenvalue 0 and < x1, . . . , xdj−2, u > is a Krylov basis for 
kerAdj , then we will say that x1 is a generating vector of kerAdj for the eigenvector u.

As mentioned above the following lemma gives the relationship between two Krylov 
bases of the same subspace. Its proof is straightforward. Recall that a Toeplitz matrix is 
a square matrix whose entries (i, j) and (i + 1, j + 1) coincide for all possible values of i
and j.

Lemma 2.5. Let 0 ∈ Λ(A) be an eigenvalue with ma(0) = k and mg(0) = 1 and let x, y ∈
Fn×n be generating vectors of the Krylov subspace kerAk. Then there is an invertible 
lower triangular Toeplitz matrix X ∈ Fk×k such that

[
y Ay · · · Ak−1y

]
=

[
x Ax · · · Ak−1x

]
X. (7)

Note that since A and AT are similar matrices, the above results apply for left Krylov 
subspaces and left generating vectors.

Item (ii) of the following theorem is an elementary result that is included for comple-
tion. Item (i) is a generalization of [19, Th. 2].

Theorem 2.6. Let A ∈ Fn×n and let the polynomials pj(λ) of (6) be its elementary 
divisors, j = 1, . . . , r.
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(i) If 0 /∈ Λ(A) then the elementary divisors of Adj(A) are q1(λ), . . . , qr(λ) where for 
j = 1, . . . , r,

qj(λ) = λdj + ΔA

ajdj−1

ajdj

λdj−1 + · · · + Δdj−1
A

aj1
ajdj

λ + Δdj

A

1
ajdj

. (8)

(ii) If 0 ∈ Λ(A) and mg(0) ≥ 2 then Adj(A) = 0.
(iii) Let 0 ∈ Λ(A), mg(0) = 1 and assume that pk(0) = 0. Let u, v ∈ Fn×1 be arbitrary 

right and left eigenvectors of A, respectively, for the eigenvalue 0 and let x, y ∈
Fn×1 be arbitrary right and left generating vectors of kerAdk and ker(AT )dk for the 
eigenvectors u and v, respectively. Then yTAdk−1x �= 0 and

Adj(A) = (−1)n−1
r∏

j=1,j �=k

pj(0) uvT

yTAdk−1x
. (9)

Proof. For j = 1, . . . , r, let the companion matrix of pj(λ) be

Cj =

⎡⎢⎢⎢⎢⎣
0 0 · · · 0 −ajdj

1 0 · · · 0 −ajdj−1
0 1 · · · 0 −ajdj−2
...

...
. . .

...
...

0 0 · · · 1 −aj1

⎤⎥⎥⎥⎥⎦ . (10)

Then (see [16, Ch. VII, Sec. 5]) there is an invertible matrix S ∈ Fn×n such that

C = S−1AS =
r⊕

j=1
Cj . (11)

An explicit computation shows that

Adj(Cj) = (−1)dj

⎡⎢⎢⎢⎢⎣
−ajdj−1 ajdj

0 · · · 0
−ajdj−2 0 ajdj

· · · 0
...

...
...

. . .
...

−ak1 0 0 · · · ajdj

−1 0 0 · · · 0

⎤⎥⎥⎥⎥⎦ .

Bearing in mind that detCj = (−1)djajdj
, we obtain Adj(C) = ⊕r

j=1Lj where, for 
j = 1, . . . , r,

Lj = (−1)n
r∏

i=1,i �=j

aidi

⎡⎢⎢⎢⎢⎣
−ajdj−1 ajdj

0 · · · 0
−ajdj−2 0 ajdj

· · · 0
...

...
...

. . .
...

−ak1 0 0 · · · ajdj

⎤⎥⎥⎥⎥⎦ . (12)
−1 0 0 · · · 0
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Therefore, from (11) we get

Adj(A) = S

⎛⎝ r⊕
j=1

Lj

⎞⎠S−1. (13)

(i) Assume that 0 /∈ Λ(A). This means that ajdj
�= 0 for all j = 1, . . . , r and we can 

write

Lj = detA

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ajdj−1

ajdj
1 0 · · · 0

−ajdj−2

ajdj
0 1 · · · 0

...
...

...
. . .

...
− aj1

ajdj
0 0 · · · 1

− 1
ajdj

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Taking into account the definition of qj(λ) of (8),

det(λIdj
− Lj)

= Δdj

A

(
λdj

Δdj

A

+
ajdj−1

ajdj

λdj−1

Δdj−1
A

+ · · · + aj1
ajdj

λ

ΔA
+ 1

ajdj

)
= qj(λ).

Let us see that qj(λ) is a power of an irreducible polynomial in F [λ]. In fact, put

sj(λ) = λdjpj

(
1
λ

)
= ajdj

λdj + ajdj−1λ
dj−1 + · · · + aj1λ + 1.

This polynomial is sometimes called the reversal polynomial of pj(λ) (see, for ex-
ample, [23]). Since pj(λ) is an elementary divisor of A in F , it is a power of an 
irreducible polynomial of F [λ]. By [1, Lemma 4.4], sj(λ) is also a power of an ir-
reducible polynomial. Now, it is not difficult to see that qj(λ) = 1

ajdj
s 
(

λ
ΔA

)
is a 

power of an irreducible polynomial too. As a consequence, q1(λ), q2(λ), . . . , qr(λ)
are the elementary divisors of Adj(C) = ⊕r

j=1Lj . Since this and Adj(A) are similar 
matrices (cf. (13)), q1(λ), q2(λ), . . . , qr(λ) are the elementary divisors of Adj(A). 
This proves (i).

(ii) If mg(0) ≥ 2, then rank(A) = rank(C) ≤ n −2. Hence all minors of A of order n −1
are equal to zero and so Adj(A) = 0.

(iii) Assume now that mg(0) = 1 and let pk(λ) = λdk be the only elementary divisor 
of A with 0 as a root. Then, in (6), akj = 0 for j = 1, . . . , dk. By (10) and (12), 
Ck =

[
0 0

Id −1 0

]
and
k
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Lk = (−1)n−1
r∏

j=1,j �=k

ajdj

⎡⎢⎢⎢⎢⎣
0
0
...
0
1

⎤⎥⎥⎥⎥⎦ [1 0 · · · 0 0]

= (−1)n−1
r∏

j=1,j �=k

ajdj
edk

eT1 ,

(14)

respectively. Also, it follows from akdk
= 0 that Lj = 0 for j = 1, . . . , r, j �= k.

Recall now that S−1AS = C = ⊕r
j=1Cj and split S and S−1 accordingly:

S = [S1 S2 · · · Sr ] , S−1 =

⎡⎢⎢⎣
T1
T2
...
Tr

⎤⎥⎥⎦ ,

with Sj ∈ Fn×dj and Tj ∈ Fdj×n, j = 1, . . . , r. Then

ASk = SkCk, TkA = CkTk. (15)

For i = 1, . . . , dk let ski and tTki be the i-th column and row of Sk and Tk, respec-
tively:

Sk = [sk1 sk2 · · · skdk ] , Tk =

⎡⎢⎢⎢⎣
tTk1
tTk2
...

tTkdk

⎤⎥⎥⎥⎦ .

Bearing in mind that Adj(A) = S(⊕r
j=1Lj)S−1 (cf. (13)), the representation of Lk

as a rank-one matrix of (14) and that Lj = 0 for j �= k, we get

Adj(A) = SkLkTk = (−1)n−1

⎛⎝ r∏
j=1,j �=k

ajdj

⎞⎠ skdk
tTk1. (16)

Now, it follows from (15) that

skj = Askj−1, tTkj−1 = tTkjA, j = 2, 3, . . . , dk,
Askdk

= 0, tTk1A = 0.

Henceforth, skdk
and tTk1 are right and left eigenvectors of A for the eigenvalue 

0, sk1 is a generating vector of kerAdk =< sk1, Ask1, . . . , Adk−1sk1 >=< sk1,

sk2, . . . , skdk
> and tkdk

is a generating vector of ker(AT )dk =< tkdk
, AT tkdk

,

. . . , (AT )dk−1tkdk
>=< tkdk

, tkdk−1, . . . , tk1 >. Thus (16) is an explicit rank-one 
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representation of Adj(A) in terms of a right and a left eigenvectors of A for the 
eigenvalue zero. Actually this representation depends on a particular normalization 
of the vectors which span the cyclic subspaces kerAdk and ker(AT )dk . Specifically, 
TkSk = Idk

. However, we are looking for a more general representation in terms of 
arbitrary right and left eigenvectors for which such a normalization may not hold.
Let us assume that u, v ∈ Fn×1 are arbitrary right and left eigenvectors of A for the 
eigenvalue 0 and let x, y ∈ Fn×1 be arbitrary right and left generating vectors of 
kerAdk and ker(AT )dk for u and v, respectively. Then {x, Ax, . . . , Adk−2x, u} and 
{y, AT y, . . . , (AT )dk−2y, v} are Krylov bases of kerAdk and ker(AT )dk , respectively. 
By Lemma 2.5, there are invertible lower triangular Toeplitz matrices X and Y
such that[

x Ax · · · Adk−2x u
]

= [sk1 sk2 · · · skdk−1 skdk ]X

and [
y AT y · · · (AT )dk−2y v

]
= [ tkdk

tkdk−1 · · · tk2 tk1 ]Y.

Equivalently,[
v (AT )dk−2y · · · AT y y

]
= [ tk1 tk2 · · · tkdk−1 tkdk ]Y T .

Let

X =

⎡⎢⎣
α1
α2 α1
...

...
. . .

αdk−1 αdk−2 ··· α1
αdk

αdk−1 ··· α2 α1

⎤⎥⎦, Y T =

⎡⎢⎢⎣
β1 β2 ··· βdk−1 βdk

β1 ··· βdk−2 βdk−1

. . .
...

...
β1 β2

β1

⎤⎥⎥⎦
and note that u = α1skdk

and v = β1tk1 with α1 �= 0 and β1 �= 0. It follows from 
(16) that

Adj(A) = (−1)n−1

⎛⎝ r∏
j=1,j �=k

ajdj

⎞⎠ uvT

α1β1
. (17)

Since Tk = [ tk1 tk2 · · · tkdk−1 tkdk ]T , Sk = [sk1 sk2 · · · skdk−1 skdk ]
and TkSk = Idk

,

⎡⎢⎢⎢⎢⎣
vT

yTAdk−2

...
yTA

T

⎤⎥⎥⎥⎥⎦ [
x Ax · · · Adk−2x u

]
= Y TkSkX = Y X.
y
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But Y X is a lower triangular matrix whose diagonal elements are all equal to α1β1. 
Thus, for j = 1, . . . , dk, α1β1 = vTx = yTu = yTAdk−1x. Since α1 �= 0 and β1 �= 0, 
yTAdk−1x �= 0 as claimed. Now, from (17)

Adj(A) = (−1)n−1

⎛⎝ r∏
j=1,j �=k

ajdj

⎞⎠ uvT

yTAdk−1x
. (18)

Finally, pA(λ) =
r∏

j=1
pj(λ) = λdk

r∏
j=1,j �=k

pj(λ) with pj(0) = ajdj
�= 0 for j �= k. 

Therefore (18) is equivalent to (9) and the theorem follows. �
As a first consequence of Theorem 2.6 we present a generalization of the formula for 

the eigenvalues of the adjugate matrix (see [19]).

Corollary 2.7. Let A ∈ Fn×n be a nonsingular matrix. Let λ0 ∈ Λ(A) and let m1 ≥ . . . ≥
ms be its partial multiplicities (i.e., the sizes of the Jordan blocks associated to λ0 in 
any Jordan form of A in, perhaps, an extension field F̃). Then ΔA

λ0
is an eigenvalue of 

Adj(A) with m1 ≥ . . . ≥ ms as partial multiplicities.

Proof. The elementary divisors of A for the eigenvalue λ0 in F̃(λ) are (λ − λ0)m1 , 
. . . , (λ − λ0)ms . Then, it follows from item (i) of Theorem 2.6 (see (8)) that (
λ− ΔA

λ0

)m1
, . . . , 

(
λ− ΔA

λ0

)ms

are the corresponding elementary divisors of Adj(A). �
Assume now that λ0 ∈ Λ(A) ∩ F and m1 ≥ . . . ≥ ms. If s > 1 then rank(λ0In −A) ≤

n − 2 and so Adj(λ0In −A) = 0. For s = 1 we have the following result.

Corollary 2.8. Let A ∈ Fn×n and let the polynomials pj(λ) of (6) be its elementary 
divisors, j = 1, . . . , r. Assume that λ0 ∈ Λ(A) ∩ F is an eigenvalue of A such that 
mg(λ0) = 1 and pk(λ0) = 0. Let u, v ∈ Fn×1 be arbitrary right and left eigenvectors of 
A for λ0 and let x, y ∈ Fn×1 be right and left generating vectors of ker(λ0In −A)dk and 
ker((λ0In −A)T )dk for the eigenvectors u and v, respectively. Then

Adj(λ0In −A) = (−1)dk+1
r∏

j=1,j �=k

pj(λ0)
uvT

yT (λ0In −A)dk−1x
. (19)

Proof. Put B = λ0In − A. Then 0 ∈ Λ(B), u and v are right and left eigenvectors of 
B for the eigenvalue 0, mg(0) = 1 and ma(0) = dk are the geometric and algebraic 
multiplicities of this eigenvalue and x and y are right and left generating vectors of 
kerBdk and ker(BT )dk for the eigenvectors u and v. Also, for j = 1, . . . , r, (recall that 
we are taken the elementary divisors to be monic polynomials) qj(λ) = (−1)djpj(λ0−λ)
are the elementary divisors of B. We get from pk(λ) = (λ − λ0)dk that qk(λ) = λdk . By 
Theorem 2.6,
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Adj(λ0In −A) = Adj(B) = (−1)n−1
r∏

j=1,j �=k

qj(0) uvT

yT (λ0In −A)dk−1x
.

Therefore (19) follows from qj(0) = (−1)djpj(λ0) and the fact that d1 + · · ·+dr = n. �
The following result is an immediate consequence of Corollary 2.8.

Corollary 2.9. Let A ∈ Fn×n and let Λ(A) = {λ1, . . . , λr} be its spectrum. Assume that 
Λ(A) ⊂ F and let mj and gj be the algebraic and geometric multiplicities of A for the 
eigenvalue λj, j = 1, . . . , r.

(i) If gk > 1 for some k ∈ {1, . . . , r} then Adj(λk I −A) = 0, and
(ii) if gk = 1 for some k ∈ {1, . . . , r} then

Adj(λk I −A) = (−1)mk+1
r∏

j=1, j �=k

(λk − λj)mj
ukv

T
k

yTk A
mk−1xk

, (20)

where uk and vk are right and left eigenvectors of A for λk and xk and yk are right and 
left generating vectors of ker(λkIn −A)mk and ker((λkIn −A)T )mk for the eigenvectors 
uk and vk, respectively.

Remark 2.10. When dk = 1 in Corollary 2.8, (19) becomes

Adj(λkIn −A) =
r∏

j=1,j �=k

pj(λ0)
uvT

vTu

because, in this case x = u and y = v. Since p′A(λk) =
∏r

j=1,j �=k pj(λk) we conclude that 
(19) generalizes (1) for matrices over fields. Derivatives can be also used in (19) to produce 
an expression similar to that of (1), but we must “pay a price”. In fact, if p(dk)

A (λk) denotes 
the dk derivative of pA(λ) and ma(λk) = dk > 1 then 

∏r
j=1,j �=k pj(λ0) = 1

dk!p
(dk)
A (λk)

when this expression makes sense; that is to say, provided that dk! �= 0. If F is required 
to be a field of characteristic zero, this is always guaranteed. In other words, if F is a 
field of characteristic zero then, under the hypothesis of Corollary 2.8, (19) is equivalent 
to

Adj(λ0In −A) = (−1)dk+1

dk!
p
(dk)
A (λ0)

uvT

yT (λ0In −A)dk−1x
, (21)

which, formally, looks like the natural generalization of (1). �
The TM formula (1) can be used to provide an easy proof of the so-called eigenvector-

eigenvalue identity (see [13, Sec. 2.1]). In fact, under the hypothesis of Theorem 2.1, it 
follows from (1) that wT v[Adj(λ0In −A)]jj = p′A(λ0)vjwj , j = 1, . . . , n.
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Hence, if Mj is the submatrix of A obtained by removing its jth row and column, 
then pMj

(λ0) = det(λ0In−1 −Mj) = [Adj(λ0In −A)]jj Therefore

(wT v) pMj
(λ0) = p′A(λ0) vjwj , j = 1, . . . , n. (22)

In particular, if A ∈ Cn×n is Hermitian, λ1 ≥ λ2 ≥ · · · ≥ λn are its eigenvalues and, for 
i = 1, . . . , n, vi = [vi1 vi2 · · · vin ]T is a unitary right and left eigenvector of A for 
λi; that is Avi = λivi, v∗iA = λiv

∗
i and v∗i vi = 1; (recall that we must change transpose

by conjugate transpose in the complex case) then

|vij |2p′A(λi) = pMj
(λi), i, j = 1, . . . , n.

Equivalently, if μj1 ≥ μj2 ≥ · · · ≥ μjn−1 are the eigenvalues of Mj ,

|vij |2
n∏

k=1,k �=i

(λi − λk) =
n∏

k=1

(λi − μjk) i, j = 1, . . . , n. (23)

This is the classical eigenvector-eigenvalue identity (see [13, Thm. 1]).
As mentioned in Remark 2.4, if F is a field and A ∈ Fn×n then (22) is meaningful if 

λ0 is a simple eigenvalue. If λ0 is defective and its geometric multiplicity is bigger than 
1 then (22) becomes a trivial identity because, in this case, Adj(λ0In −A) = 0 (item (ii) 
of Theorem 2.6) and so pMj

(λ0) = det(λ0In−1 − Mj) = 0. However, if λ0 is defective 
and its geometric multiplicity is 1, then (19) can be used to obtain a generalization of 
the eigenvector-eigenvalue identity. In fact, one readily gets from (19):

pMj
(λ0) = (−1)dk+1

r∏
j=1,j �=k

pj(λ0)
ujv

T
j

yT (λ0In −A)dk−1x
(24)

where p1(λ), . . . , pr(λ) of (6) are the elementary divisors of A with pk(λ) = (λ − λ0)dk

and uj , vj are the jth components of u, v respectively.
Moreover, if both pA(λ) and pMj

(λ) split in F then, with the notation of Corollary 2.9, 
the following identity follows from (20) for the non-repeated eigenvalues {μj1, . . . , μjsj}
of Mj and provided that mg(λi) = 1 for i = 1, . . . , r:

sk∏
k=1

(λi − μjk)qjk = (−1)di+1 uijvij
yTi A

di−1xi

r∏
k=1,k �=i

(λi − λk)mk , j = 1, . . . , n, (25)

where ui = [ui1 · · · uin ]T , vi = [vi1 · · · vin ]T , and qjk is the algebraic multiplicity 
of μjk, k = 1, . . . , sj and j = 1, . . . , n.

In the following section two additional applications will be presented.
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3. Two additional consequences of the TM formula

The well-known formula (26) below gives the derivative of a simple eigenvalue of a ma-
trix depending on a (real or complex) parameter. The investigation about the eigenvalue 
sensitivity of matrices depending on one or several parameters can be traced back to 
the work of Jacobi ([20]). However a systematic study of the perturbation theory of the 
eigenvalue problem starts with the books of Rellich (1953), Wilkinson (1965) and Kato 
(1966), as well as the papers by Lancaster [21], Osborne and Michaelson [28], Fox and 
Kapoor [15], Crossley and Porter [10] (see also [32] and the references therein). Since 
then this topic has become classical as evidenced by an extensive literature including 
books and papers addressed to mathematicians and a broad spectrum of scientist and 
engineers. In addition to the above early references, a short, and by no means exhaustive, 
list of books could include [4, p. 463], [25, Ch. 8, Sec. 9], [11, Sec. 4.2] or [22, pp. 134-135].

In proving (26), one first must prove, of course, that the eigenvalues smoothly depend 
on the parameter. It is also a common practice to prove or assume (see [24], [14, Ch. 
11, Th. 2] and the referred books), the existence of eigenvectors which depend smoothly 
on the parameter. It is worth-remarking that in the proof by Lancaster in [21] only 
the existence of eigenvectors continuously depending on the parameter is required. We 
propose a simple and alternative proof of (26) where no assumption is made on the right 
and left eigenvector functions.

Let Dε(z0) be the open disc of radius ε > 0 with center z0. For the following result 
F will be either the field of real numbers R or of the complex numbers C. Recall our 
convention that v ∈ Cn×1 is a left eigenvector of A ∈ Cn×n for an eigenvalue z0 if 
v∗A = z0v

∗ where v∗ = v̄T is the transpose conjugate of v.

Proposition 3.1. Let A(ω) ∈ Fn×n be a square matrix-valued function whose entries are 
analytic at ω0 ∈ C. Let z0 be a simple eigenvalue of A(ω0). Then there exist ε > 0 and 
δ > 0 so that z : Dε(ω0) → Dδ(z0) is the unique eigenvalue of A(ω) with z(ω) ∈ Dδ(z0)
for each ω ∈ Dε(ω0). Moreover, z is analytic on Dε(ω0) and

z′(ω) = v(ω)∗A′(ω)u(ω)
v(ω)∗u(ω) , (26)

where, for w ∈ Dε(ω0), u(ω) and v(ω) are arbitrary right and left eigenvector, respec-
tively, of A for z(ω).

Proof. Since z0 is a simple root of p(z, ω) = det(z I − A(ω)), by the analytic implicit 
function theorem, we have, in addition to the first part of the result, that

z′(ω) = −
∂p

∂ω
(z(ω), ω)

∂p (z(ω), ω)
.

∂z
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By the Jacobi formula for the derivative of the determinant and TM formula (1), we 
have (note that since z(ω) is a simple eigenvalue, v(ω)∗u(ω) �= 0 for any right and left 
eigenvectors u(ω) and v(ω))

∂p

∂z
(z(ω), ω) = tr(Adj(z(ω) I −A(ω))

= p′(z(ω), ω)

∂p

∂ω
(z(ω), ω) = − tr(Adj(z(ω) I −A(ω))A′(ω))

= −p′(z(ω), ω)v(ω)∗A′(ω)u(ω)
v(ω)∗u(ω) ,

and the result follows. �
Remark 3.2.

(a) The same conclusion can be drawn in Proposition 3.1 if A is a complex or real 
matrix-valued differentiable function of a real variable. In the first case, we would 
need a non-standard version of the implicit function theorem like the one in [3, 
Theorem 2.4]. In the second case the standard implicit function theorem is enough.

(b) It is shown in [2] that the existence of eigenvectors smoothly depending on the 
parameter can be easily obtained from the properties of the adjugate matrix. In fact, 
since z(ω) is a simple eigenvalue of A(ω) for each ω ∈ Dε(ω0), rank(z(ω)In−A(ω)) =
n − 1 and so by the TM formula, rank Adj(z(ω)In − A(ω)) = 1 (see Remark 2.4). 
Now, Adj(z(ω)In − A(ω)) is a differentiable matrix function of ω ∈ Dε(ω0) and 
(z(ω)In − A(ω))(Adj(z(ω)In − A(ω))) = (Adj(z(ω)In − A(ω)))(z(ω)In − A(ω)) =
det(z(ω)In−A(ω))In = 0. Henceforth, all nonzero columns and rows of Adj(z(ω)In−
A(ω), which are all proportional, are right and left eigenvectors of A(ω) for z(ω), 
respectively. �

The second application is related to the problem of characterizing the admissible 
eigenstructures and, more generally, the similarity orbits of the rank-one updated ma-
trices. There is a vast literature on this problem. A non-exhaustive list of publications is 
[33,30,35,27,6,26,8,5] and the references therein. It is a consequence of Theorem 2 in [33]
(see also [27] and [26]) that if λ0 is an eigenvalue of A ∈ Fn×n with geometric multiplicity 
1 and rank(B − A) = 1 then λ0 may or may not be an eigenvalue of B ∈ Fn×n. It is 
then proved in [27, Th. 2.1] and [26, Th. 2.3] (see also the references therein) that in the 
complex case, generically, λ0 is not an eigenvalue of B. That is to say, there is a Zariski 
open set Ω ⊂ Cn × Cn such that for all (x, y) ∈ Ω, λ0 is not an eigenvalue of A + xyT . 
With the help of the TM formula we can be a little more precise about the set Ω. From 
now on, F will be again an arbitrary field. For F = C, the result which follows can be 
obtained as a consequence of [27, Th. 2.1].
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Proposition 3.3. Let A ∈ Fn×n and let λ0 be an eigenvalue of A in, perhaps, an extension 
field F̃ . Assume that the geometric multiplicity of λ0 is 1 and its algebraic multiplicity is 
m. Let u0, v0 ∈ Fn×1 be right and left eigenvectors of A for λ0. If x, y ∈ Fn×1 then λ0
is an eigenvalue of A + xyT if and only if yTu0 = 0 or vT0 x = 0.

Proof. Let B = A +xyT . Then λIn−A = λIn−B−xyT . Taking into account that λIn−B

is invertible in F(s)n×n, where F(s) the field of rational functions, we can use the formula 
of the determinant of updated rank-one matrices (det(L + xyT ) = (1 + yTL−1x) detL
provided that L is invertible) to get

pB(λ) = pA(λ) + pA(λ)yT (λIn −A)−1x = pA(λ) + yT Adj(λIn −A)x.

In particular,

pB(λ0) = yT Adj(λ0In −A)x. (27)

It follows from (19) that (recall that if w, and z are right and left generating vectors of 
ker(λ0In−A)m and ker((λ0In−A)T )m for the eigenvectors u0 and v0, respectively, then 
zT (λ0In −A)m−1w �= 0)

pB(λ0) = (−1)m+1
r∏

j=1,j �=k

pj(λ0)
uvT

zT (λ0In −A)m−1w
,

where p1(λ), . . . , pr(λ) of (6) are the elementary divisors of A with pk(λ) = (λ − λ0)m. 
Since 

∏r
j=1,j �=k pj(λ0) �= 0, the Proposition follows. �

Remark 3.4.

(i) Note that, by (27) and item (ii) of Theorem 2.6, if the geometric multiplicity of 
λ0 as eigenvalue of A is 2 then Adj(λ0In − A) = 0 and so, λ0 is necessarily an 
eigenvalue of A + xyT . This is an easy consequence of the interlacing inequalities 
of [33, Th. 2] (and also of [27, Th. 2.1], for example). However, proving that those 
interlacing inequalities are necessary conditions that the invariant polynomials of A
and A + xyT must satisfy is by no means a trivial matter.

(ii) An easy alternative proof of Proposition 3.3, which does not use the TM formula, 
was offered by one of the anonymous referees: Setting C = A −λ0In, we can assume 
that u0 and v0 are right and left eigenvectors of C, respectively, for the eigenvalue 
0. The “if” part is obvious: if yTu0 = 0 then u0 is a right eigenvector of C + xyT for 
the eigenvalue 0. And if vT0 x = 0 then v0 is a left eigenvector of C + xyT for that 
eigenvalue. Assume now that v is a right eigenvector of C + xyT for the eigenvalue 
0. Then Cv = −xyT v and, since v0 is a left eigenvector of C for the eigenvalue 0, 
vT0 Cv = 0. Hence vT0 xy

T v = 0 implying that vT0 x = 0 or yT v = 0. If vT0 x = 0 we 
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are done and, otherwise, Cv = −xyT v = 0. This means that v is a right eigenvector 
of C for the eigenvalue 0. It follows from mg(0) = 1 that all right eigenvectors are 
proportional and so yTu0 = 0. �

The eigenvalues of rank-one updated matrices are at the core of the divide and conquer 
algorithm to compute the eigenvalues of real symmetric or complex hermitian matrices 
(see, for example, [12, Sec. 5.3.3], [31, Sec. 2.1]). At each step of the algorithm a diagonal 
matrix D = D1 ⊕ D2 and a vector u ∈ Cn×1 are given such that the eigenvalues and 
eigenvectors of D + uu∗ are to be computed. In order the algorithm to run smoothly, it 
is required, among other things, that the diagonal elements of D are all distinct. Thus, 
a so-called deflation process must be carried out. This amounts to check at each step 
the presence of repeated eigenvalues and, if so, remove and save them. The result that 
follows is related to the problem of detecting repeated eigenvalues but for much more 
general matrices over fields. For F = C it can be obtained from [9, Lem. 2.1].

Proposition 3.5. Let A = A1 ⊕ A2 with Ai ∈ Fni×ni , i = 1, 2. Let x, y ∈ Fn×1 and 
split B = A + xyT = [Bij ]ij=1,2 into 2 × 2 blocks such that Bii ∈ Fni×ni , i = 1, 2. 
Assume also that the eigenvalues of A1 and A2 have geometric multiplicity equal to 1
and Λ(A1) ∩ Λ(B11) = Λ(A2) ∩ Λ(B22) = ∅. Then

Λ(A1) ∩ Λ(A2) = Λ(B) ∩ Λ(A1) = Λ(B) ∩ Λ(A2).

Proof. If λ0 ∈ Λ(A1) ∩ Λ(A2) then λ0, as eigenvalue of A, has geometric multiplicity 
2. By Remark 3.4, λ0 ∈ Λ(B) ∩ Λ(A1) ∩ Λ(A2). Assume that λ0 ∈ Λ(B) ∩ Λ(A1) but 
λ0 /∈ Λ(A2). Let us see that this assumption leads to a contradiction. Let u0, v0 ∈ Fn1×1

be a right and a left eigenvectors of A1, respectively. Then w0 =
[
uT

0 0
]T ∈ Fn×1

and z0 =
[
wT

0 0
]T ∈ Fn×1 are right and left eigenvectors of A, respectively, for λ0. 

Since λ0 /∈ Λ(A2), the geometric multiplicity of λ0 as eigenvalue of A is 1. Then, by 
Proposition 3.3, yTw0 = 0 or zT0 x = 0 because λ0 ∈ Λ(B). Let us assume that yTw0 = 0, 
on the contrary we would proceed similarly with zT0 x = 0. If we put y =

[
yT1 yT2

]T and 

x =
[
xT

1 xT
2
]T , with x1, y1 ∈ Fn1×1, then yT1 u0 = 0 and B11 = A11 + x1y

T
1 . It follows 

from Proposition 3.3 that λ0 ∈ Λ(B11), contradicting the hypothesis Λ(A1) ∩Λ(B11) = ∅. 
That Λ(B) ∩ Λ(A2) ⊂ Λ(A1) ∩ Λ(A2) is proved similarly. �
Remark 3.6.

(i) Note that, with the notation of the proof of Proposition 3.5, B11 = A1 + x1y
T
1

and B22 = A2 + x2y
T
2 . Then, according to Proposition 3.3, λ0 /∈ Λ(B11) unless 

(yT1 u0)(vT0 x1) = 0. Hence, the hypothesis Λ(A1) ∩ Λ(B11) = ∅ is a generic property, 
and so is Λ(A2) ∩ Λ(B22) = ∅.
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(ii) Consider Proposition 3.5 over C. If A and B are both Hermitian or unitary, then 
Λ(B) \

(
Λ(A1) ∩Λ(A2)

)
and Λ(A1) ∪

(
Λ(A2)\(Λ(A1) ∩Λ(A2))

)
strictly interlace on the 

real line or the unit circle, respectively (see, for example, [31, Th. 2.1, Sec. 2]). �
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