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Abstract

In this paper we present a parallelizable scheme of the Branch-and-Fix Coordination algorithm for solving medium
and large scale multi-stage mixed 0-1 optimization problems under uncertainty. The uncertainty is represented via a
nonsymmetric scenario tree. An information structuring for scenario cluster partitioning of nonsymmetric scenario
trees is also presented, given the general model formulation of a multi-stage stochastic mixed 0-1 problem. The basic
idea consists of explicitly rewriting the nonanticipativity constraints (NAC) of the 0-1 and continuous variables in the
stages with common information. As a result an assignment ofthe constraint matrix blocks into independent scenario
cluster submodels is performed by a so-called cluster splitting-compact representation. This partitioning allows to
generate a new information structure to express the NAC which link the related clusters, such that the explicit NAC
linking the submodels together is performed by a splitting variable representation. The new algorithm has been
implemented in a C++ experimental code that uses the open source optimization engineCOIN-OR, for solving the
auxiliary linear and mixed 0-1 submodels. Some computational experience is reported to validate the new proposed
approach. We give computational evidence of the model tightening effect that have preprocessing techniques in
stochastic integer optimization as well, by using the probing and Gomory and clique cuts identification and appending
schemes of the optimization engine.

Keywords: Multi-stage stochastic mixed 0-1 optimization, nonsymmetric scenario trees, implicit and explicit
nonanticipativity constraints, splitting variable and compact representations, scenario cluster partitioning.
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1. Introduction

Stochastic Optimization is actually one of the most robust tools for decision making. It is broadly used in real-
world applications in a wide range of problems from different areas such as finance, scheduling, production planning,
industrial engineering, capacity allocation, energy, airtraffic, logistics, etc. The integer problems under uncertainty
have been studied in [1, 14, 15, 18, 19, 21], for just citing a few references. An extended bibliography of Stochastic
Integer Programming (SIP) has been collected in [20].

It is well known that a mixed 0-1 problem under uncertainty with a finite number of possible future scenarios
has a mixed 0-1 Deterministic Equivalent Model (DEM), wherethe risk of providing a wrong solution is included
in the model via a set of representative scenarios. However,as any graph representation of this type of multi-stage
models can suggest, the scenario information structuring for this type of problems is more complex than for the
approximation made by considering two-stage stochastic mixed 0-1 models. We should point out that the scenario
tree in real-life problems is very frequently nonsymmetricand then, the traditional splitting variable representation
for the nonanticipativity constraints (for short, NAC), see [1, 16], on the 0-1 and continuous variables does not appear
readily accessible for manipulations that are required by the decomposition strategies. A new type of strategies is
necessary for solving medium and large scale instances of the problem. The decomposition approaches that appear
most promising are based on some forms of branching selection, and scenario cluster partitioning and bounding that
definitively use the information about the separability of the problem, see our work in [6, 7].

In this work we present a stochastic mixed 0-1 optimization modeling approach and a parallelizable Branch-and-
Fix Coordination (BFC) algorithm for solving general mixed0-1 optimization problems under uncertainty, where it is
represented by nonsymmetric scenario trees. One of its special features is the information structuring for generating,
saving and manipulating the scenario cluster submodels in amixture of splitting variable and compact representations.
Given the structuring of the scenario clusters, the approach generates independent cluster submodels, then, allowing
parallel computation for obtaining lower bounds to the optimal solution value as well as feasible solutions for the
problem until getting the optimal one. (Tighter lower bounds can be obtained by following the lines presented in
[9] by using Lagrangean decomposition approaches in a risk aversion environment). As a result, an assignment
of the constraint matrix blocks into independent scenario cluster submodels is performed. We present a splitting
variable representation with explicit NAC for linking the submodels together, and a compact representation for each
submodel to treat the implicit NAC related to each of the scenario clusters. Then, the algorithm that we propose uses
the Twin Node Family (TNF) concept, see [6, 7, 8], and it is specially designed for coordinating and reinforcing
the branching nodes and the branching 0-1 variable selection strategies at each Branch-and-Fix (BF) tree. The
nonsymmetric scenario tree which will be partitioned into smaller scenario cluster subtrees. The new proposal is
denotedNonsymmetric BFC-MSalgorithm. We report some computational experience to validate the new approach
by using a testbed of medium and large scale instances. We give computational evidence of the model tightening
effect that have preprocessing techniques in stochastic integer optimization as well, by using the probing and Gomory
and clique cuts identification and appending schemes of the open source optimization engineCOIN-OR.

The remainder of the paper is organized as follows. Section 2presents the multi-stage mixed 0-1 problem under
uncertainty in a splitting variable representation as wellas the required information about the variables by scenario
cluster and stage. An illustrative example will be used through the paper to show the main ideas that are proposed in
the decomposition framework. Section 3 shows how to generate the required information in order to know until what
stage the cluster submodels have common information. In Section 4 a scheme for formulating the cluster submodels
is presented, such that Section 5 gives the full model in splitting variable representation linking the submodels with
the explicit non-anticipativity constraints. Section 6 presents the main steps of the so-calledNonsymmetric BFC-MS
algorithm. Section 7 reports the computational experienceusing COIN-OR [13] to verify the effectiveness of the
proposal. Section 8 concludes. Three appendices present the constraint matrices in detail for the illustrative example,
and two more give the details of the order of storage of the variables in the model.
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2. Splitting variable representation in stochastic optimization

Let us consider the following multi-stage deterministic mixed 0-1 model

min
∑

t∈T

atxt + ctyt

s.t. A1x1 + B1y1 = b1

A′t xt−1 + At xt + B′tyt−1 + Btyt = bt ∀t ∈ T − {1}

xt ∈ {0, 1}nxt , yt ∈ IR+nyt ,

(1)

whereT is the set of stages (without loss of generality, let us consider that a stage is only included by one time period),
such thatT = |T |, xt andyt are thenxt andnyt dimensional vectors of the 0-1 and continuous variables, respectively,
at andct are the vectors of the objective function coefficients, andAt andBt are the constraint matrices for staget.

This model can be extended to consider uncertainty in some ofthe main parameters, in our case, the objective
function, therhs and the constraint matrix coefficients. To introduce the uncertainty in the parameters, we will use
a scenario analysis approach. A scenario consists of a realization of all random variables in all stages, that is, a
path through the scenario tree. In this sense,Ω will denote the set of scenarios,ω ∈ Ω will represent a specific
scenario, see Figure 1, andwω will denote the likelihood or probability assigned by the modeler to scenarioω, such
that

∑

ω∈Ω wω = 1. We say that two scenarios belong to the same group in a givenstage provided that they have the
same realizations of the uncertain parameters up to the stage. Following thenonanticipativity principle, see [1, 16],
among others, both scenarios should have the same value for the related variables with the time index up to the given
stage.

t = 1

1

xω1 , yω1 , ω ≥ 1

t = 2

xω2 , yω2 , ω ≤ 3

3

xω2 , yω2 , ω ≥ 4

2

t = 3

7

xω3 , yω3 , ω ≥ 5

6

xω3 , yω3 , ω = 4

5
xω3 , yω3 , ω = 3

4

xω3 , yω3 , ω ≤ 2

t = 4

14 x7
4, y7

4 scenario ω=7

13 x6
4, y6

4 scenario ω=6

12 x5
4, y5

4 scenario ω=5

11 x4
4, y4

4 scenario ω=4

10 x3
4, y3

4 scenario ω=3

9 x2
4, y2

4 scenario ω=2

8 x1
4, y1

4 scenario ω=1

Figure 1: Scenario tree. Illustrative example.

Let alsoG denote the set of scenario groups (i.e., nodes in the underlying scenario tree), andGt denote the subset
of scenario groups that belong to staget ∈ T , such thatG = ∪t∈TGt. Ωg denotes the set of scenarios in group g, for
g ∈ G. Note that the scenario group concept corresponds to the node concept in the underlying scenario tree.

Thesplitting variablerepresentation of the DEM of the full recourse stochastic version related to the multi-stage
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deterministic problem (1) can be expressed as follows,

zMIP = min
∑

ω∈Ω

∑

t∈T

wω
(

aωt xωt + cωt yωt
)

s.t. A1xω1 + B1yω1 = b1 ∀ω ∈ Ω

A′ωt xωt−1 + Aωt xωt + B′ωt yωt−1 + Bωt yωt = bωt , ∀ω ∈ Ω, t ≥ 2

xωt − xω
′

t = 0, ∀ω,ω′ ∈ Ωg : ω , ω′, g ∈ Gt, t ≤ T − 1

yωt − yω
′

t = 0, ∀ω,ω′ ∈ Ωg : ω , ω′, g ∈ Gt, t ≤ T − 1

xωt ∈ {0, 1}
nxωt , yωt ∈ IR+nyωt , ∀ω ∈ Ω, t ∈ T .

(2)

Following the nonanticipativity principle cited above foreach staget, the corresponding equalities must be satisfied,

A
′ω
t = A

′ω′

t , Aωt = Aω
′

t , B
′ω
t = B

′ω′

t , Bωt = Bω
′

t , bωt = bω
′

t , a
ω
t = aω

′

t , c
ω
t = cω

′

t , (3)

∀ω,ω′ ∈ Ωg : ω , ω′, g ∈ Gt, 2 ≤ t ≤ T − 1.

Observe that for a given staget, A
′ω
t andAωt are the technology and recourse matrices for thext variables andB

′ω
t and

Bωt are the corresponding ones for theyt variables. Notice thatxωt − xω
′

t = 0 andyωt − yω
′

t = 0 are the NAC. Finally,
nxωt andnyωt denote the dimensions of the vectors of the variablesx andy variables, respectively, related to staget
under scenarioω.

Definition 1. A Branch-and-Fix(BF) tree associated with any scenario is the classical Branch-and-Bound tree in the
integer optimization model for that scenario.

As an additional notation, letRω denote the BF tree associated with scenarioω,Aω be the set of active nodes inRω

forω ∈ Ω,I the set of indices of the variables in any vectorxωt , and (xωt )i thei-th variable inxωt , for t ∈ T , ω ∈ Ω, i ∈ I.

Definition 2. Two variables, say,(xωt )i and (xω
′

t )i are said to becommonvariables for the scenariosω andω′, if
ω,ω′ ∈ Ωg, g ∈ Gt, for ω , ω′, t ∈ T −, i ∈ I. Notice that twocommonvariables have nonzero elements in the NAC
related to a given scenario group.

Definition 3. Any two nodes, say, a∈ Aω and a′ ∈ Aω
′

are said to betwin nodes with respect to a given scenario
group if the paths from their root nodes to each of them in their own BF treesRω andRω

′

, respectively, either having
not yet branched on/ fixed at theircommonvariables, if any, or having the same 0-1 value for their branched on/
fixed at theircommonvariables(xωt )i and(xω

′

t )i , for ω,ω′ ∈ Ωg, g ∈ Gt, t ∈ T −, i ∈ I.

Definition 4. A Twin Node Family(TNF), say,J f is a set of nodes such that any node is atwin node to all the other
node members in the family, for f∈ F , whereF is the set of the families.

Definition 5. A candidate TNFis a TNF whose members have not yet branched on/ fixed at all theircommon
variables.

Definition 6. A TNF integer setis a set of TNFs where all x variables take integer values, there is one node per each
BF tree and the NAC(xωt )i − (xω

′

t )i = 0 are satisfied,∀ω,ω′ ∈ Ωg, g ∈ Gt, t ∈ T −, i ∈ I.

The scenario tree information given in Figure 1 can also be represented and managed by using the vectorIR given
in the following definition.

Definition 7. A generalscenario tree in compact notation can be uniquely defined byR = (r(g) : g ∈ ∪T−1
t=1 Gt),

where r(g) ∈ IN is the number of branches arising from the stage of group g, g ≤ |GT−1|, to the next stage. That is,

R = (
t=1

︷︸︸︷

r1|G1| |

t=2
︷                 ︸︸                 ︷

r21, r22, . . . , r2|G2| |

t=3
︷                 ︸︸                 ︷

r31, r32, . . . , r3|G3| |...|

t=T−1
︷                               ︸︸                               ︷

rT−1,1, rT−1,2, . . . , rT−1,|GT−1|),

where the number of groups for stage t,|Gt|, corresponds to the sum of branches of the previous stage:

|G1| = 1, |Gt+1| =

|Gt |∑

i=1

rti , t ≤ T − 1
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A symmetric tree assumes that the number of branches is the same for all conditional distributions in the same
stage, that is, for staget ≤ T − 1, rti = rt j , ∀i , j, 1 ≤ i, j ≤ |Gt |. A nonsymmetric tree is a non symmetric one.
Moreover, without lost of generality in this work, we consider nonsymmetric trees, see below.

For the example given in [1], page 130, the scenario tree shown in Figure 1 can be defined byR = (2 | 2 2 | 2 1 1 3).
So, |G1| = 1, |G2| = 2, |G3| = 4, |G4| = 7 = |Ω| andT = 4. The set of scenarios isΩ = {1, 2, . . . , 7}, and the subsets
of scenario groups areG1 = {1}, G2 = {2, 3}, G3 = {4, 5, 6, 7}, G4 = {8, 9, . . . , 14} andG = ∪4

t=1Gt. Finally, the
scenarios in each groupg, are:Ω1 = {1, . . . , 7}, Ω2 = {1, 2, 3}, Ω3 = {4, . . . , 7}, Ω4 = {1, 2}, Ω5 = {3}, Ω6 = {4},
Ω7 = {5, 6, 7},Ω8 = {1},Ω9 = {2}, Ω10 = {3},Ω11 = {4},Ω12 = {5}, Ω13 = {6} andΩ14 = {7}.

In general, for any multi-stage stochastic problem withT stages and|Ω| scenarios, the information about until
what stage the scenario submodels have common information,and when the NAC must be explicit, is saved in the
subsetsGt andΩg, g ∈ Gt, t ∈ T, i.e., in the scenario treeR or, alternatively, in thescenario tree matrix, defined below.

Definition 8. Thescenario tree matrix, ST ∈ M|Ω|×|G|, is a matrix where the corresponding value for the pair(ω, g)
gives the related stage t, such that

ST (ω, g) =
{

t, if ω ∈ Ωg and g∈ Gt

0, otherwise.
(4)

Notice that the scenario tree matrix reproduces the structure given by the scenario treeR . This matrix has been
built by using the setsΩg andGt, i.e., the scenario treeR, but these sets can be also generated from the matrix. For
each staget ∈ T , we can obtain the set of scenario groups in such stage,Gt, as the column of the position (ω, g), for
which the corresponding element in the scenario tree matrixis equal tot; thenGt = {g ∈ G | ∃ω ∈ Ω : ST (ω, g) = t}.
See also that the set of scenarios related to groupg is Ωg = {ω ∈ Ω | ST (ω, g) , 0}. For our example, the scenario
tree matrix,ST (ω, g), is given in (5).

ST (ω, g) =





1 2 0 3 0 0 0 4 0 0 0 0 0 0
1 2 0 3 0 0 0 0 4 0 0 0 0 0
1 2 0 0 3 0 0 0 0 4 0 0 0 0
1 0 2 0 0 3 0 0 0 0 4 0 0 0
1 0 2 0 0 0 3 0 0 0 0 4 0 0
1 0 2 0 0 0 3 0 0 0 0 0 4 0
1 0 2 0 0 0 3 0 0 0 0 0 0 4





. (5)

3. Scenario clustering in nonsymmetric scenario trees

It is clear that the explicit representation of the NAC is notrequired for all pairs of scenarios in order to reduce
the dimensions of model. In fact, we can represent implicitly the NAC for some pairs of scenarios in order to gain
computational efficiency.

We will decompose the scenario tree into a subset of scenarioclusters, whereP = {1, ..., q} denotes the set of
clusters andq = |P|. Let Ωp denote the set of scenarios that belongs to a generic clusterp, wherep ∈ P and
∑q

p=1 |Ω
p| = |Ω|. It is clear that the criterion for scenario clustering in the sets, say,Ω1, . . . ,Ωq is instance dependent.

Moreover, we favor the approach that shows higher scenario clustering for greater number of scenario groups in
common. In any case, notice thatΩp ⋂

Ωp′ = ∅, p, p′ = 1, . . . , q : p , p′ andΩ = ∪q
p=1Ω

p. Let alsoGp ⊂ G denote

the set of scenario groups for clusterp, such thatΩg ∩ Ω
p
, ∅ means thatg ∈ Gp, Gp

t = Gt ∩ G
p denote the set of

scenario groups for clusterp ∈ P in staget ∈ T .
We propose to choose the number of scenario clustersq as any value from the subsetQ = {|G1|, |G2|, . . . , |GT |}.

As we will see below, the valueq will be associated with the number of stages with explicit NAC between cluster
submodels.

Definition 9. The break stage t∗ is the stage t such that the number of scenario clusters is q= |Gt∗+1|, where t∗+1 ∈ T .
Observe that cluster p∈ P includes the scenarios that belong to group g∈ Gt∗+1, i.e.,Ωp = Ωg.
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Definition 10. Thescenario clustermodels are those that result from the relaxation of NAC untilthe break stage t∗ in
model (2).

Notice that the choice oft∗ = 0 corresponds to the full model andt∗ = T − 1 corresponds to the scenario
partitioning.

Definition 11. Thecluster tree matrix associated with the t∗−decomposition, CT t∗ ∈ Mq×|G|, is a matrix where the
corresponding value for the pair(p, g) gives the related stage t, such that

CT t∗ (p, g) =
{

t, if g ∈ Gp
t

0, otherwise.
(6)

Notice thatGp
t = Gt ∩ G

p, is the set of scenario groups for clusterp ∈ P in staget ∈ T .
Once decided the break stage,t∗, the corresponding cluster partition is given, and its structure is defined by the

related cluster tree matrix.

Property 1. For any stage2 ≤ t ≤ t∗ + 1 and any cluster p∈ P, the cardinality of the subset of groups that belong to
cluster p at stage t,|Gp

t | is always equal to 1.

Property 2. For any stage t∗ + 1 < t ≤ T and any cluster p∈ P, the cardinality of the subset of groups that belong
to cluster p at stage t,|Gp

t | is greater than 1, unless if one realization of the uncertainparameters exactly occurs from
stage t− 1 to stage t in cluster p, in which case it is also equal to 1.

Notice that the subsetsGp andGt and, consequently,Gp
t can be obtained from the cluster tree matrix given above.

For each clusterp ∈ P (i.e., p−row in matrix CT t∗ ), the set of scenario groupsGp can be obtained as the set of
columns in thet∗−cluster tree matrix with a nonzero element, i.e.,Gp = {g ∈ G |CT t∗ (p, g) , 0}. Similarly, the setGt

of scenario groups in each staget ∈ T can be obtained asGt = {g ∈ G | ∃p ∈ P : CT t∗ (p, g) = t}.
In the illustrative example depicted in Figure 1, three cases can be considered for generating theq cluster

submodels whereq can be chosen from the set of values{|G2|, |G3|, |G4|} = {2, 4, 7}, namely:

• Case 1. Let the break staget∗ = 1, then there areq = |G2| = 2 clusters, see Figure 2 and, then, two subsets of
scenario groups, sayG1 = {1, 2, 4, 5, 8, 9, 10}andG2 = {1, 3, 6, 7, 11, 12, 13, 14}, where the scenarios in each set
areΩ1 = {1, 2, 3} andΩ2 = {4, 5, 6, 7}.

The 1-cluster tree matrix is given in (7).

CT 1(p, g) =

(

1 2 0 3 3 0 0 4 4 4 0 0 0 0
1 0 2 0 0 3 3 0 0 0 4 4 4 4

)

. (7)

• Case 2. Let the break staget∗ = 2, then there areq = |G3| = 4 clusters, see Figure 3 and, then, four subsets
of scenario groups, sayG1 = {1, 2, 4, 8, 9}, G2 = {1, 2, 5, 10}, G3 = {1, 3, 6, 11}, andG4 = {1, 3, 7, 12, 13, 14},
where the scenarios in each set areΩ1 = {1, 2},Ω2 = {3}, Ω3 = {4} andΩ4 = {5, 6, 7}.

The 2-cluster tree matrix is given in (8).

CT 2(p, g) =





1 2 0 3 0 0 0 4 4 0 0 0 0 0
1 2 0 0 3 0 0 0 0 4 0 0 0 0
1 0 2 0 0 3 0 0 0 0 4 0 0 0
1 0 2 0 0 0 3 0 0 0 0 4 4 4





. (8)

• Case 3. Let the break staget∗ = 3, then there areq = |G4| = 7 clusters, see Figure 4 and, then, seven sets of
scenario groups, sayG1 = {1, 2, 4, 8}, G2 = {1, 2, 4, 9}, G3 = {1, 2, 5, 10}, G4 = {1, 3, 6, 11}, G5 = {1, 3, 7, 12},
G6 = {1, 3, 7, 13} andG7 = {1, 3, 7, 14}, and seven sets of scenarios:Ω1 = {1},Ω2 = {2}, . . . , andΩ7 = {7}.

Notice that the 3-cluster tree matrixCT 3 is ST , see (5).

Notice that in the above scenario cluster partitioning we favor the approach that shows higher scenario clustering for
greater number of scenario groups in common.
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4. Scenario cluster submodels

Let us assume that we have broken down the scenario tree intoq clusters. Now, let us formulate the cluster
submodels, and next the full mixed 0-1 DEM via splitting variable representation, so that theq cluster submodels are
linked by the explicit NAC until staget∗. For doing so, letxp

t andyp
t denote the vectors of the 0-1 and continuous

variables, respectively, for scenario clusterp ∈ P and staget ∈ T . Let alsonxp
t andnyp

t denote the number of 0-1
variables and number of continuous variables for the pair (p, t), respectively. For implementation purposes, the storage
order of the variables is very important. We show in the Appendices D and E the order that we propose.

Definition 12. Therepresentative scenario for scenario group g in cluster p at stage t is the first orderedscenario in
the scenario group,ωp

g = min{ω ∈ Ωg }, g ∈ Gp
t , p ∈ P, t ∈ T .

The set of constraints is split such that the first block is related to the first stage, the second block represents the
constraints related to the vectors of variables until staget∗ +1 (i.e., stages with explicit NAC) that must be linked with
their own replicas in all the other clustersp′ ∈ P, and the third block represents the constraints related to the vectors
of variables from staget∗ + 2 (i.e., stages with implicit NAC).

(MIPp) zp =

T∑

t=1

wp
t (ap

t xp
t + cp

t yp
t )

s.t. A1xp
1 + B1xp

1 = b1 (9)

A
′p
t xp

t−1 + Ap
t xp

t + B
′p
t yp

t−1 + Bp
t yp

t = bp
t , 2 ≤ t ≤ t∗ + 1

[A′t]
pxp

t−1 + [At]
pxp

t + [B′t ]
pyp

t−1 + [Bt]
pyp

t = bp
t , t∗ + 1 < t ≤ T

xp
t ∈ {0, 1}

nxp
t , yp

t ∈ IR+nyp
t , t ∈ T ,

wherewp
t is the weight of clusterp in staget to be expressed in (11).

The first block of constraint matricesA1 and B1 is related to the first stage vectors of variablesxp
1 and yp

1,
respectively, whoserhs is b1.

The second block of constraint matrices (A
′p
t , Ap

t , B
′p
t , Bp

t ) is related to the stages 2≤ t until staget∗ + 1. For
all the stagest ≤ t∗ + 1, the weight of clusterp at staget is wp

t =
∑

ω∈Ωg : g∈Gp
t

wω. In a similar way, we can define the

objective function coefficientsap
t andcp

t for t ≤ t∗ + 1.
Finally, the third block represents the constraints for stages fromt∗ + 2 until the last one,T. In all of these stages,

the nonanticipativity principle is implicity taken into account, since the submodel for each cluster is formulated via
a compact representation. The constraint matrices [A′t ]

p and [B′t ]
p, and [At]p and [Bt]p can be split into the|Gp

t−1|

and |Gp
t | submatrices related to the scenarios groups in a given cluster p, respectively. For scenario groupgi ∈ G

p
t ,

i ∈ {1, . . . , |Gp
t |} in clusterp at staget, let the representative scenarioωp

gi
= min {ω ∈ Ωgi } to define the related block

of matrices. In a similar way, the matrices [B′t ]
p and [Bt]p can be obtained.

Notice that the matrices [A′t ]
p and [B′t ]

p have|Gt−1| columns, while the matrices [At]p and [Bt]p have|Gt| columns.
It can be observed that if there are explicit NAC in staget − 1, then [A′t ]

p and [B′t ]
p would be block diagonal matrices

with the same number of columns as [At]p and [Bt]p, that is, |Gp
t |, see (10). But, since the NAC are implicitly

considered, then the matrices become grouped matrices by columns, such that they will have in the same column
the matricesA′ωt and A′ω

′

t for xp
t−1, and B′ωt and B′ω

′

t for yp
t−1, respectively, wherexωt−1 = xω

′

t−1 and yωt−1 = yω
′

t−1
∀ω,ω′ ∈ Ωg : ω , ω′, g ∈ Gp

t , t∗ + 1 < t ≤ T. Notice that these matrices can easily loose the diagonal block
structure, see below and the Appendices A, B and C.
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[A′t ]
p
=





A
′ω

p
g1

t 0 . . . 0

0 A
′ω

p
g2

t . . . 0
...

...
. . .

...

0 0 . . . A
′ω

p
g
|G

p
t−1|

t





︸                                    ︷︷                                    ︸

|G
p
t−1| columns

, [At]p =





A
ω

p
g1

t 0 0 . . . 0

0 A
ω

p
g2

t 0 . . . 0
...

...
...
. . .

...

0 0 0 . . . A
ω

p
g |G

p
t |

t





︸                                      ︷︷                                      ︸

|G
p
t | columns

(10)

Sincexp
t , yp

t andbp
t have the dimension|Gp

t |, the weightwp
t of clusterp in staget is as follows,

xp
t =





x
ω

p
g1

t

x
ω

p
g2

t
...

x
ω

p
g
|G

p
t |

t





, bp
t =





b
ω

p
g1

t

b
ω

p
g2

t
...

b
ω

p
g
|G

p
t |

t





,wp
t =





ω
p
g2−1
∑

ω=ω
p
g1

wω,
ω

p
g3
−1

∑

ω=ω
p
g2

wω, . . . ,
ω=ω

p
t∑

ω=ω
p
g
|G

p
t |

wω



, (11)

whereωp
t = max{ω ∈ Ωg g ∈ Gp

t } denotes the last ordered scenario in clusterp at staget. Similarly, the objective
function coefficientsap

t andcp
t can be defined.

Theq cluster submodels (9) are linked by the NAC, that now can be formulated as follows,

xp
t − xp′

t = 0, p , p′, t ≤ t∗, g ∈ Gt, t = CT t∗ (p, g) = CT t∗ (p′, g) (12)

yp
t − yp′

t = 0, p , p′, t ≤ t∗, g ∈ Gt, t = CT t∗ (p, g) = CT t∗ (p′, g). (13)

Let us consider the three previous cases for the example depicted in Figure 1, whereT = 4, |Ω| = 7 and|G| = 14.

• Case 1. Consider explicit NAC until staget∗ = 1 and, then,q = 2 clusters, whose scenario groups are given in
Table 1. Using the 1-cluster tree matrix (7), the subset of scenario groups for clusterp and staget, Gp

t can be
determined. In this case, all of these subsets have a singleton element (see Property 1) untilt∗ + 1 = 2. And
from t∗ + 2 = 3 these subsets have one or more elements (see Property 2).

Table 1: Scenario groups forq = 2. Illustrative example

G
p
t p = 1 p = 2

t = 1 {1} {1}
t = 2 {2} {3}
t = 3 {4,5} {6,7}
t = 4 {8,9,10} {11,12,13,14}

Let us define the blocks of the matrices by stages. Obviously,the matrices for the first block (staget = 1 and
q = 2 cluster models) are are follows:A1 := A1, B1 := B1 and therhsb1 := b1.

The matrices for the second block (stages 2≤ t ≤ t∗ + 1 = 2) are are follows:

1. For p = 1: A
′1
t := A

′ω1
g

t , B
′1
t := B

′ω1
g

t , A1
t := A

ω1
g

t , B1
t := B

ω1
g

t , andb1
t := b

ω1
g

t , 2 ≤ t ≤ 2, where the
representative scenario fort = 2, g ∈ G1

t = {2} isω
1
2 = min{ω ∈ Ω2} = 1.

2. For p = 2: A
′2
t := A

′ω2
g

t , B
′2
t := B

′ω2
g

t , A2
t := A

ω2
g

t , B2
t := B

ω2
g

t , andb2
t := b

ω2
g

t , 2 ≤ t ≤ 2, where the
representative scenario fort = 2, g ∈ G2

t = {3} isω
2
3 = min{ω ∈ Ω3} = 4.

The matrices for the third block [A′t ]
p and [At]p are as follows for staget∗ + 1 = 2 < t ≤ 4:
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1. For p = 1: For staget = 3 and scenario groupgi ∈ G
1
3 = {4, 5}, i ∈ {1, . . . , |G1

3|} = {1, 2}, the
representative scenarioω1

gi
= min {ω ∈ Ωgi } for groupgi is ω1

4 = min {ω ∈ Ω4} = 1 for groupg1 = 4 and
ω1

5 = min {ω ∈ Ω5} = 3 for groupg2 = 5.

Due tox1
2 = x3

2 from NAC, [A′3]
1
=

(

A
′1
3

A
′3
3

)

, [A3]1 =

(

A1
3 0

0 A3
3

)

and the corresponding vectors of

thex variables arex1
2 = x1

2 andx1
3 =

(

x1
3

x3
3

)

.

For staget = 4 and scenario groupgi ∈ G
1
4 = {8, 9, 10}, i ∈ {1, . . . , |G1

4|} = {1, 2, 3}, the representative
scenarioω1

gi
= min {ω ∈ Ωgi } for group gi is ω1

8 = min {ω ∈ Ω8} = 1 for group g1 = 8,
ω1

9 = min {ω ∈ Ω9} = 2 for groupg2 = 9 andω1
10 = min {ω ∈ Ω10} = 3 for groupg3 = 10.

Due tox1
3 = x2

3 from NAC, [A′4]
1 =





A
′1
4 0

A
′2
4 0
0 A

′3
4




, [A4]1 =





A1
4 0 0

0 A2
4 0

0 0 A3
4




and the vectors of thex

variables arex1
3 =

(

x1
3

x3
3

)

andx1
4 =





x1
4

x2
4

x3
4




.

2. For p = 2: For staget = 3 and scenario groupgi ∈ G
2
3 = {6, 7}, i ∈ {1, . . . , |G2

3|} = {1, 2}, the
representative scenarioω2

gi
= min {ω ∈ Ωgi } for groupgi is ω2

6 = min {ω ∈ Ω6} = 4 for groupg1 = 6 and
ω2

7 = min {ω ∈ Ω7} = 5 for groupg2 = 7.

Due tox4
2 = x5

2 from NAC, [A′3]
2 =

(

A
′4
3

A
′5
3

)

, [A3]2 =

(

A4
3 0

0 A5
3

)

and the corresponding vectors of

thex-variables arex2
2 = x4

2 andx2
3 =

(

x4
3

x5
3

)

.

For staget = 4 and scenario groupgi ∈ G
2
4 = {11, 12, 13, 14}, i ∈ {1, . . . , |G2

4|} = {1, 2, 3, 4}, the
representative scenarioω2

gi
= min {ω ∈ Ωgi } for group gi is ω2

11 = min {ω ∈ Ω11} = 4, for group
g1 = 11,ω2

12 = min {ω ∈ Ω12} = 5 for groupg2 = 12 ,ω2
13 = min {ω ∈ Ω13} = 6 for groupg3 = 13 and

ω2
14 = min {ω ∈ Ω14} = 7 for groupg4 = 14.

Due to x5
3 = x6

3 = x7
3 from NAC, [A′4]2 =





A
′4
4 0
0 A

′5
4

0 A
′6
4

0 A
′7
4





, [A4]2 =





A4
4 0 0 0

0 A5
4 0 0

0 0 A6
4 0

0 0 0 A7
4





and the

vectors of thex-variables arex2
3 =

(

x4
3

x5
3

)

andx2
4 =





x4
4

x5
4

x6
4

x7
4





.

Similarly, the matrices for the third block [B′t]p and [Bt]p can be defined. The constraint matrix structure of the
q cluster submodels is shown in Appendix A.
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x1
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1

t = 2

2
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Figure 2:xp
t variables with explicit NAC untilt∗ = 1. Illustrative example

• Case 2. Consider explicit NAC until staget∗ = 2 and, then,q = 4 clusters, whose scenario groups are given in
Table 2. Using the 2-cluster tree matrix (8), the subset of scenario groups for clusterp and staget, Gp

t can be
determined. In this case, untilt∗ + 1 = 3 all of these subsets have a singleton element (see Property1). And for
t∗ + 2 = 4 these subsets have one or more elements (see Property 2). Let us define the blocks of the matrices

Table 2: Scenario groups forq = 4. Illustrative example

G
p
t p = 1 p = 2 p = 3 p = 4

t = 1 {1} {1} {1} {1}
t = 2 {2} {2} {3} {3}
t = 3 {4} {5} {6} {7}
t = 4 {8,9} {10} {11} {12,13,14}

by stages. Obviously, the matrices for the first block (staget = 1 andq = 4 cluster models) are as follows:
A1 := A1, B1 := B1 and therhsb1 := b1.

The matrices for the second block (stages 2≤ t ≤ t∗ + 1 = 3) are as follows:

1. For p = 1: A
′1
t := A

′ω1
g

t , B
′1
t := B

′ω1
g

t , A1
t := A

ω1
g

t , B1
t := B

ω1
g

t , andb1
t := b

ω1
g

t , 2 ≤ t ≤ 3, where the
representative scenario fort = 2, g ∈ G1

2 = {2} is ω1
2 = min{ω ∈ Ω2} = 1 and fort = 3, g ∈ G1

3 = {4} is
ω1

4 = min{ω ∈ Ω4} = 1.

2. For p = 2: A
′2
t := A

′ω2
g

t , B
′2
t := B

′ω2
g

t , A2
t := A

ω2
g

t , B2
t := B

ω2
g

t , andb2
t := b

ω2
g

t , 2 ≤ t ≤ 3, where the
representative scenario fort = 2, g ∈ G2

2 = {2} is ω2
2 = min{ω ∈ Ω2} = 1 and fort = 3, g ∈ G2

3 = {5} is
ω2

5 = min{ω ∈ Ω5} = 3.

3. For p = 3: A
′3
t := A

′ω3
g

t , B
′3
t := B

′ω3
g

t , A3
t := A

ω3
g

t , B3
t := B

ω3
g

t , andb3
t := b

ω3
g

t , 2 ≤ t ≤ 3, where the
representative scenario fort = 2, g ∈ G3

2 = {3} is ω3
3 = min{ω ∈ Ω3} = 4 and fort = 3, g ∈ G3

3 = {6} is
ω3

6 = min{ω ∈ Ω6} = 4.

4. For p = 4: A
′4
t := A

′ω4
g

t , B
′4
t := B

′ω4
g

t , A4
t := A

ω4
g

t , B4
t := B

ω4
g

t , andb4
t := b

ω4
g

t , 2 ≤ t ≤ 3, where the
representative scenario fort = 2, g ∈ G4

2 = {3} is ω4
3 = min{ω ∈ Ω3} = 4 and fort = 3, g ∈ G4

3 = {7} is
ω4

7 = min{ω ∈ Ω7} = 5.

The matrices for the third block [A′t ]
p and [At]p are as follows for staget∗ + 1 = 3 < t ≤ 4:
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1. For p = 1: For scenario groupgi ∈ G
1
4 = {8, 9}, i ∈ {1, . . . , |G1

4|} = {1, 2}, the representative scenario
ω1

gi
= min {ω ∈ Ωgi } for groupgi isω1

8 = min {ω ∈ Ω8} = 1 for groupg1 = 8 andω1
9 = min {ω ∈ Ω9} = 2

for groupg2 = 9.

Due tox1
3 = x2

3 from NAC, [A′4]
1 =

(

A
′1
4

A
′2
4

)

, [A4]1 =

(

A1
4 0

0 A2
4

)

and the corresponding vectors of

thex variables arex1
3 = x1

3 andx1
4 =

(

x1
4

x2
4

)

.

2. For p = 2: For each scenario groupgi ∈ G
2
4 = {10}, i ∈ {1, . . . , |G2

4|} = {1}, the representative
scenarioω2

gi
= min {ω ∈ Ωgi } for group gi is ω2

10 = min {ω ∈ Ω10} = 3 for group g1 = 10,

[A′4]2 =
(

A
′3
4

)

, [A4]2 =
(

A3
4

)

and the corresponding vectors of thex variables arex2
3 = x3

3,

x2
4 = x3

4.

3. For p = 3: For scenario groupgi ∈ G
3
4 = {11}, i ∈ {1, . . . , |G3

4|} = {1}, the representative
scenarioω3

gi
= min {ω ∈ Ωgi } for group gi is ω3

11 = min {ω ∈ Ω11} = 4 for group g1 = 11,

[A′4]3 =
(

A
′4
4

)

, [A4]3 =
(

A4
4

)

and the corresponding vectors of thex variables arex3
3 = x4

3,

x3
4 = x4

4.

4. For p = 4: For scenario groupgi ∈ G
4
4 = {12, 13, 14}, i ∈ {1, . . . , |G1

4|} = {1, 2, 3}, the representative
scenarioω4

gi
= min {ω ∈ Ωgi } for group gi is ω4

12 = min {ω ∈ Ω12} = 5 for group g1 = 12,
ω4

13 = min {ω ∈ Ω13} = 6 for groupg2 = 13 andω4
14 = min {ω ∈ Ω14} = 7 for groupg3 = 14.

Due tox5
3 = x6

3 = x7
3 from NAC, [A′4]

4 =





A
′5
4

A
′6
4

A
′7
4




, [A4]4 =





A5
4 0 0

0 A6
4 0

0 0 A7
4




and the corresponding

vectors of thex variables arex4
3 = x5

3 andx4
4 =





x5
4

x6
4

x7
4




.

Similarly, the matrices for the third block [B′t]p and [Bt]p can be defined. The constraint matrix structure of the
q cluster submodels is shown in Appendix B.

t = 1

p = 1 1

p = 2 1

p = 3 1

p = 4 1

x1
1 = x2

1 = x3
1 = x4

1

t = 2

2

2

3

3

x1
2 = x2

2

x3
2 = x4

2

t = 3

7

6

5

4

t = 4

14 ω = 7

13 ω = 6

12 ω = 5

11 ω = 4

10 ω = 3

9 ω = 2

8 ω = 1

Figure 3:xp
t variables with explicit NAC untilt∗ = 2. Illustrative example

• Case 3. Consider explicit NAC until staget∗ = T − 1 = 3 and, then,q = 7 clusters, whose scenario groups are
given in Table 3. Using the scenario tree matrix (5), the subset of scenario groups for clusterp and staget, Gp

t
can be determined. In this case, all of these subsets have a singleton element (see Property 1).

Let us define the blocks of the matrices by stages. Obviously,the matrices for the first block (staget = 1 and
q = 7 cluster models) are as follows:A1 := A1, B1 := B1 and therhsb1 := b1.

11



Table 3: Scenario groups forq = 7. Illustrative example

G
p
t p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7

t = 1 {1} {1} {1} {1} {1} {1} {1}
t = 2 {2} {2} {2} {3} {3} {3} {3}
t = 3 {4} {4} {5} {6} {7} {7} {7}
t = 4 {8} {9} {10} {11} {12} {13} {14}

The matrices for the second block (stages 2≤ t ≤ 4) are as follows:

1. For p = 1: A
′1
t := A

′ω1
g

t , B
′1
t := B

′ω1
g

t , A1
t := A

ω1
g

t , B1
t := B

ω1
g

t , andb1
t := b

ω1
g

t , where the representative
scenario fort = 2, g ∈ G1

2 = {2} is ω1
2 = min{ω ∈ Ω2} = 1, for t = 3, g ∈ G1

3 = {4} is
ω1

4 = min{ω ∈ Ω4} = 1, and fort = 4, g ∈ G1
4 = {8} isω

1
8 = min{ω ∈ Ω8} = 1.

2. For p = 2: A
′2
t := A

′ω2
g

t , B
′2
t := B

′ω2
g

t , A2
t := A

ω2
g

t , B2
t := B

ω2
g

t , andb2
t := b

ω2
g

t , where the representative
scenario fort = 2, g ∈ G2

2 = {2} is ω2
2 = min{ω ∈ Ω2} = 1, for t = 3, g ∈ G2

3 = {4} is
ω2

4 = min{ω ∈ Ω4} = 1, and fort = 4, g ∈ G2
4 = {9} isω

2
9 = min{ω ∈ Ω9} = 2.

3. For p = 3: A
′3
t := A

′ω3
g

t , B
′3
t := B

′ω3
g

t , A3
t := A

ω3
g

t , B3
t := B

ω3
g

t , andb3
t := b

ω3
g

t , where the representative
scenario fort = 2, g ∈ G3

2 = {2} is ω3
2 = min{ω ∈ Ω2} = 1, for t = 3, g ∈ G3

3 = {5} is
ω3

5 = min{ω ∈ Ω4} = 3, and fort = 4, g ∈ G3
4 = {10} isω3

10 = min{ω ∈ Ω9} = 3.
...

7. For p = 7: A
′7
t := A

′ω7
g

t , B
′7
t := B

′ω7
g

t , A7
t := A

ω7
g

t , B7
t := B

ω7
g

t , andb7
t := b

ω7
g

t , where the representative
scenario fort = 2, g ∈ G7

2 = {3} is ω7
3 = min{ω ∈ Ω3} = 4, for t = 3, g ∈ G7

3 = {7} is
ω7

7 = min{ω ∈ Ω7} = 5, and fort = 4, g ∈ G7
4 = {14} isω7

14 = min{ω ∈ Ω14} = 7.

Moreover, sincet∗ + 1 = T = 4, there is not a third block of constraints.

Similarly, the matrices for the third block [B′t]p and [Bt]p can be defined. The constraint matrix structure of the
q = 7 cluster submodels is shown in Appendix C.

5. SIP mixed 0-1 model with nonsymmetric scenario trees

The decomposition in scenario clusters of the DEM (2) can be given by the mixture of a splitting variable
representation (between the cluster submodels) and a compact representation (for each of them), such that the objective
function valueZMIP of the full model can be obtained as the sum of the related objective function values for each
scenario cluster,zp (9). So,ZMIP =

∑q
p=1 zp subject to the NAC (12)-(13) between the clusters.

An external structure of information must be defined, via theso-calledrepresentative cluster setand the
predecessor cluster matrix. Both elements are required by the asymmetry of the scenariocluster partitioning; see
below.

First, remind thatP is the set of theq scenario clusters, and let us consider arepresentative cluster set,Pt for stage
t ∈ T . The main aim is to determine the vectors of variables without replicas fort = 1, ..., t∗. Each element in setPt

is the representative scenario cluster of the clusters thatbelong to groupg at staget. Wlog, the first ordered cluster
associated with scenario groupg ∈ Gt can be considered as the representative cluster, such thatPt = {pt

1, pt
2, . . . p

t
|Gt|
},

wherept
g = {min p | g ∈ Gp

t , p ∈ P}. Notice that the required information for the definition ofPt is given in the
correspondingt∗-cluster tree matrix. See also thatPt = P,∀t > t∗. For t ∈ {1, . . . , t∗}, the number of elements in
such set coincides with the number of scenario groups, i.e.,|Pt| = |Gt|, in particular,P1 = {1}. Moreover, each set is
included in the corresponding set for the next stage,P1 ⊂ P2 ⊂ . . . ⊂ Pt∗ ⊂ Pt∗+1 ⊆ . . . ⊆ PT = P.

In the illustrative example, the set of representative clusters for Case 1 (t∗ = 1, q = 2), they are:P1 = {1} and
P2 = P3 = P4 = P = {1, 2}. For Case 2 (t∗ = 2, q = 4) they are:P1 = {1}, P2 = {1, 3} andP3 = P4 = P = {1, 2, 3, 4}.
Finally, for Case 3 (t∗ = 3, q = 7) these sets are:P1 = {1}, P2 = {1, 4}, P3 = {1, 3, 4, 5} andP4 = P = {1, 2, . . . , 7}.
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Figure 4:xp
t variables with explicit NAC untilt∗ = 3. Illustrative example

Second, for the hybrid formulation between the full model and the scenario cluster submodels, the predecessor
cluster of the representative clusterp in staget, pred(t − 1, pt

g), can be defined via thepredecessor cluster matrix.

Definition 13. Thepredecessor cluster matrix associated to the t∗−decomposition, pred∈ Mt∗×|P| is a matrix where
the corresponding value for the pair(t, p) gives the predecessor cluster of the representative cluster p in stage t.

At each row t= 1, ..., t∗, the matrix is computed from the sets of representative clusters at the related stage,Pt.

pred(t, ·) = (

pt
1 ≤ p < pt

2
︷  ︸︸  ︷

1 · · ·1

pt
2 ≤ p < pt

3
︷   ︸︸   ︷

pt
2 · · · p

t
2 . . .

pt
|Pt |
≤ p ≤ q

︷        ︸︸        ︷

pt
|Pt | · · · p

t
|Pt | )

So, the functionφ for calculating the predecessor cluster of a given scenarioclusterp can be defined, taking into
account that the given cluster must be a representative cluster pt

g at staget. So,φ(pt
g) = pred(t − 1, pt

g).
In the illustrative example, the predecessor cluster matrix, pred ∈ M1×2 for Case 1 (t∗ = 1, q = 2) is

pred(t, p) =
(

1 1
)

. For Case 2 (t∗ = 2, q = 4), pred ∈ M2×4 is pred(t, p) =

(

1 1 1 1
1 1 3 3

)

. And, finally,

for Case 3 (t∗ = 3, q = 7), pred∈ M3×7 is pred(t, p) =





1 1 1 1 1 1 1
1 1 1 4 4 4 4
1 1 3 4 5 5 5




.

Definition 14. The cluster splitting-compactrepresentation is the splitting variable formulation thatis extended
between all the scenario cluster submodels and the compact representation into each scenario cluster.

By using the previous elements, the full DEM can be formulated in a cluster splitting-compact representation as
follows,

(MIP) ZMIP = min a1x1
1 + c1x1

1 +

t∗∑

t=2

pt
|Pt |∑

p=pt
1

wp
t (ap

t xp
t + cp

t yp
t ) +

T∑

t=t∗+1

q∑

p=1

wp
t (ap

t xp
t + cp

t yp
t )
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s.t. A1x1
1 + B1y1

1 = b1
1

A
′p
t xφ(p)

t−1 + Ap
t xp

t + B
′p
t yφ(p)

t−1 + Bp
t yp

t = bp
t , p ∈ Pt, 2 ≤ t ≤ t∗ + 1

[A′t ]
pxp

t−1 + [At]pxp
t + [B′t ]

pyp
t−1 + [Bt]pyp

t = bp
t , p ∈ P, t∗ + 1 < t ≤ T

xp
t = xp′

t , p , p′, p, p′ ∈ Pt, t ≤ t∗

yp
t = yp′

t , p , p′, p, p′ ∈ Pt, t ≤ t∗

xp
t ∈ {0, 1}

nxp
t , yp

t ∈ IR+nyp
t , p ∈ P, t ∈ T ,

(14)

where the vectorsxp
t andyp

t for staget such that 2≤ t ≤ t∗ + 1 have as many replicas as groups in the scenario tree
for each scenario cluster. The matricesA

′p
t , B

′p
t , Ap

t andBp
t have been defined in the scenario cluster model (9). The

order of the storage of the variables is shown in Appendices Dand E.

6. Nonsymmetric BFC-MS Algorithm

Before executing the proposed algorithm for solving the original multi-stage stochastic mixed 0-1 problem, it
is required to fix the data structuring, see Figure 5. A decision has to be made on fixing the break staget∗ for
considering the splitting variable representation (i.e.,the stages with explicit NAC) and, consequently, the numberof
clustersq ∈ Q, whereQ = {|G1|, |G2|, ..., |GT | = |Ω|}. Notice that those clusters will be explicitly linked by NACuntil
the staget∗. Remind that this selection fixes the way to build the clustersubmodels. Observe also thatq = |GT |means
that the scenario cluster strategy is not to be used.

Step 0: Inputs: scenario treeR and number of variablesnxt, nyt.

Step 1: DefineT , Ω, G, Gt ∀t ∈ T , Ωg ∀g ∈ G, ST and weightswω ∀ω ∈ Ω.

Step 2: Decide break staget∗ and uniquelyq = |Gt∗+1|.

Step 3: DefineGp, G
p
t , CT t∗ , Ωp, ω

p
g, wp

t , P
t, pred(p, t), np

xt, np
yt∀p ∈ P, t ∈ T .

Step 4: Generate/read the full model (14).

Step 5: Generate the cluster submodels (9).

Figure 5: Data structuring

TheNonsymmetric BFC-MSalgorithm allows that the number of 0-1 variables at each stage,nxt (and, then, the
number of continuous variablesnyt) may be different from one cluster to another, except for the stagest = 1, 2, ..., t∗

where the number of variables has to be same for all clusters,because in those stages the cluster variables are scenario
variables and, then, replicas. So, let us split the time horizon in two parts, the first one includes the stagest = 1, 2, ..., t∗,
and the second part includes the other stages in setT . Then, the algorithm satisfies the implicit NAC on thex andy
variables for the set of stagest = t ∗ +1, ...,T at each iteration by solving the cluster submodels (9) with any state-of-
the-art MIP optimization package. Notice that the NAC are relaxed in those models for the stagest = 1, 2, ..., t∗, such
that its satisfaction is performed by using a Branch-and-Fix Coordination (BFC) type of algorithm [6] and, so, it is
guaranteed that the algorithm obtains the optimal solutionfor the DEM (2) of the stochastic problem.

At each TNF integer set two new models can be defined as in our previous works [6, 7], but with a substantial
difference since in the new approach the break staget∗ defines thex variables to fix at their 0-1 variables in the first
model and, additionally, it defines in the second model thex variables whose integrality is to be relaxed. That stage
also defines they variables whose NAC are to be explicitly satisfied in both models.

So, first, let the MIP (15) that results after fixing in model (14) thex variables for the stages up to the break
staget∗ at the 0-1 related values for a given TNF integer set. In the new model,x will denote the 0-1 values of the
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respective vectorx, it can be expressed in cluster splitting-compact representation as follows,

(MIPTNF) zTNF = min a1x1
1 + c1x1

1 +

t∗∑

t=2

pt
|Pt |∑

p=pt
1

wp
t (ap

t xp
t + cp

t yp
t ) +

T∑

t=t∗+1

q∑

p=1

wp
t (ap

t xp
t + cp

t yp
t )

s.t. A1x1
1 + B1y1

1 = b1
1

A
′p
t xφ(p)

t−1 + Ap
t xp

t + B
′p
t yφ(p)

t−1 + Bp
t yp

t = bp
t , p ∈ Pt, 2 ≤ t ≤ t∗ + 1

[A′t]
pxp

t−1 + [At]pxp
t + [B′t ]

pyp
t−1 + [Bt]pyp

t = bp
t , p ∈ P, t∗ + 1 < t ≤ T

xp
t = xp

t , p ∈ P, t ∈ T , t ≤ t∗

yp
t = yp′

t , p , p′, p, p′ ∈ Pt, t ≤ t∗

xp
t ∈ {0, 1}

nxp
t , p ∈ P, t ∈ T , t > t∗

yp
t ∈ IR+nyp

t , p ∈ P, t ∈ T .

(15)

The second MIP model to solve at each TNF integer set corresponds to the case in which, not all thex variables
for the stages up to the break staget∗ have been branched on/ fixed at in the current TNF. In this case, the new MIP
model (16) will allow thex variables to take fractional values between 0 and 1, if they are not yet branched on/ fixed
at the current TNF. In the new model, ˜x will denote the 0-1 values of the subset, say,X̃ of thex variables which have
been already branched on/ fixed at. The new model, also in cluster splitting-compact representation, can be expressed
as follows,

(MIP f ) zf = min a1x1
1 + c1x1

1 +

t∗∑

t=2

pt
|Pt |∑

p=pt
1

wp
t (ap

t xp
t + cp

t yp
t ) +

T∑

t=t∗+1

q∑

p=1

wp
t (ap

t xp
t + cp

t yp
t )

s.t. A1x1
1 + B1y1

1 = b1
1

A
′p
t xφ(p)

t−1 + Ap
t xp

t + B
′p
t yφ(p)

t−1 + Bp
t yp

t = bp
t , p ∈ Pt, 2 ≤ t ≤ t∗ + 1

[A′t ]
pxp

t−1 + [At]pxp
t + [B′t ]

pyp
t−1 + [Bt]pyp

t = bp
t , p ∈ P, t∗ + 1 < t ≤ T

xp
t = x̃p

t , x ∈ X̃, p ∈ P, t ≤ t∗

xp
t = xp′

t , x < X̃, p , p′, p, p′ ∈ Pt, t ≤ t∗

yp
t = yp′

t , p , p′, p, p′ ∈ Pt, t ≤ t∗

0 ≤ xp
t ≤ 1, x < X̃, p ∈ P, t ≤ t∗

xp
t ∈ {0, 1}

nxp
t , p ∈ P, t ∈ T , t > t∗

yp
t ∈ IR+nyp

t , p ∈ P, t ∈ T .

(16)

The specific BFC scheme that we propose is based on branching on the 0-1x variables for the stagest = 1, 2, ..., t∗

along the scenario cluster related trees and simultaneously coordinating the satisfaction of the related NAC for all the
TNFs. Lower bounds of the optimal solution value for the original problems are obtained by solving the MIP problems
(9) and (16) in a certain order, see below. Feasible solutions to the original DEM (2) are obtained by solving the MIP
problem (15) until getting the optimal solution. We should point out that, for computational efficiency reasons, we
consider the implicit NAC in the problems (15) and (16).
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Step 0: (Initializations) ZMIP := +∞, t := 0, i = 0.

Step 1: (Root node)Append cuts and solve the independent preprocessed MIP cluster submodels (9).
Z0 =

∑q
p=1 zp.

If xp variables do not satisfy (12), then go to Step 2.
If yp variables do not satisfy (13), then go to Step 7.
Otherwise,ZMIP := Z0, STOP.

Step 2: (First iteration) Initialize t := 1, i := 1 and go to Step 5.

Step 3: (Next stage)Resett := t + 1. If t > t∗, then go to Step 9.

Step 4: (Next node)Reseti := i + 1. If i > nxt, then go to Step 3.

Step 5: (Branch to 0)Branchxp
ti := 0,∀p ∈ P | CT t∗ (p, g) = t.

Step 6: (Cluster submodels)Append cuts and solve the independent preprocessed MIP cluster submodels (9).
Zi =

∑q
p=1 zp.

If Zi ≥ ZMIP, then go to Step 8.
If xp variables do not satisfy (12), then go to Step 4.
If yp variables satisfy (13), then updateZMIP := Zi and go to Step 8.

Step 7: (TNF models)
Append cuts and solve the MIP model(15) to satisfy the NAC forthey variables.
UpdateZMIP := min{zTNF, ZMIP}.
If t = t∗ andi = nxt, then go to Step 8.
Append cuts and solve the MIP model (16) to satisfy the NAC forthey variables,
where the integrality is relaxed on the non-yet branched on/ fixed atx variables.
If zf < ZMIP and all the relaxedx variables are 0-1,ZMIP := zf , go to Step 8.
If zTNF = zf or zf ≥ ZMIP, then go to Step 8, otherwise go to Step 4.

Step 8: (Prune)Prune the branch. Ifxp
ti = 0, p ∈ P | CT t∗ (p, g) = t, then go to Step 11.

Step 9: (Previous node)Reseti := i − 1.
If i = 0 andt = 0 then the optimal solution valueZMIP has been found,STOP.
If i = 0, thent := t − 1 and go to Step 4.

Step 10: (Check)If xp
ti = 1, ∀i ≤ nxt, t ≤ t∗, p ∈ P | CT t∗ (p, g) = t, then go to Step 9.

Step 11: (Branch to 1)Branchxp
ti = 1, p ∈ P | CT t∗ (p, g) = t. Then go to Step 6.

Figure 6: Nonsymmetric BFC-MS Algorithm

It is well known that one of the most important contributionsto the advancement of the theory and applications
of deterministic integer optimization has been the development of the preprocessing techniques for solving large
scale instances in affordable computing effort, due to the tightening of the models and, so, reducing theLP feasible
space without eliminating any feasible integer solution that potentially could become the optimal one. Some of the
key ingredients in preprocessing are the probing techniques [11, 12, 17] and schemes for identifying and appending
Gomory cuts [2, 3, 10] and clique cuts [4], among other important schemes. So, our algorithm for solving large
instances of the mixed integer DEM takes benefit from the processing techniques of the optimization engine of choice.
They are used for solving the auxiliary mixed integer submodels related to the scenario clusters. The difference in
computing time by using preprocessing compared with the alternative that does not use it is crucial in solving large
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scale instances.
Figure 6 shows the main steps of theNonsymmetric BFC-MSalgorithm. The strategies for selecting the branching

Twin Node Family (TNF) and fixing the 0-1 variables across theBF trees have been taken from our previous work
[7], given the good results that have been obtained for symmetric scenario trees.

7. Computational experience

The proposed approach has been implemented in a C++ experimental code. It uses the open source optimization
engineCOIN-ORfor solving the LP relaxation and mixed 0-1 submodels, in particular, we have used the functions:
Clp (LP solver), Cbc (MIP solver), Cgl (Cut generator), Osi,OsiClp, OsiCbc and CoinUtils. As a result the total
computing time for obtaining the optimal solution of the original DEM has been improved strongly, see below.

The computational experiments were conducted in a Workstation Debian Linux (kernel v2.6.26 with 64 bits), 2
processors Xeon 5355 (Quad Core with 2x4 cores), 2.664 Ghz and 16 Gb of RAM.

Table 4 gives the dimensions of the DEM of the full stochasticmodel in compact representation for difficult
medium and large scale problems. Table 5 gives [µ], integer part of the meanµ andσ, the standard deviation for the
dimensions of the cluster submodels; so, we can observe the variability of the nonsymmetric clusters. The headings
are as follows:m, number of constraints;nx, number of 0-1 variables;ny, number of continuous variables;nel, number
of nonzero coefficients in the constraint matrix; anddens, constraint matrix density (in %).

Table 4: Testbed problem dimensions

Inst. m nx ny nel dens
P1 696 160 376 1550 0.42
P2 1202 530 241 3053 0.33
P3 7282 1878 4152 20818 0.05
P4 16172 4270 9340 53257 0.02
P5 23907 5560 11675 68937 0.02
P6 32914 6672 14010 105854 0.02
P7 2085 450 1155 9105 0.27
P8 4696 1090 2516 9935 0.06
P9 11298 2668 5962 25262 0.03
P10 16870 4600 10430 42015 0.02
P11 31648 7984 17676 83252 0.01
P12 40020 8847 19377 100680 0.01
P13 5256 1176 2904 12861 0.06
P14 11121 2538 6045 27315 0.03
P15 14570 3370 7830 32508 0.02
P16 28176 6584 15008 62934 0.01
P17 45844 10794 24256 102480 0.01
P18 76424 18108 40208 170954 0.00
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Table 5: Testbed cluster-subproblem dimensions

Inst. [µm] σm [µnx] σnx [µny] σny [µnel] σnel µdens σdens

P1 133 29.94 283 6.57 68 14.62 275 62.12 2.31 0.68
P2 496 67.77 230 20.41 101 16.33 1227 171.46 0.76 0.08
P3 869 305.42 193 70.06 431 149.96 2145 766.93 0.46 0.20
P4 1788 578.65 397 130.53 876 280.11 4961 1617.42 0.24 0.09
P5 2815 20.77 561 4.15 1181 8.31 6953 50.67 0.14 0.00
P6 3823 28.24 673 4.98 1417 9.97 10675 78.08 0.13 0.00
P7 750 187.13 160 43.01 415 104.16 3236 859.05 0.80 0.20
P8 643 190.64 138 41.02 320 94.11 1259 372.83 0.49 0.21
P9 1241 537.03 269 116.78 602 256.60 2544 1097.09 0.30 0.18
P10 2007 454.02 516 145.94 1172 330.98 4711 1333.12 0.15 0.03
P11 3322 1207.93 729 265.57 1618 582.71 7608 2758.76 0.11 0.05
P12 3748 1454.9 740 287.61 1623 625.81 8423 3264.84 0.12 0.06
P13 950 259.56 199 55.92 492 137.05 2171 609.62 0.37 0.14
P14 1751 543.56 365 113.59 871 267.64 3930 1216.77 0.20 0.06
P15 1973 617.25 423 132.62 984 306.15 4081 1275.4 0.17 0.09
P16 3403 983.54 733 212.10 1673 482.39 7010 2025.25 0.09 0.03
P17 5000 2216.05 1081 479.50 2431 1075.64 10266 4548.74 0.080.05
P18 5126 1966.84 824 316.76 1830 699.81 8604 3300.17 0.07 0.03

Table 6: Computational results. Stochastic solution

Instance q |Ω| |G| ZLP Z0 zMIP GAPLP GAP0 ttLP tt0
P1 6 52 80 4395695 4654305 4654305 5.9 0 0.0 0.4
P2 3 6 12 75103.6 58589.1 58585.1 22.0 0.0 0.0 14.9
P3 10 247 313 5691.3 442336 573848 9982.9 29.7 0.1 4.6
P4 11 347 427 11601.4 725490 903367 7686.7 24.5 0.4 24.4
P5 10 1001 1112 4977.8 385471 468277 9307.4 21.5 0.7 32.6
P6 10 1001 1112 6116.5 540241 653638 10586 21.0 0.9 54.8
P7 3 13 30 20210.9 964395 973038 4714.4 0.9 0.0 8.9
P8 8 377 545 3156.8 156064 156064 4843.7 0.0 0.1 2.7
P9 10 1021 1334 3829.5 239683 239683 6158.9 0.0 0.5 8.7
P10 9 674 920 5757.0 394469 505729 8684.6 28.2 0.5 40.2
P11 11 1569 1996 5474.1 401435 401435 7233.4 0.0 1.5 78.2
P12 12 2388 2949 3209.4 318391 370024 11429.5 16.8 2.7 24.8
P13 6 208 392 8071.8 371498 372296 4512.3 0.2 0.1 4.3
P14 7 523 846 6157.3 339381 339381 5411.8 0.0 0.3 3.3
P15 8 1140 1685 3941.7 212593 212593 5293.5 0.0 0.7 19.0
P16 9 2372 3292 3521.9 258977 258977 7253.3 0.0 2.4 78.8
P17 10 4063 5397 2629.0 303900 303900 11459.5 0.0 6.0 2.7
P18 11 7058 9054 3824.7 318958 318958 8239.5 0.0 17.9 6.2

Table 6 shows some results of our computational experimentation. The headings are as follows:q, number of
clusters;|Ω|, number of scenarios;|G|, number of scenario groups;ZLP, solution value of theLP relaxation of the
original DEM problem in compact representation;Z0 =

∑

p zp, optimal expected solution value at the root node
obtained by solving independently the cluster submodels;zMIP, optimal solution value of the original DEM problem;
GAPLP, optimality gap defined aszMIP−ZLP

ZLP
(in %); GAP0, optimality gap defined aszMIP−Z0

Z0
(in %); andttLP andtt0,

elapsed time (in seconds) to obtain theZLP andZ0 solutions, respectively. We can observe the very big value for
GAPLP and the very small value forGAP0. The latter lower bound is often optimal or very closed to theoptimal
solution value (see also Figure 8, where the distanceGAP0 in the first iteration is very small). Intuitively, small values
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of GAP0 improve the convergence speed of the algorithm. Observe that the computing timett0 is very small, except
for the instances P11 and P16.

Table 7:Nonsymmetric BFC-MSperformance vsB&B

Clustering by break stage Nonsymmetric BFC-MS B&B
Instance T Q nT NF tt ttC tt ttC
P1 4 {1, 6, 21, 52} 1 0.4 0.3 4000.2 0.8
P2 4 {1, 2, 3, 6} 114 198.1 138.8 1304.2 1304.2
P3 4 {1, 10, 55, 247} 8 21.8 1.7 41.4 1.7
P4 4 {1, 11, 68, 347} 16 171.6 11.7 1530.8 19.4
P5 4 {1, 10, 100, 1001} 8 162.1 8.8 448.5 13.4
P6 4 {1, 10, 100, 1001} 10 229.5 8.5 889.7 48.4
P7 5 {1, 3, 5, 8, 13} 81 142.5 41.8 188.3 35.9
P8 5 {1, 8, 35, 124, 377} 1 2.7 0.9 272.3 6.1
P9 5 {1, 10, 55, 247, 1021} 1 9.1 1.4 100.0 4.5
P10 5 {1, 9, 46, 190, 674} 10 206.6 45.8 7992.7 296.4
P11 5 {1, 11, 68, 3347, 1569} 1 80.2 14.9 12113.1 126.8
P12 5 {1, 12, 81, 467, 2388} 7 513.8 66.8 3566.2(*) 867.5
P13 6 {1, 6, 21, 52, 104, 208} 3 13.2 2.6 1304.2 10.2
P14 6 {1, 7, 28, 81, 206, 523} 1 14.2 3.5 — 22.9
P15 6 {1, 8, 35, 124, 377, 1140} 1 19.7 4.9 7226.3(*) 19.2
P16 6 {1, 9, 46, 190, 674, 2372} 1 81.2 26.4 628.5(*) 48.5(*)
P17 6 {1, 10, 55, 247, 1021, 4063} 1 152.8 8.7 1897.3 67.3
P18 6 {1, 11, 68, 347, 1569, 7058} 1 377.0 24.1 — 202.9
—: Time limit exceeded (6 hours)
(*): Optimum not reached after 6 hours of computing, time forobtaining a 0.05 quasi-optimal soln

Table 7 shows the efficiency and stability of theNonsymmetric BFC-MSalgorithm. The headings are as follows:
T, number of stages;Q, set of possible number of clusters;nT NF, number of TNFs;B& B, plain use of the Branch-
and-Bound procedure for the full model by using the Cbc function of COIN-OR; and tt and ttC, total elapsed time
(in seconds) without and with preprocessing (in our case, itconsists of using probing techniques and schemes for
identifying and appending Gomory cuts and clique cuts implemented in the functions ofCOIN-OR). Although other
break stages have been considered, we have obtained the bestresults for the break staget∗ = 1 and, then,q = |G2|

for both without and with preprocessing options. Although for lack of space we do not report all the detailed results
(but they are available upon request to the authors), it is worthy to remark that for the scenario partitiont∗ + 1 = T
(q = |Ω|) i.e., no cluster partition is considered, the execution ofall the instances exceeded the time limit of six hours
of computing. We can observe (1) the efficiency of using the preprocessing techniques and (2) the astonishing small
computing time required by theNonsymmetric BFC-MSalgorithm, such that it clearly outperforms the plain use of
the optimization engine of choice.

Figure 7 depicts the elapsed time (seconds) in increasing order of the number of 0-1 variables related to the testbed
whose results are reported in Table 7. The times for solving the problems using B&B plus cuts, using the algorithm
BFC and using BFC plus cuts have been represented in red, blueand green.
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Figure 7: CPU-time for BFC-MS vs BB (increasing order ofnx)

Figure 8 depicts an illustrative example of the convergence
of the algorithm. It corresponds to the instance P7. The
procedure exploits the TNF branching selection and fixing
of the 0-1 variables along the groupsg ∈ ∪t∗

t=1Gt at
the stages. 81nT NF are required to be branched until
obtaining the optimal solution. It obtains lower bounds
(given by the cluster submodels, in vertical) and upper
bounds (in horizontal stair steps) of the optimal solution
value (red dashed line) for the mixed 0-1 problems at the
TNFs. The vertical empty lines correspond to branches that
are pruned due to infeasibilities.
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Figure 8: BFC-MS convergence

8. Conclusions and future work

In this work a modeling approach and an exact Branch-and-FixCoordination algorithmic framework, so-called
Nonsymmetric BFC-MS, have been proposed for solving multi-stage mixed 0-1 problems under uncertainty in the
parameters, being the uncertainty represented by scenarios trees. It can appear in any coefficient of the objective
function, constraint matrix and right-hand–side at any stage. The 0-1 and continuous variables can also appear at any
stage. The approach treats the uncertainty by scenario cluster analysis, allowing the scenario tree to be nonsymmetric.
This last feature has not been considered in the literature that we are aware of. However, in our opinion, it is crucial for
solving medium and large scale problems, since the real-life mixed integer optimization problems under uncertainty
that, at least, we have encountered have very frequently nonsymmetric scenarios to represent the uncertainty. As
expected the efficiency of the preprocessing techniques (i.e., probing and Gomory and clique cuts identification and
appending schemes) is remarkable for the cluster submodelsto be solved at the candidate Twin Node Families (TNF)
and the TNF integer sets. The computational time that we report for solving large scale multi-stage stochastic mixed
0-1 problems is very small and it seems to validate the new approach. On the other hand, it clearly outperforms the
plain use of the optimization engine of choice.

As a future work we are considering Lagrangean Decomposition (LD) as a powerful tool for iteratively obtaining
strong lower bounds to the optimal solution value of the submodels to be solved at the candidate TNFs and TNF
integer sets. The key point in LD is the dualization of the nonanticipativity constraints (NAC) in the scenario cluster
submodels, see in [9] the good results that have been obtained for highly combinatorial stochastic problems. Another
point of future research derives from the observation of theindependent character of the cluster submodels, such that
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it paves the way to use parallel computing for solving them sothat the result could be a parallelizedNonsymmetric
BFC-MSalgorithm.
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Appendix A. Constraint matrix structure for the illustrati ve example. Case 1:t∗ = 1 and q = 2 clusters





A1

A
′1
2 A1

2
A
′1
3 A1

3
A
′3
3 A3

3
A
′1
4 A1

4
A
′2
4 A2

4
A
′3
4 A3

4





·





x1
1

x1
2

x1
3

x3
3

x1
4

x2
4

x3
4





+





B1

B
′1
2 B1

2
B
′1
3 B1

3
B
′3
3 B3

3
B
′1
4 B1

4
B
′2
4 B2

4
B
′3
4 B3

4





·





y1
1

y1
2

y1
3

y3
3

y1
4

y2
4

y3
4





=





b1

b1
2

b1
3

b3
3

b1
4

b2
4

b3
4









A1

A
′4
2 A4

2
A
′4
3 A4

3
A
′5
3 A5

3
A
′4
4 A4

4
A
′5
4 A5

4
A
′6
4 A6

4
A
′7
4 A7

4





·





x1
1

x4
2

x4
3

x5
3

x4
4

x5
4

x6
4

x7
4





+





B1

B
′4
2 B4

2
B
′4
3 B4

3
B
′5
3 B5

3
B
′4
4 B4

4
B
′5
4 B5

4
B
′6
4 B6

4
B
′7
4 B7

4





·





y1
1

y4
2

y4
3

y5
3

y4
4

y5
4

y6
4

y7
4





=





b1

b4
2

b4
3

b5
3

b4
4

b5
4

b6
4

b7
4





Notation.A
′ω
t , Aωt , B

′ω
t , Bωt : scenario matrices,bωt : scenariorhs for the corresponding stage andxωt , yωt : scenario 0-1 and continuous variables, respectively.
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Appendix B. Constraint matrix structure for the illustrati ve example. Case 2:t∗ = 2 and q = 4 clusters





A1

A
′1
2 A1

2
A
′1
3 A1

3
A
′1
4 A1

4
A
′2
4 A2

4





·





x1
1

x1
2

x1
3

x1
4

x2
4





+





B1

B
′1
2 B1

2
B
′1
3 B1

3
B
′1
4 B1

4
B
′2
4 B2

4





·





y1
1

y1
2

y1
3

y1
4

y2
4





=





b1

b1
2

b1
3

b1
4

b2
4









A1

A
′1
2 A1

2
A
′3
3 A3

3
A
′3
4 A3

4





·





x1
1

x1
2

x3
3

x3
4





+





B1

B
′1
2 B1

2
B
′3
3 B3

3
B
′3
4 B3

4





·





y1
1

y1
2

y3
3

y3
4





=





b1

b1
2

b3
3

b3
4









A1

A
′4
2 A4

2
A
′4
3 A4

3
A
′4
4 A4

4





·





x1
1

x4
2

x4
3

x4
4





+





B1

B
′4
2 B4

2
B
′4
3 B4

3
B
′4
4 B4

4





·





y1
1

y4
2

y4
3

y4
4





=





b1

b4
2

b4
3

b4
4









A1

A
′4
2 A4

2
A
′5
3 A5

3
A
′5
4 A5

4
A
′6
4 A6

4
A
′7
4 A7

4





·





x1
1

x4
2

x5
3

x5
4

x6
4

x7
4





+





B1

B
′4
2 B4

2
B
′5
3 B5

3
B
′5
4 B5

4
B
′6
4 B6

4
B
′7
4 B7

4





·





y1
1

y4
2

y5
3

y5
4

y6
4

y7
4





=





b1

b4
2

b5
3

b5
4

b6
4

b7
4





Notation.A
′ω
t , Aωt , B

′ω
t , Bωt : scenario matrices,bωt : scenariorhs for the corresponding stage andxωt , yωt : scenario 0-1 and continuous variables, respectively.
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Appendix C. Constraint matrix structure for the illustrati ve example. Case 3:t∗ = 3 and q = 7 clusters

Case 3Theq = 7 clusters are as follows:





A1

A
′1
2 A1

2
A
′1
3 A1

3
A
′1
4 A1

4





·





x1
1

x1
2

x1
3

x1
4





+





B1

B
′1
2 B1

2
B
′1
3 B1

3
B
′1
4 B1

4





·





y1
1

y1
2

y1
3

y1
4





=





b1

b1
2

b1
3

b1
4









A1

A
′1
2 A1

2
A
′1
3 A1

3
A
′2
4 A2

4





·





x1
1

x1
2

x1
3

x2
4





+





B1

B
′1
2 B1

2
B
′1
3 B1

3
B
′2
4 B2

4





·





y1
1

y1
2

y1
3

y2
4





=





b1

b1
2

b1
3

b2
4









A1

A
′1
2 A1

2
A
′3
3 A3

3
A
′3
4 A3

4





·





x1
1

x1
2

x3
3

x3
4





+





B1

B
′1
2 B1

2
B
′3
3 B3

3
B
′3
4 B3

4





·





y1
1

y1
2

y3
3

y3
4





=





b1

b1
2

b3
3

b3
4









A1

A
′4
2 A4

2
A
′4
3 A4

3
A
′4
4 A4

4





·





x1
1

x4
2

x4
3

x4
4





+





B1

B
′4
2 B4

2
B
′4
3 B4

3
B
′4
4 B4

4





·





y1
1

y4
2

y4
3

y4
4





=





b1

b4
2

b4
3

b4
4









A1

A
′4
2 A4

2
A
′5
3 A5

3
A
′5
4 A5

4





·





x1
1

x4
2

x5
3

x5
4





+





B1

B
′4
2 B4

2
B
′5
3 B5

3
B
′5
4 B5

4





·





y1
1

y4
2

y5
3

y5
4





=





b1

b4
2

b5
3

b5
4









A1

A
′4
2 A4

2
A
′5
3 A5

3
A
′6
4 A6

4





·





x1
1

x4
2

x5
3

x6
4





+





B1

B
′4
2 B4

2
B
′5
3 B5

3
B
′6
4 B6

4





·





y1
1

y4
2

y5
3

y6
4





=





b1

b4
2

b5
3

b6
4









A1

A
′4
2 A4

2
A
′5
3 A5

3
A
′7
4 A7

4





·





x1
1

x4
2

x5
3

x7
4





+





B1

B
′4
2 B4

2
B
′5
3 B5

3
B
′7
4 B7

4





·





y1
1

y4
2

y5
3

y7
4





=





b1

b4
2

b5
3

b7
4





Notation.A
′ω
t , Aωt , B

′ω
t , Bωt : scenario matrices,bωt : scenariorhs for the corresponding stage andxωt , yωt : scenario 0-1

and continuous variables, respectively.

24



Appendix D. Storage of the variables xp
ti

and yp

ti
in the cluster submodelp

Table D.8: Storage order of the variables in clusterp

Explicit NAC
︷                                                                                           ︸︸                                                                                           ︷

Stage 1

Variable Position
x11 1
· · · · · ·

· · · · · ·

x1nx
p
1

nx
p
1

Staget

· · ·

· · ·

· · ·

· · ·

· · ·

Staget∗

Variable Position

xt∗1
t∗−1∑

t=1
nx

p
t + 1

· · · · · ·

· · · · · ·

xt∗nx
p
t∗

t∗∑

t=1
nx

p
t

Implicit NAC
︷                                                                                                  ︸︸                                                                                                  ︷

Staget∗ + 1

Variable Position

xt∗+1,1
t∗∑

t=1
nx

p
t + 1

· · · · · ·

xt∗+1,nx
p
t∗+1

t∗+1∑

t=1
nx

p
t

Staget

· · ·

· · ·

· · ·

· · ·

· · ·

StageT

Variable Position

xT1
T−1∑

t=1
nx

p
t + 1

· · · · · ·

xTnx
p
T

T∑

t=1
nx

p
t = np

x

Explicit NAC
︷                                                                                                   ︸︸                                                                                                   ︷

Stage 1

Variable Position
y11 np

x + 1
· · · · · ·

· · · · · ·

y1ny
p
1

np
x + ny

p
1

Staget

· · ·

· · ·

· · ·

· · ·

· · ·

Staget∗

Variable Position

yt∗1 np
x +

t∗−1∑

t=1
ny

p
t + 1

· · · · · ·

· · · · · ·

yt∗ny
p
t∗

np
x +

t∗∑

t=1
ny

p
t

Implicit NAC
︷                                                                                                                       ︸︸                                                                                                                       ︷

Staget∗ + 1

Variable Position

yt∗+1,1 np
x +

t∗∑

t=1
ny

p
t + 1

· · · · · ·

yt∗+1,ny
p
t∗+1

np
x +

t∗+1∑

t=1
ny

p
t

Staget

· · ·

· · ·

· · ·

· · ·

· · ·

StageT

Variable Position

yT1 np
x +

T−1∑

t=1
ny

p
t + 1

· · · · · ·

yTny
p
T

np
x + np

y = np
x +

T∑

t=1
ny

p
t

Note: For simplicity we have eliminated the upperindexp in the name of the variables corresponding to the related cluster.
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Appendix E. Storage of the 0-1 variables xp
ti

in the full model

Explicit NAC
︷                                                                                                                  ︸︸                                                                                                                  ︷

Stage 1

Variable Position
x1

11 1
· · · · · ·

· · · · · ·

x1
nx1

nx1 = n1
x1

t

· · ·

· · ·

· · ·

· · ·

· · ·

Staget∗

Clusterp = pt∗
1 = 1

Variable Position

x1
t∗1

t∗−1∑

t=1

|Pt |∑

h=1
nh

xt + 1

· · · · · ·

x1
t∗n1

xt∗

t∗−1∑

t=1

|Pt |∑

h=1
nh

xt + n1
xt∗

Clusterp = pt∗
2

xp
t∗1

t∗−1∑

t=1

|Pt |∑

h=1
nh

xt + n1
xt∗
+ 1

· · · · · ·

xp

t∗n
p
xt∗

t∗−1∑

t=1

|Pt |∑

h=1
nh

xt + n1
xt∗ + np

xt∗

· · ·

· · ·

Clusterp = pt∗

|Pt∗ |

xp
t∗1

t∗−1∑

t=1

|Pt |∑

h=1
nh

xt +
|Pt∗ |−1∑

h=1
nh

xt∗
+ 1

· · · · · ·

xp

t∗n
p
xt∗

t∗∑

t=1
nxt =

t∗∑

t=1

|Pt |∑

h=1
nh

xt

Implicit NAC
︷                                                                                                                              ︸︸                                                                                                                              ︷

Staget∗ + 1

Cluster 1

Variable Position

x1
t∗+1,1

t∗∑

t=1
nxt + 1

· · · · · ·

x1
t∗+1,n1

x,t∗+1

t∗∑

t=1
nxt + n1

x,t∗+1

Cluster 2

x2
t∗+1,1

t∗∑

t=1
nxt + n1

x,t∗+1 + 1

· · · · · ·

x2
t∗+1,n2

x,t∗+1

t∗∑

t=1
nxt +

2∑

h=1
nh

x,t∗+1

· · ·

· · ·

Clusterq

xq
t∗+1,1

t∗∑

t=1
nxt +

q−1∑

h=1
nh

x,t∗+1 + 1

· · · · · ·

xq

t∗+1,n
q
x,t∗+1

t∗∑

t=1
nxt +

q∑

h=1
nh

x,t∗+1

t

· · ·

· · ·

· · ·

· · ·

· · ·

StageT

Cluster 1

Variable Position

x1
T1

T−1∑

t=1
nxt + 1

· · · · · ·

x1
Tn1

xT

T−1∑

t=1
nxt + n1

xT

Cluster 2

x2
T1

T−1∑

t=1
nxt + n1

xT + 1

· · · · · ·

x2
Tn

q
xT

T−1∑

t=1
nxt +

2∑

h=1
nh

xT

· · ·

· · ·

Clusterq

xq
T1

T−1∑

t=1
nxt +

q−1∑

h=1
nh

xT + 1

· · · · · ·

xq

Tn
q
xT

nx =
T∑

t=1
nxt =

T−1∑

t=1
nxt +

q
∑

h=1
nh

xT

Note: After thenx 0-1 variables, the continuous variablesy are stored in similar way.
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