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Entropy generation 
from convective–radiative 
moving exponential porous fins 
with variable thermal conductivity 
and internal heat generations
Zia Ud Din1,3, Amir Ali1,3*, Manuel De la Sen2,3 & Gul Zaman1,3

The performance and thermal properties of convective–radiative rectangular and moving exponential 
porous fins with variable thermal conductivity together with internal heat generation are investigated. 
The second law of thermodynamics is used to investigate entropy generation in the proposed fins. 
The model is numerically solved using shooting technique. It is observed that the entropy generation 
depends on porosity parameter, temperature ratio, temperature distribution, thermal conductivity 
and fins structure. It is noted that entropy generation for a decay exponential fin is higher than that of 
a rectangular fin which is greater than that of a growing exponential fin. Moreover, entropy generation 
decreases as thermal conductivity increases. The results also reveal that entropy generation is 
maximum at the fin’s base and the average entropy production depends on porosity parameters and 
temperature ratio. It is further reveal that the temperature ratio has a smaller amount of influence 
on entropy as compared to porosity parameter. It is concluded that when the temperature ratio is 
increases from 1.1 to 1.9, the entropy generation number is also increase by 30% approximately. 
However, increasing porosity from 1 to 80 gives 14-fold increase in average entropy generation.

Abbreviations
h  Convection heat transfer coefficient (W/m2 K)
W  width of the fin (m)
Nr  Dimensionless radiation parameter
g  Gravitational acceleration (m/s2)
x  Direction along x-axis (m)
Pe  Peclet number, dimensionless
Ta  Ambient temperature (K)
Ts  Dimensional surface temperature (K)
Q̈  Dimensionless internal heat generation/absorption parameter
K  Porous fins permeability (Darcy)
τb  Thickness of the fin’s base (m)
keff   Effective thermal conductivity (W/m K)
kf   Air thermal conductivity (W/m K)
S̈g  Porosity parameter
θ  Dimensionless local temperature
�  Thermal diffusivity of air (m2/s)
θb  Dimensionless base temperature
ε  Surface emissivity
ξ∗  Dimensional fin shape parameter
η  Fin efficiency
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ϕ  Porosity of the fin
β  Volume expansion coefficient (K−1)

SA  Average entropy generation (W/m3 K)
S
′′

g  Entropy generation of porous fin (W/m3 K)
A  Area of fin’s surface (m2)
P  fins perimeter (m)
U  Speed of moving fin (m/s)
X  Dimensionless coordinate
L  Fins length (m)
Nc  Dimensionless convection parameter
Tb  Base temperature (K)
T  Dimensional fin temperature (K)
q̇  Internal heat generation (W)
ṁ  Mass flow rate (kg/s)
Cp  Specific heat of the material (J/kg K)
Da  Darcy number (K/t2)
Ra  Rayleigh number 

(

g β t3 (Tb − Ta)/� ν

)

Ks  Solid thermal conductivity (W/m K)
kr  Thermal conductivity ratio (keff /ks)
τb  Semi fin thickness m
θa  Dimensionless ambient temperature
θs  Dimensionless surface temperature
ρ  density of material (kg/m3)
ξ  Dimensionless fin shape parameter
σ  Stefane-Boltzmann constant (W/m2 K4)

ν  Kinematic viscosity of air (m2/s)
NS  Entropy generation number
V(x)  Velocity of buoyancy flow at point x (m/s2)

In mechanical engineering, heat transfer is an extremely well-known phenomenon for different objects. If heat 
transfer rate is less than what is necessary, one of the best ways to boost heat transmission is to use an extended 
surface known as a fin. The mechanism of heat transfer through the fin is to conduct heat from the system to the 
outward surface of the fin through conduction and then transfer this heat to the circumferential medium through 
radiation and convection. Fins come in a variety of shapes, depending on the nature and use of the designs. Fin 
material and surrounding fluid play a vital role in temperature distribution. The requirement for improved heat 
exchangers has significantly increased in the design of industrial and electronic components, as the power used 
by computer micro-processors increased to 100% in approximately two  decades1.

The temperature distribution through fins have been extensively studied using various geometries. The heat 
flow, heat transfer coefficient, weight of star-shaped and annular fins were studied and compared concluding that 
Star-shaped fins perform better than annular  fins2. Numerical and experimental investigations on W-type fin 
arrays revealed that the cooling influence of the W-type finned heat sink is significantly greater than that of the 
longitudinal parallel plate fin. Further, the Y-shaped fin has been studied and concluded that it is more useful in 
a  cavity3. The porous fin of the T-shape has been analyzed, and it has been discovered that temperature distribu-
tion increases with the increase of porosity parameter and drops with increasing Biot  number4. The applications 
of more porous fins to promote heat flow has been studied and revealed to be highly dependent on thermal 
conductivity, where the fin length has shown to be a function of the Rayleigh  number6. The heat transfer from 
a trapezoidal structure’s longitudinal fin arrangement with common illumination has been studied in Ref.5. The 
numerical analysis of longitudinal porous fins of parabolic, rectangular and trapezoidal structures has presented 
in Ref.7. The heat exchange features of a steady magneto-hydrodynamic (MHD) flow of sheared thickening fluid 
were addressed in the presence of convective boundary  conditions10. The heat exchange and flow properties of a 
copper-aluminum/water hybrid nanofluid in the existence of viscous dissolution (MHD), as well as the impact 
of the porous medium across a shrinking sheet, were  investigated11. Similarly, the flow of second-order slip in a 
nanofluid through a moving thin needle has extensively  studied12.

Several numerical techniques have been used to investigate heat transfer through convective fins having vari-
able thermal conductivity. The finite difference method (FDM) and the Taylor transformation have been proposed 
to investigate heat transfer from an annular fin. The author investigated the influence of heat exchange from 
fin’s tip to the neighbouring fluid and emissivity. The results revealed that the Taylor transformation method has 
significant tools for evaluation of the second-order non-linear fins  model8. The Adomian decomposition method 
(ADM) was applied to investigate a radiative-convective longitudinal fin with varying thermal  conductivity9. 
The homotopy perturbation method (HPM) was used to study the effect of variable thermal conductivity on 
the thermal stress of the annular  fin13. It has been determined that the heat exchange rate is affected by both 
thermo-geometric and the thermal conductivity parameters of the fin. The Homotopy analysis method (HAM) 
has applied to analyze coupled differential equations and obtain the competence of the convective longitudinal 
fin having variable thermal  conductivity14. To optimize the structure and mass of a fin, the variational calculus 
approach has been  used15. The decomposition technique was used to estimate the ideal length and affectiveness 
of a rectangular  fin16. Similarly, a hybrid technique combining DTM and FDM has been used to examine fins 
having annular  geometry17. The authors primarily investigates the impact of emissivity, heat transfer coefficient 
and absorptivity on temperature profile.
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The generation of entropy and the temperature have a strong relationship. The strength of the random motion 
of particles is determined by temperature, while entropy is a measure of atomic disorder in a body. In engineering 
systems, thermodynamic optimization examine the function of entropy which explicitly answers the question of 
entropy  generation18. In thermodynamic optimization, the rate of entropy production has become the objective 
function. Entropy generation minimization (EGM) is the subject of the modern era. Some basic engineering 
systems, such as thermal power station units, solar collectors, heat exchangers, air-conditioning systems, and oth-
ers, could benefit from the EGM  technique19,20. The use of EGM improves the combined effect of heat resistance 
and exchanger contact with the ambient fluid flow. The nature of the micro-channel is influenced by pressure 
drop and thermal resistance, according to previous research. EGM, on the other hand, suggested that the entropy 
generation rate be reduced as well. EGM is a technique of determining the best geometry and functionality. A 
perforated fin was improved using the EGM  method21. According to the author’s calculations, the fin’s outer 
surface should be solid, while the inner side should be perforated. As a result, air movement across the fin was 
impossible, and the porous structure simply influenced the fin’s weight.

Engineers are working to improve thermal interaction and thermodynamic performance through the design 
of heat exchangers. As a result, a better heat exchanger provides the least amount of entropy. By studying entropy 
generation, a method for finding the ideal fin design and reducing energy loss in a thermal system has been 
 developed22. Entropy production in nanofluids has also been  studied23. For example, in a cuboid container filled 
with nanofluids, entropy formation and two-dimensional natural convection were examined concluded that the 
Rayleigh number and the solid volume fraction have direct and inverse relations with entropy  generation24. The 
use of numerous entropy generating units as a main factor in defining heat exchanger efficiency was  suggested25. 
In that technique, the overall generation of entropy associated to fluid friction and heat transmission was for-
mulated. Because entropy production is proportional to the amount of energy lost, the study has expanded to 
include mass transfer and manufacturing  costs26. Some studies has also attempted at the rates of local entropy 
formation in mixed convective flow over a transverse fins array at the vertical channel  input27.

Problem statement. The primary objective of this study is to analyze the thermal efficiency and entropy 
production in a convective–radiative exponential perforated fin with internal heat source based on convective 
heat transfer coefficient, surface emissivity and variable thermal conductivity.

Mathematical formulation
Moving exponential perforated fin with and variable thermal conductivity and internal heat generation is con-
sidered. The dimensions of the fin are as follows: fin width W, length L and thickness t as presented in Fig. 1. 
The porous design allows the flow to move across the fin. The hot outside surface of the fin loses heat both by 
radiation and convection. If just radiation exists, or if induced convection is missing or weak, radiation would 
play an important part. To obtain the governing equation, it is supposed that the fin is isotropic, homogene-
ous and saturated with single-phase fluid, and the Darcy model is used to investigate the fluid-porous medium 
interaction.Furthermore, it is considered that both the solid and fluid bodies are in thermal balance with one 
another. The exponential fin shape is given  by28

where ξ∗ denote fin shape  parameter29. It should be noted that ξ∗ = 0 indicate rectangular fin and |ξ∗| �= 0 
represent exponential fin, while τb is the semi-fin thickness. Without loss of assumption, the thickness at the 
base is fixed to 1.

Based on Darcy’s model and the aforementioned assumptions the energy equation for porous fin can be 
expressed as

(1)f (x) = τb e
ξ∗x ,

(2)
q̇x −

(

q̇x +
∂q

∂x
dx

)

− ṁCp

[

T − Ta

]

dx − h(1− ϕ)P
[

T − Ta

]

dx + UρCpf (x)
dT

dx
dx + q̇f (x)− εσP

[

T4 − T4
a

]

dx = 0,

Figure 1.  Schematic diagram of rectangular fin, decay and growing exponential fin.
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considering dx → 0 and simplifying

From Fourier’s law of heat  conduction30, we have

Putting Eq. (4) in Eq. (3), we obtain

The rate of mass flow ṁ of the air traveling across the permeable material is represented  by31

where V(x) represents buoyancy flow velocity at any point x can be achieved from Darcy’s  law32 as

The keff (T) is variable thermal conductivity of the fin is defined as

Substituting Eqs. (6)–(8) in Eq. (5), we obtain

To non-dimensionalize the above equation, we assume

simplifying the formulation of the moving exponential fin having variable thermal conductivity reduce to

We consider fin with adiabatic boundary conditions with finite length L. Further, at x = 0 ⇒ T = Tb , and 
dT
dx

∣

∣

∣

x=L
= 0 with dimensionless boundary conditions

Entropy generation
Entropy equilibrium for every system go through any process using second-law of thermodynamics can be 
represented  as33

where entropy transfer rate by mass flowing at a rate of ṁ and heat transfer rate Q̈ are S̈mass = ṁṠ and S̈heat = Q̈/T . 
The entropy equilibrium can be represented on unit mass basis as

For steady stat, dṠ/dt will be zero. By considering the output and input in control volume, it is possible to 
simplify the above equation in the form

Let fin made of in-compressible porous medium and air is an ideal gas, then an expression for (ṡi − ṡo) can 
be expressed  as34

(3)−
dq̇

dx
− ṁ Cp

[

T − Ta

]

− h (1− ϕ)P
[

T − Ta

]

+ U ρ Cp f (x)
dT

dx
+ q̇ f (x)− ε σ P

[

T4 − T4
a

]

= 0.

(4)q = −keff (T) f (x)A
dT

dx
.

(5)

d

dx

[

keff (T) f (x)A
dT

dx

]

− ṁ Cp

[

T − Ta

]

− h (1− ϕ)P
[

T − Ta

]

+ U ρ Cp f (x)
dT

dx
+ q̇ f (x)− ε σ P

[

T4 − T4
a

]

= 0.

(6)ṁ = ρ V(x)W △x,

(7)V(x) =
β g K

ν

[

T − Ta

]

.

(8)keff (T) = ϕ kf + (1− ϕ) ks = keff ,a

[

1+ �

(

T − Ta

)]

.

(9)

d

dx

[

(1+ �(T − Ta)f (x)
dT

dx

]

+
U ρ Cp

A keff ,a
f (x)

dT

dx
−

h (1− ϕ)P

A keff ,a

[

T − Ta

]

−
ρ β g Cp K W

A ν keff ,a

[

T − Ta

]2
+ q̇ f (x)

−
ε σ P

A keff ,a

[

T4 − T4
a

]

= 0.

ξ∗ =
ξ

L
, X =

x

L
, θ =

T − Ta

Tb − Ta
, Sh =

Da Ra (L/t)
2

kr
, N2

c =
h (1− ϕ)P L2

Akeff ,a
, Nr =

ε σ P L2T3
b

A keff ,a
, Q̈ =

q̇ L2

Tbkeff ,a
, Pe =

U P L

Aα
,

(10)

[

1+ � · θ
] d2θ

dX2
+

[

ξ (1+ � · θ)+ Pe

] dθ

dX
+ �

[ dθ

dX

]2
− e− ξ X

[

N2
C + Sh · θ + Nr · θ

3
]

× θ + Q̈ = 0.

(11)θ(0) = 1, θ ′(1) = 0.

(12)S̈in − S̈out + S̈g =
dṠ

dt
,

(13)
n

∑

i=1

Q̈

T
+

n
∑

i=1

ṁi ṡi −

n
∑

i=1

ṁoṡo + S̈g =
dS̈

dt
.

(14)
dq̇x

T(x)
−

dq̇x+dx

T(x + dx)
+ ṁ(ṡi − ṡo) + S̈g =0.
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Further, let T(x + dx)− T(x) ≈ 0 and putting Eq. (15) in Eq. (14), we obtain

Putting q = − keff A dT/dx in Eq. (16), we obtain

where S′′g represent entropy generation of the perforated fin depends on the physical and thermal characteristics 
of air and temperature profile within the fin. Using the dimensionless parameters, we obtain

Putting Sh =
Da Ra(L/t)

2

Kr
 in Eq. (18), we obtain

The entropy generation number represented by Ns is defined as Ns =
S
′′

g × L2

keff
 gives

where Tγ is defined as

From Eq. (20), it is evident that NS is dependent on Sh,Nc ,Nr , Pe ,Q, � , θ and temperature ratio Tγ . From Eq. 
(10), it is observed that dimensionless temperature θ also depends on Nc , Sh,Nr , Pe ,Q, � and dimensionless length 
X of the exponential porous fin. Hence NS can be written as

Moreover, the average entropy generation can be find in the whole fin by using the formula

Equation (23) shows that SA depends on temperature ratio Tγ and porosity parameter Sh.

Numerical approach. The shooting approach is used to solve the model numerically. The boundary value 
problem (BVP) is divided into different initial value problems (IVPs) by the shooting approach. In general, we 
shoot trajectories in several directions until we identify one with the appropriate boundary value. The first step 
is to compute the Dirichlet BVP for a second-order linear differential equation

over an interval [c, d]. In this case, the solution to BVP is typically given by a linear combination of the functions 
µ(x) and ψ(x) , which are solutions to IVPs

where µ(t) is a solution to IVP

and ψ(t) is a solution to another initial value problem

(15)(ṡi − ṡo) = −

∫ T(x)

Ta

Cp

T
dT = −Cpln

T

Ta
.

(16)S̈g =ṁCpln
T

Ta
+

1

T

∂ q̇x

∂x
dx.

(17)S
′′

g =
S̈g

W t dx
= − keff A

∂2T

∂x2
+

ρ Cp g K β

t ν
ln

T

Ta
(T − Ta),

(18)
S
′′

g × t2

kf
=Da Ra × ln(1 + Tγ × θ) × θ − kr (t/L)

2
[

θ + (Tγ − 1)−1
]−1 ∂2θ

∂X2
.

(19)
S
′′

g × L2

keff
=Sh × ln(1 + Tγ × θ) × θ −

[

θ + (Tγ − 1)−1
]−1 ∂2θ

∂X2
, 0 ≤ X ≤ 1.

(20)

Ns = Sh × ln(1 + Tγ × θ) × θ −
e− ξ X

[

N2
C + Sh · θ + Nr · θ

3
]

× θ −
[

ξ (1+ � · θ)+ Pe

]

dθ
dX − β

[

dθ
dX

]2
− Q

[

1+ � · θ
][

θ + (Tγ − 1)−1
] ,

(21)Tγ =
Tb

Ta
.

(22)Ns(X) =g (Tγ , Sh, X).

(23)SA =

∫ 1

0
Ns (X) dX = G (Tγ , Sh).

(24)d2Y

dx2
= f (x)

dY

dx
+ g(x)Y + h(x) subject to Y(c) = γ , Y(d) = δ,

(25)Y(t) = µ(t)+
δ − µ(d)

ψ(d)
ψ(t),

(26)d2µ

dt2
= f (t)

dµ

dt
+ g(t) µ+ h(t), subject to µ(c) = γ ,

dµ(c)

dt
= 0,
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Numerical results and discussion
Here, we study numerically entropy generation inside growing exponential, decay exponential, and rectangu-
lar porous fin and compare results to specify suitable geometry for practical application of fin. We have pro-
posed dimensionless equation for evaluation of entropy generation. The equations are solved numerically by 
Runge–Kutta method of order 4 (RK4). In moving exponential porous fin, the model equation is approximated 
by assuming radiation–conduction number Nr = 0.4 , convection–conduction number Nc = 0.5 , Peclet number 
Pe = 0.4 , internal heat generation Q = 0.3 and various values of Sh and Tγ . First, we consider Eq. (10) to study 
the temperature distribution. Using the value of non-dimensional temperature θ calculated in Eq. (10), entropy 
generation number and average entropy for different fin geometries are calculated from Eqs. (20) and (23).

The variance of temperature profile over the length of exponential porous fins is shown in Fig. 2. The results 
reveal that temperature distribution decreasing by increasing the numerical value of porosity. It is discovered that 
temperature profile of the solid fin is greater than that of the fin with higher porosity, because the high porosity 
decrease the effective heat conductivity of the fin due to the absence of solid materials. Simultaneously, convec-
tive heat transmission increases as more fluid passes through pores.

The effect of entropy production for a porous rectangular fin with insulated tip for different values of Tγ and 
Sh are shown in Figs.  3, 4 and 5. From the figures, one can see that at specific values of Tγ and Sh , the entropy 
generation is maximum at the fin’s base. It is evident that, particles of the material move faster when tempera-
ture increases around the fin’s base which increase the entropy production number. When temperature drops 

(27)d2ψ

dt2
= f (t)

dψ

dt
+ g(t) ψ + h(t), subject to ψ(c) = γ ,

dψ(c)

dt
= 0.
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Figure 2.  Effect of Sh on temperature distribution.
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throughout the length of a fin, the measure of entropy production drops suddenly and the length of perforated 
fin increases and become negligible at fin’s tip. The particles of the material gain kinetic energy when the tem-
perature ratio rises. The molecules that move faster at higher temperatures have more disorder than particles 
that move slowly at lower temperatures. The results also reveals that the influence of Tγ is lower than that of 
Sh as the porosity parameter attempts to oppose fluid flow and hence increases the overall entropy generation 
rate. By increasing the value of Sh there is a large difference in entropy production which decreases as length 
increases, and for X > 0.25 the difference in entropy production is negligible. When the Rayleigh number is 
high, due to the enhanced buoyancy force and convection heat transfer, the fluid friction is greater which cause 
the entropy generation number Ns to rise. Further, when the Darcy number grows, so does the entropy genera-
tion number. Thermal mixing is poor at lower Darcy numbers (Da) , and heat transfer irreversibility dominates 
overall entropy generation. It is also clear from these figures that thermal conductivity and entropy creation are 
inversely related. By increasing thermal conductivity parameter entropy generation will drop-down and vice 
versa. It conclude that, when thermal conductivity increases temperature distribution will increase, and as a 
result entropy generation decreases.

The effect of entropy production for a decay exponential porous fin for a variety of values of Tγ and Sh are 
presented in Figs. 6 and 7. In the case of decay exponential fin, we observed that entropy generation is maxi-
mum at base of the fin and decreasing along fin’s length. The results indicate that there is a significant increase 
in entropy production number for several values of Sh and this difference dropped sharply as the length of fin 
increases. By comparing the results in Figs. 3, 4 and 5 with Figs. 6 and 7 one can see that entropy production in 
the decay exponential fin is higher than rectangular fin. This is due to availability of more space for conduction 
of heat at base in case of decay exponential fin as a result molecules will obtain maximum kinetic energy and 
entropy generation will be maximum.

The effect of entropy production for a growing exponential porous fin for a variety of values of Sh and Tγ are 
demonstrated in Figs. 8 and 9. One can see that in the case of growing exponential fin entropy generation number 
is maximum at fin’s base for rectangular and decay exponential. By comparing the results of entropy generation 
number in the case of rectangular, decay, and growing exponential fins it is observed that entropy production 
number in the decay exponential fins is higher than that of rectangular fin while entropy production number 
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of the rectangular fin is lower than growing exponential fin. This is because more space is available for conduc-
tion of heat to the fin at the base in the decay exponential fin as a result entropy generation will be maximum.

Furthermore, the outcomes also show the effect of Tγ and Sh on Ns . It is obsrved that at particular value of Sh by 
increasing the temperature ratio, entropy generation number increases. It is Also noted that, Sh has a significant 
role in entropy generation at fin’s base, because for larger value of Sh , entropy generation increases exponentially, 
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Figure 6.  Entropy generation number in decay exponential porous fin for � = 0.3.
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Figure 7.  Entropy generation number in decay exponential porous fin for � = 1.
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Figure 8.  Entropy generation number in growing exponential porous fin for � = 0.3.
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but this difference becomes smaller as fin length and become negligible at the tip of the fin. Entropy generation 
decreases as the length of the fin increases because temperature along the fin decreases. The effect of variable 
thermal conductivity parameter � is also analyzed and observed that entropy generation decrease as thermal 
conductivity increase for all cases. With the increase of thermal conductivity parameter temperature dissipation 
increases due to which kinetic energy of molecules decreases and as a result entropy generation drops-down.

The effects for an average entropy of rectangular, decay and growing exponential fins with an adiabatic 
boundary condition for � = 1 are presented in Fig. 10a–c, respectively. The results show that both Sh and Tγ are 
directly related to the average entropy of the perforated fins. The result also demonstrates that the influence of 
porosity parameter on the entropy production is larger as compared to Tγ . It is observed that with an increase in 
the value of Sh from 1 to 80 average entropy generation increase about 14 times. However, increasing Tγ from 1.1 
to 1.9 an increase of about 30% is observed. Hence, it is observed that the influence of Sh and Tγ on the average 
entropy in the adiabatic tip decay exponential porous fin is larger than that of the rectangular porous fin, which 
is higher than growing exponential porous fin. It is also observed that as the thermal conductivity increases 
entropy generation decreases.

Conclusion
We have studied entropy generation in a variety of porous fins having temperature dependent thermal conduc-
tivity together with convection, radiation and internal heat generation. It is observed that entropy production 
number NS depends on porosity parameter, dimensionless temperature distribution and temperature ratio. The 
entropy generation obtained maximum at base of fin for specific value of Tγ and Sh . The porosity parameter has 
a significant effect on entropy production around the fin’s base, but this effect reduces as we go nearer to the fin’s 
tip. Moreover, The influence of the porosity parameter on the entropy production number obtained is greater 
than that of the temperature ratio. The difference among the entropy production number for various values of 
Sh and Tγ is minimized as one approaches the fin’s tip. In various types of porous fins, boosting both Sh and Tγ 
has a direct influence on increasing the mean entropy production number. Hence, from the comparison, it is 
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Figure 9.  Entropy generation number in growing exponential porous fin for � = 1.
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concluded that entropy generation in decay exponential fin is higher than growing exponential fin which is higher 
than rectangular fin. This means that, in the options of the porous fins, rectangular fin is one of the better choice.
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