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Abstract: More than half of patients with high spinal cord injury (SCI) suffer from episodes of auto-
nomic dysreflexia (AD), a condition that can lead to lethal situations, such as cerebral haemorrhage, if
not treated correctly. Clinicians assess AD using clinical variables obtained from the patient’s history
and physiological variables obtained invasively and non-invasively. This work aims to design a
machine learning-based system to assist in the initial diagnosis of AD. For this purpose, 29 patients
with SCI participated in a test at Cruces University Hospital in which data were collected using both
invasive and non-invasive methods. The system proposed in this article is based on a two-level
hierarchical classification to diagnose AD and only uses 35 features extracted from the non-invasive
stages of the experiment (clinical and physiological features). The system achieved a 93.10% accuracy
with a zero false negative rate for the class of having the disease, an essential condition for treating
patients according to medical criteria.

Keywords: autonomic dysreflexia detection; physiological computing; supervised-learning tech-
niques; eHealth; disease diagnosis

1. Introduction

Autonomic dysreflexia (AD) is a serious condition common in patients with cervical
or upper thoracic (above T6) [1–3] spinal cord injury (SCI) that develops in more than
half of all cases [4–6]. When the patient has their spinal cord injured, there is a significant
probability that nerve connections between the brain and the peripheral nerve endings
become damaged. When this happens, the body is unable to respond adequately to the
homeostatic imbalances produced in the areas affected by the nervous system disruption.
Accordingly, these physiologically adverse situations gradually become more unbalanced
over time. AD is also known as autonomic hyperreflexia, and it is clinically associated with
acute hypertension resulting from the hyperactivity of the sympathetic nervous system.
Signs and symptoms of AD include sudden increases in blood pressure, anxiety, blurred
vision, headache, bradycardia and sweating above the level of the lesion [7,8]. However,
the symptoms produced by AD episodes can lead to more serious conditions if they
are allowed to develop and not treated quickly, leading to lethal consequences such as
myocardial ischaemia or cerebral haemorrhage [9–14]. This is why early diagnosing of the
disease and detecting the occurrence of its episodes is of paramount importance to ensure
the health of patients suffering from SCI.
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AD can develop at any time when a stimulus occurs below the level of the lesion [15].
Among the various AD episode triggering stimuli, the most common are, firstly, bladder
distention [16–18], followed by faecal impaction [19]. Controlled bladder-filling is therefore
one of the most common diagnostic tests used for determining whether a patient with
SCI has AD. During these diagnostic tests, a medical team progressively fills the patient’s
bladder with a saline solution through a catheter. The saline solution is used for simulating
the urine that would concentrate in the bladder in a daily situation and with it, the clinicians
intend to induce in the patient a controlled AD attack. If an AD episode arises, then the
doctors will know that the result of the diagnostic test is positive and that the patient is
susceptible to suffering AD episodes in everyday life. Conversely, the diagnostic test will
be negative if the patient’s body does not react adversely when the bladder is full (see the
symptoms mentioned in the previous paragraph). It is important to note that these tests can
only be performed in a controlled clinical environment and that the induction of these AD
episodes does not entail a risk for the patient: the medical team can reverse the episodes by
emptying the bladder with the same catheter used for filling it.

Concerning the bibliography, most of the papers about AD analyse it from a medical
perspective. This way, numerous studies explain what AD is and its potentially lethal
consequences. Nevertheless, few are works that study AD from a technological approach
to automatically diagnose this condition or detect the onset of its episodes. To the extent of
the authors’ knowledge, apart from Suresh’s and Duerstock’s studies [20,21], the literature
using machine learning (ML) techniques for detecting AD is practically non-existent. In the
case of this work, Suresh and Duerstock present a device that detects the onsets of AD by
combining the monitorisation of physiological variables and ML techniques. However, the
solution presented in this article is proposed for being used with SCI patients that have
previously been diagnosed with the disease and that already have certain experience with
this condition.

In this sense, this work takes another path and intends to face the problem of the initial
diagnostic instead of trying to detect its onsets in daily situations. The team’s objective
was to design a ML-based system for diagnosing AD in patients with SCI. Thus, they
expanded the previous work of [22] and conducted a pilot experiment with 29 patients
with SCI at Cruces University Hospital (CUH, from now on). Some of the data collected in
these experiments are of a non-invasive nature: clinical history data, analyses of hormonal
variations obtained through blood extraction, monitorisation of physiological variables at
rest, etc. On the other hand, the team also collected physiological data using the bladder-
filling invasive method within a controlled environment and monitored by a nurse and a
doctor. The team selected this method because, as mentioned previously, most of the AD
episodes are produced by the stimulus derived from the filling of the bladder. During the
total duration of the experiment, the researchers collected the following four physiological
signals to extract features usable for diagnosing the infirmity: systolic blood pressure,
diastolic blood pressure, heart rate and total peripheral resistance.

Regarding the diagnostic test for this disease, the reader should bear in mind that, due
to their injury, the patients taking these tests are highly fragile. For this reason, the objective
of this work is to take the diagnostic a step further and minimise the necessity of using
invasive methods for detecting the disease. To this end, this work proposes a hierarchical
classification system that divides the diagnostic problem into two levels to determine the
presence of the disease using only those features that can be extracted non-invasively. The
proposal for the first level is to use the information already available from the patient’s
clinical history. Later, a second level is proposed to diagnose the cases that were not clear in
the first level by using the features extracted from the non-invasive stages of the experiment
(physiological signal values and blood analysis results). By doing so, the authors intend to
minimise the number of cases that require the patients to undergo the bladder-filling test
for diagnosing the disease. Besides, the proposed system also considers the costs related
to classification errors. Accordingly, it has been tuned so that the false negative (FN) rate
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associated with the class of having the disease is zero and avoids the lethal consequences
of not diagnosing a patient with AD who does have it.

Thus, to summarise, in this work, the authors pose the hypothesis that states that it is
possible to perform the initial diagnosis of the disease by using systems based on ML and
features from non-invasive sources. In addition, accordingly, the following two objectives
were set for the study: diagnosing the disease using non-invasive features and minimising
to zero the rate of FN produced when performing the diagnostic.

The remaining part of this work is organised as follows. Section 2 describes the design
of the pilot experiment and the extraction of the features used for automatically detecting
the disease. Then, Section 3 describes the steps taken when applying the ML techniques
to the diagnostic problem and how the team reached their final proposal of the two-level
hierarchical classifier. Finally, in Section 4, this paper comments on the results obtained
throughout the study and Section 5 presents the conclusions and future lines derived from
this work.

2. Materials and Methods

This section describes the pilot experiment conducted at CUH [23] and the extraction
of the features that would be later used for generating the diagnostic system based on ML.

2.1. The Data Collection Experiment

This work continues with the previous study conducted by this team in which they
analysed the detection of AD with the data collected from 5 SCI patients [22]. In that work,
the classifiers proposed for diagnosing the AD gave promising results and 4 of the 5 patients
were classified correctly (2 without AD and 3 with AD). However, the classification error
that took place resulted in an FN and, as explained in the introduction, the errors of this
type are not acceptable because not diagnosing a patient with the disease may have deadly
consequences. For this reason, the researchers teamed with the medical team of CUH and
repeated the same experimentation of [22] to expand the sample of the study to 29 SCI
patients (20 male and 9 female) ranging between 32 and 85 years old (mean = 52.24 and
SD = 12.79 years). In this new sample, 21 of the 29 participants had already been diagnosed
with AD and the other 8 were free from the disease. With this expansion of the sample, the
researchers intended to obtain a more robust system that diagnoses without producing any
FN and that does it, as much as possible, using solely non-invasive features (as it will be
explained, taking care of false positive errors, abbreviated as FP from now on, is not that
important as their cost is much smaller).

The test took place at CUH’s dysautonomia unit under the supervision of a doctor
and a nurse. Twenty-four hours before the experiment, the patients signed a consent form
and had their bladder emptied. Concerning the process inside the laboratory, the data
collection was performed according to the same experimental protocol [22], which received
the approval of the Clinical Research Committee of Basque under the PI2013132 validation
code. The protocol was divided into the three stages shown in Figure 1, which will be
described below.
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Figure 1. Stages of the experiment.

The first stage of the experiment consisted of collecting the data from the clinical
history of the patient, such as the level of the spinal cord at which the SCI took place, the
type of injury, the functioning of the sphincters, the previous symptomatology, etc.
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The second stage consisted of laying the patient on a tilting table and fastening the
chest and lower limbs to the table. Then, the patient was left resting on the table in a supine
position (0º) and, after that time, the clinicians extracted a blood sample from the patient’s
arm. Three minutes later, the clinicians tilted the table to 60º leaving the patient with their
head up and took another blood sample. The reason for this second extraction was to
compare the hormonal variations between the two blood samples. More precisely, the
comparison would be between catecholamine levels (adrenaline, noradrenaline, dopamine
and vasopressin). These hormones are also known as amine hormones as they flow
within the blood circulation and are subsequently linked to the increases in blood pressure
produced by the onsets of AD.

The third and last stage started with fitting the patients with a urinary catheter for
the bladder-filling and with the electrodes for monitoring and collecting the physiological
signals with a Task Force Monitor device (CNSystems®). As said in the description, four
physiological signals were collected during the third part of the experiment: the systolic
and diastolic blood pressures, the heart rate and the total peripheral resistance. Then, once
both the electrodes and catheter had been placed, the patient’s basal physiological values
were recorded for 10 min while the patient laid down on the table at 0º. Then, the clinicians
proceeded to fill the bladder with a saline solution (0.9% concentration and 37 ºC) aiming to
produce the stimulus that could trigger an episode of AD while recording the physiological
signals of the patient. This process would last until the bladder was full (the length of the
process varied between patients) and, after registering all the physiological signals, the
clinicians proceeded to gradually empty the bladder and remove the catheter.

Finally, to finish the third stage of the experiment, the patient laid down in a supine
position for 10 min more while the biosignals were being recorded. Later, the table would
be tilted back again to 60º and the patient would remain at that position for 10 min. After
that time, the clinicians would tilt the table down to 0º degrees and the experiment would
conclude by releasing the patient from the table.

This experimental procedure permitted the team to obtain data coming from different
sources: clinical history, blood hormonal levels from two positions and physiological
signals at rest, during the filling of the bladder and at 60º.

2.2. Feature Extraction

Once all the patients had gone through the data collection experiment of Figure 1, the
researchers took all the information and created a new database with different features that
would be used later for training a ML system for diagnosing AD. This subsection presents
this new database, which consists of 35 features coming from the different non-invasive
parts of the experiment.

As mentioned in the introduction, one of the main objectives of this work was to
perform the diagnostic of AD in patients suffering from SCI without needing to apply
invasive methods such as that of the bladder-filling. These patients are very fragile and
so the researchers found it important to organise all the information collected throughout
the experiment according to the level of invasiveness. Hence, the extracted features were
divided into two main groups.

The first main group embraced the 35 features extracted from the variables collected
by non-invasive methods. Depending on the source, these 35 features were also divided
into 2 smaller subgroups. On the one side, Table 1 presents the first subgroup, which
corresponds to the 5 features belonging to the clinical history of the patient.

On the other side, the second subgroup covered the remaining 30 features shown in
Table 2. On the one hand, the first 8 features of Table 2 correspond to the hormonal levels of
the 2 blood extractions. On the other hand, the other 22 features of the table were extracted
from the 4 physiological signals that were collected while the patients were lying on the
tilting table. It is important to note that these 22 features were extracted from the baseline
component of the physiological signals, which was obtained using a low-pass filter with
a cut-off frequency of 1 Hz. Whereas the first 4 of the 22 were obtained from the part of
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the experiment in which the patients were lying at supine position (0º), the last 18 were
extracted from the signals recorded with the patient at 60º of inclination.

Table 1. Features extracted from the clinical history of the patients.

Feature Name Definition

TYPE_INJ Type of injury.
INJ_LEVEL Level of the spinal cord injury.
ASIA Classification according to five grades determined by the absence

or preservation of motor and sensory function (ASIA) [24,25].
SPHINCTER Functioning of the sphincter.
PREV_SYMPT Previous symptomatology.

Table 2. Features of physiological origin from the non-invasive part of the experiment.

Feature Name Definition

VASOP_BASAL Basal vasopressin value at resting position.
AD_BASAL Basal adrenaline value at resting position.
NA_BASAL Basal noradrenaline value at resting position.
DOP_BASAL Basal dopamine value at resting position.
DIV_VASOP_BIPE Vasopressin at 60º with respect to basal values.
DIV_A_BIPE Adrenaline at 60º with respect to basal values.
DIV_NA_BIPE Noradrenaline at 60º with respect to basal values.
DIV_DOP_BIPE Dopamine at 60º with respect to basal values.
SYS_BASAL Basal systolic blood pressure value at resting position.
DIA_BASAL Basal diastolic blood pressure value at resting position.
HR_BASAL Basal heart-rate value at resting position.
TPR_BASAL Basal total peripheral resistance value at resting position.
DIV_SYS_TILT_3 min Systolic blood pressure with respect to basal values 3 min after tilting the table 60º.
DIV_SYS_TILT_10 min Systolic blood pressure with respect to basal values 10 min after tilting the table 60º.
DIV_SYS_TILT_MIN Minimum systolic blood pressure with respect to basal values during the 60º table tilt.
TIME_SYS_TILT_MIN Time to obtain the minimum systolic blood pressure during the 60º table tilt.
DIV_DIA_TILT_3 min Diastolic blood pressure with respect to basal values 3 min after tilting the table 60º.
DIV_DIA_TILT_10 min Diastolic blood pressure with respect to basal values 10 min after tilting the table 60º.
DIV_DIA_TILT_MIN Minimum diastolic blood pressure with respect to basal values during the 60º table tilt.
TIME_DIA_TILT_MIN Time to obtain the minimum diastolic blood pressure during the 60º table tilt.
DIV_HR_M_3 min Heart rate with respect to basal values 3 min after tilting the table 60º.
DIV_HR_M_10 min Heart rate with respect to basal values 10 min after tilting the table 60º.
DIV_HR_M_MAX Maximum heart rate with respect to basal values during the 60º table tilt.
TIME_HR_M_MAX Time to obtain the maximum heart rate during the 60º table tilt.
DIV_HR_M_MIN Minimum heart rate with respect to basal values during 60º table tilt.
TIME_HR_M_MIN Time to obtain the minimum heart rate during the 60º table tilt.
DIV_TPR_TILT_3 min Total peripheral resistance with respect to basal values 3 min after tilting the table 60º.
DIV_TPR_TILT_10 min Total peripheral resistance with respect to basal values 10 min after tilting the table 60º.
DIV_TPR_TILT_MIN Minimum total peripheral resistance with respect to basal values during the 60º table tilt.
TIME_TPR_TILT_MIN Time to obtain the minimum total peripheral resistance during the 60º table tilt.

Contrary to the first, the second main group of features is formed by those collected
via invasive methods (bladder-filling). The experiment simulated a daily-life situation that
could trigger an episode of AD as it can be the filling of the bladder. This simulation was
performed using a saline solution that was inserted into the bladder with a urinary catheter
while the patient laid down on the table. Thus, this part of the experiment was highly
invasive and, accordingly, the features that could be extracted from the four physiological
signals recorded during this part of the experiment had to be tagged as invasive. Recalling
the objectives of this work, these features did not match the needs of performing the
diagnostic in a less invasive manner and their use in the study was subsequently discarded
and not included in the database.
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Hence, to summarise, the team created a database composed of 35 features of non-
invasive origin: 5 from the clinical history and 30 from the blood tests and physiological
signals collected through non-invasive methods.

Once the database had been created, the researchers analysed it and observed that, for
some patients, certain features coming from the bladder-filling and table-tilting stages had
missing values. In this sense, the researchers took into account that the absence of values
could be meaningful when performing the classification and decided to normalise the
data in the (0.25–1) range and reserve the 0 value for those cases in which it had not been
possible to collect the data. To this end, all non-missing values of the data were normalised
according to the linear equation of (1), where Xi represents the ith value of the feature
vector, Xnorm for the normalised value and Xmax and Xmin stand for the maximum and
minimum values of that given feature in the whole register. Then, 1/3 was added to those
normalised values and, later, the missing values were replaced by 0 values. Finally, all the
values of the feature vectors were divided by the maximum value of the vector. As a result
of this process, each feature would be represented with a vector in which the 0 values stand
for the data missing cases and all the others would be contained within the (0.25–1) range.

Xnorm =
Xi − Xmin

Xmax − Xmin
(1)

2.3. Experimental Setup

After normalising the database, the data were ready for the ML analysis. Hence,
the team explored different types of algorithms and classification structures to build a
ML-based AD diagnosing system.

To do so, the team trained 11 supervised learning algorithms in their standard form
using the Weka ML software platform [26]. The authors trained the following algorithms:
Decision Trees (DT), Random Forests (RF, with 10 trees), AdaBoost (AdaB), Bagging (Bag),
Logistic Regression (LR), k-Nearest Neighbours (k-NN, with k = 5), Support Vector Ma-
chines (SVM), 1R Rule (1R), Radial-Basis Function (RBF) network, Naïve Bayes (NB) and
Multilayer Perceptron (MLP). As it can be seen, these algorithms belong to different types
of state-of-the-art paradigms, such as rule or distance-based algorithms, algorithms based
on probabilistic methods or ensembles of classifiers, among others.

The results of all the approaches followed until reaching the final solution was obtained
using these 11 algorithms and the leave-one-out validation methodology. The reader will
find all these results presented in Section 3.

3. Results

This section will present the results of the classification system that was designed to
diagnose the presence of AD in patients with SCI. To this end, the researchers used the
features that could be extracted from the 29 patients using non-invasive techniques. This
section has been split into two subsections. In the first, this paper presents the previous
experimentation with which the researchers approached the AD diagnostic classification
problem. First, the problem was approached by combining both the clinical and non-
invasive physiological features in a single subspace and, after that, exploring the subspaces
of those two types of features independently. Then, in the second subsection, the team
proposes a two-level hierarchical diagnostic system and will show its results detecting AD
in patients with SCI.

3.1. Previous Approaches
3.1.1. The Combined Subspace of Clinical and Non-Invasive Physiological Features

The first attempt of the researchers consisted of seeing whether it was possible to
detect AD by applying ML techniques to all the data obtained non-invasively. Hence, in
this approach, the researchers used both the features coming from the patients’ clinical
histories and the ones of physiological nature collected with non-invasive methods. Table 3
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presents the results of using the 35 non-invasive features (clinical and physiological) in this
initial approach to the problem.

Table 3. Classifier estimation using the combined subspace of the clinical and the non-invasive
physiological features (the results of the best algorithm are highlighted in bold).

1R DT k-NN NB RBF SVM LR AdaB Bag RF MLP

Accuracy (%) 55.17 68.97 79.31 86.21 82.76 82.76 75.86 75.86 75.86 75.86 72.41
Errors class 0 (FP) 6 4 4 1 2 2 2 4 4 4 3
Errors class 1 (FN) 7 5 2 3 3 3 5 3 3 3 5

Looking at Table 3, the reader could see that the NB algorithm obtained the best
accuracy (calculated as the percentage obtained from dividing the correctly classified
instances by the total amount of instances), followed by the RBF and SVM. However, all of
them produced three FN errors. As mentioned in Section 2.1, if the lethal consequences of
AD episodes are taken into account, then this type of error must be avoided by all means
as it has a high cost for the patients’ health. Thus, when it comes to minimising the amount
of FN, the k-NN obtained the best result.

Anyway, none of the algorithms met the objectives defined by the researchers. Conse-
quently, the team decided to explore the features of the clinical history and the non-invasive
physiological information in independent subspaces and see if the results could be im-
proved and obtain a null FN rate (Sections 3.1.2 and 3.1.3, respectively).

3.1.2. The Subspace of the Clinical Features

Apart from detecting the AD with a zero FN rate, the other objective of this work is to
perform it as least invasively as possible. Therefore, having to choose between exploring
the subspace of the features from the clinical history and coming from the physiology,
the team decided to first explore the ones of the clinical history as they are completely
non-invasive. In this sense, if AD could be detected using only these features, then it would
not be necessary to perform any experimentation with the patient to diagnose the disease if
the clinicians determined it that way.

Reaching this point, the team tried the same 11 algorithms of the previous attempt with
the features coming from the clinical history following the leave-one-out methodology. The
results obtained in this second experimentation showed a similar trend to what happened
previously. The values shown by Table 4 indicate that k-NN (with k = 5) had again been
the one producing less FN.

Table 4. Classifier estimation using the subspace of the features of the clinical history (the results of
the best algorithm are highlighted in bold).

1R DT k-NN NB RBF SVM LR AdaB Bag RF MLP

Accuracy (%) 79.31 79.31 86.21 86.21 82.76 82.76 89.66 79.31 79.31 82.76 89.66
Errors class 0 (FP) 4 4 3 1 1 3 1 4 4 3 1
Errors class 1 (FN) 2 2 1 3 4 2 2 2 2 2 2

On the other hand, the results of Table 4 also show that it is possible to correctly
detect a high number of cases solely using the features coming from the clinical history.
Nevertheless, it can also be concluded that some of the information needed to detect the
disease is not covered by this subspace as all classifiers made some type of error. That
is why the team opted for repeating the experimentation but shifting to the subspace
physiological features collected by non-invasive methods.

3.1.3. The Subspace of the Non-Invasive Physiological Features

As explained previously, the team saw the need to eliminate the FN errors produced in
the classification. To achieve this, they opted for changing strategy and facing the problem
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by analysing the subspace of the 30 features extracted from the physiological data of the
non-invasive part of the experiment. Hence, the exploration of this subspace would mean
that all patients would have to take some experimentation. Anyway, this experimentation
would be minimally invasive and would not differ much from what could be performed in
a normal medical check-up.

For the sake of consistency, following with the methodology of the previous sub-
sections, the team used the same 11 supervised learning algorithms to study this third
subspace. Accordingly, the results shown below in Table 5 were also validated with the
leave-one-out methodology.

Table 5. Classifier estimation using the subspace of the physiological features of non-invasive source
(the results of the best algorithm are highlighted in bold).

1R DT k-NN NB RBF SVM LR AdaB Bag RF MLP

Accuracy (%) 55.17 62.07 79.31 82.76 79.31 68.97 62.07 62.07 58.62 58.62 68.97
Errors class 0 (FP) 6 6 2 2 3 5 3 5 8 7 3
Errors class 1 (FN) 7 5 4 3 3 4 8 6 4 5 6

Looking at the results of Table 5, the reader will see that the results differed slightly
from those of the previous two subspaces. On the one hand, the accuracies were generally
worse, being that NB was the best scoring algorithm (82.76%). Besides, contrary to what
happened before, the NB not only scored the best accuracy but also produced the smallest
number of FN (FN = 3). Despite the results of NB not being bad, they were still far from
what was desired and so it was clear to the researchers that it is more difficult to diagnose
the disease correctly using this subspace.

3.2. The Proposed Hierarchical Classification System

The previous subsection proved that it had been impossible to automatically diagnose
the AD by approaching the classification problem in a single level. Therefore, the team
proposed a new strategy and suggested the possibility of diagnosing the disease in two
different levels. This way, the researchers looked for taking advantage of each subspace’s
potential and the complementarity between each for performing the classification. The first
level was proposed to work with the features of the clinical history to diagnose the AD.
This first level was set up very conservatively, i.e., it would only classify the clear cases
and it would leave as ambiguous the ones close to the decision boundaries that would not
obtain a robust classification. Later, for the unclear cases, the team proposed a second level
using the subspace of the non-invasive physiological features to determine the final class of
those cases. The reason for exploring the two subspaces in this order is consistent with the
objectives of this work: performing it this way minimises the need for taking the patients
through experimentation and reduces to the maximum the invasiveness of the diagnostic.

Having posed their strategy, for selecting the best algorithms for each level, the
researchers based this on the results of Tables 4 and 5. This way, the first level of the
hierarchical classifier would use the k-NN algorithm, and the second would use the NB.
However, the previous experimentation proved that it had been impossible to reduce the
amount of FN to zero. Therefore, to avoid this problem, the team decided to establish a
certainty constraint for the classification of the first level. This way, the classifier would only
determine the class of an instance if at least 4 of the 5 neighbour patterns corresponded to a
same class. On the contrary, the instance would be left as ambiguous when the certainty
of the first classifier was weaker and it would be the second level’s classifier who would
finally determine, using the non-invasive physiological features, whether the patient is
diagnosed with the disease. The conceptual diagram of Figure 2 depicts the functioning
scheme of the hierarchical system proposed in this subsection.
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Figure 2. Structure of the proposed hierarchical classification system.

Once the configuration of the system was set, the team tested the system once again
using the leave-one-out methodology used throughout the whole study. The results of
this experimentation are given in Table 6 where at last it had been possible to perform a
classification free of FN errors. This is reflected by the absence of errors for the “AD” class.
Besides, Table 6 also shows that the first level’s k-NN correctly classified 21 of 29 the cases,
missed 1 and considered 7 as ambiguous. Concerning the second level, the reader will
observe that the NB algorithm catalogued correctly 6 of the 7 cases that had been marked
as ambiguous by the first classifier. This way, the proposed hierarchical system obtained an
accuracy of 93.10%.

Table 6. Performance of the two-level hierarchical classifier.

1st Level: Clinical Feat.
5-NN with 4/5 Pattern
Certainty Threshold

2nd Level:
Physiological Feat.

NB
Total

No AD class:
8 patients

Hit 1 5 6
Miss 1 1 2
Ambiguous 6 0 -

AD class:
21 patients

Ambiguous 1 0 -
Miss 0 0 0
Hit 20 1 21

For better comprehension, Table 7 shows the results of the hierarchical classification
more visually. Marked in green, Table 7 shows the instances that could be correctly
classified, either in the first level or the second. Besides, the table also shows which of the
cases were left ambiguous by the first level’s classifier (in orange). Finally, the system had
been unable to classify correctly two of the patients (in red), but these errors belong to the
FP class. The consequences of this type of error are not that severe as it would mean that
the patient would have to go through the bladder-filling invasive part of the experiment
and, accordingly, the clinicians would realise that the patient did not have the disease. As
the bladder-filling test does not imply any risk for the patient, the only cost of producing
this type of error is that the patient would take a test that could have been avoided.
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Table 7. Testing results of the hierarchical classifier using a leave-one-out methodology. Certainties
between parentheses are given in the (0–1) range.

Patient 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Class:
0-No AD / 1-AD 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0

1st level
classification:
class (certainty)

0
(1)

1
(0.6)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

0
(0.6)

1
(0.6)

1
(1)

0
(0.6)

2nd level
classification:
class (certainty)

-
0

(1) - - - - - - - - -
0

(1)
0

(1) -
0

(1)

Patient 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Class:
0-No AD / 1-AD 0 0 1 1 1 1 1 1 0 1 1 0 1 1

1st level
classification:
class (certainty)

0
(0.6)

0
(0.8)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

1
(1)

0
(0.6)

1
(1)

1
(1)

1
(1)

1
(1)

0
(0.6)

2nd level
classification:
class (certainty)

1
(1) - - - - - - -

0
(1) - - - -

1
(1)

4. Discussion

In this work, the research team has presented an expansion of their previous work [22]
that focused on performing the initial diagnostic of AD in patients with SCI using ML
algorithms. To the extent of the authors’ knowledge, the bibliography that seeks to detect
this disease using ML is very scarce [20] and even moreso the one focusing on its initial
diagnostic. On the one hand, the team has expanded the sample of study of its previous
research from 5 to 29 patients suffering from SCI. On the other hand, the researchers have
approached the problem of performing a diagnostic free from FN errors. These types of
classification errors represent the diagnostic error of saying that a patient is free from the
disease when they have it, and so they may have lethal consequences. Finally, this work
also had the objective of performing the diagnostic in the least invasive manner possible,
minimising the number of medical tests to be performed and always without using the
invasive methods that are common for diagnosing this disease, as is, for example, the
bladder-filling test.

Initially, the researchers faced the problem of diagnosing the AD in three different
subspaces: the subspace combining features from the clinical history and non-invasive phys-
iological features and the subspaces of analysing them but independently from each other.
The best algorithms of these three explorations resulted to be the k-Nearest Neighbours
(k-NN, with k = 5 and an accuracy = 79.31%), again the k-NN (k = 5, accuracy = 86.21%)
and the Naïve Bayer (NB, with accuracy = 82.76%), respectively. However, even if the
accuracy values were relatively high, the classifiers always produced errors of the FN type.

Thus, the team changed strategy and proposed a hierarchical system in which the
diagnosis would be performed in two levels: a very conservative first level that would
only classify the clearly distinguishable patterns and a second level that would be useful
for determining the class of the less clear patterns. The first level would diagnose using
k-NN (k = 5) in the subspace of the variables of the clinical history of the patient. Thus,
this first level does not require performing any type of medical test on the patient. Besides,
to be conservative and not produce FN, a minimum certainty threshold was set for the
first level’s classifier: an instance would only be classified if 4 of 5 nearest neighbours
belonged to the same class. If this constraint was not fulfilled, then the case would be left
ambiguous and would be passed onto the second level of the hierarchical system. In the
second level, the final diagnostic of the patient would be performed by the NB algorithm
using the features extracted from the physiological data collected non-invasively (it requires
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performing a medical test). The results of this approach resulted to be satisfactory and
detected the disease with an accuracy of 93.10% and achieving FN = 0.

5. Conclusions

According to the results discussed in the previous section, the goodness of the work
presented becomes clear: on the one side, the work contributes to an area in which tech-
nological approaches are scarce and, on the other, gives support to the clinicians that
work in this field. The work presented in this article received the acceptance of Cruces
University Hospital’s clinicians, proposing a solution to the complex problem of diagnosing
AD without producing FN errors [11,12]. Besides, it has minimised the invasiveness and
the necessity of performing medical tests thanks to the confluence of different types of
information (physiological and from the clinical history).

However, a sample of 29 patients could still be considered small for generalising the
results to a wider population. Accordingly, the team poses the future line of expanding the
sample of the study even more, even if the access to this type of population is complicated.
Apart from that, the proposed hierarchical system has the weakness of not explaining why
they chose a class. Because of this reason, the team also proposes the future line of fulfilling
the same objectives of this work but only using classifiers with explanatory properties. This
way, the classification would not only be robust and non-invasive but would also provide
the clinicians with an explanation for taking a diagnostic decision.
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