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Abstract

Density functional theory (DFT) has become one of the most popular and successful
methods for determining the microscopic properties of matter. In particular, its
low computational cost makes it an excellent method for ab-initio calculations.
The successes and failures of the theory crucially depend on the accuracy of
the approximations for the exchange-correlation (xc) functionals. However, some
quantities are not accessible with original DFT and therefore one needs to extend
the framework. In this thesis, we study equilibrium properties and propose
methodological developments on the steady-state transport problem within DFT.
We apply our general results for model Hamiltonians, a perfect scenario with full
control of the interactions to explore the structural properties of the xc functionals
which, in the case of strong correlations, are governed by steps at integer occupation.

The thesis is divided in two parts. Part I explores the multi-orbital situation at
equilibrium and low temperatures. From an analysis of stability diagrams, we find
that the functionals of a double quantum dot in a thermal bath subject to generic
density-density interactions and Hund’s rule coupling can be decomposed into four
basic potentials based on the single orbital problem. In addition, we generalize this
decomposition for an arbitrary number of interacting dots subject to inter- and
intra-Coulomb repulsion. We also study the properties of the xc functionals for a
strongly correlated double quantum dot asymmetrically coupled to the electrodes,
where abrupt population inversions occur between the two dots.

Part II deals with the non-equilibrium transport problem. We extend the steady-
state DFT framework to arbitrary thermal gradients between the electrodes, finding
a general, exact expression for the Seebeck coefficient which is successfully applied
for the single impurity Anderson model in the Kondo regime. Furthermore, we
construct a general and formally exact density functional theory formalism which
gives access not only to the correct density and electrical current, but also to the heat
current of the interacting system in the steady-state. The linear response regime of
this new framework is presented and gives access to all the transport coefficients
in terms of quantities of the theory. We further apply the theory to the Anderson
model and parametrize the xc functionals from a reverse engineering procedure
in the Coulomb Blockade regime. Finally, using our theory in a three-terminal
setup with one of the terminals only weakly connected, a general expression for the



non-equilibrium spectral function at arbitrary temperature is derived and applied
for an Anderson impurity at finite bias voltage, capturing the splitting of the Kondo
resonance as predicted by numerically exact many-body approaches.



Resumen

La teoría funcional de la densidad (DFT) se ha convertido en uno de los métodos más
exitosos y utilizados para determinar las propiedades microscópicas de la materia.
En concreto, su bajo coste computacional lo convierte en un excelente método para
cálculos ab-initio. Los logros y fallos de la teoría dependen fundamentalmente de
la precisión de las aproximaciones de los funcionales de intercambio y correlación
(xc). Sin embargo, algunas cantidades no son accesibles a través del formalismo
DFT original, y por tanto, una extensión del formalismo es necesaria.

En esta tesis, se revisan y proponen diferentes marcos teóricos basados en la teoría
funcional de la densidad que tienen como objetivo describir el transporte eléctrico y
térmico debido a electrones en el estado estacionario a través de uniones nanoscópicas.
El estudio se focaliza fundamentalmente en sistemas fuertemente correlacionados,
sistemas que usualmente se han considerado no poder ser descritos mediante la
teoría funcional de la densidad. Mediante el uso de sistemas Hamiltonianos modelo y
diferentes métodos tanto analíticos como numéricos, la estructura de los funcionales
de intercambio y correlación necesarios para una correcta descripción de estos
sistemas es estudiada, hayándose necesaria la inclusión de funciones de tipo escalón.

En primer lugar, las propiedades de equilibrio de los funcionales xc de puntos
cuánticos multiorbitales se tratan en la parte I, donde se toma como pieza fundamen-
tal sobre la que construir funcionales una impureza única, problema bien estudiado
en la literatura que sirve como base para la descripción de situaciones más complejas.
Los potenciales xc de puntos cuánticos dobles en la colectividad macrocanónica
sujetos a interacciones generales del tipo densidad-densidad y con interacción del
tipo Hund’s rule coupling se estudian en el capítulo 3. Para ello, se considera
la solución exacta del problema de muchos cuerpos y se invierte numéricamente
(ingeniería inversa) las soluciones exactas de los funcionales necesarios. A bajas
temperaturas, la estructura de los potenciales de Hartree e intercambio y correlación
(Hxc) fundamentalmente se compone de funciones de tipo escalón cuyas posiciones
exactas dependen del régimen definido por los parámetros de interacción. Estas
estructuras pueden ser entendidas y derivadas a través de un análisis de los diagramas
de estabilidad. Tanto la posición de todas las funciones escalón, como la altura de
cada una de ellas, es obtenida de este modo. Alternativamente, la descomposición
del término de interacción del Hamiltoniano en diferentes componentes, permite
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racionalizar las estructuras escalonadas de los potenciales Hxc en componentes bási-
cos relacionados con el problema de un único orbital (problema cuya parametrización
es bien conocida) de una manera sencilla. Además, la descomposición en potenciales
básicos se generaliza a sistemas multiorbitales arbitrarios para la situación en la
que las repulsiones Coulombianas entre electrones de un mismo punto cuántico
son más grandes que la repulsión Coulombiana (que se considera común) entre
electrones de distintos puntos cuánticos. La implementación de los potenciales Hxc
parametrizados mediante estas dos vías equivalentes, muestran que los cálculos DFT
proporcionan resultados excelentes (a bajas temperaturas) en concordancia con los
resultados numéricos exactos para puntos cuánticos dobles, triples y cuádruples.

La unión de los puntos cuánticos con los terminales o depósitos de electrones, da
lugar a la configuración de transporte electrónico. En el capítulo 4, estudiamos la
estructura de los potenciales Hxc del punto cuántico doble cuando los acoplamientos
a los depósitos son diferentes para cada punto. A bajas temperaturas y energías in
situ similares, el vaciado brusco de una impureza y el llenado de la otra impureza a
medida que el voltaje de la puerta varía continuamente, corresponde con el efecto
conocido como cambio de ocupación de nivel (LOS). Mediante la variación del
acoplamiento de una de las impurezas con los terminales, se puede controlar el LOS.
En este capítulo, el objetivo se centra en la descripción de potenciales Hxc que
permitan describir cualitativamente este efecto. Para ello se proponen estructuras
basadas en el punto cuántico simple con un intercambio en la dependencia local del
acoplamiento a los terminales, es decir, cada punto cuántico o impureza depende
del acoplamiento del otro punto con los terminales. La comparación con resultados
de un método exacto para este tipo de problemas de impurezas (NRG), destaca
la precisión de la conductividad no interactuante (KS) a bajas temperaturas, que
se describe correctamente dentro del marco propuesto por Landauer y Büttiker
(LB + DFT) de transporte usando DFT (basado en funciones de Green) y está de
acuerdo con la regla de la suma de Friedel. Sin embargo, la correcta descripción
de las conductividades eléctricas para el punto cuántico doble depende en gran
medida de los detalles de la parametrización de los funcionales Hxc . Una estructura
del funcional unificada desde el acoplamiento simétrico hasta el acoplamiento
completamente asimétrico con los electrodos es todavía una cuestión abierta.

La situación de transporte fuera de equilibrio se considera en la parte II. Un marco
formalmente exacto en este contexto es DFT dependiente del tiempo (TDDFT).
Dado que en esta tesis el estudio se focaliza en el régimen de estado estacionario, se
considera un marco general propuesto recientemente para el transporte eléctrico en
el estado estacionario (i-DFT) [41] que tiene la ventaja sobre TDDFT de que lo
funcionales de intercambio y correlación solo dependen de la región molecular, a
difrerencia de TDDFT donde los funcionales dependen de posiciones lacalizadas en
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los terminales. En el capítulo 5, se generaliza i-DFT a la situación en la que hay un
gradiente de temperatura finito entre los terminales o depósitos de electrones. Como
consecuencia directa, se deriva una expresión exacta y analítica para el coeficiente
de Seebeck del sistema interactuante que se compone como la suma de un término
no interactuante (KS) y un término de corrección relacionado con una derivada de
la corrección xc al voltaje del sistema en i-DFT. También se deriva una expresión
general para la contribución electrónica a la conductividad térmica dentro de i-DFT,
pero puesto que el formalismo i-DFT está por construcción limitado a la correcta
descripción de la corriente eléctrica no está garantizada una correcta descripción
de la conductividad térmica (cantidad derivada a través de la corriente de calor).
Para el modelo de Anderson de una impureza simple (SIAM) se construye una
aproximación a los funcionales Hxc tanto en el régimen Coulomb Blockade (CB) así
como en el régimen de Kondo. En el CB se utiliza el proceso de ingeniería inversa
de manera analítica considerando una función espectral modelo de un sistema no
acoplado. Se encuentra que tanto el funcional del potencial de puerta Hxc como el
potencial xc del voltaje consisten en la suma o diferencia de dos términos, cada uno
de los cuales depende solo de la temperatura de uno de los terminales. Se comparan
los coeficientes de transporte para el SIAM obtenidos con nuestro método con los
de los cálculos NRG bien datados en la literatura. Si bien nuestra parametrización
por construcción se vuelve exacta a altas temperaturas, en el régimen de Kondo
(T � TK) la concordancia es razonable pero no perfecta para la conductividad
eléctrica y el coeficiente de Seebeck. Sin embargo, la conductividad térmica de
i-DFT no captura el comportamiento correcto esperado en el problema de muchos
cuerpos. Esta discrepancia es totalmente esperada ya que i-DFT por construcción
está destinado a la descripción de la densidad en la región molecular y la corriente
eléctrica a través de ella, pero no se espera que también capture correctamente
la corriente de calor (o energía) a través de la región molecular. Por tanto, en
el capítulo 6 se propone un nuevo marco teórico dentro de la teoría funcional de
la densidad, al cual llamamos iq-DFT, para describir el transporte electrónico y
de calor (energía) en el estado estacionario para una unión (molecular) conectada
a N conductores y llevada a situaciones fuera de equilibrio a través de voltajes
externos y/o gradientes de temperatura entre los terminales. Los cimientos de
iq-DFT se basan en la correspondencia uno a uno entre el conjunto de "densidades"
y el conjunto de "potenciales" que probamos para un entorno finito de voltajes no
nulos y gradientes térmicos alrededor del equilibrio. El sistema KS correspondiente
requiere 2N − 1 potenciales de intercambio y correlación que deben aproximarse
en la práctica. El formalismo i-DFT puede verse como una aproximación a iq-
DFT donde las contribuciones xc al campo Ψ se desprecian por completo y la
contribución xc a el potencial local (puerta) es independiente de la corriente de
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calor. Se desarrolla la respuesta lineal del formalismo iq-DFT para la situación de
dos terminales, permitiendo acceder a todos los coeficientes lineales de transporte
térmico, es decir, la conductividad eléctrica, el coeficiente de Seebeck, así como la
contribución electrónica a la conductividad térmica. Todos estos coeficientes pueden
expresarse exactamente en términos de cantidades accesibles a través de iq-DFT, lo
que lleva a correcciones xc para los tres coeficientes de transporte. Como primera
aplicación del formalismo, se procede a calcular el régimen de respuesta lineal al
modelo de Anderson. A través de un proceso de ingeniería inversa y mediante el
uso de una función espectral modelo (del sistema interactuante) para el regimen
CB, se invierten de manera analítica las parametrizaciones de las derivadas de los
potenciales xc necesarios en iq-DFT. Estos potenciales permiten reproducir con
precisión los coeficientes de transporte del modelo de muchos cuerpos. Se espera
que las parametrizaciones sirvan como un primer paso hacia la construcción de
funcionales xc aproximados más allá del régimen CB, en analogía con el capítulo
anterior. Como cualquier marco DFT, debido a la naturaleza no interactuante
del sistema KS, se puede esperar que iq-DFT sea un sistema numérico altamente
eficiente para el cálculo ab-initio del transporte de corrientes electricas y de calor a
través de sistemas en la nanoescala a medida que se disponga de aproximaciones
precisas para los funcionales de intercambio y correlación. Si bien la construcción
de tales funcionales que se puedan usar en cálculos ab-initio aún es un trabajo
para el futuro, se espera que nuestros estudios sobre modelos simples puedan ser
una guía útil en el desarrollo de este camino.

Finalmente, en el capítulo 7 se procede a generalizar el formalismo i-DFT
para el transporte en el estado estacionario a través de uniones en la nanoescala
en la situación de múltiples electrodos, configuración particular del previamente
descrito marco iq-DFT. En particular, para la situación de tres terminales en
el límite de acoplamiento débil a uno de los electrodos (límite ideal STM), se
muestra cómo se puede extraer la función espectral del estado de no-equilibrio tanto
a temperatura cero como a termperaturas finitas, extiendiéndose así el trabajo
anterior [108] restringido tanto al equilibrio como a temperatura cero. Para la
situación específica de un modelo de Anderson acoplado a tres electrodos, se procede
a construir un funcional de intercambio y correlación aproximado que describe, al
menos para interacciones no demasiado fuertes, la separación o división del pico de
Kondo bajo la apliación de voltajes finitos dando lugar a resultados razonables y
en concordancia cualitativa con otros métodos computacionales de muchos cuerpos
más demandantes como NRG y QMC de no equilibrio. Aunque para interacciones
más fuertes nuestra aproximación no captura la división del pico de Kondo, no
obstante se procede a identificar la característica faltante que debe incorporarse
en futuros funcionales. Dado que la configuración multiterminal de i-DFT es
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comparable en esfuerzo computacional a cálculos estándar LB + DFT, se puede
producir resultados y estudiar systemas actualmente inaccesibles para los métodos
precisos de muchos cuerpos fuera de equilibrio.
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1
Introduction

Quantum mechanics is a fundamental theory for the description of the microscopic

properties of matter. The evolution of the quantum state of the system of interest can

in principle be obtained by solving the many-body Schrödinger equation. Although

the procedure is conceptually straightforward, it becomes computationally really

demanding as the number of particles in the problem increases. During the last

decades, Density functional theory (DFT) has become the most popular method for

an ab-initio description of matter, from atoms, to molecules and solids [1–3] due to

its favorable balance of accuracy and numerical efficiency [4–6]. The fundamental

theorems of DFT establish that, for a given (static) external potential, there is

a unique many-body ground state density which can alternatively be completely

determined by solving the one-electron Schrödinger equation of an effective non-

interacting system. The price to paid is in the so-called exchange-correlation (xc)

potential, a functional of the density which has to be approximated.

The foundation theorems of DFT shown that the universal xc functional exists,

making DFT a formally exact theory. In practice, the form of the universal functional

is unknown, but many different approximations have been developed in the last 60

years. This led to a wide variety of successful applications of DFT to many different

problems in physics and chemistry [7–9], particularly for the prediction of the

structure and thermodynamic properties of molecules and solids [10]. Nevertheless,

1



2 1. Introduction

there are some physical situations where standard approximations fail at properly

describing the ground state density of the system, e.g., for the case of so-called

strongly correlated systems. Several authors have contributed towards a progress in

the description of such systems from a DFT perspective [11–18] although the lack

of DFT functionals with the correct features (in particular for ab-initio calculations)

led to a combination of DFT with other many-body approaches for the correct

description of the strongly correlated physics [19–22]. In this direction, model

Hamiltonians serve as a perfect basic scenario to study these systems, since the

full control of the interaction parameters together with the low computational

effort paves the way to understand the exact properties which the corresponding

DFT xc functionals must have [23–26].

While the original ground state DFT formulation has been extremely successful

for the computation of structural properties, there are many important issues which

extend beyond its reach. Most notably, time-dependent processes and excited-

state properties of electronic systems either are not included at all or are not

easily accessible. This motivated the development of the time dependent version

of DFT, namely TDDFT [2, 27, 28], which gives access to the non-equilibrium

time-dependent density. Moreover, it also gives access to the excitation energies

of a many-electron system [2, 28, 29].

In principle, TDDFT is a proper framework for the study of electronic transport

of a biased system both in the time domain but also in the steady-state. In TDDFT

the steady-state is achieved in the long-time limit of the time evolution of the

system after switching on a DC bias. Within TDDFT, one can hope to describe

the (longitudinal) part of the electronic (steady) current. However, in practice it

turns out to be difficult to construct (ultra-nonlocal) TDDFT functionals correctly

describing transport [30–33]. For the additional description of heat (or energy)

current, the formalism has been extended recently [34–36], but applications have so

far been restricted to non-interacting systems [37] due to the lack of approximations

to the corresponding xc functionals.
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Another widely used framework for steady-state electronic transport combines

DFT with the Landauer-Büttiker approach (LB+DFT) [38–40]. This LB+DFT

formalism, also known as DFT+NEGF (DFT plus Non-equilibrium Green Func-

tions), treats transport as a scattering problem of non-interacting electrons. The

resulting Landauer formula for the electronic current is physically very intuitive in

that the current is given as energy integral of the transmission function integrated

over the bias window. The LB+DFT framework has become extremely useful in

a qualitative understanding of transport through, e.g., single molecules. However,

one should keep in mind that the non-interacting nature of electrons in LB+DFT

clearly is an approximation. As a consequence, the connection between quantities

of the real system and those calculated within the LB+DFT framework is typically

nontrivial and strong corrections may appear [41, 42]. Furthermore, LB+DFT

uses ground state (equilibrium) DFT in a non-equilibrium situation (transport)

which is formally not justified. Formally, the long-time limit of TDDFT leads to

exchange-correlation (xc) corrections to the bias [30–33, 43, 44] which are absent

in LB+DFT but are difficult to model.

Recently, an alternative DFT approach to transport in the steady-state was

proposed [41]. This so-called i-DFT formalism allows to compute the steady-state

density and electronic current (and thus the electrical conductance). Again, just like

in TDDFT, this is achieved via an xc contribution to the bias. Unlike in TDDFT,

however, xc functionals have been constructed for non-trivial model systems such

as the single impurity Anderson model (SIAM), both in the Kondo as well as in

the Coulomb blockade (CB) regime [45]. Also, in TDDFT the exact xc functional

has memory dependence [3, 46–50] whereas the i-DFT xc functionals only depends

on the steady-state values of the density and the current.

Thermoelectricity [51] is at the heart of a range of technological applications,

e.g., energy conversion, and is intrinsically related to both charge and heat trans-

port. With progress in the manipulation and fabrication of new materials at the

nanoscale and even at the level of single molecules [52–56]), designing more efficient

thermoelectrics requires reliable modeling techniques at an atomistic level.



4 1. Introduction

This thesis concerns about the correct description of both steady-state electrical

as well as the electronic contribution to heat transport within DFT. In part I we

will explore the equilibrium properties of the xc functionals for the description of

multi-orbital systems in the limit of low temperatures, with special attention to

strong correlations. Before introducing the transport setup, in chapter 3 we will

consider the thermodynamical equilibrium situation of impurities in contact with

a particle bath and arbitrary interactions among them. This statistical ensemble

correctly describes the density in the system in a simple form, and will allow us

to reverse engineer the exact properties that the functionals must have. Then, in

chapter 4 we will consider the LB+DFT approach for the description of the electrical

conductance in a double quantum dot. We will propose different functionals able

to accurately reproduce the abrupt transitions in the local occupations of the dots

when the coupling to the electrodes is different in each dot.

The methodological developments for the non-equilibrium transport problem

within DFT will be the focus of part II. In chapter 5 we will generalize the i-DFT

framework to the situation when there is a temperature gradient across the junction.

This extension will allow us to describe the correct linear Seebeck coefficient of the

many-body system and accurate functionals for both the CB and Kondo regime for

the SIAM will be parametrized. The main contribution of this thesis is addressed

in chapter 6 where we will introduce a formally exact theory for the description of

electrical and thermal transport (driven by electrons) in the steady-state within a

DFT framework. In the linear response regime, this theory will give us access to all

the transport coefficients, quantities of great interest in thermoelectric materials

due to their technological applications [57–59]. As a first illustrative application of

the framework we will parametrize the required xc contributions for the transport

coefficients in the CB for the SIAM. Finally in chapter 7 we will show how to extract

the non-equilibrium spectral function of a molecular junction at both zero and finite

temperature within i-DFT by considering a three-terminal setup in the limit of

vanishing coupling to one of the electrodes (ideal STM limit). This general result
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will be applied to the SIAM and the related xc functionals will be constructed,

allowing us to partially capture the splitting of the Kondo peak under finite bias.



6
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In this chapter we will introduce the theory on which the fundamental pillars

of this work are built. First, the principles of the equilibrium density functional

theory are presented at zero and finite temperature. Then, the general framework

is applied in the context of steady-state electronic transport, i.e., a non-equilibrium

problem. Two different approaches will be introduced in this context, namely, the

Landauer-Büttiker+DFT and the i-DFT formalism.

2.1 Equilibrium Density Functional Theory

The foundations of the DFT turn back to 1964 when the seminal paper [60]

by Hohenberg and Kohn provided the fundamental theorems showing that the

7
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Thomas-Fermi model (see [61]) may be regarded as an approximation to an exact

theory for ground states densities.

Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem proofs that time-independent many-particle systems

(under the application of local, spin-independent external potentials) at T = 0K

can be fully characterized by the ground state density.

Let us consider the non-relativistic time-independent Hamiltonian of a system

of N interacting electrons

Ĥ = T̂ + V̂ + Ŵ (2.1)

that can be written in second quantized notation in the form (atomic units are

used throughout)

Ĥ =− 1
2
∑
σ

∫
d3rψ̂†σ(r)∇2ψ̂σ(r) +

∑
σ

∫
d3rψ̂†σ(r)v(r)ψ̂σ(r)

+ 1
2
∑
σ,σ′

∫
d3r

∫
d3r′ψ̂†σ(r)ψ̂†σ′(r′)w(r, r′)ψ̂σ′(r′)ψ̂σ(r) (2.2)

where ψ̂†σ(r) (ψ̂σ(r)) is the field operator which describes the creation (annihilation)

of one particle with spin σ at position r. The usual choice for the two-particle interac-

tion is the Coulomb repulsion w(r, r′) = |r− r′|−1, but other interactions are allowed.

The single-particle probability density of the electronic ground state is given

by (xj ≡ (rj, σj))

n0(r) = N
∑
σ

∫
dx2· · ·

∫
dxN |Ψ0(r, σ,x2, . . . ,xN)|2, (2.3)

where the N -particle wave function Ψ0(r, σ,x2, . . . ,xN) is the lowest energy eigen-

state (ground state) of the static Schrödinger equation ĤΨ0(x1,x2, . . . ,xN) =

E0Ψ0(x1,x2, . . . ,xN).

Since the ground state density of eq. (2.3) is obtained from the wave function,

which in turn is obtained from the Hamiltonian, we can deduce that the ground
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state density is a functional of the external potential v(r). We define the map A

between the set V of external potentials which differ by more than a constant

V = {v | corresponding Ψ0 exists and

non-degenerate, v′(r) 6= v(r + const)}, (2.4)

and the set X of resulting ground states

X = {Ψ0 | Ψ0 ground state corresponding to v0 ∈ V and

Ψ0 = eiφΨ0 with φ being some global phase}. (2.5)

We also define the map B between the set X and the set N of all ground state

densities obtained from some element of X

N = {n0 | n0(r) fullfills eq. (2.3) with Ψ0 ∈ X} . (2.6)

We can easily see that these maps are surjective by construction. Hohenberg and

Kohn demonstrated by reductio ad absurdum that the maps A and B are also

injective (one to one) and therefore bijective, which implies that the maps can be

fully inverted. This allows to state the following theorem:

Hohenberg-Kohn Theorem: For an N -electron interacting system with given

particle-particle interaction, there exists a one-to-one correspondence between

the external potential v(r) and the ground state density n0(r), i.e., the external

potential is a unique functional of the ground state density, v[n0](r), up to an

arbitrary additive constant.

The original proof was restricted to non-degenerate ground state densities, but

the generalization to degenerate ground states is straightforward [62].

Two corollaries related to the total energy functional are extracted from the

theorem. First, since the wave function is a functional of the density ψ = ψ[n],

any ground state observable is a density functional, i.e., O[n] := 〈ψ[n]| Ô |ψ[n]〉.

In particular, the ground state energy can be expressed as the sum of a universal

functional and the external potential contribution

Ev[n] = 〈Ψ[n]| Ĥ |Ψ[n]〉 = F [n] +
∫
d3rv(r)n(r),

F [n] := 〈Ψ[n]| T̂ + Ŵ |Ψ[n]〉 = T [n] +W [n], (2.7)
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where F [n] is universal in the sense that it is the same for any N-electron system

with the same electron-electron interaction, independently of what external potential

is acting on it. On the other hand, as a consequence of the Rayleigh-Ritz principle,

for any fixed external potential v0(r), the ground state energy takes its minimum

value for the ground state density n0(r) corresponding to this external potential

Ev0 [n] ≥ Ev0 [n0]. (2.8)

The ground state density can be found from the Euler equation

µ = v(r) + δF [n]
δn[r] , (2.9)

where µ is the Lagrange multiplier associated with the constraint
∫
n(r)dr = N

Kohn-Sham Equations

In 1965, Kohn and Sham [63] realized that one can use an effective single-particle

picture of non-interacting particles to transform DFT into a practical scheme to

calculate the ground state properties of systems of interacting particles. If we rewrite

the total energy functional of eq. (2.7) by adding and subtracting non-interacting

terms (in the following represented by a s subscript)

Ev0 [n] =Ts[n] +
∫
d3r n(r)v0(r) + EH[n] + Exc[n],

EH[n] =1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′|

,

Exc[n] =T [n]− Ts[n] +W [n]− 1
2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′|

, (2.10)

one observes that the density variational principle of the interacting system is equiv-

alent to the variational principle of the non-interacting system with the potential

vs[n](r) = v0(r) +
∫
d3r′

n(r′)
|r− r′|

+ vxc[n](r), (2.11)

where the xc potential is defined as

vxc[n](r) = δExc[n]
δn(r) . (2.12)
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This implies that the ground state density of any interacting system can be

obtained by solving the one electron Schrödinger equation

Ĥs(r)φj(r) = εjφj(r), (2.13)

where Ĥs(r) =
(
−∇2

2 + vs[n](r)
)
, and the ground state density is related to the

single-particle wave functions through

n0(r) =
N∑
j=1
|φj(r)|2. (2.14)

Eqs. (2.11) to (2.14) are the Kohn-Sham equations. In practice, eq. (2.13) is

solved through a self-consistent procedure: We first need to provide an approximation

for the xc potential eq. (2.12) to calculate the single-particle wave functions and

thereafter the density, which in turn is used to update the Kohn-Sham Hamiltonian

Ĥs(r). This procedure is repeated until the self-consistency between the old and

updated ground state density is reached.

In the last decades, many different approximations for vxc[n] have been developed

[64]. The most popular approximations are the Local-Density Approximation (LDA),

whose energy functional depends solely upon the value of the electronic density at

each point in the space, and the Generalized-Gradient Approximation (GGA) [65]

based functionals, where the non-homogeneity of the true electron density is captured

due to te explicit dependence of the energy functional on the gradient of the density.

Equilibrium Finite Temperature Density Functional Theory

In 1965 D. Mermin presented a seminal paper [66] where he extended the Hohenberg

and Kohn approach to nonzero temperatures. He considered the grand canonical

ensemble (GCE) at fixed temperature T and proof that there is a one-to-one

correspondence between the external potential v(r) and the equilibrium density.

Furthermore, he derived the analogous corollaries at finite temperature for the

grand potential Ω. To show this, it is used a minimum property of the grand

potential analogous to that of the ground state energy. If

Ω[ρ̂] = Tr
[
ρ̂
(
Ĥ − µN̂ + T log ρ̂

)]
(2.15)
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then the grand canonical potential,

Ω = − 1
β

ln Tr
[
e−β(Ĥ−µN̂)

]
(2.16)

is given by Ω[ρ̂] where β = 1/T and ρ̂ is the grand canonical density matrix

(statistical operator)

ρ̂ = e−β(Ĥ−µN̂)

Z
= 1
Z

∑
m

e−β(Em−µNm) |m〉 〈m| (2.17)

with Z = Tr[e−β(Ĥ−µN̂)] is the GCE partition function. The |m〉 are the

many-body eigenstates of the system and Em the corresponding eigenenergies, i.e.

Ĥ |m〉 = Em |m〉. Therefore the density in the GCE reads

n = Tr[ρ̂ n̂] = 1
Z

∑
m

〈m| n̂ |m〉 e−β(Em−µNm). (2.18)

The functional 2.15 satisfies [66]

Ω[ρ̂] ≥ Ω[ρ̂0]. (2.19)

To show the one-to-one correspondence between the external potential and the

equilibrium density, Mermin considered two different potentials leading to the same

density with different Hamiltonians, density matrices and grand potentials. The

comparison between eq. (2.15) for both systems leads to a contradiction which

directly implies that only one v(r) can result in a given n(r). Therefore, since

n(r) uniquely determines v(r) which in turn determines ρ̂, the entire equilibrium

density matrix ρ̂ is a functional of n(r). In particular

F [n(r)] = Tr
[
ρ̂

(
T̂ + Ŵ + 1

β
ln ρ̂

)]
(2.20)

can be taken to be a functional of the density alone with a universal form valid

for all v(r). For a given potential v(r), we define the functional

Ωv[n] =
∫
d3r v(r)n(r) + F [n(r)]. (2.21)
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Figure 2.1: Schematic illustration of the quantum transport setup.

When n0(r) is the correct equilibrium density in the potential v0, then Ωv0 [n0]

equals the grand potential Ω. If n(r) is the equilibrium density associated with

any other potential v(r), then

Ωv[n(r)] ≥ Ωv0 [n0(r)] (2.22)

This completes the generalization of the basic theorems of Hohenberg and

Kohn to finite temperature.

2.2 Non-Equilibrium Density Functional Theory:
Steady-State Transport

In the present section we will generalize the DFT to study steady-state transport, a

particular situation of the Time-Dependent DFT (TDDFT) [3] after the transient

dynamics disappear in the long time evolution of the system. A general approach

for electronic transport within DFT will be introduced, the Landauer-Büttiker

approach. The success and failures of the theory will be discussed and subsequently

the steady-state DFT framework for electronic transport (i-DFT) will be presented

as a promising alternative to study molecular junctions out of equilibrium.

2.2.1 Landauer-Büttiker+DFT

The description of coherent transport of nano-electronic devices requires a full

quantum mechanical description that accounts for the wave-like nature of electrons.

The development of the theory started already in the 1950s [39, 67] and was

extended in particular in the 1980s and early 1990s [38, 68].
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We consider the transport setup as depicted in fig. 2.1, where a molecular central

region that characterizes the physical properties of the system is coupled to two

metallic leads (also called electrodes) at chemical potentials µα and temperatures

Tα with α = L,R, which serve as sink or reservoirs of electrons, smoothly connected

to the central region in order to avoid back-scattering due to the contacts. Under

the application of a finite DC-bias across the junction V = VL − VR the system is

brought out of equilibrium, leading to a finite steady-state current.

The description of this system from a DFT perspective requires the self-consistent

solution of the Kohn-Sham (KS) equations 2.13. Given that the system is neither

finite nor periodic, the transport problem is conveniently formulated in terms of

the non-equilibrium Green functions (NEGF), the resulting LB+DFT formalism

is also known with the acronym DFT+NEGF.

We introduce a localized orthonormal and complete single-particle basis |jq〉

where j denotes an atomic site and q labels the different basis functions localized

at this site [15]. In the Green’s functions language the problem consists of

solving the equation

((ω + iη)I−Hs)G(ω) = I (2.23)

with η → 0+. In eq. (2.23) Hs represents the KS Hamiltonian in the introduced

localized basis

Hs =

HLL HLC 0
HCL HCC HCR

0 HRC HRR

 (2.24)

where Hαα′ is the matrix element connecting the regions α and α′ (α, α′ ∈ {L,C,R}).

The Green’s function can be expressed as

G(ω) =

GLL(ω) GLC(ω) GLR(ω)
GCL(ω) GCC(ω) CCR(ω)
GRL(ω) GRC(ω) GRR(ω)

 . (2.25)

Now solving eq. (2.23) for GCC we find

G(ω) := GCC(ω) = ((ω + iη)IC −HCC −ΣL(ω)−ΣR(ω))−1 (2.26)
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where Σα(ω) = Σeq
α (ω − Vα) is the (retarded) embedding self energy for lead α and

Σeq
α (ω) = HCα ((ω + iη)Iα −Hαα)−1 HαC (2.27)

the equilibrium contribution. The central block of the steady-state density matrix

ρ can be obtained through the following equation [69]

ρ = 2
∑

α=L,R

∫ dω

2π f(ω − Vα)G(ω)Γα(ω)G†(ω), (2.28)

where the broadening matrix

Γα(ω) = i
(
Σα(ω)−Σ†α(ω)

)
. (2.29)

From the density matrix we can calculate the electronic density according to

n(r) =
∑
jq,j′q′

ρjq,j′q′ 〈jq|r〉 〈r|j′q′〉 = 2
∑

α=L,R

∫ dw

2π f(ω − Vα)Aα,s(r, ω), (2.30)

with

Aα,s(r, ω) =
∑
jq,j′q′

[Aα,s(ω)]jq,j′q′ 〈jq|r〉 〈r|j′q′〉 , (2.31)

and

Aα,s(ω) = G(ω)Γα(ω)G†(ω) (2.32)

is the partial KS spectral function. The KS spectral function is then defined as

As(ω) = ∑
α Aα,s(ω). Given that the (non-interacting) Green’s functions depend on

the Hxc potential (through the dependence of the Hamiltonian) and this depends

on the density, eq. (2.30) defines a self-consistent problem. The number of electrons

in the central region C can directly be obtained from the density

N =
∫
C
d3rn(r) = 2

∑
α=L,R

∫ dω

2π f(ω − vα,s)Tr[Aα,s(ω)]. (2.33)

Once the ground state density is obtained, one can calculate the steady-

state electrical current in the present formalism using the famous Landauer-

Büttiker formula

Is = 2
∫ dω

2π (f(ω − VL)− f(ω − VR)) Tr
[
G(w)ΓL(ω)G†(ω)ΓR(ω)

]
. (2.34)
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The subscript s in Is emphasizes the fact that the calculated current from eq. (2.34)

corresponds to the current of the KS system. From the previous definition of the

electrical current we can calculate the KS zero-bias conductance

Gs = ∂Is
∂V

∣∣∣∣∣
V=0

= −2
∫ dω

2π f
′(ω)Tr

[
G(ω)ΓL(ω)G†(ω)ΓR(ω)

]
. (2.35)

The LB+DFT approach is widely used in ab-initio calculations to describe

transport through nanoscale systems, considering transport as a scattering process

of non-interacting electrons where the KS potential is used as the scattering potential.

Nevertheless, it presents one inconvenience: although it provides a path to calculate

the exact equilibrium density of the molecular junction (assuming the correct

Hxc functional is provided), the electrical current obtained (and therefore the

electrical conductance) is only a good approximation to the many-body one when

the interaction effects are small.

2.2.2 Steady-state density functional theory for finite bias
conductances

In 2015 the steady-state density functional theory for finite bias conductances [41]

(i-DFT) was introduced. The main idea behind the theory consists of provide a

formal basis for a DFT based steady-state transport theory.

The foundation of i-DFT is the one-to-one correspondence between the pair of

the external potential in the central region C and the applied bias through the

junction (v(r), V ) and the related density in the region C and the electrical current

across the junction (n(r), I) through the following theorem:

Theorem: For any finite temperature and fixed external potentials in the leads,

the map (v(r), V )→ (n(r), I) is invertible in a finite bias window around equilibrium,

i.e., we have v(r) = v[n, I](r) and V = V [n, I].

To prove the theorem [41] it is enough to show that the Jacobian of the system

is non-vanishing. We do not explicitly show the proof in the present section, but

some generalizations with their corresponding proofs will be shown in the following



2. Theoretical Background 17

chapters1. Since the Jacobian of the system is a continuous function around

equilibrium, there exists a finite interval out of equilibrium where the theorem holds.

However, it is important to note that the proof goes through independent of the

form of the interaction, in particular also for no interaction at all. Suppose that

we have the pair (n(r), I) of interacting steady-state “densities” corresponding to

the pair of potentials (v(r), V ). If we assume that these “densities” are non-

interacting representable, i.e., that they can be reproduced through the pair

of potentials (vs(r), Vs) of a non-interacting system, then we can define the xc

potentials of the theory

vHxc[n, I](r) = vs[n, I](r)− v[n, I](r), (2.36)

Vxc[n, I] = Vs[n, I]− V [n, I]. (2.37)

For given potentials (v(r), V ), the KS equations of i-DFT which allow to repro-

duce the interacting densities from effectively non-interacting equations, then read

n(r) =2
∫ dw

2π

(
f(w − V + Vxc[n, I]

2 )AL,s(r, w) + f(w + V + Vxc[n, I]
2 )AR,s(r, w)

)
,

(2.38a)

I =2
∫ dw

2π

(
f(w − V + Vxc[n, I]

2 )− f(w + V + Vxc[n, I]
2 )

)
Ts(w), (2.38b)

where the KS spectral function has been defined in eq. (2.31) and the transmission

function T (w) = Tr
[
G(w)ΓL(w)G†(w)ΓR(w)

]
. Eqs. (2.38) are formally equivalent

to the ones from the LB+DFT approach (eqs. (2.30) and (2.34)) with the difference

that the dependence on the bias has been replaced by the KS bias Vs = V + Vxc.

Given that both vHxc and Vxc depend on the two basic variables, eqs. (2.38) define

a self-consistent problem of two coupled equations. Notice that in the i-DFT

framework, the steady-state current obtained from eq. (2.38b) corresponds now to

the correct many-body quantity (assuming that the correct pair of xc functionals is

provided). As a direct consequence, upon linearization of this equation the exact
1 In chapter 5 the theorem will be extended for situations in presence of a thermal gradient. In

chapter 6 the theorem will be generalized to include the description of the heat current in multiple
terminals situations.
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many-body electrical conductance can be expressed from i-DFT; the inclusion of

the xc bias leads to the electrical conductance of te interacting system expressed

purely in terms of i-DFT accessible quantities

G = Gs

1−Gs
∂Vxc
∂I

∣∣∣
I=0

, (2.39)

where Gs corresponds to the KS conductance defined in eq. (2.35).

2.3 Lattice Hamiltonians

In this section some particular models will be introduced to highlight the different

results obtained for the transport quantities. In particular, the xc correction

for the bias within i-DFT will allow to describe the many-body physics of the

Coulomb Blockade regime, where the LB+DFT fails even when providing the

exact vHxc functional.

Our interest will be focus on the study of model Hamiltonians describing

impurities or quantum dots (QD) in a transport setup. In this thesis we will

study lattice models of systems ofM impurities. A Hamiltonian of a system with

two-body interactions and on-site energy, attached to N semi-infinite leads in the

steady-state, can be written in second quantization as

Ĥ = Ĥdot + Ĥleads + Ĥcoupling, (2.40)

Ĥdot =
M∑
i

∑
σ

viσn̂iσ +
M∑
i

Uin̂i↑n̂i↓ − t
M∑
i

∑
σ

(
d̂†iσd̂i+1σ +H.c.

)
−
∑
i<j

∑
σ

Jij
[
n̂iσn̂jσ + d̂†iσd̂iσ̄d̂

†
jσ̄d̂jσ

]
+
∑
i<j

U ′ijn̂in̂j, (2.41)

Ĥleads =
N∑
α

∑
k

∑
σ

(εαkσ + Vα)ĉ†αkσ ĉαkσ, (2.42)

Ĥcoupling =
N∑
α

∑
k

∑
σ

M∑
i

(
tαkĉ

†
αkσd̂iσ +H.c.

)
, (2.43)

where diσ (d†iσ) are the annihilation (creation) operators for orbital i and spin σ,

n̂iσ is the number operator and n̂i = n̂i↑ + n̂i↓. The corresponding operators ĉασ
(ĉ†ασ) for the lead α are defined in an analogous way. The first three terms in

eq. (2.41) describe the one-electron contributions to the impurities, where viσ is
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the on-site energy (or gate potential) of an electron with spin σ in the orbital i,

Ui is the intra-Coulomb repulsion between electrons in the orbital i and t is the

hopping between electrons in adjacent orbitals. The first term in the second line

corresponds to the Hund’s rule coupling contribution, which has been split into

the density-density contribution and the spin-flip contribution. The last term in

the second line is the inter-Coulomb repulsion U ′ij. The eq. (2.42) account for

the single-particle eigenstates as well as the bias Vα contributions of the isolated

leads and eq. (2.43) holds for the tunneling Hamiltonian between the dot and

the leads with couplings Γα(w) := 2π∑k |tαk|
2δ(w − εαk). We consider featureless

electronic leads described by frequency-independent couplings Γα(w) = γα, i.e.,

we work in the wide band limit (WBL).

In the following, we will specify three relevant models (extracted from the lattice

Hamiltonian introduced above) which will be studied in the following chapters.

Single Site model

Our first model for a quantum dot consists of a single level with on-site energy v

which can hold up to two electrons [70]. The corresponding Hamiltonian has the form

ĤSSM = vn̂+ Un̂↑n̂↓. (2.44)

Despite its simplicity, this model is useful to highlight certain aspects of strong

electronic correlation.

The exact equilibrium density of the system in the GCE can be derived

from eq. (2.18)

n(v) = 1
Z

Tr
[
e−βĤ

SSM
n̂
]

=
2
[
e−βv + e−β(2v+U)

]
1 + 2e−βv + e−β(2v+U) . (2.45)

The exact spectral function for the SSM has the form

A(w) =
(

1− n

2

)
δ(w − v) + n

2 δ(w − v − U). (2.46)

Therefore, for the KS system we can combine eq. (2.30) and eq. (2.46) (for U = 0)

leading to the simple expression of the ground state density

n(vs) = 2f(vs). (2.47)
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Figure 2.2: Total occupation of the SSM as function of the gate potential for different
temperatures and strong correlations U = 8. The solid line corresponds to DFT (eq. (2.47))
and dots to the exact result (eq. (2.45))

In appendix A eq. (2.45) and eq. (2.47) are used to analytically invert the exact

xc functional for the SSM.

In fig. 2.2 the total occupation of the SSM is presented as function of the gate

level for different temperatures and strong correlations U = 8. One can appreciate

the presence of a plateau at n = 1 for low temperatures. This feature appears due

to the shifting in energy that the Coulomb interaction produces in the following

available state. The DFT result by construction matches the exact density eq. (2.45)

when the Hxc functional eq. (A.3) is used.

Single Impurity Anderson Model

The Single Impurity Anderson Model (SIAM) is the minimal model for the de-

scription of transport through a correlated system [45]. It is obtained by coupling

the SSM with a pair of electrodes (with energy independent tunneling rate 1/γ).

The corresponding Hamiltonian takes the form

ĤSIAM = vn̂+ Un̂↑n̂↓ +
∑
α,k,σ

(εαkσ + Vα)ĉ†αkσ ĉαkσ +
∑
α,k,σ

(
tαkĉ

†
αkσd̂σ +H.c.

)
(2.48)

where α = L,R for the left and right electrodes. In the following chapters, except

when stated explicitly, we will consider energy independent couplings (wide Band

Limit) as well as symmetric coupling of the leads, i.e., γL = γR = γ/2.



2. Theoretical Background 21

Figure 2.3: Left: Total occupation comparison between i-DFT (using the xc functionals
eqs. (A.17) and (A.18)), MBM and SSM (using eq. (A.3)). Right: Steady-state current
comparison between i-DFT, LB+DFT and MBM. In both figures V/γ = 3 and U/γ = 8.

In order to calculate the ground state density and the steady electrical current

of the SIAM, we consider the following many-body model (MBM) for the spectral

function [15, 71] which correctly describes the impurity coupled to the leads in

the CB regime

A(ω) =
(

1− n

2

)
γ

(ω − v)2 + γ2

4

+ n

2
γ

(ω − v − U)2 + γ2

4

. (2.49)

Eq. (2.49) can be viewed as the generalization of the SSM spectral function eq. (2.46)

where the delta peaks are broadened due to the effect of the couplings. The MBM

spectral function eq. (2.49) together with the interacting equations

n = 2
∫
dω (f(ω − VL) + f(ω − VR))A(ω) (2.50a)

I = γ
∫
dω (f(ω − VL)− f(ω − VR))A(ω) (2.50b)

will produce the reference results in the range of temperatures T/γ > 1. For

the KS system, n and I can be obtained using eqs. (2.38a) and (2.38b) together

with the non-interacting spectral function

As(w) = γ

(w − vs)2 + γ2

4

. (2.51)

In the left panel of fig. 2.3 the total occupation of the SIAM is compared with

the SSM. The MBM reference result for the SIAM is presented to benchmark the

accuracy of the xc functionals used (eqs. (A.17) and (A.18)). While the SIAM
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occupation shows two new steps around v = 0,−U as the temperature is decreased,

the SSM density only matches the regime when the temperatures are large compared

to the coupling, where the steps vanish. In the right figure the steady-state electrical

current from i-DFT is compared with the one obtained from LB+DFT (using the

SSM functional eq. (A.3)) and the MBM. While the i-DFT and MBM show the

two peak structure that characterizes the CB regime (which is a hallmark of strong

correlations), the LB+DFT completely neglects this feature, showing a plateau

centered at the particle-hole symmetric point instead. Only when the effect of the

interaction is small, i.e., when the impurity is almost empty or full, the LB+DFT

agrees with the many-body result.

Constant Interaction Model

The last relevant model of our interest is the Constant Interaction Model (CIM)

consisting of a series ofM impurities that can be coupled or not to the electrodes.

The Hamiltonian of the system reads

ĤCIM =
M∑
i

vin̂i +
M∑
i

Un̂i↑n̂i↓ +
∑
i<j

Un̂in̂j

+
∑
α,k,σ

εαkσ ĉ
†
αkσ ĉαkσ +

∑
α,k,σ

(
tαkĉ

†
αkσd̂σ +H.c.

)
. (2.52)

This system can be seen as a generalization of the SIAM for multiple-levels

where the Coulomb repulsion between the electrons is constant. In the disconnected

situation (last two terms of eq. (2.52) vanish) the resulting model is a generalization

of the SSM. In this case, the many-body problem is solved for a given set of gates

vi. The resulting set of eigenstates and corresponding energies determines the

densities ni in the GCE according to eq. (2.18).

For the non-interacting system, the density is simply determined by the gate vi,s
of a non-interacting QD and is thus simply given by the Fermi-Dirac distribution

ni = 2f(vi,s). (2.53)

Since the non-interacting spectral function is As(w) = δ(w − vs).
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Figure 2.4: Densities of the uncontacted CIM as function of the gate potential (v =
v1 = v2) for different temperatures in units of the Coulomb repulsion U = U ′. The solid
line corresponds to DFT (eq. (A.22)) and dots to the numerical exact result.

In fig. 2.4 the density ni = n1 = n2 of the uncontacted CIM in the caseM = 2

is presented as function of the gate level for different temperatures in units of

the Coulomb repulsion. The DFT functional eq. (A.22) derived in appendix A

allows to obtain an excellent agreement with the exact result eq. (2.18) where

the main features are the steps at integer total occupation N = n1 + n2 due to

the effect of the Coulomb repulsion.
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This chapter is based on the article [72].
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In this chapter the Hxc potentials for the multi-orbital quantum dot subject

to generic density-density interactions and Hund’s rule coupling are derived and

compared with reverse engineering of exact solutions. The study of stability diagrams

also sheds light on the properties of the Hxc potentials.

We start by considering a particular case of Eq. (2.40) for the non-contacted

multi-orbital quantum dot. The Hamiltonian of the system takes the form

Ĥ =
∑
i

vin̂i +
∑
i

Ui n̂i↑n̂i↓ +
∑
i<j

Uij n̂in̂j

−
∑
i<j,σ

Jij
[
n̂iσn̂jσ +

(
c†iσciσ̄ c

†
jσ̄cjσ

)]
. (3.1)

This kind of Hamiltonian is very common in the fields of strongly correlated electrons

and mesoscopic physics, as it provides a natural description of 3d- or 4f-shells of

27
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transition metal or lanthanide impurities in metallic hosts and of multi-orbital

quantum dots. In these systems density-density interactions and Hund’s rule

coupling are by far the most important interactions. In particular the role of the

latter has become a focus of intense research in the field of strongly correlated

electrons in the last years[73].

3.1 Modelling of the Hxc potentials

Here we work at (typically small) finite temperature T and consider the GCE

as the proper statistical ensemble to describe the density matrix of the system

in thermodynamical equilibrium with a heat and particle bath, allowing to in-

terchange particles with the sites through the gate potentials vi. Therefore, the

equilibrium density ni is obtained via eq. (2.18), i.e., ni = ni(v1, . . . , vM), which

can (numerically) be inverted to give vi = vi(n1, . . . , nM). For the KS system, the

density is simply described by the Fermi function eq. (2.53) which can easily be

inverted as vs,i = vs,i(ni) = 2T log 2
ni
− 1. The properties of the Hxc functionals

vHxc,i = vs,i(ni)− vi(n1, . . . , nM) can then be studied by exploring the parameter

space v = (v1, . . . , vM) which allows to establish the density-potential mapping for

the entire space of densities n = (n1, . . . , nM) (for ni ∈ [0, 2]).

3.1.1 Hxc potentials and link to stability diagrams for the
double quantum dot at low temperatures

We now focus on the two-orbital case, i.e. a double quantum dot (DQD) with

generic density-density interactions (U1, U2, U12). For the time being we only

investigate cases with vanishing Hund’s rule coupling, i.e., Ji,j = 0. Here [72] we

are interested in the qualitative structure of the Hxc potentials, in particular in

the positions (and heights) of step structures which appear in the low-temperature

limit. In fact, these steps are not only the crucial but also the only features of the

Hxc potential in the limit of low temperatures. In this section we will show how

these step structures can be deduced completely from the stability diagrams.
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A stability diagram highlights the occupations (densities) of the ground states in

the different regions of the plane of external gates v1 and v2. The position and shape

of these regions in the v1-v2 plane depend on the values of the interaction parameters

but within each region the pair of densities (n1, n2) remains constant at (close to) zero

temperature and the possible values of these local densities are ni ∈ {0, 1, 2}. Each

of the nine pairs of densities (n1, n2) (corresponding to a finite region in the stability

diagram) corresponds to a single point which we call a vertex in the n1-n2 plane.

It turns out that the positions of the steps which characterize the Hxc potentials

in the n1-n2 plane can be obtained from the stability diagram by connecting the

vertices corresponding to density regions which are adjacent in the v1-v2 plane. The

heights of these steps can also be extracted from the stability diagram. Below we

will illustrate how this works presenting some representative examples and we will

also explain the physical reasons behind our observations.

We have identified three different regions for the interaction parameters where

qualitative changes both in the stability diagram as well as in the Hxc potentials

occur. These are Regime I (U12 < U1, U2), Regime II (U1 < U12 < (U1 + U2)/2)

and Regime III (U1 ≤ (U1 + U2)/2 ≤ U12) where it is assumed without loss of

generality that U1 ≤ U2.

As a first example we choose the Regime I, where the corresponding stability

diagram is shown in panel (d) of fig. 3.1 with U1 = 2.5U12, U2 = 3U12. Here the

regions corresponding to the different possible ground state densities (given in

parenthesis) are marked by different colors. The RE Hxc potentials for orbitals 1

and 2 are shown in panels (e) and (f) of fig. 3.1, respectively. In the stability diagram,

the domain corresponding to the occupation (0, 0) is directly adjacent only to the

domains with occupations (1, 0) and (0, 1). If we connect the (0, 0) vertex with one

of those vertices in the n1-n2 plane we see that the resulting lines run along the

border of the allowed density domain. The complete set of lines along the borders

of the density domain follow from the sequence of vertices (0, 0)→ (1, 0)→ (2, 0),

(0, 0) → (0, 1) → (0, 2), (2, 0) → (2, 1) → (2, 2), and (0, 2) → (1, 2) → (2, 2).

The other possibilities of connecting vertices corresponding to adjacent regions in
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Figure 3.1: Panels (a)-(c) (constant interaction model, CIM): stability diagram (a)
and Hxc potentials for orbitals 1 and 2 (panels (b) and (c), respectively) of the double
quantum dot for U1 = U2 = U12. Panels (d)-(f) (Regime I): stability diagram (d) and Hxc
potentials for orbitals 1 and 2 (panels (e) and (f), respectively) of the double quantum
dot for U1 = 2.5U12, U2 = 3U12. All energies in units of smallest interaction (U12).

the v1 − v2 plane are (i) (1, 0) → (0, 1), (ii) (1, 0) → (1, 1), (iii) (1, 1) → (1, 2),

(iv) (2, 0) → (1, 1), (v)(1, 1) → (0, 2), (vi) (2, 1) → (1, 2), (vii) (0, 1) → (1, 1) and

(viii) (1, 1) → (2, 1). These lines are exactly the position of the steps in the Hxc

potentials, see panels (e) and (f) of fig. 3.1. Notice that for some fixed v1 the vertices

(1, 0)→ (1, 1)→ (2, 1) lead to the step at n1 = 1 for vHxc,1 while for some fixed v2

the vertices (0, 1)→ (1, 1)→ (1, 2) lead to the step at n2 = 1 in vHxc,2. This is the

main difference with respect to the vHxc,i of the CIM, panels (b) and (c) of fig. 3.1.

The height of these steps can also be deduced from the stability diagram as

schematically illustrated in fig. 3.2 : the length of the projection of the degenerate

lines connecting regions in the abscissa (ordinate) gives the height of the step

connecting these vertices in the vHxc,1 (vHxc,2). We begin by looking at the regions
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Figure 3.2: Stability diagram of Regime I of the DQD for U1 = 2.5U12, U2 = 3U12. The
length of the projection of the degenerate lines connecting regions are explicitly shown.
These values exactly correspond to the height of the steps connecting these regions in the
Hxc potential. The projections on the abscissa give the steps heights in vHxc,1 and on the
ordinate give the steps heights in vHxc,2.

with occupations (1, 0) and (0, 1). The corresponding states are degenerate along

the line v1 = v2 and for −U12 < v1 < 0 they are the ground states of the double dot.

For the KS system to reproduce this density for external potentials v1 = v2 in the

same interval, we need the KS potentials on both orbitals to be pinned to the Fermi

energy. Therefore both Hxc potentials need to exhibit a step of height U12 along

the line connecting the vertices (1, 0) and (0, 1). The regions (1, 0) and (1, 1) are

adjacent along the line v2 = −U12 for −U1 < v1 < −U12 and thus the KS potential

of the first orbital needs to be pinned to the Fermi energy for this range of v1 leading

to a step of height U1−U12 along the line connecting the (1, 0) and (1, 1) vertices for

vHxc,1 (see fig. 3.2). Similarly, vHxc,2 needs to exhibit a step of height U2−U12 along

the line connecting the (0, 1) and (1, 1) vertices. Next, the regions (2, 0) and (1, 1)

are adjacent for −U12 − Ui < vi < −Ui (i = 1, 2) and therefore both Hxc potentials

have a step of height U12 along the lines connecting the (2, 0) and (1, 1) vertices.
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Similarly, there also has to be a step of height U12 in both Hxc potentials along

the line connecting the (0, 2) and (1, 1) vertices. The regions (1, 1) and (1, 2) are

adjacent for −2U12 < v1 < −U1 − U12 leading to a step of height U1 − U12 in vHxc,1

along the line (1, 1)→ (1, 2). Similarly, there is a step of height U2 − U12 in vHxc,2

along the (1, 1)→ (2, 1) line. Finally, the regions (2, 1) and (1, 2) are adjacent along

a line of length U12 leading to a step of this height in both Hxc potentials along

the (2, 1)→ (1, 2) line. In this way we now have completely determined the (low

temperature) Hxc potentials of both orbitals just by analyzing the stability diagram.

The overall structure of the vHxc,i is such that they exhibit steps for integer total

occupation N = n1 + n2 for both Hxc potentials plus an additional step at ni = 1

for vHxc,i. Note also that for the special case U12 = 0 only the steps at ni = 1 for

vHxc,i survive while those at integer N disappear. This is not surprising since in this

case our model just describes two completely independent single impurities and,

naturally, the corresponding Hxc potential for orbital i is completely independent of

the other orbital and given by the Hxc potential of a SSM with interaction strength

Ui. This has also been discussed as “intra-system steps” in ref. [74].

A particular relevant situation of the Regime I is the CIM, when all the parameter

interactions are equal U1 = U2 = U12. The stability diagram and corresponding

Hxc potentials are shown in panel (a-c) of Fig. 3.1.

For the Regime II and Regime III the inter-orbital interaction U12 is smaller

than at least one of the intra-orbital ones. In panels (a)-(c) of fig. 3.3 we show the

stability diagram and Hxc potentials for interaction parameters chosen in Regime II.

Compared to Regime I (panels (d)-(f) of fig. 3.1), in the stability diagram we now

find that there exists a range of potentials for which regions (2, 0) and (0, 1) are

directly adjacent and, similarly, for the regions (2, 1) and (0, 2). As expected, these

transitions lead to the new steps in the Hxc potentials. On the other hand, for the

Hxc potential of orbital 1 the step at n1 = 1 (present in Regime I) now disappears

while in vHxc,2 the step at n2 = 1 survives (this step is related to the vertical lines

delimiting the (1, 1) region in the stability diagram). We have annotated the plateau
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Figure 3.3: Panels (a)-(c) (Regime II): stability diagram (a) and Hxc potentials for
orbitals 1 and 2 (panels (b) and (c), respectively) of the double quantum dot for U2 = 4U1
and U12 = 2U1. Panels (d)-(f) (Regime III): stability diagram (d) and Hxc potentials for
orbitals 1 and 2 (panels (e) and (f), respectively) of the double quantum dot for U2 = 2U1,
and U12 = 2.5U1. All energies in units of the smallest interaction (U1).

values in both Hxc potentials which can be found by analyzing the stability diagram

using similar arguments to the ones used above for Regime I.

Finally, in panels (d)-(f) of fig. 3.3 we show the stability diagram and Hxc

potentials for interaction parameters chosen in Regime III. Compared to Regime

II, the main qualitative difference is the disappearance of the step at n2 = 1 in

the Hxc potential of orbital 2. Again, all the step structures in the Hxc potentials

can fully be deduced by analyzing the stability diagram.
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3.1.2 Decomposition of the interaction into basic building
blocks

In the following we show that the Hxc potentials of (uncontacted) multi-orbital

quantum dots for generic density-density interactions can be built from a few basic

potentials. We start with the Regime I where the corresponding Hxc potential shows

steps at integer values of N = n1 + n2, connected to a CIM potential, as well as

steps at n1 = 1 for orbital 1 or at n2 = 1 for orbital 2 connected to a SSM potential

of the corresponding orbital. We can rationalize this idea by a decomposition of

the Coulomb interaction term as follows. Rewriting the inter-orbital repulsion as

U12 n̂1 n̂2 = U12

2 N̂(N̂ − 1)− U12
∑
i

n̂i↑n̂i↓, (3.2)

we can split the interaction Vint = ∑
i Ui n̂i↑n̂i↓ + U12 n̂1n̂2 into a CIM part and

two SSM interactions (one for each orbital):

Vint = 1
2U12 N̂(N̂ − 1) +

∑
i

δUi n̂i↑n̂i↓ (3.3)

where δUi ≡ Ui − U12 is the “excess interaction” for each orbital. This suggests to

write the Hxc potential for level i for Regime I (U12 ≤ U1, U2) as the sum of the

CIM Hxc potential for interaction U12 and the SSM potential for δUi:

vReg I
Hxc,i [n] = vCIM

Hxc (U12)[N ] + vSSM
Hxc (δUi)[ni], (3.4)

where vCIM
Hxc and vSSM

Hxc are the xc potentials of eq. (A.23) and eq. (A.3), respectively.

For the Regime II and Regime III (U12 is larger than at least one of the intra-orbital

interactions Ui) this decomposition of the Coulomb interaction leads to negative

interactions δUi in the SSM parts. Since the step in the Hxc potential of the

SSM at ni = 1 would actually vanish for negative interactions [75], in this regimes

the step structure can not be rationalized by eq. (3.4). Indeed the structure of

the RE Hxc potentials (fig. 3.3) appears to be quite different from that for the

regime U12 ≤ Ui. Essentially, two new features are found in this situation: (i) an

increase of the step height at N = 2 with respect to the CIM potential, and (ii)
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Figure 3.4: Stability diagram (a) and Hxc potential of orbital 2 (b) for the Skew
interaction Vskew = U

2 n̂2(N̂ − 1). The structure of the Hxc potential for orbital 1 is
the same as for orbital 2 but the step heights are half those of orbital 2 (0, U/2, U).
Stability diagram (c) and Hxc potential of both orbitals (d) for the inter-orbital interaction
Vinter = Un̂1n̂2. All energies in units of U in both cases.

peculiar new steps at integer values of n1/2 + n2. The steps at integer n1/2 + n2

are generated by a peculiar interaction of the form

Vskew = U

2 n̂2(N̂ − 1) (3.5)

which we will refer to as Skew interaction from now on. This interaction is realized

by setting U1 = 0 and U12 = U2/2 = U/2. The corresponding stability diagram and

the Hxc potential for orbital 2 is shown in fig. 3.4. Note that the Hxc potential of

orbital 1 has the same structure but the step heights are lower by a factor of 1/2.

Common to all cases is that there is always a contribution of the CIM potential,

as long as all interactions (U1, U2, U12) remain finite. From our observations we

make the assumption that this contribution is given by the smallest interaction.

Subtracting the CIM interaction ∼ U1 from the total interaction thus yields:

Vint −
U1

2 N̂(N̂ − 1) = (U12 − U1)n1n2 + (U2 − U1)n2↑n2↓ (3.6)
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Hence the remaining interaction consists of an inter-orbital interaction ∼ (U12−U1)

and a SSM interaction ∼ (U2 − U1)/2 for orbital 2. These two terms can be

combined to yield the Skew interaction and a remaining term.

Given that we require the interactions to be positive, for the Regime II we use the

relation n̂1n̂2 = n̂2(N̂ − 1)− 2n̂2↑n̂2↓ to rewrite the excess of interaction eq. (3.6) as

(U12 − U1) n̂2 (N̂ − 1) + 2(Uave − U12) n̂2↑n̂2↓. (3.7)

Overall this suggests the following decomposition of the Hxc potential in Regime

II (U1 < U12 < Uave):

vReg II
Hxc,i [n] =vCIM

Hxc (U1)[N ] + vskew
Hxc,i (2(U12 − U1)) [n]

+ vSSM
Hxc (2(Uave − U12)) [n2] δi,2 (3.8)

where δi,2 is the Kronecker-delta which ensures that the SSM term only contributes

to the Hxc potential of orbital 2. Note that as U12→Uave the SSM term vanishes.

On the other hand Regime III occurs when the inter-orbital interaction exceeds

the average intra-orbital interaction, i.e. U12 > Uave > U1. We use the relation

n̂2↑n̂2↓ = 1
2

(
n̂2(N̂ − 1)− n̂1n̂2

)
to rewrite the excess of interaction 3.6 as

U2 − U1

2 n̂2 (N̂ − 1) + (U12 − Uave) n̂1n̂2. (3.9)

Eq. (3.9) corresponds to a Skew interaction (eq. (3.5)) and a pure inter-orbital

interaction part. As can be seen in fig. 3.4(d), this inter-orbital term

Vinter = Un̂1n̂2 (3.10)

gives rise to a single step at N = 2 which explains the increase in step height at

N = 2 with respect to the CIM, observed in Fig. 3.3(e,f). Overall this suggests the

following decomposition of the Hxc potential in Regime III (U12 > Uave > U1):

vReg III
Hxc,i [n] =vCIM

Hxc (U1)[N ] + vskew
Hxc,i(U2 − U1)[n]

+ vinter
Hxc (U12 − Uave)[N ]. (3.11)

We can see that for U1 = U2 the Skew part of the Hxc potential disappears.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.5: Schematic representation of the four basic Hxc potentials for building the
generic potentials for all three regimes. (a) Hxc potential for CIM interaction U

2 N̂(N̂ − 1).
(b) Hxc potential for inter-orbital interaction Un1n2. (c,d) Hxc potential for intra-orbital
(i.e. SSM) interactions Uni↑ni↓. (e,f) Hxc for the Skew interaction U

2 n̂2(N̂ − 1).

Hence we have found a decomposition of the Hxc potential for a two-orbital model

with generic (density-density) interactions in all three regimes in terms of four basic

potentials which are shown schematically in fig. 3.5. We would like to emphasize at

this point that Regime I corresponds to a more natural choice of parameters than

the other two regimes, since the inter-orbital interaction U12 is generally smaller

than any of the intra-orbital interactions Ui. Nevertheless, the other regimes might

be realized by effective models or possibly by screening of the Coulomb interactions.

So far we have neglected the effect of Hund’s rule coupling on the Hxc potentials.

In fig. 3.6 we show the stability diagram and the corresponding RE Hxc potential

for the case of a CIM type direct interaction part (U1 = U2 = U12) plus the full

Hund’s coupling contribution (JH). Both the stability diagram and the RE Hxc

potential shown in fig. 3.6 resemble the ones for the case with U12 < Ui without

Hund’s coupling (fig. 3.1(d-f)). Only the size of the vertex regions changes in the

stability diagram, and correspondingly in the Hxc potentials only the step heights

change. Moreover, by switching off the spin-flip term in the Hamiltonian we find

that it does not have any effect on the densities and consequently on the Hxc

potentials and thus can be neglected. Hence in the following considerations we
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only need to take into account the density-density part of the Hund’s coupling

in (next to last term in eq. (3.1)).

We can rewrite the density-density part of the Hund’s rule coupling term in

terms of a (negative) CIM interaction and (positive) SSM interactions for the

remaining orbitals plus a remaining positive interaction part:

VH = −JH
∑
σ

n̂1σn̂2σ = −JH n̂1n̂2 + JH
∑
σ

n̂1σn̂2σ̄

= −JH2 N̂(N̂ − 1) + JH
∑
i

n̂i↑n̂i↓ + JH
∑
σ

n̂1σn̂2σ̄

(3.12)

where in the last term σ̄ denotes the opposite spin of σ. The last term gives rise

to a step at N = 2 of height JH in the Hxc potential similar to the inter-orbital

interaction term but with step height JH instead of 2U (fig. 3.4(d)).

When adding the density-density contribution of the Hund’s rule coupling to

the direct interaction part in Regime I (U12≤U1, U2), we can rewrite the interaction

in terms of a CIM interaction, SSM terms, and the last term of the Hund density-

density interaction (section 3.1.2) as

Vint = U12 − JH
2 N̂(N̂ − 1) +

∑
i

(δUi + JH)n̂i↑n̂i↓

+ JH
∑
σ

n̂1σn̂2σ̄ (3.13)

where δUi = Ui −U12. Hence all terms can be modelled by the basic Hxc potentials

shown in Fig. 3.5:

vHxc,i[n] = vCIM
Hxc (U12 − JH)[N ] + vSSM

Hxc (δUi + JH)[n]

+vinter
Hxc (JH/2)[N ]. (3.14)

3.1.3 Generalization of Hxc potential to more than two
orbitals

For specific choices of parameters we can generalize the Hxc potential for the DQD

to an arbitrary number of orbitals in a straightforward manner. We concentrate on
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Figure 3.6: Effect of Hund’s rule coupling on (a) Stability diagram and (b) Hxc potential
of orbital 1 for CIM interaction plus Hund’s rule coupling, Vint = U

2 N̂(N̂ − 1) + VHund for
U = 2JH . Here due to symmetry the Hxc potential for orbital 2 can simply be obtained
by reflection along the n1 = n2 line. All energies in units of JH .

the physically most relevant Regime I (Ui, Uj > Uij). If we choose the inter-orbital

interaction to be constant, Uij ≡ U ′, which thus has to be smaller than all of

the intra-orbital interactions, U ′ < Ui, we can rewrite the interaction in a similar

manner as in eq. (3.3) in terms of a CIM term ∼ U ′ for all the electrons N = ∑
i ni

and SSM terms ∼ δUi ≡ Ui − U ′ for the individual orbitals as

Vint = 1
2U
′N̂(N̂ − 1) +

∑
i

δUi n̂i↑n̂i↓ (3.15)

where δUi = Ui − U ′. This suggests to decompose the xc functionals in complete

analogy to the two-orbital case in Regime I as

vHxc,i[n] = vCIM
Hxc (U ′)[N ] + vSSM

Hxc (δUi)[ni]. (3.16)

In the following section we will see that this decomposition of the Hxc potential leads

to excellent results for multi-orbital QDs. For a more general choice of interaction

parameters, the above decomposition is likely to become more complicated. This

will be the focus of future work.

3.2 Results

In the following we will use the Hxc functional for the SSM (eq. (A.3)) as the

basis for constructing approximations for the other three basic Hxc potentials

into which the generic Hxc potential can be decomposed, namely the CIM, the
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Figure 3.7: Comparison of parametrized and exact Hxc potentials as a function of
N = n1 + n2 for three basic interactions: (a) CIM interaction (U1 = U2 = U12 > 0); (b)
Inter-orbital interaction (U12 > 0 and U1 = U2 = 0); (c) Skew interaction (U2 = 2U12 > 0
and U1 = 0); All energies in units of the smallest non-zero interaction (U12).

Inter-orbital, and the Skew potential (see fig. 3.5). For the CIM potential an

excellent parametrization can be achieved by simply summing the (exact) SSM

potential (A.3) over the charging states of the dot, and shifting and rescaling it

such that the potential does not become negative or larger than (2M− 1)U . This

parametrization (eq. (A.23)) is presented in appendix A.

As can be seen in fig. 3.7(a), the agreement with the exact result is quite

remarkable. In particular, it corrects the high temperature limit in which other

DFT parametrization (eq. (A.22)) is not able to capture the properties of the

functional, see fig. A.4.

For the inter-orbital potential we find a good parametrization describing the

step at total N = 2 again in terms of the SSM potential, as

vinterHxc (U, β)[N ] = vSSM
Hxc (2U, β∗)[N/2] (3.17)

where we have replaced the actual inverse temperature β by an effective reduced

value, β∗ = 0.73β and the step height is increased by a factor of 2 compared

to the SSM. The agreement with the exact potential is very good as can be

seen in fig. 3.7(b).
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Finally, for the Skew interaction, we parametrize the Hxc potential in a similar

way as the Hxc potential for the CIM, by summing two SSM potentials, one for

each of the steps, and shifting and rescaling so that the potential does not become

negative or larger than the maximum value:

vskew
Hxc,i(U)[n] = i U

vmaxskew

∑
J=0,1

{
vSSM

Hxc (U2 )
[
n1
2 + n2 − J

]
− vSSM

Hxc (U2 )[−J ]
}

(3.18)

where

vmaxskew =
∑
J=0,1

{
vSSM

Hxc (U2 )[3− J ]− vSSM
Hxc (U2 )[−J ]

}
. (3.19)

Also here the agreement with the exact potential is very good as can be seen

in figs. 3.7(c+d).

We have thus found parametrizations of the four basic Hxc potentials. It

should be noted, however, that at higher temperatures the exact CIM and Inter-

orbital potentials (which in the zero temperature limit only depend on total N)

acquire also a dependence on the difference δN ≡ n1 − n2 which has not been

taken into account here.

In the following we study the evolution of the density n of multi-orbital QDs

as a function of the applied gate vg for different parameter sets with the purpose

of check our constructed DFT parametrizations. The gate vg exerts a total shift

of the QD levels εi and hence the total gate for orbital i is given by

vi = εi + vg. (3.20)

Consequently, the differences in the gate potentials between different orbitals

remain constant as the gate vg changes, δvij ≡ vi − vj = εi − εj. In the following

we will usually take the particle-hole symmetric (phs) point given by ε∗i = −Ui
2 −∑

j 6=i Uij as the reference system.

3.2.1 Results for the double quantum dot

We now study the DQD, and start by considering the degenerate case in Regime I,

i.e. U1 = U2 > U12 where ε1 = ε2. Fig. 3.8 compares the exact densities with the

ones computed in DFT using the Hxc potential for Regime I, eq. (3.4). We see that
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Figure 3.8: Density n = (n1, n2) as function of the gate voltage vg for different
temperatures when U1 = U2 = 3U12 > 0 (Regime I). The DFT result (solid line) becomes
on top of the GCE result (dashed line) in the low temperature regime. All energies in
units of the smallest interaction U12.

the DFT results correctly describe all the features of the densities as a function of

gate. At low temperatures, the width of the central step (around vg = 0) is given

by Ui while the other two step widths correspond to U12. At higher temperatures

our parametrization leads to moderate discrepancies in the slopes of the central

step that disappear as the temperature approaches zero.

Next we consider the situation where the intra-orbital Coulomb repulsions are

different, U1 > U2 > U12. In fig. 3.9(a,b), the occupations ni are presented as

a function of the gate vg for two different temperatures. At low temperatures

(fig. 3.9(a)) and large negative gate voltage (vg < −2.5) both orbitals of the DQD

are completely filled (ni ∼ 2). As the gate is increased, first the orbital with the

higher interaction (U1) becomes half-filled around vg ∼ −2.5, and then around

vg ∼ −1.5 also the orbital with the lower interaction (U2) becomes half-filled. Upon

further increase of the gate, the sequence is reversed, as first the orbital with the

higher interaction and thus lower gate (v2) is emptied around vg ∼ 1.5 and finally

the orbital with lower interaction and thus higher gate (v1) is emptied. At higher

temperatures extra steps develop in the evolution of the density versus gate voltage,

as can be seen in fig. 3.9(b). The appearance of new steps can be understood by
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Figure 3.9: Density n = (n1, n2) as a function of the gate voltage vg for U1 = 3U12,
U2 = 2.5U12 (Regime I) for (a) low and (b) high temperatures. The inset of panel (b)
shows the path in the n1 − n2 plane as the gate is varied for different temperatures. The
grey lines show the steps of the CIM and SSM terms that appear in the Hxc potentials.
All energies in units of the smallest interaction U12.

the path taken in the n1 − n2 plane as the gate voltage changes, shown in the inset

of fig. 3.9(b) for different temperatures. At low temperatures the path essentially

follows three straight line segments, along the lower border, across the plane and

finally along the upper border, thus avoiding extra steps of the CIM potential at

N = 1 and N = 3. As the temperature increases the path becomes smoother, and

passes through the N = 1 and N = 3 steps of the CIM potential, leading to the

extra steps in the evolution of the densities at higher temperature. While for low

temperatures the agreement of the DFT results with the exact ones is excellent, at

higher temperatures deviations appear. Although DFT qualitatively captures the

appearance of the extra steps in the evolution of the density versus gate voltage,

their heights are not correctly reproduced in DFT. Presumably this discrepancy

can be attributed to the development of a δN -dependence of the CIM potential

at finite temperature, and will be addressed in future work.

Finally, we turn our attention to Regimes II and III, which are both characterized

by the appearance of the peculiar “Skew” term in the Hxc potential. Fig. 3.10(a)

directly compares the evolution of the density as a function of the gate in both
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Figure 3.10: (a) Comparsion of the evolution of the density n = (n1, n2) with the
gate voltage vg in Regime II (U2 = 2U12 = 4U1) and Regime III (U2 = U12 = 4U1).
(b) Comparison of density evolution for different two different values of the splitting
δv in Regime II (U12 = 2U1). The inset shows the different paths in the density plane.
β = 20/U1 everywhere. All energies in units of U1.

regimes. As we can see the behaviour is actually quite similar for both regimes, and

not so different from Regime I (fig. 3.9): As the gate increases, first the orbital with

the higher interaction (here U2) becomes half-filled, and then the orbital with the

lower interaction (U1). Then upon further increase of the gate, the order of emptying

is reversed. Due to the higher inter-orbital interaction in Regime III, the width of

the central plateau is increased for both orbitals. Again, at low temperature the

agreement with the exact results is excellent, but at higher temperatures moderate

quantitative deviations occur (not shown).

In order to investigate the influence of the Skew term in the Hxc potential on the

evolution of the densities, we next concentrate on Regime II and explore different

paths in the n1 − n2 plane. To this end we fix the energy splitting δv = v1 − v2

between the orbitals to different values while the total gate changes, i.e. v1 = δv+vg

and v2 = vg. Fig. 3.10(b) shows the evolution of the density for two different values

of δv and correspondingly different paths in the n1 − n2 plane (shown in the inset).

For δv = 0 we observe an interesting effect. As the gate increases, the occupation

of orbital 2 decrease in two steps, first to half filled and then further to zero, while

the first orbital remains fully occupied. Then around vg = −1 the occupation of
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Figure 3.11: Local occupations for the triple (a, b) and quadruple (c, d) QD as function
of the gate voltage. In the left panels the QD levels are taken at particle-hole (vi = ε∗i +vg)
and in the right the impurities level is set to zero (vi = vg). β = 20/U ′ and U1 = 5U ′,
U2 = 4U ′, U3 = 3U ′, U4 = 2U ′. All energies in units of U ′.

orbital 1 decreases abruptly to quarter filling, while now the occupation of orbital 2

increases again to quarter filling, n1 = n2 =∼ 0.5. This non-monotonic behavior of

the occupation of orbital 2 is reminiscent of the so-called level occupation switching

(LOS)[76, 77] and will be studied in detail in the following chapter. We find similar

behaviour in Regime III (not shown).

3.2.2 Results for more than two orbitals

Finally, we apply the generalization of the Hxc potential (eq. (3.16)) for more than

two orbitals to DFT calculations of multi-orbital QDs. Fig. 3.11 shows the evolution

of the density n as a function of the applied gate voltage vg for three (a,b) and

four-level (c,d) QD with all intra-orbital Coulomb repulsions Ui different larger than

the constant interdot repulsion U ′ = Ui,j for all i 6= j at low temperature. In panels

(a) and (c) the gate vg is applied w.r.t. the phs point, i.e. ε∗i = −Ui
2 −

∑
j 6=i Uij.

In this case the path in the three- or four-dimensional density space avoids the

steps in the CIM Hxc potential away from half-filling (N =M) resulting in only

three plateaus in the density evolution with the gate, in a similar way as in the

DQD (fig. 3.9(a)). On the other hand, in panels (b) and (d) (where εi = 0 and thus
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δvij = 0) two (three) extra steps related to the inter-orbital Coulomb repulsions

appear in the triple (quadruple) QD. The agreement between the DFT and the

exact results is remarkable in all cases, showing that the generalization of eq. (3.16)

of the Hxc potential to more than two orbitals is valid. Finding similar expressions

for a more general choice of parameters will be the focus of future work.



4
Zero Temperature Conductance in
Asymmetric Double Quantum Dot

Contents

4.1 The Level Occupation Switching effect in the double
quantum dot . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Modelling of the Hxc potentials with asymmetric cou-
plings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

In this chapter we use DFT to study charge transport properties of a ca-

pacitatively coupled double quantum dot in the Kondo regime. We construct a

pair of Hxc functionals suitable for the description of the system in the situation

of unequal coupling of the two dots to the reservoirs. We observe the Level

Occupation Switching (LOS) effect which takes place when one of the dots is

gradually disconnected from the electrodes but in contact with the other dot

through the Coulomb interaction and benchmark against reference Numerical

Renormalization Group (NRG) results.

47
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Figure 4.1: Schematic representation of the transport setup for the DQD.

4.1 The Level Occupation Switching effect in the
double quantum dot

We consider a DQD consisting of two interacting impurities which can hold up to

two electrons, each one coupled to two electrodes in the limit of low temperature.

The total Hamiltonian of the system is given as the sum of the dot, the coupling

between the leads and the dots, and the leads Hamiltonians

Ĥ = ĤDQD + Ĥcoupling + Ĥleads, (4.1)

where

ĤDQD =
∑
iσ

vin̂iσ +
∑
i

Uin̂i↑n̂i↓ + U12n̂1n̂2 (4.2)

describes the capacitatively coupled DQD and Ĥcoupling and Ĥleads are introduced

in eq. (2.40) for N = 2. In eq. (4.2) the index i = 1, 2 denotes the impurity

level. We remind the reader that vi and Ui are the on-site energy and the intra-

Coulomb repulsion of the level i and U12 the intra-Coulomb repulsion between

the two impurities.

In the following we work in the wide band limit (WBL), i.e., the system is

coupled to featureless electronic leads described by frequency-independent couplings

γi = Γi(ω). We also consider that each impurity is symmetrically coupled to

both left and right leads. In fig. 4.1 the schematic representation of the DQD

setup is shown with U12 = U .
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In the KS system, the equilibrium density at temperature T in each dot can be

expressed in terms of the non-interacting spectral function as (see eq. (2.30))

ni = 2
∫ dω

2π f(ω)As,i(ω) (4.3)

where f(x) = 1/(ex/T +1) is the Fermi function of lead α and we set the equilibrium

chemical potential µ = 0 without loss of generality. Since we want to describe

the situation in which the impurity is coupled to the reservoirs, we consider the

non-interacting spectral function

As,i(ω) = γi
γ2
i

4 + (ω − vs)2
. (4.4)

In the limit of zero temperature, the Fermi function becomes a Heaviside step

function f(x) → θ(x) and eq. (4.3) reduces to

ni = −2
π

arctan
(

2vi + vHxc,i

γi

)
+ 1

(4.5)

where we have used the definition of the KS potential vs,i = vi + vHxc,i of the dot i.

As stated in section 2.2.2, the correct description of the electrical conductance

from a DFT approach requires the access to the correct (many-body) electrical

current of the system, and therefore we require the inclusion of the xc corrections to

the bias of the system (i-DFT framework). Nevertheless, it has been observed that

in the limit of zero temperature, the KS zero-bias conductance already reproduces

the correct behaviour of the interacting system due to the Friedel sum rule [45, 78,

79]. In this regime the current through the dots is described by the LB formula

eq. (2.34) and then the zero bias electrical conductance in each of the dots is defined

through eq. (2.35). The total KS linear conductance in the DQD system can be

expressed as the sum of its individual contributions

Gs = ∂Is
∂V

∣∣∣∣∣
V=0

=
2∑
i=1

Gs,i =
2∑
i=1

γ2
i

4

v2
s,i + γ2

i

4

. (4.6)

Eq. (4.6) must be in agreement with the Friedel sum rule [80–82] which states

that at zero temperature the zero-bias conductance of single-channel problems is
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fully determined by the equilibrium density at the impurity. Since exact DFT by

construction gives the exact equilibrium density, it therefore also must yield the

exact zero-bias conductance, including the conductance plateau due to the Kondo

effect. The Friedel sum rule expression for the electrical conductance reads

G =
∑
i

sin
(
πni
2

)2
. (4.7)

Eqs.(4.6) and (4.7) provide two equivalent expressions in the zero temperature

regime for the determination of the electrical conductance.

There is an interesting physical effect in a strongly correlated DQD when the

coupling to one of the dots is gradually reduced: this problem is well understood in

the literature and has been studied in detail using different many-body approaches

[77, 83]. When both dots are equally coupled to the leads γ1 = γ2 and v = v1 = v2,

the physical system’s symmetries are mathematically described by the SU(4) Lie

group. In the Kondo regime, this setup leads to a plateau of height 2G0 in the

conductance due to the contribution of the two degenerate levels. The effect of

reducing the coupling of one of the dots to the leads (while keeping the coupling of

the other dot fixed) induces a change in the local occupation of the dots and abrupt

population inversions between them start to emerge. This effect is the so called level

occupation switching (LOS). The transition between the totally symmetric case

η = γ2
γ1

= 1 to the completely asymmetric setup η = γ2
γ1

= 0 (where the symmetries

of the system are governed by the SU(2) Lie group) will be described using a DFT

approach by realizing the correct Hxc potential’s properties.

For equal couplings, γ1 = γ2, an Hxc functional with steps at integer occupation

of the DQD has already been shown [79] to lead to a correct description of the

density and the resulting KS conductance correctly describes the SU(4) Kondo

regime. Therefore what remains to be done is to construct (local) Hxc functionals

which also can describe the situation of the DQD with different couplings to the leads.
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4.2 Modelling of the Hxc potentials with asym-
metric couplings

We aim to construct approximations for the Hxc functionals which capture the

effect produced through the variation of the coupling between each of the impurities

with the leads in the fourfold-degenerate case Ui = U12 = U . For the sake of

simplicity we also consider v = v1 = v2.

In the previous chapter we discussed that for an isolated DQD in a thermal

bath, the Hxc functional can be described as the sum of steps or "basic building

blocks", each of which corresponds to an xc correction to the simplest model with

different density or parametric dependence. For the coupled case we follow the

same argument based on the observation that the temperature and the coupling

lead to similar smeared out of step features. The accuracy in the description of

the densities of the DQD in the DFT approach then relies on the parametrization

and on the way of adding the steps when constructing the Hxc potential for the

CIM system, i.e., the Hxc functionals for the two dots are given by a combination

of different steps in the n1 − n2 plane, as detailed in section 3.1.1.

We first propose the following simple structure for the Hxc potentials of the DQD

vCIM
Hxc,i[N ](γi) = vSIAM

Hxc [N ](γi) + vSIAM
Hxc [N − 1](γi) + vSIAM

Hxc [N − 2](γi). (4.8)

consisting in the addition of three steps, each one centered at different total integer

occupation N . In eq. (4.8) we have made explicit that the Hxc correction for

dot i does only depend on the coupling γi.

For the vSIAM
Hxc potential we consider the accurate parametrization at T = 0

obtained using Bethe ansatz techniques in ref. [84], see eq. (A.9).

The combination of eq. (4.5) and eq. (4.8) constitutes the self-consistent KS

equations that we solve using a numerical root solver method, e.g., the bisection

algorithm. It is worth to notice that as the population inversions become more

abrupt in the densities, the numerical evaluation of the problem becomes unstable.

In fig. 4.2 (left) we show the total KS conductance (in units of the quantum

of conductance G0) for strong correlations U/γ1 = 10 and different values of the
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Figure 4.2: Left: Total electrical conductance for different coupling ratios η = γ2
γ1
. Right:

Local contributions to the electrical conductance when η = 0.3. In both plots the DFT
result is obtained making use of the Hxc potentials of eq. (4.8), U/γ1 = 10 and the
conductances are measured in units of que quantum of conductance G0.

coupling ratio η = γ2
γ1
. As the coupling of the second dot is decreased, a three

peak structure in the total conductance centered at the particle hole symmetric

point starts to emerge due to the LOS effect that takes place in the densities.

Although the results are in general in agreement with the NRG analysis from

ref. [77], the local contributions to the KS conductance (fig. 4.2 (right)) fail to

capture the correct physics. In fact, the KS conductance Gi,s = G1 qualitatively

follows the G2 of NRG (and G2,s follows G1 of NRG), finding good agreement only

around the particle-hole symmetric point. This observation suggests us to swap

the dependence on the couplings to the leads, i.e., we define the Hxc potentials

for the DQD with asymmetric couplings to the leads as

vHxc,i[N ] = vCIM
Hxc,i[N ](γj), (i 6= j), (4.9)

i.e., we propose a functional parametrization in which the coupling dependence is

only due to the other dot. This simple modification leads to very different results

of the densities and therefore of the electrical conductances. In fig. 4.3 the total

electrical conductance from eq. (4.6) with the functionals provided by eq. (4.9)

with the CIM contribution of eq. (4.8) shows an excellent agreement with the NRG

results for different values of the coupling ratio η and strong correlations U/γ1 = 10.

Moreover, compared to NRG, the accuracy of our DFT results at low coupling

ratio η is improved with respect to the previous parametric coupling dependence
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Figure 4.3: Total electrical conductance comparison between DFT with the Hxc
potentials of eq. (4.9)(solid line) and NRG (dashed line) for different values of η = γ2

γ1
and

U/γ1 = 10.

(eq. (4.8)). The main improvement of the functionals of eq. (4.9) is observed in

fig. 4.4 (left) where the DFT results capture the sudden transitions between 0 and

1 governed by the LOS effect in the densities (fig. 4.4 (right)). Nevertheless, one

observe that the DFT transitions occur at multiple values of v = −U
2 while the

NRG ones are slightly shifted with respect to these values. The reason behind

this deviation is in the structure of the considered functionals: The proposed CIM

functional is by construction pinned at integer values of the total occupation and

therefore vHxc,1[N ] = vHxc,2[N ] for N ∈ Z. The LOS effect takes place exactly

at the gate in which the populations are inverted, and therefore n1 = n2. From

the KS equations of the density eq. (4.5) we observe that the gate at which this

conditions are fulfilled corresponds to v = −vHxc.

For the completely asymmetric situation η → 0, the functional structure of

eq. (4.9) do not capture the observations from NRG [77], requiring the addition of

a step centered at ni = 1 with the corresponding coupling to the leads γi and the

subtraction of a step equally centered but with the coupling corresponding to

the other impurity γj

v,η→0
Hxc,i [N ] = vCIM

Hxc,i[N ](γj) + vSIAM
Hxc [ni](γi)− vSIAM

Hxc [ni](γj) (4.10)
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Figure 4.4: Left: Local contributions to the electrical conductance and Right: Local
occupations as function of the gate voltage. In both plots the DFT result is obtained
making use of the Hxc potentials of eq. (4.9), and U/γ1 = 10.

In fig. 4.5 we present the results for the DQD in the asymmetric limit η =

0 and strong correlations U/γ1 = 10 considering two different Hxc functional

parametrizations: DFT 1 represents the results obtained through eqs. (4.9) and (4.10)

while DFT2 the corresponding ones using eqs. (4.10) and (A.23) with the vSIAM
Hxc

without any interpolation (see text below eq. (A.9)). In the left panel the NRG

densities show six switching events in the occupancies around v = −U
2 ,−U, 2U,−

5U
2

and two around v = −3U
2 . The DFT 1 results for the density (and therefore for

the electrical conductance) predict the LOS exactly at this multiple values of −U
2

due to the aforementioned pinning of the functional at N ∈ Z. In this asymmetric

limit η → 0 when v = v1 = v2 the local occupations vary from almost empty to full

occupied, where the Hxc functional is not accurate. In contrast, the DFT 2 results

obtained by rescaling the addition of steps correctly capture almost all the features

of the NRG results. The main discrepancy in both DFT approaches corresponds

to the width of the central plateau in the densities and the conductance.

While the structure of eqs. (4.9) and (4.10) is based on the addition of step

features centered at integer values of the total occupation N , a deeper understanding

on the parametric dependence of vHxc,i on the effective coupling in each step remains

an open question and the focus of future works.
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Figure 4.5: Local occupations (left) and electrical conductance (right) comparison
between DFT (solid line) and NRG (dashed line) in the asymmetric limit η = γ2

g1
→ 0

with U/γ1 = 10. The DFT1 results is obtained through eqs. (4.9) and (4.10) while DFT2
with eqs. (4.10) and (A.23) with the vSIAM

Hxc without any interpolation.
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This chapter is based on the article [85].
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In this chapter we generalize the i-DFT framework to situations with finite

temperature gradients [85]. The extension of the formalism through the restatement

of the theorem for different temperatures in the leads opens the path to construct

xc functionals with explicit dependence on the thermal gradient. Taking advantage

of this idea, we derive a formally exact expression for the Seebeck coefficient valid

for any molecular system in terms of purely i-DFT accessible quantities, in an

analogous way to the electrical conductance [41]. We apply the general equations

of the transport coefficients to the SIAM in both the CB and the Kondo regime.

59
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5.1 i-DFT for finite temperature gradients

We consider the typical transport setup where a central region, e.g., a single molecule

or a quantum dot, is coupled to a left (L) and a right (R) electrode. The system is

driven out of equilibrium by applying a DC bias V across the junction and we are

interested in the resulting steady-state current I. In the recently suggested i-DFT

framework for steady-state transport (section 2.2.2), both left and right leads are

kept at the same temperature T which enters the formalism as an external parameter

only. Here we propose an extension of i-DFT to include a temperature difference

between the leads. This thermal gradient creates an electronic current which can be

compensated by a bias in an open circuit setup and thus allows to study the Seebeck

effect. For simplicity, we symmetrically apply both a bias V as well as a temperature

difference ∆T between the two leads, i.e., we have Vα = ±V/2 and Tα = T ±∆T/2

where α = L,R1. Of course, now both TL and TR (or, equivalently, T and ∆T ) enter

as parameters into the formalism. If we make the (physically reasonable) assumption

that the density in the central region and the current are continuously differentiable

at ∆T = 0, the original i-DFT proof [41] of the one-to-one correspondence between

“densities” and “potentials” can directly be applied to our situation and we can

formulate the i-DFT theorem for leads at different temperatures.

Theorem: For any pair of finite temperatures Tα in the leads, there exists a

one-to-one correspondence between the pair of “densities” (n, I) and the pair of

“potentials” (v, V ) in a finite (and gate dependent) region around zero voltage

V and zero thermal gradient ∆T .

The self-consistent coupled KS equations for the density and the current have

the same structure as the original i-DFT eqs. (2.38a) and (2.38b) with the exception

that the temperature difference ∆T between the two leads enters explicitly both

in the Fermi functions fα and in the functionals for vHxc and Vxc.

1Needless to say, we assume T > ∆T/2 such that TL, TR > 0.
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5.1.1 Reverse engineering of the SIAM xc potentials for
finite thermal gradient

In this section we consider the SIAM (see section 2.3) as the first model for

the development of approximate i-DFT functionals. In previous works [41, 45],

some accurate parametrizations for the xc functionals in the wide band limit were

designed in the case of equal lead temperatures, TL = TR. Our aim now resides

in the construction of functionals in the more general case TL 6= TR.

Coulomb blockade regime - Following ideas used in earlier work [41], we first

aim to construct approximations for the xc functionals in the Coulomb blockade

regime. The main idea behind the RE process consists of inverting the equations

of the basic variables (n, I) in terms of the basic potentials (v, V ) both for the

interacting system and for the non-interacting case. The difference between the

non-interacting and the interacting potentials (as function of the basic variables)

leads to the desired xc functionals.

The density on and the current through the dot in terms of the many-body

spectral function A(ω) is [86]

n =
∫ dω

2π

[
2γL
γ
fL(ω − VL) + 2γR

γ
fR(ω − VR)

]
A(ω), (5.1a)

I =2γLγR
γ

∫ dω

2π [fL(ω − VL)− fR(ω − VR)]A(w), (5.1b)

where γ = γL + γR is the total broadening.

In order to invert eqs. (5.1) we need a model for the many-body spectral

function A(w). As a starting point we use the exact spectral function of the

SSM which is given by

Amod
0 (ω) =

(
1− n

2

)
δ(ω − v) + n

2 δ(ω − v − U) . (5.2)

Using Amod
0 (ω) as model spectral function for the contacted dot brings about an

approximation since we are not considering the effect of the couplings. Nevertheless,

it leads to exactly the same expressions for density and current as one would

obtain by working out the rate equations which are valid in the CB regime [87].

Inserting eq. (5.2) into eqs. (5.1), the reverse-engineering for the Hxc gate and xc
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bias potentials can be done analytically. This follows by forming from eqs. (5.1) the

linear combinations n+ I/γL and n− I/γR and realizing that the inversion of the

resulting equations for the potentials v ± V/2 (and vs ± Vs/2) can be done exactly

as in refs. [47, 48]. The full inversion of the functionals is done in appendix A.2

obtaining the following Hxc gate and xc bias potentials

vHxc =1
2 [g(n,−I/γR, TR) + g(n, I/γL, TL)] (5.3a)

Vxc =g(n,−I/γR, TR)− g(n, I/γL, TL) , (5.3b)

where we have defined

g(n, x, T ) = U + T log
p+

√
p2 − zye−U/T

y

 (5.4)

with z = y − 2, y = 4x+ n and p = n− 1 + 2x
(
1 + e−U/T

)
. As mentioned above,

eqs. (5.3) are equivalent to reverse-engineering the rate equations and therefore

should be valid at high temperatures T � γ, i.e., in the parameter regime where

the effect of temperature is much more important than the coupling to the leads.

For the construction of xc potentials which give reasonable approximations

also in the regime of T ∼ γ we use the observation [15] that both temperature T

and spectral broadening γ lead to similar smearing out of step features of the xc

potentials which are present in the low-temperature and/or strongly correlated limit.

Therefore we suggest a parametrization using the same analytic form as in eqs. (5.3)

but replacing the left and right temperatures TL/R by effective temperatures T ∗L/R

T ∗α(Tα, γ) = T 2
α + (ηγ)2 + ηγTα

Tα + ηγ
. (5.5)

This parametrization is chosen in such a way that T ∗α(Tα, γ → 0) = Tα and η is

a fit parameter for which we take the value η = 0.45 in the CB regime.

In order to benchmark our analytical parametrizations, we consider the reference

results from the MBM associated with the many-body spectral function

Amod
γ (ω) =

(
1− n

2

)
lγ(ω − v) + n

2 lγ(ω − v − U). (5.6)
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Figure 5.1: Hxc potential vHxc of the symmetrically coupled SIAM (γL = γR =
γ/2) in the Coulomb blockade regime for different temperatures calculated by reverse-
engineering (RE) compared to the parametrization (i-DFT) of eq. (5.3) including the
effective temperature of eq. (5.5). Panels a) and b) are for U/γ = 4, panels c) and d)
for U/γ = 8, while panels a) and c) are for zero current I = 0 and panels b) and d) for
I/γ = 1/4.

Eq. (5.6) can be though as a generalization of eq. (5.2) where the effect of the

broadening γ due to the coupling to the leads is taken into account. Let us note

that the RE process has been carried out using eq. (5.2) instead of eq. (5.6) since

the latter inversion of the potentials can not be done in an analytical way.

The quality of our parametrization can be appreciated in fig. 5.1 where we

compare the model vHxc (eq. (5.3a)) including the effective temperature with the

corresponding results of the numerical RE from the MBM spectral function (eq. (5.6))

for U/γ = 4 (panels a) and b)) and U/γ = 8 (panels c) and d)). We see that, at

equilibrium (I = 0, panels a) and c)), our parametrization reproduces the RE Hxc

potential very accurately for all the considered temperatures. Also at finite current

(I/γ = 1/4, panels b) and d)), our approach gives a reasonable parametrization

of the reverse-engineered Hxc potential, although there are some differences at

the borders of the domain for the lowest temperature.

As another check on the quality of our parametrization, in fig. 5.2 we show the

density and the electronic current induced by a temperature difference ∆T between
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Figure 5.3: Panel a) Densities as function of temperature for different gate voltages.
Panel b) Densities as function of gate voltage for different temperatures. In both panels
i-DFT results are compared with the NRG results of ref. [88] for U/γ = 8.

the leads (at zero bias) as function of ∆T for different gate voltages vg = v + U/2.

The i-DFT results using the effective temperature T ∗α are compared to those obtained

by the direct evaluation of eqs. (5.1) with the model spectral functions of eq. (5.2)

and eq. (5.6), respectively. Note that the Amod0 result exactly corresponds to the

result that we would obtain with the functionals of eqs. (5.3) without including

the effective temperature. Therefore, the excellent agreement with Amodγ is due

to the inclusion of the effective temperature eq. (5.5).
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Kondo regime - So far we have constructed functionals in the temperature regime

of CB T & TK where the Kondo temperature is defined as [88]

TK = γ

√
U

4γ e
πγ

(vgγ)2−(U/γ)2

U . (5.7)

In order to extend the range of applicability of our approximation to temperatures

below TK , we follow the ideas outlined in ref. [45]. There the central observation

was that at zero temperature the correct behaviour of the zero-bias conductance

is already contained in the KS conductance

G = Gs

1−Gs
∂Vxc
∂I

∣∣∣
V=0

, (5.8)

due to the Friedel sum rule [70, 78, 84]. Therefore, at zero temperature the derivative

∂Vxc/∂I has to vanish at I = 0. Following ref. [45], we modify our functional as

vHxc = [1− k(n, I, T )] vHxc + k(n, I, T )v(0)
Hxc(n), (5.9a)

Vxc = [1− k(n, I, T )]Vxc(n, I, T ), (5.9b)

where v(0)
Hxc is the zero-temperature, equilibrium Hxc potential of eq. (A.9) which

accurately parametrizes density matrix renormalization group results [84].

We further introduce the prefactor k(n, I, T ) with the properties k(n, I = 0, T =

0) = 1 and ∂k(n, I, T )/∂I|I=0,T=0 = 0, see eq. (A.8). The first property ensures

that at zero current and zero temperature vHxc reduces to v(0)
Hxc, the second one

leads to a vanishing correction to the KS zero-bias conductance at zero temperature.

To be specific, we choose k(n, I, T ) = a(n, I)z(T ), where a(n, I) corresponds to

the product of eqs. (A.8a) and (A.8b). This prefactor, although combined with

a different form for the CB functionals vHxc and Vxc, ensures a good description

of the finite bias conductance for relatively low temperatures. We also found it

convenient to introduce another prefactor z(T ) = (1 + (2.5T/γ)3)−1 to ensure a

smooth transition to the CB form of the functional at high temperatures. Finally,

we redefine η = 0.1U/γ+0.36 entering in the effective temperature T ∗ of eq. (5.5) in



66 5.2. Transport coefficients

order to correct the effect of the interactions at low temperatures. This is somewhat

similar to ref. [45] where the smoothening of the step features in the CB part of

the functional had to be modified in the Kondo regime T . TK .

As a first test of this functional, we calculate self-consistent densities at equi-

librium. Since no thermal gradient nor bias is applied, we only require the

parametrizations of eq. (5.9a). In fig. 5.3 a) we plot the densities obtained for different

gate voltages as function of the temperature of the leads T = TL = TR for the

strongly correlated case with U/γ = 8 and compare with numerical renormalization

group (NRG) results of ref. [88]. Instead, in fig. 5.3 b) we show equilibrium densities

as function of gate voltage for different temperatures. The agreement of our i-DFT

densities with the NRG ones is excellent.

5.2 Transport coefficients

5.2.1 Electrical conductance

As explained in section 2.2.2, the i-DFT formalism provides the correct framework

to calculate the many-body linear electrical conductance of any molecular system

by correcting the non-interacting result (which corresponds to the LB result)

according to eq. (5.8).

In the SIAM, the non-interacting contribution Gs can be calculated analytically

as described in appendix B

Gs = −γ4π

∫
f ′(ω) dω

(ω − v)2 + γ2

4

= γ

4π2T
Im
[
iψ(1)(1

2 + γ

4πT + i vs
2πT )

]
(5.10)

where ψ(1) is the trigamma function [89].

In fig. 5.4, we show differential conductances for the SIAM at the particle-hole

symmetric point obtained with the parametrizations of eq. (5.9) and compare them

with those obtained using the functionals of ref. [45] (shown in eq. (A.6)) as well

as with functional renormalization group (fRG) results of ref. [90]. The i-DFT

results with our present functional agree reasonably well with the reference fRG

results although some details like the overall shape of the side peaks seem to be
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are compared to those from ref. [45] and the fRG results of ref. [90]. G0 = 1/π is the
quantum of conductance.

better captured by the functional of ref. [45]. Finally, the differential conductance

at zero bias has been calculated and compared with both fRG of ref. [90] and

NRG of ref. [91] for different interaction strengths obtaining very good agreements,

as can be appreciated in fig. 5.5. In particular, the strongly correlated regime

shown in fig. 5.5d) is completely captured within i-DFT from the Kondo regime

at low temperatures (where the differential conductance shows a plateau centered

at the particle-hole symmetric point) to the CB regime at higher temperatures

(where te differential conductance’s structure consist of a two peak structure at

v = −U, 0). Here we remark one of the main advantages with respect to LB+DFT:

While the Kondo regime physics of the differential conductance is correctly captured

within LB+DFT, in the CB regime LB+DFT completely fails to describe the

two peak structure centered at the particle-hole symmetric point that corresponds

to the blue line of fig. 5.5d) showing a plateau instead (see ref.[15]), even when

the exact functional is used.

5.2.2 Seebeck Coefficient

The Seebeck coefficient is defined as that bias which has to be applied to compensate

a small temperature difference between the leads such that no current flows.
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Formally it can be written as

S = dV

d∆T

∣∣∣∣∣
I=0

. (5.11)

In general, we can write the infinitesimal variation of the electrical current

as the sum of two contributions, i.e

dI = dI

dV

∣∣∣∣∣ V=0
∆T=0

dV + dI

d∆T

∣∣∣∣∣ V=0
∆T=0

∆T. (5.12)

Therefore, we can rewrite the Seebeck coefficient as

S = −
dI
d∆T

∣∣∣ V=0
∆T=0

dI
dV

∣∣∣ V=0
∆T=0

. (5.13)

In the linear response regime, a general expression for the Seebeck coefficient

within i-DFT can be derived. We start by defining the quantities

Ls =− γ

2T

∫
dωf ′(ω)wAs(ω), (5.14a)

Gs =− γ

2

∫
dωf ′(ω) dVxc

d∆T As(ω). (5.14b)
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The numerator of eq. (5.13) is therefore

dI

d∆T = −γ2

∫
dωf ′(ω)

(
dVxc

d∆T + w

T

)
As(ω) = Gs

dVxc

d∆T + Ls. (5.15)

Expanding out the total derivative of the xc contribution

dVxc

d∆T = ∂Vxc

∂∆T + dVxc

dI

dI

d∆T +
∫
d3r

δVxc

δn(r)
dn(r)
d∆T (5.16)

and taking into account that for the linear response regime (V = 0 and ∆T = 0)

the last term vanishes because Vxc[n, I = 0] = 0, one finds

dI

d∆T =
Gs

∂Vxc
∂∆T + Ls

1− dVxc
dI

. (5.17)

Combining eqs. (5.8) and (5.17) we then arrive at the following simple expression

for the linear Seebeck coefficient:

S = Ss −
∂Vxc

∂∆T

∣∣∣∣∣∆V=0
∆T=0

, (5.18)

where Ss = −Ls
Gs

is KS Seebeck coefficient (this terms exactly corresponds to

the result that one obtains for the linear Seebeck coefficient within the LB+DFT

approach) and the second term of eq. (5.18) is the xc contribution. Eq. (5.18) is one of

the central results of the present chapter. It is formally exact and expresses the linear

Seebeck coefficient of a general interacting system solely in terms of i-DFT quantities.

For the SIAM the Seebeck coefficient can be calculated beyond the linear response

regime. We start by defining the following quantities

Gs,α = −γ2

∫
dωf ′α(ωα)As(ω), (5.19a)

Ls,α = − 1
Tα

γ

2

∫
dωf ′α(ωα)ωαAs(ω), (5.19b)

and G± = Gs,R ± Gs,L, L± = Ls,R ± Ls,L. The numerator of eq. (5.13) can be

calculated directly from eq. (5.1b)

dI

d∆T =
∫
dω

[
1
2f
′
L(ωL)(−ωL

TL
− dVxc

d∆T )− 1
2f
′
R(ωR)(+ωR

TR
+ dVxc

d∆T )
]
As(ω)

−
∫
dω [fL(ωL)− fR(ωR)]A′s(ω) dvs

d∆T (5.20)

= 1
2L+ + 1

2G+
dVxc

d∆T +G−
dvHxc

d∆T . (5.21)
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We also require the calculation of the auxiliary term

dn

d∆T =
∫
dω

[
1
2f
′
L(ωL)(−ωL

TL
− dVxc

d∆T ) + 1
2f
′
R(ωR)(+ωR

TR
+ dVxc

d∆T )
]
As(ω)

−
∫
dω [fL(ωL) + fR(ωR)]A′s(ω) dvs

d∆T (5.22)

=− 1
γ

(
L− + dVxc

d∆T G− + 2G+
dvHxc

d∆T

)
. (5.23)

Expanding out the total derivatives of the functionals

dVxc

d∆T =dVxc

dn

dn

d∆T + dVxc

dI

dI

d∆T + ∂Vxc

∂∆T , (5.24)
dvHxc

d∆T =dvHxc

dn

dn

d∆T + dvHxc

dI

dI

d∆T + ∂vHxc

∂∆T , (5.25)

eqs. (5.21) and (5.23) become a coupled system that can be solved analytically.

On the other hand the denominator of eq. (5.13) corresponds to the finite-bias

differential conductance calculated in ref. [45]

dI

dV
= 1
D

(
1
2G+ + 4

γ
Gs,LGs,R

∂vHxc

∂n

)
, (5.26)

with

D =1 + 1
γ
G−

∂Vxc

∂n
+ 2
γ
G+

∂vHxc

∂n
− 1

2G+
∂Vxc

∂I
−G−

∂vHxc

∂I

+ 4
γ
Gs,LGs,R

(
∂vHxc

∂I

∂Vxc

∂n
− ∂vHxc

∂n

∂Vxc

∂I

)
. (5.27)

The combination of eq. (5.26) with the solution for dI
d∆T leads to the final

expression of the Seebeck coefficient

S = dV

d∆T =− ∂Vxc

∂∆T −
L+
2 + γ−1 (Ls,RGs,L + Ls,LGs,R)

[
dVxc
dn

+ 2dvHxc
dn

]
G+
2 + 4γ−1Gs,RGs,L

dvHxc
dn

−
∂vHxc
∂∆T

(
G− − 4γ−1Gs,RGs,L

dVxc
dn

)
G+
2 + 4γ−1Gs,RGs,L

dvHxc
dn

. (5.28)

The linear Seebeck coefficient eq. (5.18) is directly recovered from eq. (5.28) in the

linear response regime, i.e, when V = ∆T = 0 and dVxc
dn

= 0 since Vxc[n, I = 0] = 0.

Eq. (5.18) also arises as a generalization of a recent developed expression of

the linear Seebeck coefficient valid for the SIAM and the CB regime [42]. In fact,
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given the structural property of the xc potentials of eqs. (5.3) as the sum of two

pieces (each one depending only on the temperature of one of the leads), it can

be easily shown that this structure leads to the xc contribution to the many-body

Seebeck coefficient (eq. (5.18)) of the form

SCBxc = ∂Vxc

∂∆T

∣∣∣∣∣ V=0
∆T=0

= − ∂vHxc

∂T

∣∣∣∣∣ V=0
∆T=0

. (5.29)

While this result holds for any approximation with the structural property mentioned

above, for the special case of the functionals of eq. (5.3) it reduces exactly to the

expression obtained in ref. [42].2

In the SIAM, the non-interacting contribution of eq. (5.18) can be expressed

in an analytical and closed form as (see appendix B)

Ss = −1
T

∫
f ′(ω) ωdω

(ω−v)2+ γ2
4∫

f ′(ω) dω

(ω−v)2+ γ2
4

= − 1
T

Im
[
(γ2 + ivs)ψ(1)(1

2 + γ
4πT + i vs

2πT )
]

Im
[
iψ(1)(1

2 + γ
4πT + i vs

2πT )
] . (5.30)

The combination of eq. (5.9) and eq. (5.18) opens the way to explore the linear

Seebeck coefficient from the CB to the Kondo regime. As first step we analyze the

relative magnitude of the KS Seebeck coefficient (Ss) and the xc correction (Sxc) as a

function of the gate voltage and the correlation strength. In fig. 5.6, we can see that,

as expected, the xc contribution becomes dominant for almost any temperature as

U/γ increases from 1 (fig. 5.6a) to 8 (fig. 5.6d), but also for intermediate values,

U/γ = 3, the two terms have a comparable magnitude for any value of the gate

voltage. Notice that, since both potential and temperature are evaluated in units of

γ, S and Sxc are dimensionless. In fig. 5.7 we compare our results with the NRG

ones of ref. [88] for fixed gate potential as a function of temperature. Again, similar

to fig. 5.6, the panels report calculated values from weak (a) to strong correlations

(d) in the dot. As expected we find a very good agreement between i-DFT and NRG

for T & TK . For lower temperatures, i-DFT shows small discrepancies with respect

to the reference result which exhibits a different evolution of the local minimum

of the Seebeck coefficient when increasing the interaction.
2Notice that by comparing eq. (5.29) and eq. (5.18) one arrives at S = Ss − Sxc. This reflects

the standard definition Vxc = Vs − V .
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Figure 5.6: Linear KS Seebeck coefficient Ss and xc correction Sxc as function of
temperature for different gate voltages and correlation strengths U/γ.
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Figure 5.7: Comparison of the Seebeck coefficient obtained with i-DFT with the NRG
results of ref. [88] as function of temperature for different gate voltages and correlation
strengths U/γ.

In fig. 5.8, we show the Seebeck coefficient as function of the gate voltage for

different values of the temperature and again compare with NRG results of ref. [88].

As already noticed above, for low temperatures there are discrepancies at certain

gate values although with our i-DFT approach we manage to obtain the qualitative

behaviour of the NRG results. For T/γ & 1, on the other hand, the i-DFT results

are in excellent agreement with the NRG ones.
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Figure 5.8: Comparison of the Seebeck coefficient obtained with i-DFT with the NRG
results of ref. [88].S is shown as function of the gate voltage for different temperatures
and for strong correlations U/γ = 8.

5.2.3 Thermal conductance

To conclude the chapter we derive the electronic contribution to the thermal

conductance as function of terms accessible to iDFT. This coefficient is defined

as κ = dQ
d∆T

∣∣∣ I=0
Q=0

, where Q represents the heat current of the system. Since

the i-DFT theorem only guarantees the correct description of the density in the

central region and the electrical current though it, the corresponding KS heat

current (and therefore also the thermal conductance) need not coincide with the

corresponding heat current of the interacting system. This situation is completely

analogous to the description of the electrical current (and the electrical conductance)

within the LB+DFT framework.

Nevertheless, by considering the linear response relationship between the currents

(I,Q) and the potentials (V,∆T ), it is well known [92, 93] that the thermal

conductance can be written in terms of the conductance matrix elements as (see

section 6.1 for detailed derivation)

κ = dQ

d∆T

∣∣∣∣∣ I=0
Q=0

= 1
T

(
L22 −

L2
12

L11

)
, (5.31)
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Figure 5.9: Thermal conductance as function of the gate voltage for different
temperatures and strong correlations U/γ = 8. The thick line corresponds to the i-
DFT result from eq. (5.34), the thin line to the KS result and the dots to the MBM (see
eq. (6.23c)).

where L11 = dI
dV

∣∣∣ V=0
∆T=0

= G, L12 = T dI
d∆T

∣∣∣ V=0
∆T=0

= −STG and L22 = T dQ
d∆T

∣∣∣ V=0
∆T=0

.

In order to derive the L22 contribution, we make use of the accessible heat current

within the i-DFT formalism, i.e

Qi−DFT =
∫
dω

(
fL(ω − Vs

2 )− fR(ω − Vs
2 )
)

(ω − Vs
2 )Ts(ω), (5.32)

where we explicitly label Qi−DFT to emphasize that this is not always the heat

current of the many body system, even if we use the exact (vHxc, Vxc). From

eq. (5.32) we can proceed to calculate

L22 = dQi−DFT

d∆T

∣∣∣∣∣ V=0
∆T=0

= −
∫
dωf ′(ω)(ω

2

T
+ w

dVxc

d∆T )Ts(ω)

= 1
T
L22,s + L12,s

dVxc

d∆T , (5.33)

Making use of eq. (5.24) and rewriting the xc derivatives that appear in terms

of both the interacting and non-interacting electrical conductance and Seebeck

coefficient, the thermal conductance in the i-DFT framework can be written as

κi−DFT = κs +G

(
S

(
Ss −

G2

G2
s

S

)
+ S2

s

)
−GsS

2
s . (5.34)

From eq. (5.34) one can appreciate how the KS thermal conductance κs is recovered

in the non-interacting situation. In fig. 5.9 we compare the thermal conductance
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from the MBM with the KS and the i-DFT. Although the i-DFT result captures

some new contributions, the results are still far away from the correct behaviour.

In fact, one can appreciate that at the particle-hole symmetric point κi−DFT = κs

(since S(vg = 0) = 0), while the correct MBM thermal conductance shows the

evolution of a peak as the temperature is increased.
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This chapter is based on the article [94].

6
Steady-state Density Functional Theory
Formalism for both Electrical and Heat

Transport
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In this chapter we will develop a new DFT formalism for the description of

both charge and electronic transport. This framework, which we call iq-DFT [94],

emerges as an extension of the previously described i-DFT. We emphasize that

in this formalism we only include heat transport due to the electrons but don’t

deal with heat transport due to other degrees of freedom (e.g. phonons). First we

introduce the formalism for the multi-terminal situation through the corresponding

theorem. Then we establish the linear response regime of the formalism for the two

terminal case and we derive general expressions for the transport coefficients. Finally,

we apply the theory to the SIAM, where the xc contributions are analytically RE in

77
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Figure 6.1: Schematic illustration of the multi-terminal quantum transport setup.

the CB regime and the transport coefficients are benchmarked against the MBM.

6.1 Formalism

We consider a general setup for electronic transport which consists of a central

molecular junction (C) coupled to N electrodes, see fig. 6.1. The electrodes

are in (local) thermal equilibrium with temperatures Tα and chemical potentials

µα = µ+ Vα, with α = 1, . . . ,N . The central region C is subject to an electrostatic

potential v(r) generated by, e.g., the nuclei in the molecular junction and/or an

external gate potential which vanishes deep inside the electrodes. The system can be

driven out of equilibrium by a finite thermal gradient ∆Tα and/or an external DC

bias Vα to each of the leads. We assume that these perturbations in the long-time

limit lead to steady-state electrical currents (Iα) as well as energy and heat currents

(Wα and Qα, respectively). Here the currents Iα,Wα, Qα are the electrical, energy

and heat currents flowing from lead α to the central region C.

We aim to construct a formally exact density functional framework, which we

call iq-DFT, to describe such a steady-state and reproduce the currents of the

interacting system through the corresponding, effectively non-interacting KS system.

To this end, we extend the i-DFT, which in principle captures the steady-state

density n(r) in the central region C, as well as the steady currents Iα [95]. In the two

terminal setup, by construction, in the linear-response regime, i-DFT gives access to
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the (many-body) electrical conductance and can also describe the Seebeck coefficient

(see eq. (5.18)). On the other hand, the energy or heat currents are not guaranteed to

be reproduced in i-DFT and therefore also the thermal conductance is not captured.

In our new iq-DFT framework for the description of both electrical and thermal

transport, we establish a one-to-one map between “densities”

(n(r), I1, . . . , IN−1, Q1, . . . , QN−1) and “potentials” (v(r), V1, . . . , VN−1,Ψ1, . . . ,ΨN−1),

where Ψα = ∆Tα/T is the normalized thermal gradient and T = ∑
α(Tα)/N is the

background temperature. In (two-terminal) linear response, iq-DFT gives access

not only to the electrical conductance and the Seebeck coefficient but also to the

electronic contribution to the thermal conductance, see Section 6.2.

In the following, we adopt the sign convention that currents flowing into

the central region are positive. Due to charge and energy conservation, the

steady-state electrical/energy currents flowing in is equal to the steady-state

electrical/energy currents flowing out, i.e., ∑ Iα = 0 , ∑Wα = 0 (energy current)

and ∑
Qα = −∑ IαVα (heat current).

The foundation of the multi-terminal iq-DFT rests on the following theorem

which establishes the one-to-one correspondence between the basic variables of the

theory (n(r), I1, . . . , IN−1, Q1, . . . , QN−1) and the related driving forces or potentials

(v(r), V1, . . . , VN−1,Ψ1, . . . ,ΨN−1) in a (gate dependent) finite region around Vα = 0

and Ψα = 0 for all α.

Theorem: For any finite temperature T and fixed electrostatic potential in

the leads, there exists a one-to-one correspondence between the set of “densities”

(n(r), I1, . . . , IN−1, Q1, . . . , QN−1) and the set of “potentials”

(v(r), V1, . . . , VN−1,Ψ1, . . . ,ΨN−1) in a (gate dependent) finite region around Vα = 0

and Ψα = 0 for all α = 1, . . . ,N − 1.

Proof: The existence of the invertible map can be proven by showing that
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the determinant of the Jacobian

J = det



δn(r)
δv(r′)

δn(r)
δV1

. . . δn(r)
δVN−1

δn(r)
δΨ1

. . . δn(r)
δΨN−1

δI1
δv(r′)

δI1
δV1

. . . δI1
δVN−1

δI1
δΨ1

. . . δI1
δΨN−1... ... . . . ... ... . . . ...

δIN−1
δv(r′)

δIN−1
δV1

. . . δIN−1
δVN−1

δIN−1
δΨ1

. . . δIN−1
δΨN−1

δQ1
δv(r′)

δQ1
δV1

. . . δQ1
δVN−1

δQ1
δΨ1

. . . δQ1
δΨN−1... ... . . . ... ... . . . ...

δQN−1
δv(r′)

δQN−1
δV1

. . . δQN−1
δVN−1

δQN−1
δΨ1

. . . δQN−1
δΨN−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣{Vβ}=0
{Ψβ}=0

, (6.1)

is non-vanishing.

Since a change in the gate voltage can not produce a persistent current in

the linear regime we have

δIα
δv(r)

∣∣∣∣∣{Vβ}=0
{Ψβ}=0

= 0, δQα

δv(r)

∣∣∣∣∣{Vβ}=0
{Ψβ}=0

= 0; (6.2)

and from Onsager’s reciprocal relation [93] also ∂n(r)
∂Vα

∣∣∣
0

= ∂n(r)
∂Ψα

∣∣∣
0

= 0 for α =

1, . . . ,N − 1. Therefore we can write eq. (6.1) as

J = det(χ(r, r′))det(L) (6.3)

where χ(r, r′) = δn(r)
δv(r′)

∣∣∣∣{Vβ}=0
{Ψβ}=0

is the static equilibrium density response function

and L provides the linear response relationship between the current vector Iᵀ =

(I1, . . . , IN−1, Q1, . . . , QN−1) and the potential vector Φᵀ = (V1, . . . , VN−1,Ψ1, . . . ,ΨN−1)

I =



I1
...

IN−1
Q1
...

QN−1


=



δI1
δV1

. . . δI1
δVN−1

δI1
δΨ1

. . . δI1
δΨN−1... . . . ... ... . . . ...

δIN−1
δV1

. . . δIN−1
δVN−1

δIN−1
δΨ1

. . . δI1
δΨN−1

δQ1
δV1

. . . δQ1
δVN−1

δQ1
δΨ1

. . . δQ1
δΨN−1... . . . ... ... . . . ...

δQN−1
δV1

. . . δQN−1
δVN−1

δQN−1
δΨ1

. . . δQN−1
δΨN−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Φ=0



V1
...

VN−1
Ψ1
...

ΨN−1


= LΦ.

(6.4)

It has already been shown [41] that, for any finite temperature T , we have

det(χ(r, r′)) < 0. Therefore, in order to complete the proof of the theorem, it

remains to be show that det(L) 6= 0.
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In the steady-state the time-derivative of the entropy S equals the variation of

the entropy current S = Q/T along the central molecular region. By construction,

in the linear response regime we have [96–98]

Ṡ = 1
T

N−1∑
α=1

(IαVα +QαΨα) = 1
T

ΦᵀI = 1
T

ΦᵀLΦ (6.5)

where we used eq. (6.4) in the last steps. From the second law of the thermodynamics,

we know that Ṡ ≥ 0 where the equality sign holds at equilibrium. Therefore

ΦᵀLΦ > 0 for all Φ ∈ RN−1\{0} and the L matrix is positive definite. From

eq. (6.3) we can therefore conclude that J 6= 0 completing the proof of the

multi-terminal iq-DFT theorem.

In the following sections of the present chapter we will restrict ourselves to the

two-terminal case (an alternative demonstration of the one-to-one correspondence

can be found in ref. [94]) where we adopt the same sign convention for the currents,

i.e., I ≡ IL = −IR (electrical current), W ≡ WL = −WR (energy current) and

Q ≡ QL = −IV − QR (heat current).

It is worth mentioning that an equivalent formulation in the two terminal

situation stems from considering as third basic variable the energy current W

instead of Q. The theory thus leads to a one-to-one correspondence between

(n(r), I,W ) and the trio of potentials (v(r), V − µLΨ,Ψ). The two formulations

are related through [99]

Wα = Qα + µαIα. (6.6)

6.1.1 Kohn-Sham equations of iq-DFT

The iq-DFT theorem holds for any form of the interaction, in particular also for the

non-interacting case. In order to establish the Kohn-Sham (KS) scheme, we make

the usual assumption of non-interacting representability, i.e., that there exists a

unique trio of potentials (vs(r), Vs,Ψs) for a non-interacting system, the Kohn-Sham

system, which exactly reproduces the densities (n(r), I, Q) of the interacting system



82 6.1. Formalism

with potentials (v(r), V,Ψ). Following the standard KS procedure, the xc potentials

of the iq-DFT framework are then defined as

vHxc[n, I,Q](r) = vs[n, I,Q](r)− v[n, I,Q](r), (6.7a)

Vxc[n, I,Q] = Vs[n, I,Q]− V [n, I,Q], (6.7b)

Ψxc[n, I,Q] = Ψs[n, I,Q]−Ψ[n, I,Q]. (6.7c)

The self-consistent coupled KS equations for the densities read (
∫
≡
∫∞
−∞

dω
2π

in the following)

n(r) = 2
∑

α=L,R

∫
f(ω − µs,α

Ts,α
)As,α(r, ω), (6.8a)

I = 2
∑

α=L,R

∫
f(ω − µs,α

Ts,α
)sαTs(ω), (6.8b)

Q = 2
∑

α=L,R

∫
f(ω − µs,α

Ts,α
)sα(ω − µs,L)Ts(ω), (6.8c)

where f(x) = [1 + exp(x)]−1 is the Fermi function, µs,α = µ + Vs,α, Ts,α =

T (1 + sαΨs/2) and sL/R = ±1. We remind the reader the definitions of the partial

spectral function As,α(r, ω) = 〈r|G(ω)Γα(ω)G†(ω) |r〉, with G(ω) and Γα(ω) the

KS Green’s function and broadening matrices, respectively, and the KS transmission

function Ts(ω) = Tr
{
G(ω)ΓL(ω)G†(ω)ΓR(ω)

}
. Finally, the energy current follows

directly from eqs. (6.6) and (6.8)

W = 2
∑

α=L,R

∫
f(ω − µs,α

Ts,α
)sαωTs(ω). (6.9)

Eqs. (6.8a) and (6.8b) have the same structure as the KS equations of the

original i-DFT formulation, except that in the present formalism the thermal

gradient along the central region is not a parameter anymore but a basic potential

which depends on the densities of the system. Therefore, the only possible parametric

temperature dependence in the approximations for the functionals eqs. (6.7) is

through the average temperature T .
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6.2 Linear Response

In this section, we develop the linear response formalism for iq-DFT which leads

to expressions for the linear transport coefficients G, S, and κ purely in terms

of quantities accessible by the theory.

To linear order, the relationship between the currents (I,Q) resulting from

application of the potentials (V,Ψ) reads(
I
Q

)
= L

(
V
Ψ

)
=
(
L11 L12
L21 L22

)(
V
Ψ

)
(6.10)

with L21 = L12 from Onsager’s relation. The conductance matrix L can be expressed

in terms of the transport coefficients as [92]

L =
(

G −TGS
−TGS Tκ+ T 2GS2

)
(6.11)

where G is the electrical conductance, S is the Seebeck coefficient and κ is the

thermal(heat) conductance. Equivalently, we can use eq. (6.11) to express the

transport coefficients in terms of the matrix elements Lij as

G = ∂I

∂V

∣∣∣∣∣ V=0
Ψ=0

= L11, (6.12a)

S = ∂V

∂∆T

∣∣∣∣∣ I=0
Q=0

= − 1
T

L12

L11
, (6.12b)

κ = ∂Q

∂∆T

∣∣∣∣∣ I=0
Q=0

= 1
T

(
L22 −

L2
12

L11

)
. (6.12c)

The same current variations as in eq. (6.10) can be expressed in terms of the KS sys-

tem (
I
Q

)
= Ls

(
V + Vxc
Ψ + Ψxc

)
, (6.13)

where we have used the definition of the KS potentials eqs. (6.7) and that Is = I

and Qs = Q by the KS construction. In the linear response regime, the changes

in the xc potentials can be written as(
Vxc
Ψxc

)
= Fxc

(
I
Q

)
= FxcL

(
V
Ψ

)
, (6.14)
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with the matrix of xc derivatives Fxc defined by

Fxc =
(

∂Vxc
∂I

∂Vxc
∂Q

∂Ψxc
∂I

∂Ψxc
∂Q

)∣∣∣∣∣
I=0
Q=0

(6.15)

and eq. (6.10) has been used. Combining eqs. (6.10), (6.13), and (6.15), and using

the fact that V and Ψ are arbitrary, we arrive at the Dyson equation

L = Ls + LsFxcL, (6.16)

or, equivalently,

Fxc = L−1
s − L−1 = Rs −R. (6.17)

Here, L and Ls are the interacting and KS conductance matrices where each

element is evaluated at (V = 0,Ψ = 0) and (Vs = 0,Ψs = 0), respectively. Similarly,

R = L−1 and Rs = L−1
s are the interacting and KS resistance matrices where each

element is evaluated at (I = 0, Q = 0). As a consequence of the Onsager’s relations

between the cross terms in the conductance matrices, from eq. (6.17) it follows

∂Vxc

∂Q

∣∣∣∣∣ I=0
Q=0

= ∂Ψxc

∂I

∣∣∣∣∣ I=0
Q=0

. (6.18)

We can express the Fxc elements as function of the linear transport coefficients

making use of eqs. (6.11) and (6.17) for the interacting and the KS system

∂Vxc

∂I

∣∣∣∣ I=0
Q=0

= 1
Gs

+ T
S2
s

κs
− 1
G
− T S

2

κ
, (6.19a)

∂Ψxc

∂I

∣∣∣∣ I=0
Q=0

=∂Vxc

∂Q

∣∣∣∣ I=0
Q=0

= Ss
κs
− S

κ
, (6.19b)

∂Ψxc

∂Q

∣∣∣∣ I=0
Q=0

= 1
Tκs
− 1
Tκ

. (6.19c)
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These equations can be inverted to yield

κ = κs

1− T ∂Ψxc
∂Q

∣∣∣∣ I=0
Q=0

κs

, (6.20a)

S =
Ss − κs ∂Vxc

∂Q

∣∣∣∣ I=0
Q=0

1− T ∂Ψxc
∂Q

∣∣∣∣ I=0
Q=0

κs

, (6.20b)

G = Gs

1−
∂Vxc

∂I

∣∣∣∣ I=0
Q=0

+ TS2

κ
− TS2

s

κs

Gs

. (6.20c)

Eqs. (6.20) are exact expressions for the interacting (linear) transport coefficients in

any molecular transport setup. They express the many-body transport coefficients in

terms of quantities which are fully accessible within iq-DFT, i.e, the xc derivatives

evaluated at (I = 0, Q = 0) and the KS transport coefficients. The transport

coefficients in iq-DFT exhibit increasing complexity: while the thermal conductance

κ (eq. (6.20a)) only depends on the KS thermal conductance κs and ∂Ψxc
∂Q

, the

Seebeck coefficient depends on its KS contribution Ss, κs as well as the two xc

derivatives, ∂Vxc
∂Q

and ∂Ψxc
∂Q

. Finally, the electrical conductance depends on the three

KS coefficients (κs, Ss, Gs) and the three xc derivatives through S and κ.

Using eqs. (6.20) for the iq-DFT transport coefficients, we now briefly discuss

the relation of iq-DFT to other DFT-based frameworks for the description of steady-

state transport. At first, we consider the simplest approximation which completely

neglects the xc contributions to the transport coefficients, i.e., setting Vxc ≈ 0 and

Ψxc ≈ 0. Then all linear transport coefficients reduce to the corresponding KS

coefficients, i.e., we recover the standard LB+DFT approach. At the next level, we

consider the relation to the original i-DFT formalism which is designed to give the

exact electrical steady current. The i-DFT expression for the electrical conductance

G = Gs

1− ∂V i−DFT
xc
∂I

∣∣∣∣
I=0

Gs

(6.21)



86 6.3. Application to the single impurity Anderson Model

is exact, just as the corresponding iq-DFT expression (6.20c). Thus, we can

establish the exact relation

∂V i−DFT
xc
∂I

∣∣∣∣
I=0

= ∂V iq−DFT
xc
∂I

∣∣∣∣ I=0
Q=0

+ TS2

κ
− TS2

s

κs
(6.22)

for the current derivatives at I = 0 of the xc bias in i-DFT and iq-DFT. In

the original i-DFT framework, the Seebeck coefficient as well as the thermal

conductance are given by their KS counterparts. In iq-DFT, this corresponds

to the approximation of setting Ψxc ≈ 0 and approximating the xc bias as

a functional independent of the heat current, i.e., Vxc[n, I,Q] ≈ Vxc[n, I]. In

the previous chapter we have extended the original i-DFT formalism to not

only give the many-body electrical conductance but also the many-body Seebeck

coefficient, while for the thermal conductance one still find discrepancies with the

correct many-body quantity. In iq-DFT, this corresponds to the approximation

Ψxc[n, I,Q] ≈ Ψxc[n, I], independent of Q for general Vxc[n, I,Q]. Then we find

S = Ss − κs
∂Vxc
∂Q
| I=0
Q=0 = Ss − ∂Vxc

∂∆T |
I=0
Q=0 = Ss − Sxc, as in refs. [42, 85]. This

approximation then also implies a finite correction (over pure i-DFT) for the

electrical conductance G = Gs[1 −
(
∂Vxc
∂I
| I=0
Q=0

+ TSxc(Sxc − 2Ss)/κs
)
Gs]−1.

In order to calculate the interacting transport coefficients from eq. (6.20), one

first needs to evaluate the KS coefficients, and consequently, an approximation

for the functional vHxc[n] is required where the dependence of vHxc on I and Q

can be neglected if we work in the linear response regime. In order to gain some

first insight into the possible approximations for the iq-DFT functionals, in the

following section we will discuss an application of iq-DFT formalism to a particular

model system in the linear response regime.

6.3 Application to the single impurity Anderson
Model

In this section we apply our iq-DFT framework to the SIAM. Due to its simplicity

and evident physical interpretation, this model is ideally suited as a first system
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to explore the new formalism and has been used in many previous works [42, 95,

100], both within and outside any DFT setting.

For simplicity, we choose symmetric coupling of the leads, i.e., γL = γR = γ/2.

In the present section we are mostly concerned with application of the theory to

the linear response regime, but for derivation purposes we keep a finite symmetric

thermal gradient and a finite symmetric DC bias between the leads , i.e., Tα =

T (1 + sα
Ψ
2 ) and Vα = sα

V
2 with sL/R = ±1 where we choose µ = 0.

6.3.1 Reverse engineering from the Many-Body Model

In order to apply our iq-DFT formalism to the SIAM, we need approximations

for all the xc potentials of the formalism. Since here we are concerned with the

linear response regime only, we actually need to construct parametrizations for the

derivatives of the xc potentials (at zero currents) appearing in eqs. (6.20).

This can be achieved through a reverse engineering process. First, we express

the interacting density on and currents through the dot in terms of the many-body

spectral function A(ω) [86, 88]:

n =
∑

α=L,R

∫
f

 ω − sα V2
T
(
1 + sα

Ψ
2

)
A(ω), (6.23a)

I =γ2
∑

α=L,R

∫
sαf

 ω − sα V2
T
(
1 + sα

Ψ
2

)
A(ω), (6.23b)

Q =γ2
∑

α=L,R

∫
sαf

 ω − sα V2
T
(
1 + sα

Ψ
2

)
 (ω − V

2 )A(ω). (6.23c)

In order to proceed with the reverse engineering, we consider the MBM spectral

function of eq. (5.6) which correctly describes the impurity coupled to the leads

in range of temperatures larger than any other energy scale of the system. In

particular, the MBM correctly captures CB physics, but not the Kondo regime.

For the reverse engineering, we also need the densities and currents expressed

through the KS equations. These can be obtained from eqs. (6.23) by replacing

the basic potentials by their non-interacting versions, i.e., v → vs, V → Vs and

Ψ → Ψs, and replacing A(ω) → As(ω) = γ/((ω − vs)2 + γ2/4). The resulting
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integrals can be evaluated analytically (see appendix B) and the basic variables

of the theory can then be expressed as

n =1− 1
π

(
Im

[
ψ
(
zRs
)]

+ Im
[
ψ
(
zLs
)])

, (6.24a)

I = γ

2π
(
Im

[
ψ
(
zRs
)]
− Im

[
ψ
(
zLs
)])

, (6.24b)

Q = γ2

2π
(
Re

[
ψ
(
zLs
)]
− Re

[
ψ
(
zRs
)])

+ γ2

2π log
(

1 + Ψs/2
1−Ψs/2

)
+
(
vs −

Vs
2

)
I, (6.24c)

where zL/Rs = 1
2 + γ/2+i(vs∓Vs/2)

2πT (1±Ψs/2) and ψ(z) is the digamma function with general

complex argument z [89]. Also for the MBM, all integrals in eqs. (6.23) can be

evaluated analytically using the same integrals of the appendix B, which means

that we can use the results obtained in eq. (6.24). Making use of eq. (5.6) with

eq. (6.23) yields

nMBM = n(v, V,Ψ)
1 + 1

2 (n(v, V,Ψ)− n(v + U), V,Ψ) (6.25a)

IMBM = I(v, V,Ψ)− 1
2n(v, V,Ψ) (I(v, V,Ψ)− I(v + U, V,Ψ)) (6.25b)

QMBM = Q(v, V,Ψ)− 1
2n(v, V,Ψ) (Q(v, V,Ψ)−Q(v + U, V,Ψ)) (6.25c)

where we have made explicit the dependence of the density and the currents of

eq. (6.24) with the effective potentials that enter as arguments, replacing the

KS potentials (vs, Vs,Ψs).

Taking the derivatives of eqs. (6.24) with respect to the related KS potentials, we

can derive in an exact way the matrix elements Lsij of the matrix Ls (see eq. (6.13)) as

Lsij(vs) = Mij(vs) (6.26)

where we have used the Mij coefficients derived in eqs. (B.19) and made explicit

the dependence on the KS potential vs.

Similarly, also for the many-body model we can derive the corresponding matrix

elements of the interacting response matrix L by taking the corresponding derivatives.

These matrix elements then read

Lij(v) =
(

1− n

2

)
Mij(v) + n

2Mij(v + U). (6.27)
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Figure 6.2: Comparison between analytical and numerical reverse engineered xc
derivatives as function of the density. The left column corresponds to U/γ = 8 and
the right one to T/γ = 12. For the analytic result the relation between the gates and the
density from the SSM has been used, while for the numeric inversion this relation directly
follows eq. (6.24a). The xc derivatives are obtained in both approaches using eqs. (6.27)
and (6.28).

Combining eqs. (6.12) and eqs. (6.19) we arrive at

∂Vxc

∂I

∣∣∣∣ I=0
Q=0

= 1
Ls11(vs)

− 1
L11(v) + Ls12(vs)2

Ls11(vs)
1

det(Ls(vs))

− L12(v)2

L11(v)
1

det(L(v)) , (6.28a)

∂Ψxc

∂I

∣∣∣∣ I=0
Q=0

=∂Vxc

∂Q

∣∣∣∣ I=0
Q=0

= Ls12(vs)
det(Ls(vs))

− L12(v)
det(L(v)) , (6.28b)

∂Ψxc

∂Q

∣∣∣∣ I=0
Q=0

= Ls11(vs)
det(Ls(vs))

− L11(v)
det(L(v)) . (6.28c)

Eqs. (6.28) together with eqs. (6.27) provide the analytical parametrizations of

the xc derivatives in terms of both vs and v. Instead, the dependence of the xc

derivatives on the density can be obtained by (i) replacing v in the argument

of the many-body coefficients Lij by v(n), the inverse of the density-potential

relationship of eq. (6.23) (at V = 0 and Ψ = 0) and, similarly, (ii) by using vs(n)

as arguments in the KS coefficients Lsij which can be obtained by inverting the

corresponding KS expression n(vs) for the density (at Vs = 0 and Ψs = 0). These

inverse functions can easily be obtained numerically and, by construction, the
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Figure 6.3: Equilibrium density of the SIAM as a function of the gate voltage (vg = v+U
2 )

from the MBM and iq-DFT. In iq-DFT, the Hxc potential of the single site model has
been used (see main text). Upper panel: density for different temperatures at fixed
U/γ = 8, lower panel: density for different interactions at fixed T/γ = 1.

resulting density functionals for the xc derivatives then give exactly the same linear

response transport coefficients (in a DFT framework) as the many-body model.

Nevertheless, here we are interested in finding an analytical parametrization for

the xc derivatives in terms of the density and therefore an approximation for the

density-gate relationship is required. The completion of our analytical approach

requires the insertion of parametrizations of both v(n) and vs(n)) from SSM into

eqs. (6.28). We choose the exact SSM potentials eqs. (A.1) and (A.2).

The xc derivatives provide a measure of the correction required over the KS

system to accurately describe the linear response properties of the many-body model.

From fig. 6.2 it is evident that the xc corrections become larger with increasing

temperature T or interaction strength U . In the left column of fig. 6.2, the xc

derivatives are calculated at U/γ = 8 for different temperatures T while in the right

column T is fixed to T/γ = 12 and the xc derivatives are obtained for different

interactions U . Our analytical parametrization is compared with the numerically

exact inversion from the MBM approach.



6. Steady-state Density Functional Theory Formalism for both Electrical and Heat
Transport 91

Figure 6.4: Transport coefficients and electronic contribution to the figure of merit as
a function of the gate voltage (vg = v + U

2 ) for U/γ = 8. The iq-DFT results using the
analytic reverse engineered xc derivatives eqs. (6.28) are compared with those obtained
directly from eqs. (6.23) when using the model spectral function of eq. (5.6).

6.3.2 Numerical results

In order to assess the accuracy of our analytically RE approximations for the

derivatives of the iq-DFT xc potentials in comparison to the reference MBM,

we solve the DFT problem in the standard way where we use the vHxc of the

SSM (eq. (A.3)). In fig. 6.3, the iq-DFT densities as function of the gate voltage

(vg = v + U
2 ) are compared with the ones obtained from MBM. As expected, this

approximate Hxc potential works better as T/γ is increased (for fixed U/γ) while

for relatively small T/γ = 1 the qualitative behaviour of the density is captured

well for different interactions while quantitative differences persist.

In fig. 6.4, we show the linear transport coefficients for a fixed interaction

strength U/γ = 8 and various temperatures as function of the gate voltage vg
for the MBM, iq-DFT, and the LB+DFT approach (corresponding to the KS

transport coefficients). The iq-DFT results agree extremely well with the MBM

ones highlighting the good approximation of the gate-density relations (eqs. (A.3))

in the range T/γ > 1. On the other hand, the LB+DFT results are only accurate

in the empty/full orbital regime (|vg|/γ ≥ 7) where correlations play essentially no
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Figure 6.5: Transport coefficients and electronic contribution to the figure of merit as a
function of the temperature for U/γ = 8. The iq-DFT results using the analytic reverse
engineered xc derivatives eqs. (6.28) are compared with those obtained directly from
eqs. (6.23) when using the model spectral function of eq. (5.6).

role. Notice that, for T/γ = 1, in the LB+DFT the Seebeck coefficient flattens

around vg/γ = 0, while both iq-DFT and MBM predict a significant deviation

[42, 85]. Note that the electrical and heat conductances are shown in units of the

quantum of conductance G0, while the Seebeck coefficient is given in atomic units.

In fig. 6.5, the iq-DFT transport coefficients as well as the figure of merit of

the system ZT = TGS2/κ are compared with those obtained from MBM for fixed

gate potential as function of temperature for strong correlations U/γ = 8. As in

fig. 6.5 we observe excellent agreement as T/γ increases. Finally in fig. 6.6, we

show the iq-DFT transport coefficients for different interaction strength U using xc

parametrizations (eq. (6.28)). Again we observe that for the given, fixed temperature

T/γ = 1, the whole range from weak (U/γ = 1) to strong correlations (U/γ > 7)

is correctly captured in iq-DFT as compared to the MBM.

As summary of our numerical results, we have shown that our parametrization

for the derivatives of the iq-DFT xc potentials leads to rather accurate reproduc-

tion of the linear response transport coefficients of the MBM. There were two

approximations involved in our iq-DFT approach: (i) we used the approximate Hxc

potential of eq. (A.3) for the self-consistent calculation of the density and (ii) the
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Figure 6.6: Transport coefficients and electronic contribution to the figure of merit as
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2 ) for T/γ = 1. The iq-DFT results using the
analytic reverse engineered xc derivatives are compared with those obtained directly from
eqs. (6.23) when using the model spectral function of eq. (5.6).

approximate density-potential relations from the SSM eqs. (A.1) and (A.2) were

used to construct the xc derivatives as functionals of the equilibrium density. Both

approximations (i) and (ii) originate from the SSM and therefore it is not surprising

that the corresponding iq-DFT calculations show improved agreement with the

MBM as temperature increases. We would also like to emphasize again that the

MBM approximation for the spectral function eq. (5.6) is by construction derived

for the CB regime (T/TK � 1 where TK is the Kondo temperature of the system).

Therefore our approximation cannot and should not be expected to accurately

describe the linear transport coefficients of the interacting system for temperatures

in the Kondo regime (T � TK). Nevertheless, our approximation may very well

serve as a first step towards the construction of improved approximations which

are valid in this regime as well. While such a construction is beyond the scope of

the present study, we have already observed that the low temperature behaviour

of the Seebeck coefficient and the thermal conductance are qualitatively correctly

captured with the analytical approach. Therefore the main corrections appear to

be necessary for the electrical conductance, where ideas of the corresponding i-DFT

shown in the previous chapter are expected to be transferable to iq-DFT as well.
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This chapter is based on the article [95].

7
Non-Equilibrium Spectral functions with

Multi-Terminal Steady-State Density
Functional Theory

Contents
7.1 Non-Equilibrium Spectral functions from multi-terminal
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In this chapter we generalize i-DFT to the multi-terminal configuration and

then consider the specific situation of a junction connected to three electrodes. We

show how in the “ideal STM setup”, where one of the electrodes is weakly coupled

to the system, one can extract the non-equilibrium many-body spectral function of

the junction at arbitrary temperature and bias between the other two electrodes

within the i-DFT framework [95]. We apply the approach to the SIAM for which

we construct an approximate xc functional which partially captures the splitting

of the Kondo peak at finite bias. We also identify the crucial feature of the xc

functional needed to fully describe the splitting of the Kondo peak.

95
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Figure 7.1: Schematic drawing of a three-terminal nanoscale junction. A molecular
region of space C is coupled to a left (L) and right (R) leads at voltages VL = −VR = V/2
with temperature T and to a tip (τ) at voltage Vτ with zero temperature Tτ = 0.

7.1 Non-Equilibrium Spectral functions from multi-
terminal i-DFT

We consider a nanoscopic region C containing a quantum dot or molecule and a

number of electrodes α = 1, ..,N , as depicted schematically in fig. 7.1 for N = 3.

The system is assumed to be in a steady-state characterized by temperatures Tα and

external voltages Vα in electrode α and by a gate voltage v(r) in C. As long as region

C is finite there are no constraints on the shape of its boundaries. Due to gauge

invariance the same steady-state is attained by shifting all voltages by a constant

energy P , i.e., Vα → Vα + P and v(r) → v(r) + P . Let Iα be the longitudinal

current flowing out of electrode α and n(r) be the density in the nanoscopic region.

Due to charge conservation (consequence of the aforementioned gauge invariance)

the currents fulfill ∑α Iα = 0. This situation resembles the aforementioned multi-

terminal iq-DFT framework (see section 6.1) with the exception that the aim

in the present chapter is restricted to the correct description of the density in

the central region C and the electrical currents. Following the same ideas as

in section 6.1 we can write the linear response relationship between the current
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vector I and the potential vector Φ as

I =


I1
...

IN−1

 =


δI1
δV1

. . . δI1
δVN−1... . . . ...

δIN−1
δV1

. . . δIN−1
δVN−1


∣∣∣∣∣∣∣∣∣
Vα=0


V1
...

VN−1

 = LΦ. (7.1)

By construction, the rate of production of entropy in the theory corresponds

to Ṡ = 1
T

∑N−1
α=1 IαVα = ΦᵀLΦ. Since the rate of production of entropy has to

be larger than zero in any out of equilibrium situation, we can conclude that

L is positive definite and therefore there exists a one to one map between the

set of “densities” (n, I1, . . . , IN−1) and the set of “potentials” (v, V1, . . . , VN−1) in

a finite (and gate dependent) region of voltages Vα around zero voltage around

any common temperature T .

Assuming that the interacting density and currents are non-interacting rep-

resentable, the multi-terminal i-DFT map (for non-interacting systems) tells us

that there exists a unique set of Kohn-Sham (KS) potentials (vs,Φs) which in

the non-interacting system reproduce the density n(r) and currents I of the

interacting one. Following the KS procedure, we define the exchange-correlation

(xc) voltages Vα,xc[n, I] = Vα,s[n, I]− Vα[n, I] and the Hartree-xc (Hxc) gate voltage

vHxc[n, I] = vs[n, I] − v[n, I] (which are functionals of the density in C and the

currents) and then calculate the interacting density and currents by solving self-

consistently the equations (henceforth
∫
≡
∫ dω

2π )

n(r)=2
∑
α

∫
fα(ω − Vα − Vα,xc[n, I])Aα,s(ω, r), (7.2)

Iα=2
∑
α′

∫ [
fα(ω − Vα − Vα,xc[n, I])− fα′(ω − Vα′ − Vα′,xc[n, I])

]
Tαα′,s(ω), (7.3)

where fα(ω) = 1/(eω/Tα+1) is the Fermi function of lead α at temperature Tα. In the

KS equations Aα,s(ω, r) = 〈r|GR
s (ω)Γα(ω)GA

s (ω)|r〉 is the partial KS spectral func-

tion written in terms of the retarded/advanced KS Green’s functions GR/A
s and hy-

bridization Gα(ω) due to lead α, whereas Tαα′,s(ω) = Tr
[
GR
s (ω)Γα(ω)GA

s (ω)Γα′(ω)
]

are the KS transmission probabilities.
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Here, we first recall how to calculate out-of-equilibrium spectral functions

from transport measurements [101–107], and then we proceed to calculate the

corresponding quantity taking advantage of the multi-terminal i-DFT framework.

We consider a three-terminal molecular junction as illustrated in fig. 7.1. Two

electrodes, the left (α = L) and right (α = R) ones, have voltages VL = −VR = V/2

(gauge fixing) and we choose the same finite temperature TL = TR = T . The

third electrode plays the role of a tip (α = τ) and is kept at zero temperature and

voltage Vτ . The contact between the tip and the nanoscopic region is described

by the energy-independent hybridization Γτ whose indices run over a suitable one-

electron orbital basis for the considered molecule. The Γτ matrix, aside from being

constrained to be symmetric and positive semi-definite, will be varied at will.

According to Meir and Wingreen [86] the current Iτ flowing out of the tip is given

by

Iτ = 2
∫

Tr [fτ (ω − Vτ )ΓτA(ω) + iΓτG<(ω)] (7.4)

where A(ω) = i [G>(ω)−G<(ω)] is the non-equilibrium, finite-temperature many-

body spectral function expressed in terms of the lesser/greater Green’s functions

whereas fτ (ω) = θ(−ω) is the zero-temperature Fermi function of the tip. In

eq. (7.4) the trace is over the indices of the molecular one-electron basis. In the

ideal Scanning Tunneling Microscopy (STM) limit, Γτ → 0, the Green’s functions

G≶ are not affected by a change of the tip voltage and hence [108]

lim
Γτ→0

∂G≶(ω)
∂Vτ

= 0. (7.5)

We then consider a hybridization of the form

Γτ = γτ

[
ηp|p〉〈p|+ ηq|q〉〈q|+ ηpq

(
|p〉〈q|+ |q〉〈p|

)]
. (7.6)

Here |p〉 and |q〉 are elements of an arbitrary single-particle basis and γτ , ηp, ηq, and

ηpq are frequency-independent constants, i.e., we take the tip to be a featureless
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lead in the wide-band limit. The operator (7.6) is symmetric and positive semi-

definite for all γτ , ηp, ηq ≥ 0 and |ηpq| ≤
√
ηpηq. Taking into account eq. (7.5)

it is straightforward to show that

lim
γτ→0

1
γτ

∂Iτ
∂Vτ

= A(Vτ )
π

(7.7)

where

A(ω) = ηpApp(ω) + ηqAqq(ω) + ηpq
[
Apq(ω) + Aqp(ω)

]
(7.8)

is a linear combination of the matrix elements of the spectral function, i.e. Apq(ω) =

〈p|A(ω)|q〉. Choosing, e.g., ηp = 1 and ηq = 0 we can obtain all diagonal elements

App = A by varying p. Subsequently we can extract the off-diagonal elements

Apq + Aqp = A − App − Aqq by setting ηpq = ηp = ηq = 1.

From the i-DFT perspective we fix the gauge according to VL,s = −VR,s = Vs/2

and consider the combination I = (IL−IR)/2 and Iτ as the two independent currents.

Then the triple vHxc = vHxc[n, Iτ , I], Vτ,xc = Vτ,xc[n, Iτ , I] and Vxc = Vxc[n, Iτ , I] are

functionals of the triple n, Iτ and I (here Vxc[n, Iτ , I] = Vs[n, Iτ , I] − V [n, Iτ , I]).

Considering n, Iτ and I as interacting functionals of the physical voltages v, Vτ and

V , eq. (7.5) implies that ∂n(r)/∂Vτ → 0 and ∂I/∂Vτ → 0 for Γτ → 0, therefore

by the chain rule it thus follows that

lim
Γτ→0

∂vHxc

∂Vτ
= lim

Γτ→0

∂Vxc

∂Vτ
= 0. (7.9)

Following the same ideas described in ref. [108] for the equilibrium spectral function,

we now take advantage of these relations in order to express the (non-equilibrium)

spectral function A in terms of the (non-equilibrium) KS spectral function As.

In the non-interacting KS system the tip current is given by eq. (7.4), replacing

A(ω) with the KS spectral function As = ∑
αAα,s, G<(ω) by the KS lesser GF

G<
s and Vτ by Vτ,s = Vτ + Vτ,xc. Taking into account eq. (7.9) and the fact that

Γτ is energy-independent, we find

lim
γτ→0

1
γτ

∂Iτ
∂Vτ

= As(Vτ + Vτ,xc)
π

(
1 + ∂Vτ,xc

∂Iτ

∂Iτ
∂Vτ

)
(7.10)
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where As is defined as in eq. (7.8) with A → As. Combining this result with

eq. (7.7), we arrive at the first main result of this chapter

A(ω) = lim
γτ→0

As(ω + Vτ,xc(ω))
1− γτ

π
∂Vτ,xc(ω)

∂Iτ
As(ω + Vτ,xc(ω))

, (7.11)

which generalizes the corresponding result of ref. [108] to non-equilibrium spectral

functions. Here we have made explicit the dependence of Vτ,xc on ω = Vτ through its

dependence on Iτ . Choosing, e.g., ηp = 1 and ηq = 0, eq. (7.11) provides a relation

between App and As,pp. The off-diagonal combination Apq +Aqp does instead follow

by setting ηpq = ηp = ηq = 1. We also observe that both As and A are normalized

to the same value, i.e.
∫
A(ω) =

∫
As(ω) as it should be1.

7.2 i-DFT potentials for the Anderson model

We apply the i-DFT framework to the three-terminal single-impurity Anderson

model (SIAM) with charging energy U . Since the SIAM nanoscopic region has only

one electronic degree of freedom, the density n = N coincides with the impurity

occupation N , and all hybridization matrices are scalar. We then write Γτ = γτ

for the tip and consider energy-independent left/right hybridizations γL/R. The

i-DFT self-consistent equations for n, Iτ and I read

n = 2
∫ ∑

α=L,R,τ
f̃α(ω)γα

γ
As(ω) (7.12)

Iτ = 2γτ
∫ γL + γR

γ
f̃τ (ω)−

∑
α=L,R

γα
γ
f̃α(ω)

As(ω) (7.13)

I=
∫ [

γL
2γR + γτ

γ
f̃L(ω)− γR

2γL + γτ
γ

f̃R(ω)− γτ (γL − γR)
γ

f̃τ (ω)
]
As(ω)

(7.14)

where we have defined f̃α(ω) ≡ fα(ω−Vα−Vα,xc) as the shifted Fermi function and

γ ≡ γL + γR + γτ . The KS spectral function is simply As(ω) = `γ(ω − v − vHxc)

with the Lorentzian `γ(ω) = γ/(ω2 + γ2/4).
1 This follows by integrating over ω both sides of eq. (7.11), changing variable ω′ = ω+Vτ,xc(ω)

in the r.h.s. and taking into account the Jacobian dω′

dω = 1/(1− γτ
π
∂Vτ,xc(ω)
∂IT

As(ω + Vτ,xc(ω))).
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Here we note that one can also express n, I, and Iτ in terms of the many-

body spectral function A(ω). The resulting equations have the same structure as

eqs. (7.12)-(7.14) with As(ω) replaced by A(ω), and the Fermi functions evaluated

at the external biases, i.e., without the xc contributions. Since both KS and many-

body spectral functions are normalized, the range of possible densities and currents

is the same in the interacting and non-interacting case and any set of many-body

“densities” (n, I, Iτ ) is non-interacting representable.

In order to derive an approximation for the i-DFT potentials we observe

that in the interacting system the current flowing out of lead α reads Iα =

2
∫

[fα(ω − Vα)γαA(ω) + iγαG
<(ω)]. Taking into account that the impurity oc-

cupation is n = −2i
∫
G<(ω) we get

n+ Iα
γα

= 2
∫
fα(ω − Vα)A(ω). (7.15)

Inserting the MBM interacting spectral function of eq. (5.6) valid in the CB regime

into the r.h.s. of eq. (7.15) we get the same expression obtained in ref. [41] for

the two-terminal setup. Following the same analysis of the step features of the

numerical RE (H)xc potentials as in appendix A.2 (see fig. A.2), we can parametrize

our CB functionals in the same manner

vCB
Hxc − V CB

α,xc ≈
U

2 + U

π
atan

[
N + Iα/(2γα)− 1

νW (Tα)

]
(7.16)

with ν = 1, W (T ) = 0.16× (γ/U)(1 + 9(T/γ)2) and IL = I − Iτ/2, IR = −I − Iτ/2

(as follows from charge conservation). From eqs. (7.16) we can easily extract an

explicit form of the (H)xc potentials vCB
Hxc, V CB

τ,xc and V CB
xc = 2V CB

L,xc = −2V CB
R,xc

in terms of n, Iτ and I

vCB
Hxc = U

2 + U

2πatan
[
N + IL/(2γL)− 1

νW (TL)

]
+ U

2πatan
[
N + IR/(2γR)− 1

νW (TR)

]
(7.17a)

V CB
xc = −U

π
atan

[
N + IL/(2γL)− 1

νW (TL)

]
+ U

π
atan

[
N + IR/(2γR)− 1

νW (TR)

]
(7.17b)
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vCB
τ,xc = U

2πatan
[
N + IL/(2γL)− 1

νW (TL)

]
+ U

2πatan
[
N + IR/(2γR)− 1

νW (TR)

]

− U

π
atan

[
N + Iτ/(2γτ )− 1

νW (Tτ )

]
. (7.17c)

The (H)xc potentials in eq. (7.17) are certainly inadequate for temperatures T . TK .

In particular for T = 0 the Friedel sum rule implies that the zero-bias interacting

and KS conductances Gαβ = ∂Iα/∂Vβ and Gs,αβ = ∂Iα/∂Vs,β are identical 2. Since

(repeated indices are summed over)

Gαβ = ∂Iα
∂Vs,µ

∂Vs,µ
∂Vβ

= Gs,αµ
(
δµβ + ∂Vµ,xc

∂Iν
Gνβ

)
(7.18)

the zero-temperature xc voltages must fulfill ∂Vµ,xc/∂Iν = 0 at zero currents. We

incorporate this property in vHxc and Vxc using the parametrization of eq. (A.6) for

the two-terminal case, i.e., for γτ = 0, which has been shown to be accurate in a

wide range of temperatures and charging energy. For Vτ,xc we propose

Vτ,xc(n, Iτ , I) =
[
1− b(n)aτ (Iτ )a(I)

]
V CB
τ,xc(n, Iτ , I) (7.19)

where in V CB
τ,xc we now take ν = 2 [45] and the functions aτ and a are similar to

the one used in ref. [108] and read

aτ (Iτ ) = 1− 2
π

atan
λ( Iτ

W (0)γτ,eff

)2
 (7.20)

a(I) = 1− 2
π

atan
λ( I

W (T )γeff

)2
 (7.21)

with γτ,eff = 4γτ (γL+γR)
γ

, γeff = 4γLγR
γL+γR and λ = 0.16. For b(N) we implement

the same function as in eq. (A.8) but we replace the two-terminal conductance

Guniv = dI/dV at the ph symmetric gate v = −U/2, voltage V = 0 and symmetric

coupling γL = γR (this is a universal function depending only on the ratio T/TK)
2Using the Friedel sum-rule one can show that Gαβ = Cαβ(γτ , γL, γR)A(µ) where the prefactor

Cαβ depends only on the hybridizations and A(µ) is the interacting spectral function at chemical
potential µ (which is set to zero in our case). Since A(µ) = 4

γ sin2(πN/2) and since in i-DFT
the KS occupation N is the same as the interacting N we conclude that the interacting and KS
conductances are the same.
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Figure 7.2: Equilibrium i-DFT spectral functions A(ω) of the SIAM at ph symmetry
for U/γ = 5 for various temperatures compared with NRG results [109, 110]. The Kondo
temperature is TK/γ ≈ 0.066.

with the three-terminal conductance Gτ = dIτ/dVτ at the ph symmetric gate

and voltages V = Vτ = 0:

b(N = 1) = 1 + 1
∂V CB

τ,xc
∂Iτ

∣∣∣∣ N=1
I=Iτ=0

(
1
Gτ
− 1
Gs,τ

)
. (7.22)

One can show that Gτ = 4γτ (γL+γR)
γ2 Guniv. In eq. (7.22) Gs,τ = dIτ/dVs,τ is the KS

conductance at the same external potentials, i.e., ph gate and zero voltages.

7.2.1 Results

As a first test we use our three-terminal i-DFT setup to compute the spectral

function of the SIAM in thermal equilibrium for which we can compare with

results from NRG techniques [109, 110], see fig. 7.2. The i-DFT spectra agree

reasonably well with the NRG ones although the height of the Kondo peak is

slightly overestimated and for T/TK & 2.5 the Coulomb blockade side peaks are a

bit too narrow. In general, the finite temperature i-DFT spectra are of comparable

quality as the zero-temperature ones [108].

We now consider the zero-temperature, non-equilibrium SIAM and benchmark

the i-DFT spectra against recent results from the Quantum Monte Carlo (QMC)



104 7.2. i-DFT potentials for the Anderson model

-2 -1 0 1 2
ω/γ

0

0.4

0.8
A

(ω
)γ

/4

V/γ = 0.0 i-DFT

V/γ = 0.0 QMC

V/γ = 0.4 i-DFT

V/γ = 0.4 QMC

V/γ = 0.8 i-DFT

V/γ = 0.8 QMC

V/γ = 1.2 i-DFT

V/γ = 1.2 QMC

V/γ = 1.6 i-DFT

V/γ = 1.6 QMC

V/γ = 2.0 i-DFT

V/γ = 2.0 QMC

Figure 7.3: Comparison of i-DFT and QMC non-equilibrium spectral functions from
ref. [111] at particle-hole symmetry for U/γ = 2.5 and zero temperature. The Kondo
temperature is TK/γ ≈ 0.39.

approach [111], see fig. 7.3. i-DFT reproduces all main qualitative features of

the QMC spectra. In particular, our simple functional of eq. (7.19) for the xc

tip bias is able to capture the finite-bias splitting of the Kondo peak in this

moderately correlated case U/γ = 2.5. Nevertheless, in i-DFT the splitting appears

at somewhat higher biases and the distance between the peaks increases with bias

faster than in QMC. We have done calculations for the same set of biases but at a

finite temperature T/TK = 0.6 and observed no dramatic changes except for the

suppression of the Kondo peak already at zero voltage.

In fig. 7.4 (left panel) we compare i-DFT with QMC non-equilibrium spectral

functions [111] for a stronger interaction strength U/γ = 4. Clearly our approx-

imation to Vτ,xc is missing a crucial feature since the Kondo splitting is totally

absent in i-DFT. Below we highlight an exact property that Vτ,xc must fulfill in

order to capture the finite-bias splitting. The interacting spectral function in

eq. (7.11) can also be written as

A(ω) = d
dω

∫ ω+Vτ,xc(ω)
dω′As(ω′). (7.23)

Therefore, given a many-body (e.g., QMC) spectral function A(ω), by integration

of eq. (7.23) one can reverse-engineer the xc tip bias Vτ,xc which corresponds to the
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Figure 7.4: Left panel: i-DFT and QMC non-equilibrium spectral functions at particle-
hole symmetry for U/γ = 4 with QMC results from ref. [111]. Upper right panel: xc
tip bias as function of tip current Iτ at N = 1 and fixed current I corresponding to the
two bias values. i-DFT results from our model tip xc bias of eq. (7.19), QMC results
from reverse engineering using the QMC spectral function, see text. Lower right panel:
derivatives of Vτ,xc of upper right panel with respect to Iτ .

given A. In the upper right panel of fig. 7.4 we extracted Vτ,xc as function of Iτ (for

fixed values of n and I) corresponding to the QMC spectral functions of the left

panel of the same figure and compare to our i-DFT functional of eq. (7.19). Although

some differences are visible our approximate xc tip bias seems to agree rather well

with the reverse engineered one. The missing feature becomes evident if we compare

the derivatives of Vτ,xc with respect to Iτ , see lower right panel of fig. 7.4. While

the derivative of the reverse engineered Vτ,xc exhibits a double peak in the vicinity

of Iτ/γτ ≈ 0, our approximation exhibits only a single maximum at Iτ/γτ = 0. Of

course, the height as well as the positions of the maxima depend on the current I

between the left and right leads. We have verified that using the reverse engineered

Vτ,xc in eq. (7.11) the i-DFT and QMC spectral functions become indistinguishable.

The correct incorporation of the double peak feature into an improved approximation

for Vτ,xc is beyond the scope of this work. However, the established existence of this

xc bias constitutes a proof-of-concept: i-DFT provides a numerically cheap method

to calculate non-equilibrium spectral functions at zero and finite temperature.
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8
Conclusions

In this thesis we have revisited and proposed different DFT frameworks which aim

to describe the steady-state electrical and thermal transport driven by electrons

through nanoscale junctions. Focusing on strongly correlated systems, the structure

of the required exchange-correlation functionals in several basic model systems

have been investigated.

Equilibrium properties of the Hxc functionals of multi-orbital quantum dots

are addressed in part I, where we use the well studied single impurity problem as

basis for the description of more complex situations. The Hxc potentials for double

quantum dots in the grand-canonical ensemble subject to generic density-density

interactions and Hund’s rule coupling are studied in chapter 3 by reverse-engineering

exact many-body solutions. At low temperatures, the structure of the Hxc potentials

consists of ubiquitous steps whose exact positions depend on the regime defined

by the interaction parameters. These structures can be understood and derived

from an analysis of the stability diagrams. Alternatively, the decomposition of the

interaction allows to rationalize the step structures of the Hxc potentials into basic

components related to the single orbital problem which itself is parametrized in a

straightforward manner. Furthermore, the decomposition into basic potentials is

generalized to multi-orbital systems for the situation in which the intra-Coulomb

repulsions are larger than the common inter-Coulomb repulsion between the dots.

107
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DFT calculations employing the thus parametrized Hxc potentials for double,

triple and quadruple quantum dots show excellent agreement with exact numerical

results at low temperatures.

When contacting the quantum dots to electron reservoirs, interesting physical

effects may arise. In chapter 4, we study the structure of the Hxc potentials of the

double quantum dot when the couplings to the reservoirs is different for each dot. At

low temperatures and similar on-site energies, the abrupt emptying of one impurity

and the filling of the other impurity as the gate voltage is continuously varied, an

effect known as level occupation switching. We constructed Hxc potentials which

allow to qualitatively describe this effect. Comparison with accurate NRG results

highlights the accuracy of the KS conductance at low temperatures, which is correctly

described within the LB+DFT approach and is in agreement with the Friedel sum

rule. However, the correct description of the DQD electrical conductances highly

depends on the details of the Hxc functionals parametrization. A unified functional

structure from the symmetric coupling to the completely asymmetric coupling to

the electrodes is still an open question.

The non-equilibrium transport situation is considered in part II. A formally

exact framework in this context is time-dependent DFT. Since in this thesis we are

concerned with the steady-state regime, we consider a recently proposed general

framework for steady-state electrical transport (i-DFT) [41] which has the advantage

over TDDFT that the (H)xc functionals only depend on the molecular region. In

chapter 5, we generalize i-DFT to the situation when there is a temperature gradient

across the junction. As a direct consequence, we derive an exact expression for the

Seebeck coefficient of the interacting system as a sum of the KS Seebeck coefficient

and a correction term related to a derivative of the i-DFT xc bias functional. A

general expression for the electronic contribution to the thermal conductance within

i-DFT is also derived. For the SIAM we construct an approximation to the (H)xc

functionals both in the Coulomb blockade as well as in the Kondo regime. In

the Coulomb blockade regime we find that both Hxc gate and xc bias potential

consist of a sum or difference of two pieces, each of which depends only on the
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temperature of one of the leads. We compare the transport coefficients for the

SIAM obtained with our method with those from NRG calculations reported in

the literature. While our parametrization by construction becomes exact at high

temperatures, in the Kondo regime (T � TK) the agreement is reasonable but not

perfect for the electrical conductance and the Seebeck coefficient. However, the i-

DFT thermal conductance does not capture the correct many-body behaviour. This

disagreement is expected since i-DFT is by construction meant for the description

of the density in the molecular region and the electrical current through it, but is

not supposed to also correctly capture the heat (or energy) current through the

molecule. Therefore, in chapter 6 we propose a new density functional framework,

which we call iq-DFT, to describe both electronic and heat (energy) transport in

the steady-state for a (molecular) junction connected to N leads and driven out of

equilibrium by external biases and/or temperature gradients. The foundation of

iq-DFT rests on the one-to-one correspondence between the set of “densities” and

the set of “potentials” which we prove for a window of finite biases and thermal

gradients around equilibrium. The corresponding KS system requires 2N − 1

xc potentials which need to be approximated in practice. The i-DFT formalism

may be viewed as an approximation to iq-DFT where the xc contributions to

the Ψ- field are neglected completely and the xc contribution to the local (gate)

potential is independent of the heat current. We develop the iq-DFT linear response

formalism for the two-terminal situation which allows to access all linear thermal

transport coefficients, i.e., the electrical conductance, the Seebeck coefficient, as

well as the electronic contribution to the thermal conductance. All these coefficients

can fully and exactly be expressed in terms of quantities accessible with iq-DFT,

leading to xc corrections for all three transport coefficients. As a first example, we

apply iq-DFT in the linear response regime to the Anderson model. From reverse

engineering of a many-body model spectral function valid in the Coulomb blockade

regime, we construct fully analytical parametrizations of the derivatives of the

iq-DFT xc potentials which accurately reproduce the transport coefficients of the

many-body model. These parametrizations are expected to serve as a first step
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towards constructing of approximate xc functionals beyond the Coulomb blockade

regime, in analogy to the previous chapter. As any DFT framework, due to the

non-interacting nature of the KS system iq-DFT can be expected to be a highly

efficient numerical scheme for the ab-initio calculation of current and heat transport

through nanoscale systems as accurate approximations for the xc functionals become

available. While the construction of such functionals which can be used in ab-initio

calculations is still work for the future we hope that our studies on simple models

can be a useful guide in this endeavor.

Finally in chapter 7, we generalize the i-DFT formalism for steady state transport

through nanoscale junctions to the situation of multiple electrodes, a particular

situation of the aforementioned multi-terminal iq-DFT. In particular, for a three-

terminal setup in the limit of vanishing coupling to one of the electrodes (ideal

STM limit), we show how to extract the non-equilibrium spectral function of the

junction at both zero and finite temperature extending earlier work [108] which was

restricted both to equilibrium and zero temperature. For the specific situation of

an Anderson model coupled to three electrodes, we construct an approximate xc

functional which describes, at least for not too strong interactions, the splitting of

the Kondo peak at finite bias and yields results in reasonable qualitative agreement

with computationally more demanding many-body approaches such as NRG and

non-equilibrium QMC. Although for stronger interactions our approximation does

not capture the splitting of the Kondo peak, we were nevertheless able to identify

the missing feature which needs to be incorporated in future functionals. Since

multi-terminal i-DFT is comparable in computational effort to standard LB+DFT

calculations, it is therefore suitable to study systems currently inaccessible for

accurate out of equilibrium many-body methods.
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In this Appendix we derive the most common used functionals of the three main

model Hamiltonians used throughout the different chapters. The main features of

the xc potentials are steps whose slopes are governed by the effect of the coupling

to the leads and the temperature.

A.1 Single Site Model

The total density of the single site model at finite temperature is described in the

GCE by eq. (2.45). We can analytically invert the relationship between the density

and the potential for the interacting system, finding

v = 1
β

(
log

(
1− 2n− e−βU

√
(2n− 1)2e2βU + 4(1− n)eβU

)
− log (2n)

)
. (A.1)

For the non-interacting system the corresponding Hamiltonian ĤSSM
s = vsn̂ (found

by turning off the interaction and replacing the gate level with the corresponding

113
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Figure A.1: SSM Hxc functional from eq. (A.3) as function of the density for different
temperatures and U = 8.

non-interacting gate) leads to the density equation eq. (2.47). The inversion of the

non-interacting relation allows to express the non-interacting gate as function

of the density

vs = 1
β

log
(2− n

n

)
. (A.2)

The difference between the non-interacting and the interacting potentials leads to

the the exact Hxc functional for the Single Site Model

vSSM
Hxc [n] = U + 1

β
ln
x+

√
x2 + e−βU(1− x2)

1 + x

 (A.3)

where x = n − 1.

In fig. A.1 the vSSM
Hxc [n] is shown for different temperature values and strong

correlations U = 8. The main feature is a step centered at n = 1 that becomes

smoother as the temperature is increased. The two temperature limits for the

functional are vSSM
Hxc (T = 0)[n] = θ(n− 1) (where θ(x) is the Heaviside step function)

and vSSM
Hxc (T → ∞)[n] = vSSM

H [n] = U
2 n. The corresponding step height at low

temperatures is equal to the Coulomb repulsion U . This property can alternatively

be derived from the study of the xc contribution of the derivative discontinuity.
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Figure A.2: RE i-DFT functionals for the SIAM in units of the Coulomb repulsion U .

A.2 Single Impurity Anderson Model

In the original i-DFT publication [41], a couple of simple and accurate functionals

were constructed from a reverse engineering procedure for the SIAM. The authors

numerically explored the required functionals in order to obtain the same density

and steady current as the MBM (see eq. (2.49)). In fig. A.2 the numerically RE

functionals are shown in units of the Coulomb repulsion U . The main features of

these pair of potentials are some steps along the diagonals N = 1 ∓ I/γ. From

this observation, a reasonable fit for the pair of xc functionals for the SIAM (in

the i-DFT framework) for the CB regime is:

ṽHxc[n, I] =U4
∑
s=±

[
1 + 2

π
atan

(
n+ s

γ
I − 1

W0

)]
, (A.4)

Ṽxc[n, I] =− U
∑
s=±

s

π
atan

(
n+ s

γ
I − 1

W0

)
. (A.5)

with W0 = 0.16γ/U . In later works [45], this parametrization was generalized to

describe also the transition to the Kondo regime

vHxc[n, I] =
(
1− a(T )[I]b(T )[n]

)
ṽHxc[n, I] + a(T )[I]b(T )[n]v(0)

Hxc[n], (A.6)

Vxc[n, I] =
(
1− a(T )[I]b(T )[n]

)
Ṽxc[n, I]), (A.7)
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where the temperature dependent fitting parameters take the form

a(T )[I] =1−
[

2
π

atan
(

I

γW (T )

)]2

, (A.8a)

bT [n] =1 + c(T )[n]
∂Ṽxc
∂I

∣∣∣
n=1,I=0

(
1

Guniv

− 1
Gph,0

)
, (A.8b)

c(T )[n] =1 + 4
π2 atan

 6− U
γ

3W (T )

 atan
( n− 1

3W (T )

)2
, (A.8c)

with Gph,0 = Gph,s(0), Guniv is the universal conductance given in ref. [112]

and W (T ) = W0(1 + 9(T/γ)2).

The low temperature functional v(0)
Hxc corresponds to an accurate parametrization

derived in ref. [84] through a fit to RE results obtained through Bethe ansatz

approach for the Hxc potential of the SIAM for T = 0

v
(0)
Hxc = U

n

2 + α
U

2

(
1− n− 2

π
arctan

(1− n
σ

))
, (A.9)

with α = U/(U + 2.84γ) and σ = 0.4055γ/U + 0.0975(γ/U)2 + 0.021(γ/U)3. Since

this functional is by construction accurate in the range n ∈ [0.1, 1.9], in chapter 4

we make a linear interpolation outside this range to ensure that vSIAM
Hxc [n = 0] = 0

and vSIAMHxc [n = 2] = U (for the construction of the DFT 1 parametrization).

For the description of the SIAM, this range of densities corresponding to almost

empty/full occupation does not require high accuracy in the functional, but in

the DQD problem where we use the SIAM functional as a basic ingredient, small

discrepancies with respect to the exact functional in this regime lead to significant

deviations in the conductance.

We can analytically invert [47, 85, 113] the (exact) SIAM xc functionals for the

high temperature regime (T > γ) with explicit thermal gradient dependence. We

consider the density and current expressions in terms of the interacting potentials
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making use of the SSM spectral function eq. (2.46)

n =
∫
dw

(
fL(w − V

2 ) + fR(w + V

2 )
) [(

1− n

2

)
δ(w − v) + n

2 δ(w − v − U)
]

=
(

1− n

2

)
(fL(zL) + fR(zR)) + n

2 (fL(zL + U) + f(zR + U)) (A.10)

2I/γ =
∫
dw

(
fL(w − V

2 )− fR(w + V

2 )
) [(

1− n

2

)
δ(w − v) + n

2 δ(w − v − U)
]

=
(

1− n

2

)
(fL(zL)− fR(zR)) + n

2 (fL(zL + U)− fR(zR + U)) (A.11)

where we have introduced zα = v ∓ V
2 or α = L,R. We can combine the previous

equations such that

N + xα = (2− n)fα(zα) + nfα(zα + U) (A.12)

where xα = ±2I/γ. Eq. (A.12) is a quadratic equation for sα = e
zα
Tα

aαs
2
α + bαsα + cα = 0 (A.13)

with aα = e
U
Tα (n+ xα), bα = e

U
Tα (2n+ xα − 2) + xα, and cα = n+ xα − 2. Solving

for sα and taking into account that zα = Tα log(sα) we have

zα = Tα log
( 1

2aα

(
−bα ±

√
b2
α − 4aαcα

))
. (A.14)

We can follow an analogous procedure for the non-interacting system (U = 0)

N + xα = 2f(zα,s) = 2
e
zα,s
Tα + 1

=⇒ e
zα,s
Tα (n+ xα) = −cα =⇒ zα,s = Tα log

−cαe U
Tα

aα

. (A.15)

The difference of eq. (A.15) and eq. (A.14) leads to

gHxc(n,±2I/γ, TL/R) = zL/R,xc(n, x±) = TL/R log

 −2cL/Re
U

TL/R

−b±
√
b2
L/R − 4aL/RcL/R

.
(A.16)

Substituting the values for the parameters (a, b, c), choosing the negative sign for

the square root (this condition impose the positive sign of the log) and simplifying

the results, we arrive to the final expression

vHxc = 1
2 (gHxc(n,−I, TR) + gHxc(n, I, TL)) (A.17)

Vxc = gHxc(n,−I, TR)− gHxc(n, I, TL) (A.18)
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Figure A.3: xc functionals eqs. (A.17) and (A.18) for different temperatures when
U/γ = 8. In the left figures I/γ = 0.5 while in the right figures n = 0.5.

with

gHxc(n, I, T ) =


T log

(
−1
p

)
if j = 0

U + T log
(
p+
√
p2−zje−U/T

j

)
if p ≥ 0

T log
(

z

p−
√
p2−zje−U/T

)
if p < 0

(A.19)

where z = j − 2, p = n− ncrit, ncrit = 1− I/γ
(
1 + e−U/T

)
and j = 2I/γ + n.

In fig. A.3 the xc functionals from eqs. (A.17) and (A.18) are presented as

function of one basic variable ( the other fixed to 0.5) for different temperatures

and strong correlations U/γ = 8. The i-DFT density and current results obtained

making use of these functionals are shown in fig. 2.3.

A.3 Constant Interaction Model

From the numerical observation of the RE xc functionals for the CIM, a simple

parametrization was proposed in the original i-DFT formulation [41] based on
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the xc functionals of the SIAM

vCIM
Hxc [N, I] = U

4

2M−1∑
k=1

∑
s=±

1 + 2
π

atan
∆(s)(N,I)

K

W

 (A.20)

V CIM
xc [N, I] = −U

2M−1∑
k=1

∑
s=±

s

π
atan

∆(s)(N,I)
K

W

, (A.21)

hereM is the number of levels in the CIM and ∆(s)
K is a the piece-wise linear function

of N and I which vanishes along the step edge passing through (K, 0) with positive

(s = +1) or negative (s = −1) slopes (the value of the slopes depends on K, see[41]).

In situations of equilibrium, i.e., when the steady current I = 0, the functional

vCIM
Hxc shows an interesting property at low temperatures: It can be seen as the

addition of steps centered at integer values of the total occupation provided by

simpler models

vCIM
Hxc [N ] =

2M−1∑
k

vXHxc[N + 1− k], (A.22)

where X = SSM,SIAM depending if our system is coupled to the leads. We

require that vXHxc[N + 1 − k] = 0 if N + 1 − k < 0 and vXHxc[N + 1 − k] = U

if N + 1 − k > 2. We denote eq. (A.22) as the DFT 1 approximation for the

Hxc potential of the CIM. The accuracy of this approximation can be numerically

checked by comparing with the exact RE result, see [15].

The essential features of the density at low temperatures are correctly described

with the simple functional structure of eq. (A.22). One structural problem emerges

as the temperature is increased: In fig. A.4 the CIM functionals for M = 2 are

shown. The DFT 1 result shows excellent agreement with the RE (see [15]) at

low temperatures, but for T = 3 the functional considerably differs from the RE.

In particular, it shows 3 straight lines connecting the regions N ∈ [0, 1],N ∈ [1, 3]

and N ∈ [3, 4]. By construction, eq. (A.22) is fixed to vCIM
Hxc [N = 1] = U/2,

vCIM
Hxc [N = 3] = 5U/2 which does not correspond to the RE functional values at high

temperatures. In order to correct this behaviour, we proposed [72] an alternative to

eq. (A.22) by considering the sum of the three vXHxc steps (without imposing any

restriction if N + 1− k < 0 or N + 1− k > 2) and then shifting and rescaling the
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Figure A.4: vHxc functional comparison for the uncontacted degenerated CIM between
DFT 1 (eq. (A.22)), DFT 2 (eq. (A.23)) and the exact RE result for different temperatures
and Coulomb repulsion U = 1.

functional to fix the extremes vCIM
Hxc [N = 0] = 0 and vCIM

Hxc [N = 2M] = (2M− 1)U .

Formally, this (DFT 2) corresponds to

vCIM
Hxc [N ] = (2M− 1)U

vmax
CIM

2M−1∑
k=1

[
vXHxc[N + 1− k]− vXHxc[1− k]

]
(A.23)

where

vmax
CIM =

2M−1∑
J=1

[
vXHxc[2M− J + 1]− vXHxc[−J + 1]

]
. (A.24)

is the maximal value that the sum in eq. (A.23) acquires at N = 2M. The

prefactor (2M− 1)U/vmax
CIM thus rescales the potential such that the potential yields

the exact value (2M − 1)U at N = 2M.

In fig. A.4 can be observed that although the discrepancies between eq. (A.22) and

eq. (A.23) are irrelevant at low temperatures, the functional at high temperatures

is corrected with eq. (A.23) (DFT 2).
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Analytic expressions for the transport

integrals in the Single Impurity Anderson
Model

In this Appendix we analytically evaluate the most important integrals needed both

in the MBM and in the construction of our parametrization for the derivatives of the

iq-DFT xc potentials. In our MBM for the SIAM, the many-body spectral function

consists of two Lorentzians with broadening γ (γ > 0) centered at v and v + U , see

eq. (2.49). Therefore, all integrals needed to compute the MBM density and currents

have the form
∫
dωωnf(ω)A(ω) with n = 0, 1. The first integral we are interested in is

I1 =
∞∫
−∞

f(x− V/2) γ

(x− x0)2 + γ2

4

dx, (B.1)

where the Fermi function f(z) can be expanded as [114]

f(z) = 1
1 + e

z
T

= 1
2 −

i
2π

∞∑
n=0

1
n+ 1

2 + i z
2πT

. (B.2)

Using the substitution x = V/2 + Tz and the abbreviations a = x0−V/2
T

and b = γ
2T ,

we can write the integral as

I1 = 2b
∞∫
−∞

dz
(ez + 1)[(z − a)2 + b2] ≡ 2b

∞∫
−∞

g(z)dz. (B.3)
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The integrand g(z) has only single poles with non-vanishing imaginary part in the

complex plane. We therefore use the calculus of residues to compute this integral.

g(z) has simple poles at a ± ib with residues

Res(g, a± ib) = ± 1
2ib(ea±ib + 1) (B.4)

and at ±(2n + 1)πi with residues

Res(g,±(2n+ 1)πi) = − 1
[(2n+ 1)πi∓ a]2 + b2 (B.5)

for n ∈ N0. Since g(z) vanishes sufficiently fast as |z| → ∞ we can close the

integration contour by a semi-circle with infinite radius in the upper half plane

(avoiding the poles on the imaginary axis). The integral then can be evaluated as

I1 = 4bπi
[

1
i2b(ea+ib + 1) −

∞∑
n=0

1
[(2n+ 1)πi− a]2 + b2

]
. (B.6)

For the terms in the sum, we perform a fractional decomposition and then use

the series representation of the digamma function ψ

ψ(z) =
∞∑
n=0

( 1
n+ 1 −

1
n+ z

)
− γEM , (B.7)

with the Euler-Mascheroni constant γEM ∼ 0.5772 to obtain

I1 = 2π
[

1
ea+ib + 1 −

1
2πiψ

(
1
2 + b+ ia

2π

)
+ 1

2πiψ
(

1
2 + −b+ ia

2π

)]
. (B.8)

We then apply the reflection formula

ψ(1− z) = ψ(z) + π cot (πz)

to the last term together with the properties

Im [ψ(x+ iy)] = i
2 (ψ(x− iy)− ψ(x+ iy))

1
ez + 1 + i

2 tan
(−iz

2

)
= 1

2

and simplify te result

I = 2π
[

1
ea+ib + 1 −

1
2i tan

(
b− ia

2

)
− 1

2πi

(
ψ

(
1
2 + b+ ia

2π

)
− ψ

(
1
2 + β − ia

2π

))]

= 2π
[

1
2 −

1
π

Im
(
ψ

(
1
2 + b+ ia

2π

))]
= π − 2 Im

[
ψ

(
1
2 + b+ ia

2π

)]
. (B.9)
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Returning to the original parameters, we finally arrive at

I1(γ, x0, V/2, T ) = π − 2 Im
[
ψ

(
1
2 +

γ
2 + i(x0 − V/2)

2πT

)]
. (B.10)

The second integral we are interested in is

I2 =
∞∫
−∞

dx
(
f(x− V/21 + Ψ/2)− f(x+ V/2

1−Ψ/2)
)

xγ

(x− x0)2 + γ2

4

, (B.11)

where Ψ = TL−TR
T

. We can rewrite I2 by decomposing the second factor as

xγ

(x− x0)2 + γ2

4

= γ

2
[
GA(x) +GR(x)

]
− ix0

[
GA(x)−GR(x)

]
(B.12)

with the advanced and retarded Green function GA/R(x) = 1
x−(x0±i γ2 ) . Noting that

the last term on the r.h.s. of Eq. (B.12) reduces to a Lorentzian we obtain

I2 = IA2 + IR2 + x0I3, (B.13)

where I3 = I1 (γ, x0, V/2, TL) − I1(γ, x0,−V/2, TR) and we have defined

IA/R2 =γ2 lim
r→∞

∞∫
−r

dx GA/R(x)
[
f

(
x− V/2
1 + Ψ/2

)
− f

(
x+ V/2
1−Ψ/2

)]
. (B.14)

The integrals IA/R2 are convergent because the difference of the Fermi functions

decays asymptotically at least as x−1 as |x| → ∞ and the Green function contributes

another asymptotic x−1 behaviour in the same limit. Note that a lower cutoff

has been explicitly introduced in Eq. (B.14) to correctly account for the non-

equivalent asymptotics of the two Fermi functions due to their generally different

temperatures (in general, Ψ 6= 0).

By simple variable substitution, the integrals IA/R2 can be written as

IA/R2 =γ2 lim
r→∞

∞∫
−r+V/2
1−ψ/2

dzfT (z)
 1
z + V/2−(x0±iγ/2)

1+Ψ/2

− 1
z + −V/2−(x0±iγ/2)

1−Ψ/2



+ γ

2 lim
r→∞

−r+V/2
1−ψ/2∫

−r−V/2
1+ψ/2

dz fT (z)
z + V/2−(x0±iγ/2)

1+Ψ/2

. (B.15)

The first contribution can now again be evaluated by closing the contour with a

semicircle in the upper half plane and summing the residues of all poles inside the
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contours. On the other hand, the second integral becomes trivial by replacing f(z)

with unity which is justified in the limit r → ∞. This leads to

IA =γ2

[
ψ

(
1
2 + γ/2− i(x0 − V/2)

2πTL

)
− ψ

(
1
2 + γ/2− i(x0 + V/2)

2πTR

)]

+ γ

2 log
(

1 + Ψ/2
1−Ψ/2

)
. (B.16)

and

IR =γ2

[
ψ

(
1
2 + γ/2 + i(x0 − V/2)

2πTL

)
− ψ

(
1
2 + γ/2 + i(x0 + V/2)

2πTR

)]

+ γ

2 log
(

1 + Ψ/2
1−Ψ/2

)
. (B.17)

Using Re (ψ(a+ ib)) = 1
2 (ψ(a+ ib) + ψ(a− ib)) we arrive at the final result for

our second integral

I2 = γ Re
[
ψ

(
1
2 + γ/2 + i(x0 − V/2)

2πTL

)]
− γ Re

[
ψ

(
1
2 + γ/2 + i(x0 + V/2)

2πTR

)]

+x0I3 + γ log
(

1 + Ψ/2
1−Ψ/2

)
. (B.18)

The results for the integrals of Eqs. (B.10) and (B.18) are sufficient to analytically

evaluate the density and currents for the SIAM both in the many-body model as

well as in the KS system. With these integrals we can also derive the analytical

expressions for the integrals entering the transport coefficients in the linear esponse

regime. These coefficients are

M11(v) = γ

4π
dI3

dV

∣∣∣∣∣ V=0
Ψ=0

= −γ
2

4π

∫
f ′(ω) dω

(ω − v)2 + γ2

4

= γ

4π2T
Im

(
iψ(1)(z1)

)
(B.19a)

M12(v) = γ

4π
dI2

dV

∣∣∣∣∣ V=0
Ψ=0

= −γ
2

4π

∫
f ′(ω) ω dω

(ω − v)2 + γ2

4

= γ

4π2T
Im

(
z0ψ

(1)(z1)
)

(B.19b)

M22(v) = γ

4π
dI2

dΨ

∣∣∣∣∣ V=0
Ψ=0

= −γ
2

4π

∫
f ′(ω) ω2 dω

(ω − v)2 + γ2

4

= − γ2

8π2T
Re

(
z0ψ

(1)(z1)
)

+ vM12 + γ2

4π , (B.19c)

where z0 = γ
2 + iv, z1 = 1

2 + z0
2πT , and ψ

(1)(z) is the trigamma function [89].



References

[1] Eberhard KU Gross and Reiner M Dreizler. Density functional theory.
Vol. 337. Springer Science & Business Media, 2013.

[2] Carsten A Ullrich. Time-dependent density-functional theory: concepts and
applications. OUP Oxford, 2011.

[3] Neepa T Maitra. “Perspective: Fundamental aspects of time-dependent
density functional theory”. In: The Journal of Chemical Physics 144.22
(2016), p. 220901.

[4] José M Soler et al. “The SIESTA method for ab initio order-N materials
simulation”. In: Journal of Physics: Condensed Matter 14.11 (2002), p. 2745.

[5] Daniel Sánchez-Portal et al. “Density-functional method for very large sys-
tems with LCAO basis sets”. In: International journal of quantum chemistry
65.5 (1997), pp. 453–461.

[6] Emilio Artacho et al. “Linear-scaling ab-initio calculations for large and
complex systems”. In: physica status solidi (b) 215.1 (1999), pp. 809–817.

[7] Axel D Becke. “Density-functional thermochemistry. I. The effect of the
exchange-only gradient correction”. In: The Journal of chemical physics 96.3
(1992), pp. 2155–2160.

[8] Yan Zhao and Donald G Truhlar. “Density functionals with broad applicabil-
ity in chemistry”. In: Accounts of chemical research 41.2 (2008), pp. 157–167.

[9] Kieron Burke. “Perspective on density functional theory”. In: The Journal
of chemical physics 136.15 (2012), p. 150901.

[10] Aron J Cohen, Paula Mori-Sánchez, and Weitao Yang. “Insights into current
limitations of density functional theory”. In: Science 321.5890 (2008), pp. 792–
794.

[11] Paula Mori-Sánchez, Aron J Cohen, and Weitao Yang. “Discontinuous nature
of the exchange-correlation functional in strongly correlated systems”. In:
Physical review letters 102.6 (2009), p. 066403.

[12] Francesc Malet and Paola Gori-Giorgi. “Strong correlation in Kohn-Sham den-
sity functional theory”. In: Physical review letters 109.24 (2012), p. 246402.

[13] Francesc Malet et al. “Exchange–correlation functionals from the strong
interaction limit of DFT: applications to model chemical systems”. In:
Physical Chemistry Chemical Physics 16.28 (2014), pp. 14551–14558.

125



126 REFERENCES

[14] Paola Gori-Giorgi, Michael Seidl, and Giovanni Vignale. “Density-functional
theory for strongly interacting electrons”. In: Physical review letters 103.16
(2009), p. 166402.

[15] S Kurth and G Stefanucci. “Transport through correlated systems with
density functional theory”. In: Journal of Physics: Condensed Matter 29.41
(2017), p. 413002.

[16] NA Lima et al. “Density functionals not based on the electron gas: Local-
density approximation for a luttinger liquid”. In: Physical review letters 90.14
(2003), p. 146402.

[17] Klaus Capelle and Vivaldo L Campo Jr. “Density functionals and model
Hamiltonians: Pillars of many-particle physics”. In: Physics Reports 528.3
(2013), pp. 91–159.

[18] NA Lima, LN Oliveira, and Klaus Capelle. “Density-functional study of the
Mott gap in the Hubbard model”. In: EPL (Europhysics Letters) 60.4 (2002),
p. 601.

[19] Andrea Droghetti and Ivan Rungger. “Quantum transport simulation scheme
including strong correlations and its application to organic radicals adsorbed
on gold”. In: Physical Review B 95.8 (2017), p. 085131.

[20] Liviu Chioncel et al. “Transmission through correlated Cu n Co Cu n
heterostructures”. In: Physical Review B 92.5 (2015), p. 054431.

[21] Wilhelm H Appelt et al. “Predicting the conductance of strongly correlated
molecules: the Kondo effect in perchlorotriphenylmethyl/Au junctions”. In:
Nanoscale 10.37 (2018), pp. 17738–17750.

[22] David Jacob. “Towards a full ab initio theory of strong electronic correlations
in nanoscale devices”. In: Journal of Physics: Condensed Matter 27.24 (2015),
p. 245606.

[23] DJ Carrascal and Jaime Ferrer. “Exact Kohn-Sham eigenstates versus
quasiparticles in simple models of strongly correlated electrons”. In: Physical
Review B 85.4 (2012), p. 045110.

[24] David Jacob, Gianluca Stefanucci, and Stefan Kurth. “Mott metal-insulator
transition from steady-state density functional theory”. In: Physical Review
Letters 125.21 (2020), p. 216401.

[25] Lucas O Wagner et al. “Guaranteed convergence of the kohn-sham equations”.
In: Physical review letters 111.9 (2013), p. 093003.

[26] S Kurth and Gianluca Stefanucci. “Dynamical correction to linear Kohn-
Sham conductances from static density functional theory”. In: Physical review
letters 111.3 (2013), p. 030601.

[27] Erich Runge and Eberhard KU Gross. “Density-functional theory for time-
dependent systems”. In: Physical Review Letters 52.12 (1984), p. 997.



REFERENCES 127

[28] Mark E Casida. “Time-dependent density functional response theory for
molecules”. In: Recent Advances In Density Functional Methods: (Part I).
World Scientific, 1995, pp. 155–192.

[29] MGUJ Petersilka, UJ Gossmann, and EKU Gross. “Excitation energies from
time-dependent density-functional theory”. In: Physical review letters 76.8
(1996), p. 1212.

[30] Gianluca Stefanucci and C-O Almbladh. “Time-dependent quantum trans-
port: An exact formulation based on TDDFT”. In: EPL (Europhysics Letters)
67.1 (2004), p. 14.

[31] Na Sai et al. “Dynamical corrections to the DFT-LDA electron conductance
in nanoscale systems”. In: Physical review letters 94.18 (2005), p. 186810.

[32] Max Koentopp, Kieron Burke, and Ferdinand Evers. “Zero-bias molecular
electronics: Exchange-correlation corrections to Landauer’s formula”. In:
Physical Review B 73.12 (2006), p. 121403.

[33] Giovanni Vignale and Massimiliano Di Ventra. “Incompleteness of the
Landauer formula for electronic transport”. In: Physical Review B 79.1
(2009), p. 014201.

[34] Florian G Eich, M Di Ventra, and G Vignale. “Density-functional theory
of thermoelectric phenomena”. In: Physical review letters 112.19 (2014),
p. 196401.

[35] FG Eich et al. “Luttinger-field approach to thermoelectric transport in
nanoscale conductors”. In: Physical Review B 90.11 (2014), p. 115116.

[36] FG Eich, M Di Ventra, and G Vignale. “Functional theories of thermoelec-
tric phenomena”. In: Journal of Physics: Condensed Matter 29.6 (2016),
p. 063001.

[37] Fabio Covito et al. “Transient charge and energy flow in the wide-band limit”.
In: Journal of chemical theory and computation 14.5 (2018), pp. 2495–2504.

[38] ND Lang. “Resistance of atomic wires”. In: Physical Review B 52.7 (1995),
p. 5335.

[39] Rolf Landauer. “Spatial variation of currents and fields due to localized scat-
terers in metallic conduction”. In: IBM Journal of research and development
1.3 (1957), pp. 223–231.

[40] M Büttiker. “Four-terminal phase-coherent conductance”. In: Physical review
letters 57.14 (1986), p. 1761.

[41] Gianluca Stefanucci and Stefan Kurth. “Steady-state density functional
theory for finite bias conductances”. In: Nano letters 15.12 (2015), pp. 8020–
8025.

[42] Kaike Yang et al. “Density functional theory of the Seebeck coefficient in the
Coulomb blockade regime”. In: Physical Review B 94.8 (2016), p. 081410.



128 REFERENCES

[43] Gianluca Stefanucci and C-O Almbladh. “Time-dependent quantum trans-
port: An exact formulation based on TDDFT”. In: EPL (Europhysics Letters)
67.1 (2004), p. 14.

[44] G Stefanucci et al. Molecular and nano electronics: analysis, design and
simulation. 2006.

[45] S Kurth and G Stefanucci. “Nonequilibrium Anderson model made sim-
ple with density functional theory”. In: Physical Review B 94.24 (2016),
p. 241103.

[46] Neepa T Maitra, Kieron Burke, and Chris Woodward. “Memory in time-
dependent density functional theory”. In: Physical review letters 89.2 (2002),
p. 023002.

[47] Niklas Dittmann, Janine Splettstoesser, and Nicole Helbig. “Nonadiabatic Dy-
namics in Single-Electron Tunneling Devices with Time-Dependent Density-
Functional Theory”. In: Physical review letters 120.15 (2018), p. 157701.

[48] Niklas Dittmann, Nicole Helbig, and Dante M Kennes. “Dynamics of the An-
derson impurity model: Benchmarking a nonadiabatic exchange-correlation
potential in time-dependent density-functional theory”. In: Physical Review
B 99.7 (2019), p. 075417.

[49] Harshani O Wijewardane and Carsten A Ullrich. “Time-dependent Kohn-
Sham theory with memory”. In: Physical review letters 95.8 (2005), p. 086401.

[50] Roberto D’Agosta and Giovanni Vignale. “Relaxation in time-dependent
current-density-functional theory”. In: Physical review letters 96.1 (2006),
p. 016405.

[51] H Julian Goldsmid et al. Introduction to thermoelectricity. Vol. 121. Springer,
2010.

[52] Gianaurelio Cuniberti, Giorgos Fagas, and Klaus Richter. “Introducing
molecular electronics: A brief overview”. In: Introducing molecular electronics
(2006), pp. 1–10.

[53] Juan Carlos Cuevas and Elke Scheer. Molecular electronics: an introduction
to theory and experiment. World Scientific, 2010.

[54] Michael Thoss and Ferdinand Evers. “Perspective: Theory of quantum
transport in molecular junctions”. In: The Journal of chemical physics 148.3
(2018), p. 030901.

[55] Ferdinand Evers et al. “Advances and challenges in single-molecule electron
transport”. In: Reviews of Modern Physics 92.3 (2020), p. 035001.

[56] B Dutta et al. “Single-Quantum-Dot Heat Valve”. In: Physical Review Letters
125.23 (2020), p. 237701.

[57] Cronin B Vining. “Half-full glasses”. In: Nature materials 7.10 (2008), pp. 765–
766.

[58] Cronin B Vining. “An inconvenient truth about thermoelectrics”. In: Nature
materials 8.2 (2009), pp. 83–85.



REFERENCES 129

[59] Yonatan Dubi and Massimiliano Di Ventra. “Colloquium: Heat flow and
thermoelectricity in atomic and molecular junctions”. In: Reviews of Modern
Physics 83.1 (2011), p. 131.

[60] Pierre Hohenberg and Walter Kohn. “Inhomogeneous electron gas”. In:
Physical review 136.3B (1964), B864.

[61] Robert G Parr and Weitao Yang. “Density-functional theory of atoms and
molecules. International Series of Monographs on Chemistry”. In: Oxford
University Press, New York 3 (1994), pp. 14312–14321.

[62] Eberhard Engel and Reiner M Dreizler. Density functional theory. Springer,
2013.

[63] Walter Kohn and Lu Jeu Sham. “Self-consistent equations including exchange
and correlation effects”. In: Physical review 140.4A (1965), A1133.

[64] Narbe Mardirossian and Martin Head-Gordon. “Thirty years of density
functional theory in computational chemistry: an overview and extensive
assessment of 200 density functionals”. In: Molecular Physics 115.19 (2017),
pp. 2315–2372.

[65] John P Perdew, Kieron Burke, and Matthias Ernzerhof. “Generalized gradient
approximation made simple”. In: Physical review letters 77.18 (1996), p. 3865.

[66] N David Mermin. “Thermal properties of the inhomogeneous electron gas”.
In: Physical Review 137.5A (1965), A1441.

[67] Rolf Landauer. “Electrical resistance of disordered one-dimensional lattices”.
In: Philosophical magazine 21.172 (1970), pp. 863–867.

[68] M Büttiker et al. “Generalized many-channel conductance formula with
application to small rings”. In: Physical Review B 31.10 (1985), p. 6207.

[69] Gianluca Stefanucci and Robert Van Leeuwen. Nonequilibrium many-body
theory of quantum systems: a modern introduction. Cambridge University
Press, 2013.

[70] Gianluca Stefanucci and S Kurth. “Towards a description of the Kondo effect
using time-dependent density-functional theory”. In: Physical review letters
107.21 (2011), p. 216401.

[71] Kamil Walczak. “Coulomb blockade in molecular quantum dots”. In: Open
Physics 4.1 (2006), pp. 8–19.

[72] Nahual Sobrino, Stefan Kurth, and David Jacob. “Exchange-correlation
potentials for multiorbital quantum dots subject to generic density-density
interactions and Hund’s rule coupling”. In: Physical Review B 102.3 (2020),
p. 035159.

[73] Gianluca Giovannetti. “The influence of Coulomb Correlations and Spin-
Orbit Coupling in the electronic structure of double perovskites Sr _2 XOsO
_6(X = Sc, Mg)”. In: arXiv preprint arXiv:1611.06482 (2016).

[74] Tanja Dimitrov et al. “Exact maps in density functional theory for lattice
models”. In: New Journal of Physics 18.8 (2016), p. 083004.



130 REFERENCES

[75] E Perfetto and G Stefanucci. “Missing derivative discontinuity of the exchange-
correlation energy for attractive interactions: The charge Kondo effect”. In:
Physical Review B 86.8 (2012), p. 081409.

[76] PG Silvestrov and Yoseph Imry. “Level-occupation switching of the quantum
dot, and phase anomalies in mesoscopic interferometry”. In: New Journal of
Physics 9.5 (2007), p. 125.

[77] Yaakov Kleeorin and Yigal Meir. “Abrupt disappearance and re-emergence
of the SU (4) and SU (2) Kondo effects due to population inversion”. In:
Physical Review B 96.4 (2017), p. 045118.

[78] Philipp Tröster, Peter Schmitteckert, and Ferdinand Evers. “Transport
calculations based on density functional theory, Friedel’s sum rule, and
the Kondo effect”. In: Physical Review B 85.11 (2012), p. 115409.

[79] Gianluca Stefanucci and Stefan Kurth. “Kondo effect in the Kohn–Sham
conductance of multiple-level quantum dots”. In: physica status solidi (b)
250.11 (2013), pp. 2378–2385.

[80] H Mera et al. “Assessing the accuracy of Kohn-Sham conductances using
the Friedel sum rule”. In: Physical Review B 81.3 (2010), p. 035110.

[81] David C Langreth. “Friedel sum rule for Anderson’s model of localized
impurity states”. In: Physical Review 150.2 (1966), p. 516.

[82] H Mera and YM Niquet. “Are Kohn-Sham Conductances Accurate?” In:
Physical review letters 105.21 (2010), p. 216408.

[83] CA Büsser et al. “Transport in carbon nanotubes: Two-level SU (2) regime
reveals subtle competition between Kondo and intermediate valence states”.
In: Physical Review B 83.12 (2011), p. 125404.

[84] Justin P Bergfield et al. “Bethe ansatz approach to the kondo effect within
density-functional theory”. In: Physical review letters 108.6 (2012), p. 066801.

[85] Nahual Sobrino, Roberto D’Agosta, and Stefan Kurth. “Steady-state density
functional theory for thermoelectric effects”. In: Physical Review B 100.19
(2019), p. 195142.

[86] Yigal Meir and Ned S Wingreen. “Landauer formula for the current through
an interacting electron region”. In: Physical review letters 68.16 (1992),
p. 2512.

[87] Carlo WJ Beenakker. “Theory of Coulomb-blockade oscillations in the
conductance of a quantum dot”. In: Physical Review B 44.4 (1991), p. 1646.

[88] TA Costi and V Zlatić. “Thermoelectric transport through strongly correlated
quantum dots”. In: Physical Review B 81.23 (2010), p. 235127.

[89] M Abramowitz. “Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables”. In: Dover Publications Inc., New York
(1965).



REFERENCES 131

[90] Severin G Jakobs, Mikhail Pletyukhov, and Herbert Schoeller. “Nonequi-
librium functional renormalization group with frequency-dependent vertex
function: A study of the single-impurity Anderson model”. In: Physical
Review B 81.19 (2010), p. 195109.

[91] Wataru Izumida, Osamu Sakai, and Syunya Suzuki. “Kondo effect in tunnel-
ing through a quantum dot”. In: Journal of the Physical Society of Japan
70.4 (2001), pp. 1045–1053.

[92] Herbert B Callen. “The application of Onsager’s reciprocal relations to
thermoelectric, thermomagnetic, and galvanomagnetic effects”. In: Physical
Review 73.11 (1948), p. 1349.

[93] Lars Onsager. “Reciprocal relations in irreversible processes. I.” In: Physical
review 37.4 (1931), p. 405.

[94] Nahual Sobrino et al. “Thermoelectric transport within density functional
theory”. In: Physical Review B 104.12 (2021), p. 125115.

[95] Stefan Kurth et al. “Nonequilibrium spectral functions from multiterminal
steady-state density functional theory”. In: Physical Review B 100.8 (2019),
p. 085114.

[96] Keiji Saito et al. “Thermopower with broken time-reversal symmetry”. In:
Physical Review B 84.20 (2011), p. 201306.

[97] Kay Brandner and Udo Seifert. “Multi-terminal thermoelectric transport
in a magnetic field: bounds on Onsager coefficients and efficiency”. In: New
Journal of Physics 15.10 (2013), p. 105003.

[98] Herbert B Callen. Thermodynamics and an Introduction to Thermostatistics.
1998.

[99] Miguel A Sierra and David Sánchez. “Nonlinear heat conduction in Coulomb-
blockaded quantum dots”. In: Materials Today: Proceedings 2.2 (2015),
pp. 483–490.

[100] María Isabel Alomar, Jong Soo Lim, and David Sánchez. “Coulomb-blockade
effect in nonlinear mesoscopic capacitors”. In: Physical Review B 94.16 (2016),
p. 165425.

[101] Y. Meir, N. S. Wingreen, and P. A. Lee. “Low-temperature transport through
a quantum dot: The Anderson model out of equilibrium”. In: Phys. Rev.
Lett. 70 (1993), p. 2601.

[102] Ned S. Wingreen and Yigal Meir. “Anderson model out of equilibrium:
Noncrossing-approximation approach to transport through a quantum dot”.
In: Phys. Rev. B 49 (16 1994), pp. 11040–11052.

[103] Qing-feng Sun and Hong Guo. “Kondo resonance in a multiprobe quantum
dot”. In: Phys. Rev. B 64 (15 2001), p. 153306.

[104] M. Krawiec. “Nonequilibrium Kondo effect in asymmetrically coupled quan-
tum dots”. In: Phys. Rev. B 66 (16 2002), p. 165408.



132 REFERENCES

[105] N. Shah and A. Rosch. “Nonequilibrium conductance of a three-terminal
quantum dot in the Kondo regime: Perturbative renormalization group
study”. In: Phys. Rev. B 73 (8 2006), p. 081309.

[106] P. Fritsch and S. Kehrein. “Nonequilibrium Kondo model with voltage bias
in a magnetic field”. In: Phys. Rev. B 81 (3 2010), p. 035113.

[107] G. Cohen et al. “Green’s Functions from Real-Time Bold-Line Monte Carlo
Calculations: Spectral Properties of the Nonequilibrium Anderson Impurity
Model”. In: Phys. Rev. Lett. 112 (2014), p. 146802.

[108] David Jacob and Stefan Kurth. “Many-body spectral functions from steady
state density functional theory”. In: Nano letters 18.3 (2018), pp. 2086–2090.

[109] Sareh Motahari. “Kondo physics and thermodynamics of the Anderson
impurity model by distributional exact diagonalization”. PhD thesis. Martin-
Luther University Halle-Wittenberg, Germany, 2017.

[110] Ryan Requist. private communication.
[111] Corentin Bertrand et al. “Reconstructing nonequilibrium regimes of quantum

many-body systems from the analytical structure of perturbative expansions”.
In: Physical Review X 9.4 (2019), p. 041008.

[112] TA Costi. “Kondo effect in a magnetic field and the magnetoresistivity of
Kondo alloys”. In: Physical review letters 85.7 (2000), p. 1504.

[113] Stefan Kurth and Gianluca Stefanucci. “Time-dependent i-DFT exchange-
correlation potentials with memory: applications to the out-of-equilibrium
Anderson model”. In: The European Physical Journal B 91.6 (2018), pp. 1–7.

[114] Alexander L Fetter and John Dirk Walecka. Quantum theory of many-particle
systems. Courier Corporation, 2012.


	List of Abbreviations
	List of Publications
	Introduction
	Theoretical Background
	Equilibrium Density Functional Theory
	Non-Equilibrium Density Functional Theory: Steady-State Transport
	Landauer-Büttiker+DFT
	Steady-state density functional theory for finite bias conductances

	Lattice Hamiltonians

	I  Equilibrium Density Functional Theory
	Multi-orbital Quantum Dots
	Modelling of the Hxc potentials
	Hxc potentials and link to stability diagrams for the double quantum dot at low temperatures
	Decomposition of the interaction into basic building blocks
	Generalization of Hxc potential to more than two orbitals

	Results
	Results for the double quantum dot
	Results for more than two orbitals


	 Zero Temperature Conductance in Asymmetric Double Quantum Dot
	The Level Occupation Switching effect in the double quantum dot
	Modelling of the Hxc potentials with asymmetric couplings


	II Non-Equilibrium Density Functional Theory
	 Steady-state Density Functional Theory Formalism for Electronic Transport with Finite Thermal Gradients
	i-DFT for finite temperature gradients
	Reverse engineering of the SIAM xc potentials for finite thermal gradient 

	Transport coefficients
	Electrical conductance
	Seebeck Coefficient
	Thermal conductance


	Steady-state Density Functional Theory Formalism for both Electrical and Heat Transport
	Formalism
	Kohn-Sham equations of iq-DFT

	Linear Response
	Application to the single impurity Anderson Model
	Reverse engineering from the Many-Body Model
	Numerical results


	Non-Equilibrium Spectral functions with Multi-Terminal Steady-State Density Functional Theory
	Non-Equilibrium Spectral functions from multi-terminal i-DFT
	i-DFT potentials for the Anderson model
	Results


	Conclusions
	Basic exchange-correlation functionals from model Hamiltonians
	Single Site Model
	Single Impurity Anderson Model
	Constant Interaction Model

	Analytic expressions for the transport integrals in the Single Impurity Anderson Model 
	References


