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WAVELET MULTIPLE CORRELATION AND CROSS-CORRELATION:
A MULTISCALE ANALYSIS OF EURO ZONE STOCK MARKETS

JAVIER FERNÁNDEZ-MACHO

ABSTRACT. Statistical studies that consider multiscale relationships among several variables
use wavelet correlations and cross-correlations between pairs of variables. This procedure needs
to calculate and compare a large number of wavelet statistics. The analysis can then be rather
confusing and even frustrating since it may fail to indicate clearly the multiscale overall rela-
tionship that might exist among the variables. This paper presents two new statistical tools that
help to determine the overall correlation for the whole multivariate set on a scale-by-scale basis.
This is illustrated in the analysis of a multivariate set of daily Eurozone stock market returns
during a recent period. Wavelet multiple correlation analysis reveals the existence of a nearly
exact linear relationship for periods longer than the year, which can be interpreted as perfect
integration of these Euro stock markets at the longest time scales. It also shows that small in-
consistencies between Euro markets seem to be just short within-year discrepancies possibly
due to the interaction of different agents with different trading horizons. On the other hand,
multiple cross-correlation analysis shows that the French CAC40 may lead the rest of the Euro
markets at those short time scales.

Key words: Euro zone, MODWT, multiscale analysis, multivariate analysis, stock markets,
returns, wavelet transform.
JEL Classification: C32, C58, C87, G15.

1. INTRODUCTION

This paper extends wavelet methodology to handle multivariate time series (or, more gener-

ally, multivariate ordered variables of two- or three-dimensional support such as spatial data).

As their names imply, the wavelet multiple correlation and cross-correlation try to measure the

overall statistical relationships that might exist at different time scales among a set of observa-

tions on a multivariate random variable. The proposal is justified by noting how the alternative

of using standard wavelet correlation analysis usually needs to calculate, plot and compare

a large number of wavelet correlation and cross-correlation graphs. For example, in many

wavelet studies where the relationships among several variables are considered the wavelet

correlation is used between pairs of variables. This needs visualizing graphically the wavelet
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2 FERNÁNDEZ-MACHO

correlation values pairwise along the wavelet scales. So if we have n series then we would end

up with n(n− 1)/2 wavelet correlation graphs and J times as many cross-correlation graphs,

where J is the order of the wavelet transform. This soon can be quite exhausting and confusing.

Besides, at the end, the whole set of graphs most probably will not give a clear indication about

the type of overall correlation there exists within the set of series.

In contrast, the proposed wavelet multiple correlation, and similarly its companion wavelet

multiple cross-correlation, consists in one single set of multiscale correlations which are not

only easier to handle and interpret but also may provide a better insight of the overall statistical

relationship about the multivariate set under scrutiny.

All this will be illustrated with the application of the proposed wavelet multiple correlation

and cross-correlation in the multiscale analysis of daily returns obtained from a set of eleven

Eurozone stock markets during a recent nine year period. In this relation, we may point out how

correlation among European stock markets, as a measure of their integration, has attracted quite

some interest in the economic and financial literature, especially so ever since the creation of the

European Monetary Union (EMU) (see, e.g., Fratzscher, 2002; Yang et al., 2003; Hardouvelis

et al., 2006; Syllignakis, 2006; Bartram et al., 2007, and others). However, none of these studies

take into account the fact that stock markets involve heterogenous agents that make decisions

over different time horizons and operate on different time scales (Gençay et al., 2002, p.10,

Gallegati and Gallegati, 2007, Gallegati, 2008). On the other hand, the relatively large number

of markets to be analyzed may render pairwise multiscale comparisons pointless in practice,

which is the reason why this type of market analysis may find useful the wavelet multiple

correlation and cross-correlation proposed here.

The paper is organized as follows. Section 2 defines the proposed wavelet multiple correla-

tion and cross-correlation, whilst Section 3 provides sample estimators for these quantities and

establishes their large sample theory. Section 4 gives approximate confidence intervals that can

be used for estimation and testing purposes. Simulation results on the validity of the previous

results are presented in Section 5. Finally, Section 6 shows the empirical results and Section 7

presents the main conclusions.
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2. DEFINITION

Let Xt = (x1t ,x2t , . . . ,xnt) be a multivariate stochastic process and let Wjt = (w1 jt ,x2 jt , . . . ,

wn jt) be the respective scale λ j wavelet coefficients obtained by applying the maximal overlap

discrete wavelet transform (MODWT) (Gençay et al., 2002; Percival and Walden, 2000) to each

xit process.

The wavelet multiple correlation (WMC) ϕX(λ j) can be defined as one single set of mul-

tiscale correlations calculated from Xt as follows. At each wavelet scale λ j, we calculate the

square root of the regression coefficient of determination in that linear combination of variables

wi jt , i = 1, . . . ,n, for which such coefficient of determination is a maximum. In practice, none

of these auxiliary regressions need to be run since, as it is well known, the coefficient of deter-

mination corresponding to the regression of a variable zi on a set of regressors {zk, k 6= i}, can

most easily be obtained as R2
i = 1−1/ρ ii, where ρ ii is the i-th diagonal element of the inverse

of the complete correlation matrix P. Therefore, ϕX(λ j) is obtained as

ϕX(λ j) =

√
1− 1

maxdiagP−1
j

, (1)

where Pj is the (n×n) correlation matrix of Wjt , and the maxdiag(·) operator selects the largest

element in the diagonal of the argument.

Since the R2
i coefficient in the regression of a zi on the rest of variables in the system can be

shown to be equal to the correlation between the observed values of zi and the fitted values ẑi

obtained from such regression, we have that ϕX(λ j) can also be expressed as

ϕX(λ j) = Corr(wi jt , ŵi jt)

=
Cov(wi jt , ŵi jt)√

Var(wi jt)Var(ŵi jt)
, (2)

where wi j is chosen so as to maximize ϕX(λ j) and ŵi j are the fitted values in the regression

of wi j on the rest of wavelet coefficients at scale λ j. Hence the adopted name of ‘wavelet

multiple correlation’ for this new statistic. Expression (2) will be useful later in determining

the statistical properties of an estimator of ϕX(λ j).
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It may also be interesting to point out how a multiple correlation statistic is known to be

related to the first eigenvalue of the correlation matrix, which indicates the (proportion of)

variance of the variables accounted for by a single underlying factor. In fact when all pairwise

correlations are positive, this first eigenvalue is approximately a linear function of the average

correlation among the variables (Yanai and Ichakawa, 2007; Friedman and Weisberg, 1981;

Mayer, 1976).

Finally, allowing a lag τ between observed and fitted values of the variable selected as the

criterion variable at each scale λ j we may also define the wavelet multiple cross-correlation

(WMCC) as

ϕX ,τ(λ j) = Corr(wi jt , ŵi jt+τ)

=
Cov(wi jt , ŵi jt+τ)√

Var(wi jt)Var(ŵi jt+τ)
.

Of course, for n = 2 the WMC and WMCC will coincide with the standard wavelet correla-

tion and cross-correlation. This is because Cov(w1 jt , ŵ1 jt)= β̂ j Cov(w1 jt ,w2 jt) and Var(ŵ1 jt)=

β̂ 2
j Var(w2 jt), where β̂ j is the estimated coefficient in the regression of w1 jt on w2 jt at scale λ j.

Therefore, ϕX(λ j) = Corr(w1 jt , ŵ1 jt) = Corr(w1 jt ,w2 jt) = ρX(λ j) and, similarly, ϕX ,τ(λ j) =

Corr(w1 jt , ŵ1 jt+τ) = Corr(w1 jt ,w2 jt+τ) = ρX ,τ(λ j).

3. ESTIMATION

Let X = {X1 . . .XT} be a realization of the multivariate stochastic process Xt , for t = 1 . . .T .

Applying a MODWT of order J to each of the univariate time series {xi1 . . .xiT}, for i = 1 . . .n,

we would obtain J length-T vectors of MODWT coefficients W̃j = {W̃j0 . . .W̃j,T−1}, for j =

1 . . .J.

From (1) the wavelet multiple correlation of scale λ j is seen to be a nonlinear function of

all the n(n− 1)/2 wavelet correlations of Xt = (x1t ,x2t , . . . ,xnt) at that scale. Alternatively, it

can also be expressed in terms of all the wavelet covariances and variances for Xt as in (2).
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Therefore, a consistent estimator of the wavelet correlation based on the MODWT is given by

ϕ̃X(λ j) =

√
1− 1

maxdiag P̃−1
j

= Corr(w̃i jt , ̂̃wi jt)

=
Cov(w̃i jt , ̂̃wi jt)√

Var(w̃i jt)Var(̂̃wi jt)
, (3)

where we note that, following Gençay et al. (2002), the wavelet covariances and variances can

be estimated as

Cov(w̃i jt , ̂̃wi jt) = γ̄ j =
1

T̃j

T−1

∑
t=L j−1

w̃i jt ̂̃wi jt (4a)

Var(w̃i jt) = δ̄
2
j =

1

T̃j

T−1

∑
t=L j−1

w̃2
i jt (4b)

Var(̂̃wi jt) = ζ̄
2
j =

1

T̃j

T−1

∑
t=L j−1

̂̃w2
i jt (4c)

where w̃i j is such that the regression of w̃i j on the set of regressors {w̃k j, k 6= i} maximizes the

coefficient of determination, ̂̃wi j denotes the corresponding fitted values and L j = (2 j−1)(L−

1)+1 is the number of wavelet coefficients affected by the boundary associated with a wavelet

filter of length L and scale λ j so that T̃j = T −L j + 1 is the number of coefficients unaffected

by the boundary conditions.

Similarly, a consistent estimator of the wavelet multiple cross-correlation ϕ̃X ,τ(λ j), can be

calculated as

ϕ̃X ,τ(λ j) = Corr(w̃i jt , ̂̃wi jt+τ)

=
Cov(w̃i jt , ̂̃wi jt+τ)√

Var(w̃i jt)Var(̂̃wi jt+τ)
.

The large-sample distribution of the sample wavelet multiple correlation ϕ̃X(λ j) can be es-

tablished along similar lines as for the standard single wavelet correlation in Gençay et al.

(2002). In our present multivariate case, we note from (3) that ϕ̃X(λ j) is a nonlinear function

of all the sample wavelet covariances and variances which, in turn, are just sample moments of

vectors of MODWT coefficients. Therefore, the estimator can be written as a function of the
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three moments in (4):

ϕ̃X(λ j) = f (γ̄ j, δ̄ j, ζ̄ j) =
γ̄ j

δ̄ j ζ̄ j
.

We may now apply the continuous mapping theorem to establish that√
T̃j

(
ξ̃ j−ξ j

)
∼N (0,Vj), (5a)

where abs(ξ j) = ϕX(λ j),

Vj = d f ′j S j(0)d f j (5b)

with d f j as the gradient vector of f (γ j,δ j,ζ j), and

S j(0) =

Sγ2, j(0) Sδγ, j(0) Sζ γ, j(0)
Sδγ, j(0) Sδ 2, j(0) Sζ δ , j(0)
Sζ γ, j(0) Sζ δ , j(0) Sζ 2, j(0)


where e.g. Sδγ, j(0) is the spectral density function of the product of scale λ j wavelet moments

δ jγ j evaluated at the zero frequency, etc. (cf. Whitcher, 1998).

4. CONFIDENCE INTERVALS

In principle, we can start from the asymptotics obtained in the previous section and use

standard procedures in order to construct a confidence interval (CI) for the wavelet multiple

correlation ϕX(λ j) based on a folded and truncated normal distribution. In practice, however,

obtaining the corresponding critical values, let alone calculating the spectral density functions

involved in the computation of Ṽj, can be rather cumbersome. A more feasible alternative can

be obtained by using Fisher (1915)’s transformation, since it is a well known normalizing and

variance-stabilizing transformation for the otherwise non-Gaussian sample correlation (see,

e.g., Johnson et al., 1995, p.571).

Fisher’s transformation is defined as arctanh(r), where arctanh(·) is the inverse hyperbolic

tangent function, and its use in the construction of a CI for a population correlation is based

on the fact that if (X ,Y ) has a bivariate normal distribution with ρ = Corr(X ,Y ), then the

transformed sample correlation coefficient calculated from T independent pairs of observations

can be shown to (approximately) be normally distributed with mean arctanh(ρ) and variance
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(T − 3)−1 (Fisher, 1921, Johnson et al., 1995, p.572). In our case, we apply the result to the

sample wavelet multiple correlation coefficient ϕ̃X(λ j) as follows:

Theorem 1. Let X = {X1 . . .XT} be a realization of a multivariate Gaussian stochastic process

Xt = (x1t ,x2t , . . . ,xnt) and let W̃j = {W̃j0 . . . W̃j,T−1} = {(w̃1 j0 . . . w̃n j0), . . . , (w̃1 j,T/2 j−1 . . .

w̃n j,T/2 j−1)}, j = 1 . . .J, be vectors of wavelet coefficients obtained by applying a MODWT of

order J to each of the univariate time series {xi1 . . .xiT} for i= 1 . . .n. Let ϕ̃X(λ j) be the sample

wavelet correlation obtained from (1). Then,

z̃ j
a∼FN (z j,(T/2 j−3)−1),

where z j = arctanh(ϕX(λ j)), z̃ j = arctanh(ϕ̃X(λ j)) and FN stands for the folded normal dis-

tribution1.

The demonstration is straightforward since X being Gaussian implies that, at each scale λ j,

the sample wavelet coefficients in W̃j are also Gaussian and, in turn, this means that ̂̃wi j, which

is a linear combination of w̃1 j, . . . , w̃n j, must also be Gaussian. Therefore, we have from (2) that

ϕ̃X(λ j) is a correlation coefficient between observations from two Gaussian variates, of which

T/2 j are (asymptotically) serially uncorrelated (note that this is the number of wavelet coeffi-

cients from a DWT that can be shown to decorrelate a wide range of stochastic processes; Craig-

mile and Percival, 2005). Applying Fisher’s result2 to ξ j such that abs(ξ j) = arctanh(ϕ̃X(λ j))

the theorem follows. �

Therefore, an approximate 100(1−α)% CI for the true value of ϕX(λ j) is

CI(1−α)(ϕX(λ j)) = tanh
[
z̃ j− c2/

√
T/2 j−3 ; z̃ j + c1/

√
T/2 j−3

]
, (6)

where the folded normal critical values c1,c2 are such that Φ(c1)+Φ(c1−2z0) = 1−α/2

and Φ(c2)+Φ(c2+2z0) = 2−α/2, with Φ(·) as the standard gaussian probability distribution

function and tanh(z0) = ϕ0
X(λ ) as the value of some wavelet multiple correlation as set under

certain null hypothesis. This can be used in practice to construct a confidence interval as well

1That is, the probability distribution of abs(ξ ) such that ξ is normally distributed with the said mean and
variance. It coincides with the noncentral chi distribution with 1 degree of freedom and noncentrality parameter
λ = (T/2 j−3)−1/2 arctanh(ϕX (λ j)) (see, e.g., Johnson et al., 1995, ch.29).

2Note that sgn(arctanh(·)) = sgn(·) and ϕ̃X (λ j) never takes negative values.
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as for testing hypothesis about wavelet correlations amongst a multivariate set of observed

variables X .

For example, two typical cases of interest to test are whether the variables in X are (1)

uncorrelated H0 : ϕX(λ ) = 0 and (2) almost perfectly correlated H0 : ϕX(λ )→ 1. In the former

case, we want to test H0 : z0 = 0, therefore we would set c1 = φ
−1
1/2−α/4 and c2 = φ

−1
1−α/4 in

(6), where φ−1
p is the 100p% point of the standard normal distribution. The relevant test would

check whether the lower bound z̃ j − φ
−1
1−α/4/

√
T/2 j−3 > 0 and therefore we reject that X

are uncorrelated. On the other hand, in the second case, we have that H0 : z0→ ∞, therefore

c1 = c2 = φ
−1
1−α/2, (that is, like for a typical two-sided gaussian test statistic). In this case we

would check whether z̃ j−φ
−1
1−α/2/

√
T/2 j−3 > 0.99 (say) in which case we may infer that X

are almost perfectly correlated.

5. SIMULATIONS

The rationale for the CI in (6) is the analogy with Fisher’s result for the usual bivariate

correlation coefficient. We now want to check whether this is still correct when working with

multiple wavelet correlation coefficients calculated from more that two variables as in (1).

For this purpose, we run a simulation exercise consisting in drawing 1000 bootstrap sam-

ples of size T = 2454 from a multivariate Gaussian distribution with mean µ =
[
0 0 0 0

]′
and variance Σ=

[(
2 1 .5 1

)′ (1 1 .2 1
)′ (

.5 .2 1 0
)′ (1 1 0 3

)′]. We then

calculated, for the bivariate, three-variate and four-variate cases respectively, the sample mo-

ments and quantiles reported in Table 1. We observe that the calculated values for the multiple

correlation coefficient ϕ̃X and its CI95% reflect quite closely the bootstrap distribution in all the

three cases whilst, on the other hand, the bootstrap standardized values zboot confirm that ϕ̃X

comes from a Gaussian distribution with variance
√

T −3 without further correction related to

the number of variates.

6. EUROZONE RETURNS

In this section we illustrate the usage of the advocated wavelet multiple correlation with data

from the eleven main Eurozone stock markets as follows (arbitrarily ordered by nominal GDP
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TABLE 1. Simulation results

d = 2 d = 3 d = 4

ϕ̃X : 0.7022 0.7355 0.7662
CI95% lower bound 0.6815 0.7167 0.7494
CI95% upper bound 0.7217 0.7531 0.7821

ϕ̃Xboot:
mean 0.7019 0.7354 0.7662
std.dev. 0.0104 0.0094 0.0082
quantile(.025) 0.6811 0.7162 0.7504
quantile(.975) 0.7211 0.7532 0.7826

zboot:
mean -0.0080 0.0045 0.0139
std.dev. 1.0176 1.0135 0.9890
skewness 0.0054 0.0124 0.0462
kurtosis 2.7428 2.7315 2.8630
J-B p-value 0.2374 0.2065 0.5

CI95% for ϕ̃X calculated as from (6) with α = 5%, where d is the num-
ber of variates. ϕ̃Xboot are bootstrap samples of size T = 2454 for boot =
1, . . . ,1000. zboot =

√
(T −3)

(
arctanh(ϕ̃Xboot)− arctanh(ϕ̃X )

)
are the

standardized values of ϕ̃Xboot. J-B is the Jarque and Bera (1987) test statistic
of the null hypothesis that zboot comes from a normal distribution.

of the country where they operate): DAX (Germany), CAC40 (France), FTSE/MIB30 (Italy),

IBEX35 (Spain), AEX25 (Netherlands), NBEL20 (Belgium), ATX20 (Austria), FTSE/ASE20

(Greece), OMXH25 (Finland), PSI20 (Portugal) and ISEQ-Overall (Ireland). The data were

collected daily (closing prices) from January 4, 2000 to May 29, 20093. The analysis was

conducted using daily stock market returns, i.e., Rit = log(Sit/Si,t−1) = ∆ logSit , where Sit ,

i = 1 . . .11, t = 2 . . .2455, are the corresponding stock market index values. Therefore, the

total number of observations used is 27005 trading days, containing thus a large amount of

information that may not be easy to convey using standard procedures.

In order to calculate the proposed wavelet multiple correlation we need to apply, first of

all, the Maximal Overlap Discrete Wavelet Transform (MODWT) to each of the daily stock

market returns series (Percival and Walden, 2000). The MODWT is similar to the Discrete

3As published by Yahoo http://finance.yahoo.com, Euroinvestor http://www.
euroinvestor.co.uk/, Marketwatch http://www.marketwatch.com/ and Enet http:
//archive.enet.gr/finance/finance.jsp.
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Wavelet Transform (DWT). However, the choice is not arbitrary since the MODWT has some

advantages over the classical DWT. To start with, the MODWT can handle any sample size

T , whilst the DWT of level J restricts the sample size to a multiple of 2J . On the other hand,

MODWT (wavelet and scaling coefficients) are invariant to circularly shifting the time series

under study and its multiresolution detail and smooth coefficients are associated with zero phase

filters, two properties that the DWT does not hold. Finally, the MODWT wavelet variance

estimator is asymptotically more efficient than the same estimator based on DWT, which in

turn makes it more suitable when calculating wavelet correlations (Percival and Mofjeld, 1997;

Gençay et al., 2002; Percival and Walden, 2000).

In the application, we decomposed the daily stock market returns applying the MODWT

with a Daubechies least asymmetric (LA) wavelet filter of length L = 8, commonly denoted as

LA(8) (Daubechies, 1992; Gençay et al., 2002). This filter appears to be favored mostly in the

financial literature (Percival and Walden, 2000; Ranta, 2010). The maximum decomposition

level J is given by blog2(T )c (Gençay et al., 2002; Percival and Walden, 2000), which, in the

present case, means a maximum level of 11. Since the number of feasible wavelet coefficients

gets critically small for high levels, we chose to carry out the wavelet analysis with J = 8 so

that eight wavelet coefficients and one scaling coefficient were produced for each daily returns

series, i.e. w̃i1, . . . , w̃i8 and ṽi8 respectively.

We may note that for all families of Daubechies compactly supported wavelets the level

j wavelet coefficients are associated with changes at the effective scale λ j = 2 j−1 (Galle-

gati, 2008). On the other hand, as the MODWT utilizes approximate ideal band-pass filters

with bandpass given by the frequency interval [2−( j+1),2− j) for j = 1 . . .J, inverting the fre-

quency range we have that the corresponding time periods are (2 j,2 j+1] time units (Whitcher

et al., 2000). This means that, with 20 daily data per month, the scales λ j, j = 1 . . .8, of the

wavelet coefficients are associated to periods of, respectively, 2–4 days (which includes most

intraweek scales), 4–8 days (including the weekly scale), 8–16 days (fortnightly scale), 16–

32 days (monthly scale), 32–64 days (monthly to quarterly scales), 64–128 days (quarterly to

biannual scale), 128–256 days (biannual scale) and 256–512 days (annual scale).
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Figure 1 shows the wavelet multiple correlation obtained. We observe that the multiple

correlations are all quite high, starting at nearly 0.95 for intraweek periods and increasing as

the time scale increases, reaching values near 1 at the longest time scales. This means that,

when periods of time longer than the year are considered, the existence of an exact linear

relationship between Eurozone stock markets cannot be ruled out. This can be interpreted as

perfect integration between Euro stock markets in the sense that the returns obtained in any

of them can be totally determined by the overall performance in the other markets at horizons

longer than the year. In other words, discrepancies between markets are not only small, but also

they get dissipated within time horizons smaller than the year. Upon further inspection we also

observe that the increase of multiple correlation breaks down for periods between a month and a

quarter where they actually momentarily decrease. This means that, together with the otherwise

obvious higher daily discrepancies, the differences between Euro markets appear to concentrate

along these medium-term time horizons, and may possibly point out to the actuation of different

agents across the Euro markets with different trading horizons. We may note in passing that it

would be quite hard to reach or justify this conclusion using the standard analysis that relies on

the visualization of all the 55 wavelet correlation graphs between pairs of variables. (cf. Ranta,

2010, p.29, where he compares 4 stock market returns only).

Figure 2 shows the wavelet multiple cross-correlations obtained for the different wavelet

scales with leads and lags up to one month and a half (30 trading days). Each wavelet scale

plot shows in its upper-right corner the variable that maximizes the multiple correlation against

a linear combination of the rest of variables and, thus, signals a potential leader or follower for

the whole system. In our case the data selected CAC40 as such potential leader or follower

across all wavelet levels.

As with the contemporaneous multiple correlations, there is a clear tendency to increase mul-

tiple correlation as the time horizon gets longer. On the other hand, almost all cross-correlations

appear significant at all leads and lags for all levels, with the exception of some leads (negative

lags) between 20 and 25 days for the second, third and fourth wavelet scales that are not signif-

icant or just marginally significant at the 5% statistical level while the corresponding positive

lags are clearly significant. As a consequence, there is a slight asymmetry (right-skewness) that
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may indicate that CAC40 has a slight inclination to lead the rest of the Euro markets for time

scales between one week and one month.

7. CONCLUSIONS

This paper presents two new statistical tools, the wavelet multiple correlation and the wavelet

multiple cross-correlation, that may be useful in the wavelet analysis of multivariate time series

(or other multivariate ordered data such as multivariate spatial data, etc.) The wavelet multiple

correlation consists in one single set of multiscale correlations each of them calculated as the

square root of the regression coefficient of determination in that linear combination of wavelet

coefficients for which such coefficient of determination is a maximum. The wavelet multiple

cross-correlation is obtained similarly by allowing a certain number of lags between observed

and fitted values from the same linear combination as before at each of the wavelet scales.

We may note that the alternative of using standard wavelet correlation analysis would need to

calculate, plot and compare a large number of wavelet correlation and cross-correlation graphs.

Figures 1 and 2 offer some graphical examples of these tools as obtained in the wavelet

analysis of a set of 11 times series, namely the returns from the main Eurozone stock markets

during a recent period of 2455 trading days.

The wavelet multiple correlation analysis reveals the existence of a nearly exact linear rela-

tionship between Eurozone stock markets for periods of time longer than the year, which can be

interpreted as perfect integration between Euro stock markets at the longest time scales. It also

shows that small inconsistencies between Euro markets seem to be just short and medium term

discrepancies that occur as consequence of the interaction of different agents across the Euro

markets with different trading horizons in mind. On the other hand, multiple cross-correlation

analysis shows that CAC40 may have a small inclination to lead the rest of the Euro markets at

those short/medium time scales.

We may finally point out that all these results would be quite hard to establish using the

standard wavelet analysis that relies on the visualization of all the 55 wavelet correlation graphs

between pairs of variables and they serve to illustrate some of the potential of these new tools

in the multiscale analysis of multivariate data.
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SUPPLEMENTAL MATERIAL

The wavemulcor R computer package has been written to facilitate the computation of the

wavelet multiple correlation and cross-correlation. It can be obtained from The Comprehen-

sive R Archive Network (CRAN) at http://cran.r-project.org/web/packages/

wavemulcor/index.html or directly from the author upon request.
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FIGURE 1. Wavelet multiple correlation for the main Eurozone stock markets.
The dotted lines correspond to the upper and lower bounds of the corresponding
95% confidence interval.
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FIGURE 2. Wavelet multiple cross-correlations for the main Eurozone stock
markets at different wavelet scales (the upper-right corner signals the market
acting as potential leader/follower). The dotted lines correspond to the upper
and lower bounds of the corresponding 95% confidence interval.
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