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Fractional Integration Analysisand its Implicationson
Profitability: the Case of the Mackerel Market in the
Basqgue Country

J. Garcig™, J. Artech® and A.Murillag

Abstract

This paper analyses weekly prices for mackerelddraly the inshore fleet at the ports
of the Basque Country in 1995-2008, using new ecwtoc techniques never before
applied to the fishing market. The idea is to le@rmvhat extent fishermen can pass on
the effects of negative shocks (e.g. fuel pricegases) to their ex-vessel prices. This
will give an idea of the profitability of the fishein question. To that end, a cyclical
ARFIMA model is adjusted to the series analyseénttihe impulse-response function is
constructed. Among other things, the behaviourhid function shows that possible
increases in production costs are not being passetb prices, which lowers the
profitability of fishing. In view of these results,is suggested that fishermen need to be
able to pass the shocks that they suffer on taegricthe profitability of this fleet is to
be assured.
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1 Introduction

The analysis of prices in fishing markets has naf®e increasing importance in
recent years because, among other reasons, oéshter understanding and finding
answers to the problems of low (and even negatwejitability which the fishing
industry has been suffering for some decades. Tblelgm is not specific to a single
subsector or to any specific market, region or égunt has become an ongoing
characteristic of practically all the fishing matkef the European Union (EU).



To understand trends in ex-vessel (dockside) fisbep, aspects such as the
general context of the regulations under which eiggs operate in the EU, the
individual characteristics of the different fleetsking catches and the price formation
systems used to allocate dockside prices mustkea iato account, among others.

The EU fishing market is conditioned by the Comnfasheries Policy (CFP).
At the heart of the CFP is a system for limitingcb&s by establishing controls on total
catches from the same stock known as Total Alloev&dtch (TAC). In the particular
case of the mackerel, limitations on TAC, the numbgk vessels fishing and the
behaviour of fishermen themselves (landing catamexcess of the TAC) are the main
factors affecting the eventual price at sourcee phce of mackerel may also depend,
albeit to a lesser extent, on other factors sudishsg areas and the techniques used.

Along with the above, another key factor in deterimg prices at source in this
market is the system for setting prices and thetesgly of the traders who dominate the
system and do not allow new purchasers to entem Asost other European ports, the
so-called “Dutch auction” system is used. Thisaystloes not ensure Pareto efficiency
or, as would be desirable, maximise profits onghg of the seller (the fisherman), all
of which ultimately limits the value added to theah?

This paper seeks to extend knowledge of the gass-domestic fishing market
of the Basque Country by examining its pricing ¢f®and studying the fishing activity
of the inshore fleet, which has traditionally caughree main species: anchovy —
Engraulis encrasicholus albacore tunaFhunnus alalunga and mackerelScomber
scombrus, though the paper focuses only on this last sgedihis fishery was chosen
as a case study for the following reasons: (i) beeat is one of the most important
fisheries available to the Basque inshore flead, @me which is in general of enormous
economic and social importance for the countriethefAtlantic Arc of Europe; and (i)
because the low profitability of this fleet is ookthe main causes for concern for the
sector itself and for the authorities, and it isicible to find out how far and how fast
the various shocks suffered by the fleet are passdd prices.

The industry itself sees price increases througloliy of effective reductions
in catches (above the TAC) as the only viable opamong the alternative solutions
suggested for the problem of low first-sale prdiility of mackerel. As a result, in

! The Dutch auction system does not guarantee mamiprofits for fishermen because, as pointed out by
Compés (1994), profit maximisation in a Dutch amctis incompatible with the likelihood of obtaining
the item auctioned.



recent years it has been argued that there is @ foeepolicies such as a system of
guotas on catches per fisherman per day, over bodeathe TAC regulation system.
This measure was finally implemented officially 2009, following a voluntary pilot
scheme carried out by the Spanish fishing industelf during the mackerel campaign
of 2008. In this context there is a great needsfadies such as the one proposed here,
to enable more to be learned about the behavioprioés for this species, in response

to demand from the industry itself and the authesit

Studies of the behaviour of price series for fighproducts have traditionally
considered them as integrated of order one or($dg, for instance, Gordon et al., 1993,
Gordon & Hannesson, 1996, Jiménez-Toribio and @atel-Hoyo, 2006, Setala et al.,
2008) so that innovative changes have permaneattefbn the levels of series, but in
fact the prices of some fisheries (the mackeral ¢ase in point) follow a path that can
hardly be placed in that category. Here, therefare,use a more flexible framework
and admit the possibility that the process goveiive trends in prices may be I)
with 0<d < 1.

In that context, we propose the use of econom#étgbniques that enable the
exact degree of memory of a time series to be thtesuch as long memory analysis
and seasonal and cyclical long memory. Specificatlys suggested that a cyclical
ARFIMA model be adjusted, given the flexibility and addylity of such models to the
exact degree of memory at different frequenciess Timodel is applied to a series of
weekly prices for mackerel landed by the inshoeetflat the ports of the Basque
Country between 1995 and 2008. Once the model jisstedi, the impulse-response
function (hereinafter called the IRF) is definecheTbehaviour of this function could
serve as an indicator of the ability of fishermerptss on to prices the effects of the
various shocks that affect their activities, anasthalso could serve as an indicator of the
profitability of the fishery in question.

Recent papers in the literature on this topic theate used similar techniques
include Arteche & Robinson (2000), Gil-Alafia & Robon (2001), Cheung & Lai
(2001), Gadea & Mayoral (2006), Arteche (2007), ekdowever, as far as we know,
there are no previous papers that apply these itpodm to the fishing industry.

2 A series X, is said to be I(d) if(1— L) X, whereL is the lag operator such thaf'x, = X_,, is a
process with a finite, non null spectral densitgexo frequency.



The rest of the paper is structured as followsti&e@ describes the case study
selected, i.e. the North-east mackerel stock ardotierations of the Basque inshore
fishing fleet. Section 3 sets out the method uSsttion 4 presents the results of the

empirical application. The paper ends with an aetlbf the main conclusions reached.

2 Case Sudy: Management of the Mackerel Fishery and the
Basgue I nshore Fleet

This section briefly describes various aspectstitd North-east Atlantic
mackerel (NEAM) fishery, such as stock distributidime current management system
via the setting of a TAC, exploitation by variouational and foreign fleets and, in
particular, the activity of the Basque inshoreftflee

All figures on the activities, catches landed aedenues of the Basque fleet are
taken from the AZTI-Tecnalia Fisheries Databaseginafter called the AZTI-Tecnalia
DB)°. Figures on catches landed by the Spanish anigfofleets are taken from the
International Council for the Exploration of theaSdCES (2009), while TACs per
annum are taken from the various regulations tlathappeared year by year in the

Official Journal of the European Union.

2.1 Mackerel stock and fisheries

Mackerel can be found all over the Atlantic, fronoriway to Portugal. It is
distributed throughout the North Atlantic in bothet East (including the Baltic, the
Mediterranean and the Black Sea) and the Wed.dthighly migratory species which
moves towards the northern end of its distributrosummer and towards the south in
winter. The ICES assumes that there is a singlat gteck of mackerel in Europe — the
North-east mackerel stock — and thus sets a sirg&

Following record catches in 1979 (totalling 843,1)3ishing mortality gradually
began to fall. However in 1993 a catch of 825,03ésulted in a major increase. This
increase in the mortality rate was deemed unsusiarby scientists, and as a result the

TAC was reduced from 1993 onwards. From that yearccatches decreased steadily to

® The AZTI-Tecnalia DB contains biological and ecomo information provided by the fleet itself. In
particular, it contains data on catches landedhetpbrts of the Basque Country vessel by vessebgnd
fishing trip for each species. Notice that a fightrip is counted each occasion on which a vesseld a
catch at a port.



a historical minimum of 472,652 t in 2006. A breatah by countries shows that most

of the catches in the past 5 years have been madeebfleets of the UK, Norway,
Spain and Ireland (Table 1).

Table 1. Mackerel catches (in tonnes) broken downcduntries in the North-East
Atlantic (Sub-areas llla & IV, VI, VII, VIII & IX)*

2004 2005 2006 2007 2008 Total
UK 172,785 152,801 95,815 133,688 112,145 667,234
Norway 147,069 106,434 113,079 131,198 118,050 615,830
Spain 34,455 52,753 54,136 62,946 64,637 268,927
Ireland 60,631 45,687 40,664 49,260 44,759 241,001
Denmark 25,665 23,212 24,219 25,223 26,726 125,045
Netherlands 27,498 22,734 24,157 24,234 19,900 118,523
Germany 23,244 19,040 16,608 18,214 15,502 92,608
France 20,264 16,337 14,953 20,038 15,602 87,194
Faroe Islands 12,379 9,739 12,067 13,151 11,166 58,502

* Source: own work based on ICES (2009)

2.2 Stock management

The mackerel stock is managed year by year via Té€&dy areas. Although
the ICES provides advice on permissible exploitatevels for the distribution of the
stock as a whole, that advice is then applied mdviferent TACs: one for the Southern
Area (Vlllc and 1Xa), which, as can be seen in gl takes in the northern and north-
eastern coasts of Spain and the coast of Portagdlthe other for the rest of the stock
distribution (the Western Area).

The quota assigned to Spain in the Southern Alé&den 33,120 t in 2001 to
22,256 t in 2008. However, even though this resmigaot in the best of situations, the
Basque fleet (and indeed the Spanish fleet in génkas the capacity to catch much
more than the quota allocated under the TAC, addad has done so in some years, as
can be seen in Table 2 (note that in 2003 theagwats not exceeded due to the
environmental disaster that befell the fisherydwaiing the sinking of the oil tanker
Prestige off Spain’s northern coast). Moreover, captureghe Southern Area have
increased sharply since 1996 (when they totalle@(Lt). This increase has taken
place at a time when a reduction in catches ira@hs was recommended, and has

resulted in the TAC for each area being exceedeeviey greater quantities, as can be
seen in Table 2.
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Figure 1. ICES fishing areas in the North-east tita(Source: European Commission).

2.3 The mackerel fishery developed by the Basque inshore fleet

In the Basque Country the most widely used inshedhniques for catching
mackerel are hand-lines and purse seine nets, hhalgftively insignificant amounts of
the species are also caught with gillnets and bwe#et long-lines. The line and purse
seine vessels based in the Basque Country acomu@d{95% of the mackerel landed at
Basque ports (with the remainder coming from vessehose home ports are in
Cantabria, Asturias and Galicia).

Fishing operations at Basque ports with these igdles accounted for 22-54% of
the total catches landed by the Spanish fleet BSMivisions Vllic and X4 from
2001 to 2008. Table 2 shows the trends over tintkarrelative importance of mackerel
catches by Basque vessels (using all techniques) @®portion of overall Spanish
catches and the TAC in ICES Divisions Vllic and IXa

* Spanish catches come from Division Vllic and, teesser extent, from IXa (ICES, 2009). From 1990
onwards it was permissible to catch to 3000 torofebe TAC set for zones Vllic and 1Xa in Division
VIIIb. In 2005 the figure was raised to 25,000 t.



Table 2. Comparison of mackerel catches (in tonmeB)visions Vllic & IXa.*

2001 2002 2003 2004 2005 2006 2007 2008
TAC allocated to Spain (southern area) 33,BA)874 28,846 26,625 20,500 21,574 24,405 22,256
Catch by Basque fleet (all techniques) 21,834545 6,316 14,39522,18016,973 22,007 26,528

Spanish catches 40,045,641 23,027 32,374 47,958 50,088 60,174 57,310
Basque catches/TAC for Spain 66% 52% 22% 54% 108%% 90% 119%
Basque catches/Spanish catches 54% 38% 27% 44% 4840 41% 46%
% TAC exceeded by Spain 21% 38% -20% 22% 134%2% 147% 157%

* Source: own work based on data from ICES (200@) tae AZTI-Tecnalia DB.

Hand-line and purse seine vessels fishing for nratlkee extremely important in
the overall context of fishing operations by thes@ae inshore fleet. Mackerel is the
number one species in terms of catches landeckiB#sque Country (using all fishing
techniques), accounting for 36-48% of the totalumwé of fish landed by the inshore
fleet from 2001 to 2008 (though in 2003 the figuiwpped to 14% due to the
temporary ban imposed in the fishery following ieking of the oil tankePrestige>.

In terms of income, it is the number three specespunting for around 11% of the
total revenues of the inshore fleet (just 5% in@06ehind albacore tuna and ancHovy
However the income represented by this fisheryegaaccording to its role in the
overall activities of each vessel over the yeas$ets do not fish for the same species
all year long). Thus, the Basque hand-line fledaimis between 22% and 40% of its
revenues from this fishery, though the percentageaonings may be higher among
those vessels that do not take part in the tnodl Gampaign in summer (a technique that
accounts for 40% of the fleet’s total revenues)rédwer, with the crisis that has hit the
anchovy fishery in recent times there have beemsywawhich the figure has risen to
45%. For the Basque purse seiner and live bait flee fishery accounts for between
6% and 18% of annual earnings, depending on thie sé¢acatches of albacore tuna,

anchovy and bluefin tuna.

® 80% of the total catch landed by the inshore fie@iccounted for by 5 species: albacore tuna, eratk
anchovy, horse mackerel and sardine. From 2005 miswanchovy decreased in volume and more chub
mackerel and bluefin tuna were caught.

® 70% of the total revenues of the inshore fleet €dnom 3 species: albacore tuna, anchovy and
Mackerel. From 2005 onwards anchovy decreased luma and more horse mackerel and bluefin tuna
were caught.



3 Methodology

Since the paper by Granger (1966) numerous studde® obtained long-
memory empirical evidence in economic data sefiesg memory is linked to the
persistence of certain time series, so that autelation gradually tends towards zero.
This indicates that even though they may be transithe effects of innovations may
last for a long time. This behaviour is not compéawith stationaryARMA models,
which are characterised by an exponential decri@aaatocorrelations and therefore in
the effects of innovations, or with the extremerdegof persistence found in unit root
models, where innovations have permanent effects.

A stationary stochastic procesg is said to have long memory if its

autocovariancey; = E[(X — B x))( x; - & ¥)] meet the following condition:

>ly|=e @
so that the time dependence of the ls_eries showddngls of persistence. Alternatively,
the long memory ofk means that its spectral density satisfies thevotig:
f(w+A) - o whend - C (2)
at a frequencywJ[0, 77].
The best-known case is that of the trend long mgmotthe frequencyw=0,
when the autocovariances show the following asytigpbzhaviour:

y; OGj**™ whenj - o (3)
where a [Jb denotes that a/b , G is a finite constant and is the memory parameter
measuring the degree of persistence, which satisfld 2<d <1/2, sinced<1/2 is
required for the process to be stationary drel-1/ 2 for it to be invertible. Unlike the
exponential decrease in autocorrelations found tatiohary processes with weak

dependencey; in (3) decreases hyperbolically so that (1) is ihet>0. If, moreover,

the autocovariances decrease monotonically, camd{{8) is equivalent to a spectral
density function that behaves as follows:

f (1) OCA™ whenA - 0 4)
where (k (X0, so that (2) is satisfied whenever>0. In fact, it is the case of
0<d<1/2 that shows long memory or strong persistencepsaditons (1) and (2) are

met. Whend =0 the process shows weak dependency or short menaoq, if



-1/2<d <0t is said to show antipersistence, though ths$ ¢ase is seldom found in
economics and usually only appears due to oveerdifitiation.

Although the most widely analysed casears=0, long memory can appear at
any other frequencywl(0,77], reflecting the existence of a persistent cycléhva
period of 277/ w. Thus, X, can be said to show seasonal and/or cyclical loegory if
its spectral density function satisfies the follogi

f(w+A) OC]A[** whenA - ¢ (5)
where-1/2<d < 1/2 guarantees that the series is stationary andtibleer

Processes that satisfy (5) are known as SCLM (®easand Cyclical Long
Memory, Arteche & Robinson, 2000). When the spédeasity function meets (5) for

all seasonal frequenciesy, =27h/s, h=1,2,..| s/2 wheres is the number of

observations per year and the memory paranuketeay vary oveh, the process is said
to have seasonal long memory. However, for nonoseddime series it may behave
cyclically, so that equation (5) is satisfied aeasr more frequenciesw1(0,77]. The
behaviour in the time doamin is determined by awslfuctuating decrease in the
autocovariance function that shows up in a fornhdhat :
y; ~Gceos(jw)i*™ whef - w (6)
whereG is a finite constant and the scale of the fluctuest depends ow.

Fractionally integratedARMA models ARFIMA models) that meet (3) and (4)
have become generalised in those cases whereetpeeficy of interest is other than
zero and (5) and (6) are satisfied. Thus, Ande8§)@nd, in greater depth, Gray et al.

(1989, 1994) analyse the so-called Gegenbauer $gsese
(1-2L cosw+L* ¥x =y (7)
where u, is weakly stationary. The most typical case is nwige follows a stationary
and invertibleARMA(p,q)process. In this case (7) is known aSARMA (Gegenbauer
ARMA) process.
To allow different degrees of persistence overedéht frequencies, Chan & Terrin
(1995), Chan & Wei (1988), Giraitis & Leipus (199&8hd Robinson (1994) use the

following model:

(- [] -2 comy +L° § (L 9 x = ®)



where @, can be any frequency in the interV@,77) and u, follows a stationary and
invertible ARMA(p,q): ® (L)u, =0, (L)¢, process, whereb (L)=1-¢gL-..-¢L",
9,(L)=1+gL+...+6,L" have not roots in common argl is white noise. Models of

this type are hereinafter referred to as cyclicARFIMA models or

ARFIMAC(p, g)x (&, d,)%..x (@, ,d,),where w, and d,; are thg-th frequency and its

associated memory parameter, respectively, witb,...h, where p and q,
respectively, are the orders of the autoregressnte moving average polynomials of
u, .

There is often a need to learn the effect and dauraif an innovative change on a
series under analysis. To that end its IRF is ¢aled. This is defined as a unitary

random shock at the level of the sefig®riods ahead. It is calculated via the sequence
of moving averageMA) expansion coefficients:

MA() 1 % = 16, 9)
j=0
where the IRF would therefore Wexr,, 77, 7,,17,,...). Thus, for a model such as (8) the

IRF is calculated on the basis of:

=(1—L)_d°ﬁ(1—2Lcoswj+L2 Y@ L) pS i ))5 mL§ = Zﬂ% ; (10)
where the polynolmialn(L) is formed by the product and division of differdimtite
(®,(L) y ©,L) and infinite (1-L)®, (@-2Lcosw +L*)", (@L+L)y™)
polynomials’

For estimating model (8) this paper uses a twoespagcedure:
Stage 1. Each memory parameter is estimated semiparamstriceing Whittle’s
local method (Robinson, 1995). Following the exiemsby Arteche and Robinson

(2000) for the case of SCLM models, they are oletias follows:

I(a)+)lj)

d,C) = argmln—z |ogcm ‘ ‘_Zd (11)
j

._+1

" For a more detailed description of how the IREakulated in long memory models, see Arteche (2007
pp. 768-769)
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wherem is the bandwidth such that at IeaéLHm - 0 whenT - o, T is the sample
m

size, A, -2 are the Fourier frequencies ah(};) is the periodogram for the series
T

2

X , defined ad (4;) =

i —iAt
D e
t=1

This estimator is semiparametric or local in natamed thus makes for consistent

1
27T

estimators which are robust to incorrect specificest of the model at frequencies far
from w, since there is no need to parameterise the speensity at those frequencies.
Moreover, Arteche & Robinson (2000) derive the aggiotic distribution for
-1/2<d<1/2

J2m(d- d)0 1 N©O,1/4) (12)

which means that it is possible to make an infezesw as, for instance, to check the
hypothesis that short memory exists @~0. Note that whena):{o,ﬂ}, since the

periodogram is symmetric around those frequen@al; m frequencies are used in

estimatingd, so the asymptotic distribution would be:

Jm(d- d 0t NO,1/4) (13)
for -1/2<d<1/2.

Stage 2. The polynomials for thdRMAprocess,® (L) and© (L), are estimated
using conventional parametric techniques (espgcrabximum likelihood) applied to

the filtered series with the ponnomiaIs(l—L)aO, (1- 2L cosw+ L? f" and

A

(@+L)*(j=1,..h-1), constructed with the estimatox, d.

; and &h obtained in

Stage 1.
This two-stage method at least ensures the censigtof memory parameter

estimators should there be a misspecification efgarametric model that goveros.

This also ensures the correct estimation of thenasytic component of the IRF, since it

is finally governed by the memory parameters.

4 Empirical Analysis

This section analyses the prices of the mackeneldd at the main ports of the

Basque Country as per the AZTI-Tecnalia DB, withiiew to proposing a model that

11



reflects their behaviour over time and enables lcsiens about that behaviour to be
drawn. A weekly series is used, running from thstfiveek of January 1995 to the last
week of December 2008, with a total of 728 obsémwat The prices are for fish landed
by the Basque inshore fleet (mainly using purseesaets and lines) and handled by the
fishermen’s association known as “cofradia”, altedaby a Dutch auction system. The
frequency of auctions depends on the fishing triasd in this sense the price series has
not presented an uniform time guideline but raihé& constructed synthetically from
the aggregate prices per fishing trip. Each obsienvas obtained as the weighted
average (based on the volume of catches in kgthefselling prices obtained in the
various fishing trips each week, and is therefoqgressed in euros per kg. To ensure a
total of 52 observations in all years, the firstel®f the year is considered to mean the
first seven days of January and the last weekef/#ar is considered to have 8 days (9
in leap years).

Figure 2 shows the logs of the series of weeklggwsrifor mackerel over time.
The market for this species is characterised gchk of any upward trend in the price
series since, at least in the fresh fish market, sbhpply of mackerel far exceeds
demand. The gap is due to issues which are related th betand (a relatively
unattractive product for end consumers) and supagsels catch as much mackerel as
allowed, or indeed more, with no regard for markleimand, so supply can be
considered as rigid). These relative charactesisifcsupply and demand for mackerel
push prices down at source and, as a result, redeqerofitability of the activity. Note,
for instance, that although catches in 2003 tadglist 36% of the figure for 2002 (as a
result of the Prestige tanker disaster) prices neadasimilar to those for 2002 and there
were no changes in their structure. As usual imenwetrics, the logs of the price series
are used rather than the original series in ordestabilise variance, which has been

observed to increase slightly in the last few yearssidered.

® The activity related to the mackerel fishery isially daily in the sense that each fishing trip aiu
covers one fishing day, after which vessels retorthe ports to sell the fish.

° Thus, a freezer complex has been set up at thepBermeo (Bizkaia) mainly to acquire the mackere
not sold at the market due to lack of demand (oewthe selling price is below a pre-set minimum).
However, this complex has limited storage spaagygh it has recently been enlarged in responseeto t
gap between supply and demand.

12
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Figure 2. Log of mackerel prices at source.

4.1 Cyclical Integration Analysis

As can be seen in Figure 2, the behaviour of thesef prices for mackerel (with no
significant trends) can hardly be classed as béhgngo category I(1), as is
conventional for price series in general (seejrstance, Arteche 2007) and fish prices
in particular. In turn, the behaviour of the samalegocorrelation function (hereinafter
called the ACF) shown in Figure 3 for 520 lags ¢Hars), with autocorrelations far
from one and with slow decay towards zero, suppthiésidea that the price series
analysed cannot be considered as I(1). IndeedA@te has the typical shape of a long
memory process, i.e. a gradual decline towards, zatioer than the exponential decline
which is typical of short memory processes or thgeace of decline found in infinite
memory processes. In this specific case, the loegiony of the series seems to be
dominated by a 26-week (half-year) cycle. This pdherefore analyses and estimates
semiparametrically the orders of integration of #agious persistent cycles that make
up mackerel price series.

Figure 4 shows the periodogram of the price sesiesre three major spectral
peaks can be observed. The highest is at scalgdeiney 28, which corresponds to a
26-week (half-year) cycle. The second highest scated frequency 42, associated with
a 17.33-week (four-month) cycle. The third and etk is associated with frequency
zero, which shows the long term changes or trerderseries.

13
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Figure 4. Periodogram of the log of mackerel prigesource.

The appearance of a half-year cycle as apparemlyrost important is due to
the fact that prices hit their maximum level appnoately every six months (winter and
summer). The behaviour of minimum and maximum grican be explained by the
seasonal nature of fishing as an activity, with mmaxn catches in spring when the
mackerel shoals pass by the Northern Spanish caadtminimum catches in summer,
when the shoals have moved away from Spanish fisiounds. Outside the inshore
campaign, catches also reach a local maximum ionautand a local minimum in
winter, before the inshore campaign begins.

14



Economic cycles may be deterministic, stochasti both. Given that no
deterministic trends are observed, only the stdahaature of the zero frequency cycle
is analysetf. The nature of the half-year and four-month cyctesvever, is unknown,
so checks are run for both stochastic and detestiincomponents. For filtering and
modelling stochastic components, the Gegenbauer fd used, as defined in (7), while
deterministic components are modelled using dumamakles, which is equivalent to
using sine-cosine functions (Hannan, 1963). Theiesece is as follows: first, stochastic
seasonality is analysed and then, once any sudtorsaldly has been revealed, an
analysis is run to see whether any deterministopmnent remains in the series. The
stochastic component is modelled before the detestra component because if
seasonal dummy variables are used with series warieH,(1)** there is a very high
probability of finding spurious relationships innse of the seasonal frequencies
(Abeyshinge, 1991). Moreover, according to simoladi run by Abeysinghe (1994),
when a small series with seasonal unit roots isessgd on a set of seasonal dummies,
the ACF of the residuals of that regression behasesf a stationary process were
involved even if the unit roots are not eliminatdkemory parameter estimations are
not affected by the potential presence of detestimseasonality since, as shown by
Arteche (2002), any such seasonality only affebis periodogram at the seasonal
frequency (provided that, as is the case herdetigth of the series is a whole multiple
of the number of observations per year) and tlegfufency is not used in the estimation.

To facilitate the analysis desired here, the wholethe above-mentioned

procedure is applied to the centred series of fafgsrices, denoted by . Using the

centred series does not distort the results asialte having an average other than zero
only affects the periodogram at frequency zero,ctvhis not used in any case for
estimating the memory parameters.

Starting with the trend cycle, Whittle’s local methis used as explained in
Section 3 to estimate the memory parameter at émcy zero. Figure 5 shows the

estimates of d, for different bandwidths r0=2,3,...,2f). Following the

recommendations of Tagqu and Teverovsky (1996jni@nmediate bandwidth value is

selected (neither very high nor very low) corresping to an area of stable estimates of

1%|ndeed, when the first differences of the sese®gressed on a constant, it is not significant.
'L A series X, is said to bed) if (1- 2L cosw+ L2 3Xt is a process with a finite, non null spectral
density at frequenciy.
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d,. As shown in Figure 5, this stable intermediateaacould be considered to run

approximately fromm=14 to m=22. Values ofm below 14 make for markedly
erratic estimates, while with bandwidting> 22 the effect of the strong seasonal peak
at scaled frequency 28 may result in a negative biathe estimates, especially if

m= 28, when the estimates drop to zero. As a consequéna@s decided to take a
bandwidth of m=18, where the estimate ofl, is 0.40 (&0 =0.40), which is

significantly different from zero, in view of theymptotic distribution in (13).

1
0,9 1
0,8 1
0,7
0,6
0,5
0,4
0,3
0,2 1
0,1+

0

T2 &5 01 2 90ANALADANADAD AL AD A 90 PN ) 92 ak 99 90 41 D
Bandwidth

Figure 5. Estimation of the memory parameter ajuescy zero tﬁo).

The next step is to run an analysis similar todhe carried out for the trend
cycle in the case of the seasonal cycles. Beginwiitiy the half-year cycle, Whittle's
local method is used to estimate the memory paemnat scaled frequency 28, i.e.
wg =0.2417 in radians. Figure 6 shows the estimatesigffor different bandwidths
(specifically for m=2,3,...,14). Following the recommendations of Taqqu &
Teverovsky (1996) once again, any bandwidth valileinvan intermediate area where
the associated estimates @j, are stable can be selected. As shown on Figutieet,
stable intermediate area can be considered topprogmately fromm=6 to m=12.
Values ofm below 6 make for markedly erratic estimates, whith bandwidths of

m>12 the effect of the seasonal peak at scaled frequd@cseriously biases the

estimates. Specifically, it was decided to take amdwidth of m=10, where the
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estimate ofd,, is 0.28 (&28 =0.28), which once again is significantly different from

Zero.

0,9 1
0,8 1
0,7 1
0,6 1
0,51
0,4 1
0,31
0,21
0,1+

2 > Y % © 1 > °) A0 Y AL N AN
Bandwidth

Figure 6. Estimation of the memory parameter ajudescy 28 628).

Finally, the case of the four-month cycle was asedlyin the same way. Figure 7
shows the memory parameter estimates for that cjmtedifferent bandwidths
(specifically m=2,3,...,19). In this case the intermediate stable area casmsbeciated
with the range [9,12]. Froom=12 upwards the influence of the peak at scaled
frequency 28 causes the estimatesigfto drop. The bandwidth selected was=10,
which not only falls within the stable area butcalnables comparisons of the two
seasonal peaks analysed to be drawn under a homagyéamework. The estimate of
d,, is 0.12 d,, =0.12).

However, for this case the null hypothesis of sheetmory cannot be rejected at
scaled frequency 42d(, = 0), since the t-statistid, =1.07 does not exceed the critical
value for a 95% significance level.

Note that since the estimates are lower than Bebptice series analysed can be
considered to be weakly stationary. Given the ataty nature of both the seasonal
component and the trend in the series, the effee shock due, for instance, to an
increase in oil prices, disappears in the long tefinis goes some way towards

explaining the stability in prices observed forstBpecies. The innate characteristics of
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the market and the fishing strategy of the fleetlysed explain why persistence is much
lower than usual in series of this type.
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Figure 7. Estimation of the memory parameter ajudescy 42 642).

The fact that a series of prices is stationary geaeral economic context in which
inflation is moderate but positive hints at thefpability problem faced by the agents
who are paid those prices. Note that the factitif&ttion in Spain in the period under
analysis shows a long or even infinite memory (éins 2007) means that the general
level of prices (measured by the consumer pricexhdhows greater persistence than a
I(1) series, which in turn means that shocks alead passed on permanently to general
prices. Moreover, feedback results in the effetthose shocks intensifying over time.
From the viewpoint of fishermen, profitability walincrease in the long term if the
increases suffered regularly in the prices of potidn factors could be passed on to the
price at source. This would go at least some wayatds solving the profitability
problem from which this fishery has suffered forepven years, which fishermen
attempt to palliate by landing catches well over dlocated TAC, thus endangering the
biological sustainability of the stock.

The next step in the analysis is to filter seriesat the frequencies where a
significant memory parameter is found, i.e. 0 aBdThis new series is denoted lyy

and is obtained as follows;, = (1- L)**(1- 2L cos0.241% L* 9%« .
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To check for any deterministic seasonal componegntjs regressed on two
dummy variables in sine-cosine form that reflecte thseasonal cycles:
D,, =(sin(w,g),cos,d ) and D,, =(sin(w,t),cos,t ), for t=1,...T . The variable
that represents the four-month cyclg,() was found to be significant at 5% while the
one representing the half-year cyclg, () was not, so a reduced regression was carried

out (this time only on the variable associated wtitd four-month cycle, as shown in

Table 3), saving the residuals, denoted zs which represent a series clear of
persistence. Figure 8 shows the periodogranz, ofin which both the seasonal peaks
and at frequency zero have disappeared. MoredwerACF for z shown in Figure 9

also shows behaviour typical of an 1(0) processhautocorrelations that drop rapidly

towards zero.

Table 3. Estimation of the deterministic seasopatgonent.

Variable Coefficient Standard deviation t-statistic P-value
sin(aw,,t) 0.0122433 0.016105 0.7602 0.44737
cos(),.t ) 0.0851162 0.0159586 5.3336 <0.00001

0,5
0,45
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0,14
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Yoo® o P 38 '\99 '\,'56 '\,‘6'5 '\90 q/\j f)}«b‘ ™ 79% fg,'?fo hals

Scaled frequency

Figure 8. Periodogram o .
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Figure 9. ACF ofz, .

4.2 Proposition & Estimation of the ARMA(p,q) Model

Once a 1(0) series is obtained, a Box-Pierce gesin on the first 100 lags af .

The null hypothesis of no correlation is rejected the various lags (with p-values
always below 0.0013, indicating that the series shows some time-degerel (short
memory), which can be modelled via ARMA(p,q)model. VariouARMA(p,q)models
are proposed and the most parsimonious of thosehwfiti best is chosen. To decide
what model best fits the series, the significarfch® parameters and whether or not the
series is turned into white noise are consideréahgawith conventional selection
criteria such as the Akaike information criterigxi@), Schwarz’s Bayesian information
criterion (BIC) and the Hannan-Quinn criterion (HRQ®ased on these arguments, the

model selected IBRMA(1,1) an estimation of which is presented in Table 4.

Table 4. Estimation of theRRMA(1,1)model.

Variable Coefficient Standard deviation t-statistic P-value
q 0.257476 0.0482234 5.3392 <0.00001
G -0.840767 0.0271463 -30.9716 <0.00001

The Box-Pierce test on the residuals fromARMA(1,1)model reveals that the

series shows no linear time-dependence, and tttariefore behaves as white noise (the

12 Note that the rejection of the null hypothesisnof correlation is grounded mainly in the first two
autocorrelations.
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lowest p-value for a time frame of up to 100 lag®.i72). This can also be seen through
the periodogram shown in Figure 10 where, as octunghite noise processes, no
peaks stand out and all cycles contribute similerlyhe variance of the series. Finally,
Figure 11 shows the ACF for those residuals, wittoeorrelations which are within (or
very close to) the no significance bands, which farther indication of the absence of

linear time-dependence.
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Figure 10. Periodogram of the residuals of ARMA(1,1)model.
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Figure 11. ACF of the residuals of tARMA(1,1)model.
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Thus, the final model selected for the logs offihee series analysed is:
(1-0.26 g = (- 0.84 3, (14)
wherez = (£ L (& 2 c0s0.24171° °§°x - 0.01sin(0.3625 ) 8%0s(0.3625

4.3 Calculating the IRF

Once (14) was proposed as the model for explaitiegoehaviour of the series
analysed, the disturbance effect of a random ynghock on the model was calculated
to determine its duration and learn the extent bickv fishermen were able to pass on
the effect to their prices. Such shocks may be erly the following, among other
factors:

- Variations in production costs. One of the maiolylems affecting the fishing industry
in general and the mackerel fishery in particukathe considerable increase in fuel
prices, as fuel may account for up to 50% of tatpérating costs (Source: AZTI-
Tecnalia DB).

- Downturns in catches. Drops in mackerel catchescgent years have been due mainly
to the introduction of a catch control system ootquper fisherman per day, to
increased competition between fleets, to chang@&a(D, etc.

The analysis is run by defining the IRF of series For a model such as that
proposed in (14), this is calculated as the sequearccoefficients of the following
polynomial:

(L) = (1- LY°%(1- 2L c0s0.2417 L ')’-28—1_ 084

-0.2a
Figure 12 shows the IRF for a time-frame of 156 kge€3 years). A slow

(15)

convergence towards zero can be observed, wittuitions dominated by the half-year
cycle. Among other things, this indicates that ange in prices due to a random shock
is unsustainable in the long term and will fade yaaeer time. This result evidences the
need to strengthen the power of fishermen in theréy since shocks currently have
only a transitory (albeit long-lasting) effect ogllsng prices in ports, in contrast to the
permanent effect that they have on general privelde Moreover, following the paper

by Cheung and Lai (2000), the half-life of shocksalculated to be 0.78 weeks (5.46
days), which gives a measure of their persistendewever, this measure should be

treated with caution, especially in series withganemories, because, as pointed out by
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Murray & Papell (2005), when shocks do not dechha constant rate it is advisable to
observe the IRF as a whole rather than any paaticneasure.
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Figure 12. IRF ofx, .

5 Conclusions

The low profitability from which almost all Europedishing markets are suffering
has given rise to a major social problem, espgciall those areas with a high
dependency on fishing. A case in point is that atkerel prices at Basque ports, which
have remained more or less the same (and unudoal)yin recent years in spite of
continual increases in costs. This seriously comges both the profitability of this
important subsector and the biological sustainghif the stock fished. The key factors
affecting mackerel include the number of vesselhirfig the stock, the behaviour and
strategies of fishermen themselves, the auctiotesysised to set prices at ports and the
guota-based catch control systems introduced entegars.

To identify the process that governs the behavadurices over time and analyse
the ability of fishermen to pass the impact of shecks that they suffer on to prices, a
cyclical ARFIMA model is estimated. This model fithe data better than a
conventional ARIMA and is more flexible, since ieflects the exact degree of
persistence of stochastic components at any freyuelm this specific case two
persistent stochastic cycles are found: the long-teycle at frequency zero and the
half-year cycle. As a result &RFIMAC(,1)x (0,0.40x (0.2417,0.20 model is
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proposed. The IRF for this model indicates, amotigerothings, that the possible
repercussions of production cost variations onggrdisappear over time, showing them
to be unsustainable in the long term. This shows little power producers have: for
instance they cannot pass on to prices at sourgeofathe increases that have taken
place in oil prices in recent years. As a resuémapts to solve the successive crises that
have hit the sector have been based on a polionefoff subsidies, but this is only a
short-term measure that does not solve the problere and for all. In recent years the
public authorities and the industry itself haveréfiere begun to consider other policies
of a more structural nature which can bring abouna@e favourable situation for
fishermen, i.e. which may lead to permanent in@gds prices in the face of any
increases in production costs. In that contextcleeme was piloted during the 2008
inshore campaign that involved a system of volyntiily quotas per crew per vessel
as a complement to the TAC, with a view to limitimgckerel catches. In the wake of
that experiment, in 2009 the whole fishery was ngadawith that quota system, which
was made compulsory for all Spanish fleets. Altewedy, based on successful
experiments in other regions (where first-salegwibave increased), the application of
other methods could be considered, such as salasgth electronic dockside markets
and fish sale/purchase agreements. However, thyssenss have not always produced
positive results and are rejected by some of tleatagnvolved in the auction process in
the internal market of the Basque Country. Rejeci® indeed not confined to the
Basque Country but is widespread throughout Eurmopeats. This is the main reason

why the Dutch auction system continues to predotaimaEurope.
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