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Abstract

In this paper we present a parallelizable scheme of the Brand-Fix Coordination algorithm for solving medium
and large scale multi-stage mixed 0-1 optimization prolslemder uncertainty. The uncertainty is represented via a
nonsymmetric scenario tree. An information structuringdoenario cluster partitioning of nonsymmetric scenario
trees is also presented, given the general model formualafia multi-stage stochastic mixed 0-1 problem. The basic
idea consists of explicitly rewriting the nonanticipatywconstraints (NAC) of the 0-1 and continuous variable$im t
stages with common information. As a result an assignmethteofonstraint matrix blocks into independent scenario
cluster submodels is performed by a so-called clustertisgjitompact representation. This partitioning allows to
generate a new information structure to express the NACwiimi& the related clusters, such that the explicit NAC
linking the submodels together is performed by a splittiagiable representation. The new algorithm has been
implemented in a €+ experimental code that uses the open source optimizatigine@@OIN-OR for solving the
auxiliary linear and mixed 0-1 submodels. Some computatierperience is reported to validate the new proposed
approach. We give computational evidence of the modeldighty dfect that have preprocessing techniques in
stochastic integer optimization as well, by using the pnglsind Gomory and clique cuts identification and appending
schemes of the optimization engine.

Keywords: Multi-stage stochastic mixed 0-1 optimization, nonsymigestcenario trees, implicit and explicit
nonanticipativity constraints, splitting variable andrmgact representations, scenario cluster partitioning.
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1. Introduction

Stochastic Optimization is actually one of the most robaets for decision making. It is broadly used in real-
world applications in a wide range of problems frorffelient areas such as finance, scheduling, production plgnnin
industrial engineering, capacity allocation, energyitaiffic, logistics, etc. The integer problems under uncertainty
have been studied in [1, 14, 15, 18, 19, 21], for just citingw feferences. An extended bibliography of Stochastic
Integer Programming (SIP) has been collected in [20].

It is well known that a mixed 0-1 problem under uncertaintyhaa finite number of possible future scenarios
has a mixed 0-1 Deterministic Equivalent Model (DEM), whtre risk of providing a wrong solution is included
in the model via a set of representative scenarios. Howeagesny graph representation of this type of multi-stage
models can suggest, the scenario information structudngHiis type of problems is more complex than for the
approximation made by considering two-stage stochastiedn®-1 models. We should point out that the scenario
tree in real-life problems is very frequently nonsymmedniid then, the traditional splitting variable representati
for the nonanticipativity constraints (for short, NAC)edqéd, 16], on the 0-1 and continuous variables does not appear
readily accessible for manipulations that are requiredhgydecomposition strategies. A new type of strategies is
necessary for solving medium and large scale instanceegirttblem. The decomposition approaches that appear
most promising are based on some forms of branching sefeeti@ scenario cluster partitioning and bounding that
definitively use the information about the separabilitylef problem, see our work in [6, 7].

In this work we present a stochastic mixed 0-1 optimizatiadeling approach and a parallelizable Branch-and-
Fix Coordination (BFC) algorithm for solving general mix@d. optimization problems under uncertainty, where it is
represented by nonsymmetric scenario trees. One of itsadheatures is the information structuring for generating
saving and manipulating the scenario cluster submodelmixt@re of splitting variable and compact representations
Given the structuring of the scenario clusters, the apprgaterates independent cluster submodels, then, allowing
parallel computation for obtaining lower bounds to the mgati solution value as well as feasible solutions for the
problem until getting the optimal one. (Tighter lower boarghn be obtained by following the lines presented in
[9] by using Lagrangean decomposition approaches in a ksksion environment). As a result, an assignment
of the constraint matrix blocks into independent scenaltister submodels is performed. We present a splitting
variable representation with explicit NAC for linking thelsmodels together, and a compact representation for each
submodel to treat the implicit NAC related to each of the scerclusters. Then, the algorithm that we propose uses
the Twin Node Family (TNF) concept, see [6, 7, 8], and it iscipldy designed for coordinating and reinforcing
the branching nodes and the branching 0-1 variable setestiategies at each Branch-and-Fix (BF) tree. The
nonsymmetric scenario tree which will be partitioned intoafler scenario cluster subtrees. The new proposal is
denotedNonsymmetric BFC-M8&lgorithm. We report some computational experience talasdi the new approach
by using a testbed of medium and large scale instances. Wecgimputational evidence of the model tightening
effect that have preprocessing techniques in stochasticeintggimization as well, by using the probing and Gomory
and clique cuts identification and appending schemes offika source optimization engi@OIN-OR

The remainder of the paper is organized as follows. Sectipre&ents the multi-stage mixed 0-1 problem under
uncertainty in a splitting variable representation as \aslthe required information about the variables by scenario
cluster and stage. An illustrative example will be usedulgtothe paper to show the main ideas that are proposed in
the decomposition framework. Section 3 shows how to geadhatrequired information in order to know until what
stage the cluster submodels have common information. Itiddet a scheme for formulating the cluster submodels
is presented, such that Section 5 gives the full model intgivariable representation linking the submodels with
the explicit non-anticipativity constraints. Section @gents the main steps of the so-calmhsymmetric BFC-MS
algorithm. Section 7 reports the computational experiargisg COIN-OR [13] to verify the ffectiveness of the
proposal. Section 8 concludes. Three appendices presecbtistraint matrices in detail for the illustrative exaejpl
and two more give the details of the order of storage of thalbgs in the model.



2. Splitting variable representation in stochastic optimzation

Let us consider the following multi-stage deterministicced 0-1 model

minz a X + CiVi
teT
st. Auxs + Biyr =g 1)

AXe1 + AXe + By + By =by VteT - {1)
Xt € {0, 1}™, y; € R™™,

where7 is the set of stages (without loss of generality, let us aarghat a stage is only included by one time period),
such thafl = |7, % andy; are thenx andny; dimensional vectors of the 0-1 and continuous variablepeetively,
a; andc; are the vectors of the objective function fiba@ents, and; andB; are the constraint matrices for stage

This model can be extended to consider uncertainty in sontleeofain parameters, in our case, the objective
function, therhs and the constraint matrix cfiicients. To introduce the uncertainty in the parameters, Weuse
a scenario analysis approach. A scenario consists of zaéal of all random variables in all stages, that is, a
path through the scenario tree. In this ser@@eayill denote the set of scenarios, € Q will represent a specific
scenario, see Figure 1, am¢ will denote the likelihood or probability assigned by thedeéer to scenaria, such
that) .o W = 1. We say that two scenarios belong to the same group in a gtegie provided that they have the
same realizations of the uncertain parameters up to the.skglowing thenonanticipativity principle see [1, 16],
among others, both scenarios should have the same valueefoglated variables with the time index up to the given
stage.

t=1 t=2 t=3 t=14

scenario w=1

5 .
X2, y2  scenario w=2

X2, ys  scenario w=3

5
INS

scenario w=4

X, y2  scenario w=5
. ¥ scenario w=6

Y

7 1 0 w=
X3, Y, Scenario w=7

Figure 1: Scenario tree. lllustrative example.

Let alsoG denote the set of scenario groups (i.e., nodes in the uridgdgenario tree), arng; denote the subset
of scenario groups that belong to stage 7, such thatg = UisGi. Q4 denotes the set of scenarios in group g, for
g € G. Note that the scenario group concept corresponds to the cmttept in the underlying scenario tree.

Thesplitting variablerepresentation of the DEM of the full recourse stochastisiea related to the multi-stage



deterministic problem (1) can be expressed as follows,

Zwip = min > %" we(ax’ + cey)
weQ teT”
st. A1XT+Bly(f=b1 Yw e Q
ALY+ APXC + By +BYYY = b, Vw e Q, 122
X -x' =0, Vo, €Qq:w#w,geG, t<T -1
Y-y =0, Vo, €Qqiw+w,geG, t<T-1
X € {0, 1™, Y e R™ YueQ, teT.

(@)

Following the nonanticipativity principle cited above feach stagé the corresponding equalities must be satisfied,

A;w — A;w” Atw — Atw” B;w — B;w” Biu — B;u” btw — btw”atw — atw”ctw — th” (3)
Yo, €Qy iw#w,0eG, 2<t<T-1

Observe that for a given stageA” andA are the technology and recourse matrices for¢hariables and“ and
B¢ are the corresponding ones for thevariables. Notice that’ — x* = 0 andy?’ — y¢° = 0 are the NAC. Finally,
nx’ andnyy’ denote the dimensions of the vectors of the variaklaady variables, respectively, related to stage
under scenaria.

Definition 1. A Branch-and-FiXBF) tree associated with any scenario is the classical Breand-Bound tree in the
integer optimization model for that scenario.

As an additional notation, |&* denote the BF tree associated with scenarigl® be the set of active nodesRY
forw € Q, I the set of indices of the variables in any veotprand §); thei-th variable inx’, fort e 7,w € Q,i € 1.

Definition 2. Two variables, say(x’); and (x'); are said to becommonvariables for the scenarios and «’, if
w,w €Qq,0€ G, forw # o', t € 77,i € 1. Notice that twccommonvariables have nonzero elements in the NAC
related to a given scenario group.

Definition 3. Any two nodes, say, @ A and & € A are said to bawin nodes with respect to a given scenario
group if the paths from their root nodes to each of them inrthein BF treesR® andR*’, respectively, either having
not yet branched opffixed at theircommonvariables, if any, or having the same 0-1 value for their tolaed ory
fixed at theircommonvariables(x’); and(x{*")i, forw,w € Qq,0e G, te 7T ,iel.

Definition 4. A Twin Node Family(TNF), say,7; is a set of nodes such that any node isvin node to all the other
node members in the family, foref ¥, whereF is the set of the families.

Definition 5. A candidate TNFHs a TNF whose members have not yet branched fored at all theircommon
variables.

Definition 6. A TNF integer seis a set of TNFs where all x variables take integer valuesetigeone node per each
BF tree and the NAQX®); — (x*'); = 0 are satisfiedYw, w’ € Qg, g€ Gi,t € T ,i € 1.

The scenario tree information given in Figure 1 can also peesented and managed by using the veRtgiven
in the following definition.

Definition 7. A generalscenario tree in compact notation can be uniquely definedfy (r(g) : g € utTgllgt),
where (g) € N is the number of branches arising from the stage of groug g |G-1/, to the next stage. That s,

t=1 t=2 t=3 t=T-1
—
R=(rygy | T21, 22, ..., Togy | T31, 32, .., T3y |-l TTo11, FTo12, - -5 FTo1igra))s

where the number of groups for stagéd;|, corresponds to the sum of branches of the previous stage:

Gt
G1l =1, [Gual = D 1 t< T -1
i=1
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A symmetric tree assumes that the number of branches is the same for all mmalitlistributions in the same
stage, that is, for stage< T — 1,1 =r1yj, ¥Yi # j, 1 <i,] < |G. A nonsymmetric tree is a non symmetric one.
Moreover, without lost of generality in this work, we consichonsymmetric trees, see below.

For the example given in [1], page 130, the scenario tree slwigure 1 can be defined ®/=(2|122]211 3).
So0,|G1l =1, |G2l = 2, |Gal = 4, |Gal =7 = |Q] andT = 4. The set of scenarios & = {1, 2,..., 7}, and the subsets
of scenario groups atg; = {1}, G> = {2, 3}, Gz = {4,5,6,7}, G4 = {8,9,...,14} andG = ulegt. Finally, the
scenarios in each group are: Q; = {1,...,7}, Q2 = {1,2,3}, Q3 = {4,...,7}, Q4 = {1, 2}, Q5 = {3}, Qs = {4},
Q7 ={5,6,7}, Qg = {1}, Qg = {2}, Qo = {3}, Q11 = {4}, Q12 = {5}, Q13 = {6} andQu4 = {7}.

In general, for any multi-stage stochastic problem wiitistages andk2| scenarios, the information about until
what stage the scenario submodels have common informatimhywhen the NAC must be explicit, is saved in the
subsetgr; andQg, g € Gy, t € T, i.e., in the scenario tre or, alternatively, in thescenario tree matrixdefined below.

Definition 8. Thescenario tree matrix, ST € Mgg, is & matrix where the corresponding value for the fairg)
gives the related stage t, such that

t, ifweQgandge G

ST (w.9) = {O, otherwise. 4)

Notice that the scenario tree matrix reproduces the streigfiven by the scenario tre®. This matrix has been
built by using the set®q andgy, i.e., the scenario treR, but these sets can be also generated from the matrix. For
each stageé € 7, we can obtain the set of scenario groups in such sgagas the column of the position(g), for
which the corresponding element in the scenario tree miatagual ta; thenG; = {ge G| Jw € Q : ST (w, Q) = t}.

See also that the set of scenarios related to gooigYy = {w € Q| ST (w,g) # 0}. For our example, the scenario
tree matrix,S7 (w, g), is given in (5).

1

ST (w,9) = (5)

OO OONDNDN
NNNNOOO
OO OO OWw
cNeoNeoNeoNANoNe]
OO O wWwoOooo
WWwWwoooo
OO OO OO M
[cNeoNeoNeNel el
OO OO M~MOO
OO0 O p,pPOOO
OO P~AOOOO
Oh~rROOOOO
A OOOOOO

PR RPRRPRRPR

3. Scenario clustering in nonsymmetric scenario trees

It is clear that the explicit representation of the NAC is rexuired for all pairs of scenarios in order to reduce
the dimensions of model. In fact, we can represent impfi¢fie NAC for some pairs of scenarios in order to gain
computational fiiciency.

We will decompose the scenario tree into a subset of scenhriters, where® = {1, ...,q} denotes the set of
clusters andy = |P|. Let QP denote the set of scenarios that belongs to a generic clpsteherep € £ and
Zgzl |QP| = |Q|. Itis clear that the criterion for scenario clustering ie gets, sayQ?, ..., Q9% is instance dependent.
Moreover, we favor the approach that shows higher scen&ugiering for greater number of scenario groups in
common. In any case, notice t@k QP =0, p,p' =1,...,q: p# p' andQ = u?):lQp. Let alsog® c G denote
the set of scenario groups for clusgersuch thadg N QP # @ means thag € G°, G = Gi N GP denote the set of
scenario groups for clust@re P in staget € 7.

We propose to choose the number of scenario clustasany value from the subs@t= {|G1],|G2l,...,|GTl}.

As we will see below, the valug will be associated with the number of stages with explicitONBetween cluster
submodels.

Definition 9. The break staget* is the stage t such that the number of scenario clusters-i$@- 1|, wheret+1 e 7.
Observe that cluster p # includes the scenarios that belong to group @1, i.e.,QP = Q.



Definition 10. Thescenario clustemodels are those that result from the relaxation of NAC uhélbreak stage'tin
model (2).

Notice that the choice off = 0 corresponds to the full model aitd = T — 1 corresponds to the scenario
partitioning.

Definition 11. Thecluster tree matrix associated with the' +decomposition, €% € Mgyg, is @ matrix where the
corresponding value for the pafp, g) gives the related stage t, such that

t _ [t ifgeg!
C7(p.0) = {O, otherwise. ©)
Notice thatg; = Gi N GP, is the set of scenario groups for cluspee # in staget € 7.
Once decided the break stagg,the corresponding cluster partition is given, and itsdtree is defined by the
related cluster tree matrix.

Property 1. For any stage?2 <t < t* + 1 and any cluster g P, the cardinality of the subset of groups that belong to
cluster p at stage ugﬂ is always equal to 1.

Property 2. For any stage't+ 1 <t < T and any cluster & #, the cardinality of the subset of groups that belong
to cluster p at stage {G/| is greater than 1, unless if one realization of the uncerfsanameters exactly occurs from
stage t 1 to stage t in cluster p, in which case it is also equal to 1.

Notice that the subse” andG; and, consequentlx,zy’tp can be obtained from the cluster tree matrix given above.
For each clustep € ? (i.e., p—row in matrix C7 "), the set of scenario grougd® can be obtained as the set of
columns in the*—cluster tree matrix with a nonzero element, i@®,= {g € G | CT" (p, g) # 0}. Similarly, the se;
of scenario groups in each stage 7 can be obtained a8 = {ge G| Ape P : CT (p,g) = t.

In the illustrative example depicted in Figure 1, three sasan be considered for generating theluster
submodels wherg can be chosen from the set of valygs|, |G3l, 1Gal} = {2, 4, 7}, namely:

e Case 1 Let the break stage = 1, then there arg = |G»| = 2 clusters, see Figure 2 and, then, two subsets of
scenario groups, say* = {1,2,4,5,8,9,10)andg? = {1, 3,6, 7,11, 12,13 14}, where the scenarios in each set
areQ! = {1,2,3)andQ? = {4,5,6, 7).

The 1-cluster tree matrix is given in (7).

112 0|3 3 0 0|4 4 4 0 0 0 O 7
0 3 3]0 0 0 4 4 4 4)

1 -
C‘T(p,g)—(1 0 2|0

e Case 2 Let the break stageé = 2, then there arg = |Gs| = 4 clusters, see Figure 3 and, then, four subsets
of scenario groups, sag* = {1,2,4,8,9}, G° = {1,2,5,10}, G° = {1,3,6,11}, andG* = {1,3,7,12 13,14},
where the scenarios in each set@fe= {1, 2}, Q? = {3}, Q° = {4} andQ* = {5, 6, 7}.

The 2-cluster tree matrix is given in (8).

112 0/3 0 00/4 40000 0

. . |1]/2 olo 3 00/0040000

CT(P.9=| 710 2/0 0 3 0/0 004000 (8)
110 20 003000044 4

e Case 3 Let the break stage = 3, then there argq = |G4| = 7 clusters, see Figure 4 and, then, seven sets of
scenario groups, sa§* = {1,2,4,8},G% = {1,2,4,9}, G° = {1,2,5,10}, G* = {1,3,6,11}, G° = {1,3,7,12},
G% =1{1,3,7,13)andG’ = {1, 3,7, 14}, and seven sets of scenari®¥: = {1}, Q2 = {2}, ..., andQ’ = {7}.

Notice that the 3-cluster tree mati®g 2 is ST, see (5).

Notice that in the above scenario cluster partitioning werfahe approach that shows higher scenario clustering for
greater number of scenario groups in common.



4. Scenario cluster submodels

Let us assume that we have broken down the scenario treejialiasters. Now, let us formulate the cluster
submodels, and next the full mixed 0-1 DEM via splitting @dile representation, so that hpeluster submodels are
linked by the explicit NAC until stagé. For doing so, lek{ andy denote the vectors of the 0-1 and continuous
variables, respectively, for scenario clustee # and stage € 7. Let alsonx’ andny® denote the number of 0-1
variables and number of continuous variables for the mt) (respectively. For implementation purposes, the storage
order of the variables is very important. We show in the Apghess D and E the order that we propose.

Definition 12. Therepresentative scenario for scenario group g in cluster p at stage t is the first ordesednario in
the scenario grouppl) = minfw € Qg }, g€ G, pe P, teT.

The set of constraints is split such that the first block iate#l to the first stage, the second block represents the
constraints related to the vectors of variables until stage (i.e., stages with explicit NAC) that must be linked with
their own replicas in all the other clustgps e #, and the third block represents the constraints relateldeoectors
of variables from stagg + 2 (i.e., stages with implicit NAC).

.
(MIPP) 2% = 5" wi(aPxf + cfyf)
t=1
St A]_XE + B]_Xf = b]_ (9)

APXP + AP +BPYP  + By =bP2<t<t +1
[ATPxP + [AQPXE + [B{IPyP, + [BIPyY =bf, t' + 1<t <T

xP € {0, 1) yP e R teqT,

wherew is the weight of clustep in staget to be expressed in (11).

The first block of constraint matrice&; and B, is related to the first stage vectors of variabi€sand y?,
respectively, whosehsis b;.

The second block of constraint matricgs{, AP, B, BP) is related to the stages 2 t until staget* + 1. For
all the stages < t* + 1, the weight of clustep at stage isw = Z w”. In a similar way, we can define the

weQq : geGP
objective function cofficientsal’ andc] fort < t* + 1.

Finally, the third block represents the constraints fogetafromt* + 2 until the last oneT . In all of these stages,
the nonanticipativity principle is implicity taken into emunt, since the submodel for each cluster is formulated via
a compact representation. The constraint matriéeF’ [and B;]°, and A]P and B:]P can be split into th¢g{’_ |
and|GP| submatrices related to the scenarios groups in a givereclpstespectively. For scenario grogpe Gf,
iefl,..., |gtp|} in clusterp at stagd, let the representative scenaxzi»é = min{w € Qg} to define the related block
of matrices. In a similar way, the matriced®P and B:]P can be obtained.

Notice that the matriceg\[]° and [B{]P have|G;_1| columns, while the matrice&\[]P and B:]P havelG;| columns.

It can be observed that if there are explicit NAC in stagel, then A{]P and B;{]P would be block diagonal matrices
with the same number of columns a&J° and [B]P, that is, |G|, see (10). But, since the NAC are implicitly
considered, then the matrices become grouped matriceslbognes, such that they will have in the same column
the matricesA” and A/ for xP ,, and B and B for y",, respectively, wheree”, = x¥, andy”, = y¢,
Vo, € Qg :w # o, ge G, t +1 <t < T. Notice that these matrices can easily loose the diagooakbl
structure, see below and the Appendices A, B and C.



r, P
A% 0 0 A" 0 0 ... o0
) w?
[A{]pz 0 At'92 0 ’ [At]p: 0 Atgz o ... 0 (10)
6 0 | A;wsgfll O 0 O . A{‘“S 601
I6° 1 columns IgP columns

Sincex!, yf andb! have the dimensiol@!|, the weight of clusterp in staget is as follows,

P
Wgy “gy

Xt . b, .
Wgy “gp wh -1 wh -1 w=aP

X N 92 93 t

xP = i ,bf = i W= pr‘", pr‘“,..., 2:‘) we |, (11)

: : W=wgy W=wg, W=g.p,
p WP t
I6PI b I6PI

% t

wherew! = maxw € QgQ € G?} denotes the last ordered scenario in clugtet staget. Similarly, the objective
function codficientsal andcf can be defined.
Theq cluster submodels (9) are linked by the NAC, that now can badidated as follows,
X —xP =0, pzp.t<t,geG.t=C7 (p.g)=CT(p.0) (12)
Y-y =0, p#p,t<t,geG, t=CT"(p,g)=CT"(p,0). (13)

Let us consider the three previous cases for the exampletddpn Figure 1, wheré = 4,|Q| = 7 and|g| = 14.

e Case 1 Consider explicit NAC until stage = 1 and, theng = 2 clusters, whose scenario groups are given in
Table 1. Using the 1-cluster tree matrix (7), the subset efato groups for clustgs and stage, Gf can be
determined. In this case, all of these subsets have a simgd¢ment (see Property 1) urttil+ 1 = 2. And
fromt* + 2 = 3 these subsets have one or more elements (see Property 2).

Table 1: Scenario groups far= 2. lllustrative example

G p=1 p=2
t=1 {1} {1}

t=2 {2} {3)

t=3 {4,5) (6,7}
t=4 {8,9,10} {11,12,13,14}

Let us define the blocks of the matrices by stages. Obviotisymnatrices for the first block (stage- 1 and
g = 2 cluster models) are are follow8; := A1, By := B; and therhsb; := b;.

The matrices for the second block (stages < t* + 1 = 2) are are follows:

/wl , /wl wl U.)l
1. For p = 1: Al == A%, B! := B, Al := A, Bl := B/®, andb} := b
representative scenario for 2,g € Gt = {2} is w3 = minfw € Qp} = 1.

N
IA
-
A

< 2, where the

rw2 , ’U)Z wZ w2
2.Forp=2 AZ:= A" B2 :=B"" A? .= A, B2 := B°, andb? := b®, 2 < t
representative scenario foe 2,g € G2 = {3} is w3 = minjw € Q3} = 4.

IA

2, where the

The matrices for the third bloch[]P and [A]P are as follows for stagé + 1 =2 <t < 4:

8



1. For p = 1: For staget = 3 and scenario groug, € G5 = {4,5},i € {1,...,IGi} = {12}, the
representative scenarda’%i = min{w € Qq} for groupg; is w,; = Min{w € Q4} = 1 for groupg; = 4 and
wg = min{w € Qs} = 3 for groupg; = 5.

/ 1
Due tox% = xg from NAC, [Aé]1 = ( A,33 ) [Ag]! = ( '663 'gg ) and the corresponding vectors of

1
the x variables areq = x; andx3 = ( ))é )
For staget = 4 and scenario groug € g}l =1{8,9,10},i € {1,...,|g}1|} = {1, 2, 3}, the representative
scenariOwéi = min {w € Qg} for group g is wé = min {w € Qg} = 1 for groupg; = 8,
w§ = min{w € Qg} = 2 for groupg, = 9 andwi, = min {w € Q0} = 3 for groupgs = 10.

Al 0 AA 0 O

Due tox} = X2 fromNAC, [Aj]'=| A2 0 |, [Ad'=]| 0 A2 0O and the vectors of the

0 A? o 0 A

3 3
Xy

2. For p = 2: For staget = 3 and scenario groug; € G5 = {6,7}, i € {L,...,|G3} = {1.2}, the
representative scenardaigi = min{w € Qq} for groupg; is wg = min {w € Qg} = 4 for groupg; = 6 and
w? = min{w € Q7} = 5 for groupg, = 7.

’

Due tox} = x5 from NAC, [A3]* = ( A,3: ) [A3]? = ( Aog

¥t
i 1 X3 1 3
variables are; = X§ andxy =| x;

:23 ) and the corresponding vectors of
the x-variables are; = x3 andx3 = &
For staget = 4 and scenario groug; € G3 = {11,121314},i € {1,...,|G3} = {1,2,3,4}, the
representative scenariosi = min {w € Qg} for groupg; is “’%1 = min {w € Qq1} = 4, for group
01 = 11,2, = min{w € Qg5} = 5 for groupg, = 12, w?, = min{w € Qu3} = 6 for groupgs = 13 and
w?, = min{w € Q14} = 7 for groupg, = 14.

A} 0O A} 0O 0 O
0o A 0 A 0 O
5 _ _ 7 712 _ Y] 2 _ Y\
Due tox3 = x§ = x{ from NAC, [A}]° = 0 Al | [Ad® =1 5 % A0 and the

0 A/ 0 0 0 A]
X
, , [ X ) X2
vectors of thex-variables are; = | 3 | andxj = 0
& ;
X

4

Similarly, the matrices for the third blocB[]P and [B;]P can be defined. The constraint matrix structure of the
g cluster submodels is shown in Appendix A.



Figure 2:xtp variables with explicit NAC untit* = 1. lllustrative example

e Case 2 Consider explicit NAC until stage = 2 and, theng = 4 clusters, whose scenario groups are given in
Table 2. Using the 2-cluster tree matrix (8), the subset efatio groups for clustgs and stage, Gf can be
determined. In this case, until+ 1 = 3 all of these subsets have a singleton element (see Prdpesynd for
t* + 2 = 4 these subsets have one or more elements (see Propertyt2)s define the blocks of the matrices

Table 2: Scenario groups far= 4. lllustrative example

Gi p=1 p=2 p=3 p=4
{1 {1 {1 {1}

2y {2 {3 {3}

4y {8 {6} {7}
(8,9} {10} {11} {12,13,14}

— o~ o~
(1l

Il
A WN P

by stages. Obviously, the matrices for the first block (stagel andq = 4 cluster models) are as follows:
A1 := Ay, B; ;= By and therhs by = b;.
The matrices for the second block (stages < t* + 1 = 3) are as follows:

/wl , /wl wl U.)l wl
1. For p = 1: Al == A", B! := B, Al := A%, Bl := B/%, andb! := b, 2 < t < 3, where the
representative scenario foe= 2,9 € G3 = {2} isw} = minfw € Qy} = 1 and fort = 3,9 € G} = {4} is
w} = minfw € Q) = 1.

r, 2 r, 2 2 2 2
2.Forp=2 A2 := A" B2 = B, A2 := A", B2 := B, andb? := b;%, 2 < t < 3, where the
representative scenario foe 2,9 € G5 = {2} is w3 = minfw € Qp} = 1 and fort = 3,9 € G5 = {5} is
a)é = minfw € Qs} = 3.
- "3 w3 W3 w3
3.Forp=3 A2 := A" B3 :=B" A} = A® B = B andb? := b*,
representative scenario foe 2,9 € Qg ={3}is wg = minfw € Q3} = 4 and fort
w? = minfw € Qg} = 4.
rwll , rwll w4 wll w4
4. For p =4 A® = A, B* := B ° A} := A®, B} := B/%, andb{ := b, 2 < t < 3, where the
representative scenario for= 2,9 € G5 = {3} is wj = minjw € Q3} = 4 and fort = 3,g € G3 = {7} is
w‘71 = minfw € Q7} = 5.

2 <t < 3, where the
=3,0e€ G5 =1{6}is

The matrices for the third blocl&f]P and [A]P are as follows for stagé + 1 =3 <t < 4:
10



1. For p = 1: For scenario groug; € gﬁ =1{8,9},1 € {1,...,|g}1|} = {1, 2}, the representative scenario
wg, = Min{w € Qg } for groupg; is wg = Min{w € Qg} = 1 for groupg; = 8 andwg = Min{w € Qo} = 2

for groupg, = 9.

Due toxt = 2 from NAC, (A4t = 2% ), (A=A O d th d f
ue tox = x5 from AT = Az )’ [A4]” = 0 Ai and the corresponding vectors o

1
) X
the x variables are = x; andx; = ( 4 )

X2
4

2. For p = 2. For each scenario group € gﬁ = {10}, i € {1,...,|g§|} = {1}, the representative
scenariOwéi = min {w € Qg} for group g; is w%o = min{w € Qo = 3 for groupg: = 10,
[AJ? = ((A? ). [Ad? = ( A}) and the corresponding vectors of theariables ared = X,
X2 = X3,

3. For p = 3 For scenario groum; € gi = {11}, i € {1,...,|g§|} = {1}, the representative
scenariOwgi = min {w € Qg} for group g; is wil = min {w € Q1} = 4 for groupg; = 11,
[A]? = ( A} ) A = ( A ) and the corresponding vectors of tkevariables are = X3,
X3 =X

4. For p = 4: For scenario groug; € gjl‘ = {1213 14},i € {1,...,|g}1|} = {1, 2, 3}, the representative
scenariOwgi = min {w € Qg} for groupg; is a)‘1‘2 = min {w € Oy} = 5 for groupg; = 12,
wiy = min{w € Q3} = 6 for groupg, = 13 andw?, = Min{w € Qu4} = 7 for groupgs = 14.

Ap A, 0 O
Due tOXg — Xg — X; from NAC, [Ail]ll — A;lj , [A4]4 — 8 A.; A(\)7 and the Corresponding
4 4

X5 XZ
vectors of thex variables are3 = xg andx; = | X; |.
7
X
4

Similarly, the matrices for the third blocB[]P and [B;]P can be defined. The constraint matrix structure of the
g cluster submodels is shown tin AlppendixtB. )

2 I =1
1 O— =2 "
AN A
I \ I ‘ 9 w=2
)/ \‘ X3 = Xj
_ | | Y ¥ () O _
p 2 11: \3/ ® 10 w=3
\
=i = =
| X
_3 , AR _
p=3 (W0 O— wv=4

g
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g
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EEEE
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I

a1

Figure 3:xtp variables with explicit NAC untit* = 2. lllustrative example

e Case 3 Consider explicit NAC until stage = T — 1 = 3 and, theng = 7 clusters, whose scenario groups are
given in Table 3. Using the scenario tree matrix (5), the stibbscenario groups for clustprand stage, G
can be determined. In this case, all of these subsets hamnglatsin element (see Property 1).

Let us define the blocks of the matrices by stages. Obvioti@ymnatrices for the first block (stage- 1 and
g = 7 cluster models) are as follow&; := A, B; := B; and therhsb; := b;.

11



Table 3: Scenario groups far= 7. lllustrative example

Gt p=1 p=2 p=3 p=4 p=5 p=6 p=7
t=1 {1 {1 {1} {1 {1 {1 {1}
t=2 {2+ {& {2t {34 {34 {38 {3}
t=3 {4 {4 {5 {6 {7+ {7 {7}
t=4 {8 {9y {10} {11} {12} {13} {14}
The matrices for the second block (stages < 4) are as follows:
1. Forp =1 A} = A;‘“é, Bl := B;wé, Al = At‘“é, Bl := f’é, andb} := bt‘“é, where the representative

scenario fort = 2,9 € G5 = {2}iswj = minfw € Q} = 1, fort = 3,9 € G5 =
wj =minfw € Q4} = 1, and fort = 4,g € G5 = {8} is w} = Minjw € Qg} = 1.
r, 2 ’, 2 2 2
2.Forp=2 A2 := A, B2 := B A? := A, B := B/Y, andb? :=
scenario fort = 2,9 € G5 = {2}is w5 = minfw € Q} = 1, fort = 3,9 € G5 =
w? =minfw € Q4} = 1, and fort = 4,g € G4 = {9} is w§ = Minjw € Qq} = 2.

3. Forp=3 A2 := /

(4} is

2
b,?, where the representative

{4} is

wd ’ "wd wd w3 wd .
A B2 = B9, A = A, B = B/, andb? := b,?, where the representative

scenario fort = 2, g € G5 = {2} isw3 = minfw € Qp} = 1, fort = 3,9 € G5 = {5 is
w? = minfw € Q) = 3, and fort = 4,9 € G3 = {10} is w3 = Minfw € Qq} = 3.

7.Forp=7 A7:= A% B := B A := A% B := B, andb’ := b?, where the representative
scenario fort = 2, g € G} = {3}isw] = minfw € Q3} = 4, fort = 3,9 € G5 = {7} is

w} =minfw € Q7} =5, and fort = 4,g € G} = {14} isw{, = Minfw € Q14} = 7.

Moreover, sincg* + 1 = T = 4, there is not a third block of constraints.

Similarly, the matrices for the third blocB[;]P and [B]P can be defined. The constraint matrix structure of the

g = 7 cluster submodels is shown in Appendix C.

5. SIP mixed 0-1 model with nonsymmetric scenario trees

The decomposition in scenario clusters of the DEM (2) can isengby the mixture of a splitting variable
representation (between the cluster submodels) and a abnepaesentation (for each of them), such that the objectiv
function valueZyp of the full model can be obtained as the sum of the relatedctip@efunction values for each

scenario clusteg” (9). So,Zuip = 2?3:1 Z subject to the NAC (12)-(13) between the clusters.

An external structure of information must be defined, via Hwecalledrepresentative cluster setnd the
predecessor cluster matrixBoth elements are required by the asymmetry of the scechrsber partitioning; see

below.

First, remind thaf is the set of the scenario clusters, and let us consideg@resentative cluster se! for stage
t € 7. The main aim is to determine the vectors of variables witmeplicas fort = 1,...,t*. Each element in s¢?'
is the representative scenario cluster of the clustersbslang to groupm at stage. WIlog, the first ordered cluster

associated with scenario grog G; can be considered as the representative cluster, such'tkatp}, p5, ..

Pigh

wherepy = {min p|g e GP, p € P}. Notice that the required information for the definition¥fis given in the

corresponding®*-cluster tree matrix. See also that = P, Vvt > t*. Fort € {1,...,

t*}, the number of elements in

such set coincides with the number of scenario groups|®% .= |Gy, in particularP! = {1}. Moreover, each set is

included in the corresponding set for the next st®fec P> c...c P cP'*lc...cPT =P.
In the illustrative example, the set of representativetehssfor Case 1t{ = 1, q = 2), they are:P! =
P2 =P3 =4 =P =(1,2). For Case 2tf = 2,q = 4) they areP! = {1}, P2 = {1, 3} andP = P* = P = (1,

Finally, for Case 3t( = 3,q = 7) these sets ar@®! = (1}, P? = (1,4}, P = (1,3,4,5)andP* =P = {1,2,...,

12

{1} and
27

3,4).
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Figure 4:xtp variables with explicit NAC untit* = 3. lllustrative example

Second, for the hybrid formulation between the full moded #me scenario cluster submodels, the predecessor
cluster of the representative clustein staget, pred(t — 1, p‘g), can be defined via thgredecessor cluster matrix

Definition 13. Thepredecessor cluster matrix associated to the +decomposition, pred Mg is @ matrix where
the corresponding value for the pdii; p) gives the predecessor cluster of the representative clpstestage t.
At each row t= 1, ..., t*, the matrix is computed from the sets of representativeaisiat the related stagé!.

PLsp<py, PaSP<P; Pl < P =3
t t t t
precKt,~)=(1-~-1 p2"'p2~-~p|pl""p|¢>l‘)

So, the functior for calculating the predecessor cluster of a given scemduigterp can be defined, taking into
account that the g_iven cluster must be a representativtecmgsat s_taga. So,¢(p§) = pred(t -1, p{;,). _
In the illustrative example, the predecessor cluster mapred € My, for Case 1 ¢ = 1,q = 2) is

predt, p) = ( 11 ) For Case 2tf{ = 2,q = 4), pred € M4 is predt, p) = ( 111l ) And, finally,

11 3 3
1111111
forCase 31 =3,q=7),prede Mayispredt,p)=|{ 1 1 1 4 4 4 4|
113 45565

Definition 14. The cluster splitting-compaatepresentation is the splitting variable formulation thiatextended
between all the scenario cluster submodels and the compprtgentation into each scenario cluster.

By using the previous elements, the full DEM can be formulatea cluster splitting-compact representation as
follows,

t
t Py

T4
(MIP)  Zyip = min agx} + cixd + Z Z wP(@PxP +cPyP) + Z Z:th(atpxtp +cfyP)
t=2 p=p} t=t*+1 p=1

13



st. Aixj+ By} = b}

AP+ APxP + By 1+ BPYP = bP, pePl2<t<t +1
[ATPXP + [AQPxE + [B{IPYY, + [BIPyf =bf, peP, t+1<t<T (14)
ti = Xp” p ;t p/’ p’ p/ € Pt’t S t*

’

W=y, pzp.ppefitst
xP e {0, yPeR™, pep, teT,

where the vectors? andy for staget such that 2< t < t* + 1 have as many replicas as groups in the scenario tree

for each scenario cluster. The matrige8, B,”, AP andBP have been defined in the scenario cluster model (9). The
order of the storage of the variables is shown in AppendicasdE.

6. Nonsymmetric BFC-MS Algorithm

Before executing the proposed algorithm for solving thgioal multi-stage stochastic mixed 0-1 problem, it
is required to fix the data structuring, see Figure 5. A denidias to be made on fixing the break stagéor
considering the splitting variable representation (the,stages with explicit NAC) and, consequently, the nunolber
clustersg € Q, whereQ = {|Gil,1G4l, ..., 1GT] = |1Q|}. Notice that those clusters will be explicitly linked by NA®il
the stage*. Remind that this selection fixes the way to build the clustdimodels. Observe also thipt |G| means
that the scenario cluster strategy is not to be used.

Step 0: Inputs: scenario treR and number of variables, ny:.

Step 1: DefineT, Q, G, GiVte T, Qg¥g e G, ST and weightaw Yw € Q.
Step 2: Decide break stage and uniquelyq = |G-+

Step 3: DefinegP, G, CT', QP, wf, W, P!, pred(p,t), ni, nft\!p eP,teT.
Step 4: Generatgead the full model (14).

Step 5: Generate the cluster submodels (9).

Figure 5: Data structuring

The Nonsymmetric BFC-M8lgorithm allows that the number of 0-1 variables at eachestax (and, then, the
number of continuous variables;) may be diferent from one cluster to another, except for the stage§, 2, ..., t*
where the number of variables has to be same for all clustecsiuse in those stages the cluster variables are scenario
variables and, then, replicas. So, let us split the timezoorin two parts, the first one includes the staged, 2, ..., t*,
and the second part includes the other stages ifi s@then, the algorithm satisfies the implicit NAC on tkandy
variables for the set of stages t = +1, ..., T at each iteration by solving the cluster submodels (9) withstate-of-
the-art MIP optimization package. Notice that the NAC atexed in those models for the stages 1, 2, ..., t*, such
that its satisfaction is performed by using a Branch-and&eordination (BFC) type of algorithm [6] and, so, it is
guaranteed that the algorithm obtains the optimal soldtiothe DEM (2) of the stochastic problem.

At each TNF integer set two new models can be defined as in ewiqus works [6, 7], but with a substantial
difference since in the new approach the break dfadefines thex variables to fix at their 0-1 variables in the first
model and, additionally, it defines in the second modelxkariables whose integrality is to be relaxed. That stage
also defines thg variables whose NAC are to be explicitly satisfied in both eied

So, first, let the MIP (15) that results after fixing in moded)the x variables for the stages up to the break
staget* at the 0-1 related values for a given TNF integer set. In tlve medel,X will denote the 0-1 values of the

14



respective vectox, it can be expressed in cluster splitting-compact reptasen as follows,

t
t p|¢>t\ T

(MIPTNF) ZTNF—min apd +opd+ ) > wh@fx +cfyP) + > Eq]wt"(at”xt" +fyf)
t=2 p=p} t=t'+1 p=1
st. Aixj + Byl =bi
AP+ APxP 1+ By 1 BPYP = bP, peP,2<t<t +1
[ADPXD |+ [AQPXE + [B{PYY, + [BPY =bf, peP, tr+1<t<T
X=X, peP, teT, t<tr (15)

vy =y, p#p.ppePitst
xXP e {0, X, peP, te T, t>t*
Y eR™, pep teT.

The second MIP model to solve at each TNF integer set corngispo the case in which, not all tixevariables
for the stages up to the break stag&' have been branched gfixed at in the current TNF. In this case, the new MIP
model (16) will allow thex variables to take fractional values between 0 and 1, if tmeynat yet branched offixed
at the current TNF. In the new modelwill denote the 0-1 values of the subset, S&\of the x variables which have
been already branched pfixed at. The new model, also in cluster splitting-compaptesentation, can be expressed
as follows,

P T a
MIPY)  Z' =min ax} +cixd + Z Z wP(@PxP + cfyP) + Z zlwtp(a,(pxtp +cPyP)
t=2 p=p} t=t*+1 p=1
st. Aixj + Byl =bi
AP APxP 4+ By 1 BPYP = bP, pePl2<t<t +1

[ADPXP | + [AQPxP + [B{PYY , + [BPY =bf, peP, tt+1<t<T

X =%, xeX,peP, t<t*

P =xP xegX, pzp.ppert<t (16)
v =yl p#p, ppePit<t

O<xP<1l x¢X, peP t<t

X (0,1, peP, teT, t>t"

YeR™, pep teT.

The specific BFC scheme that we propose is based on branahihg 0-1x variables for the stages= 1, 2, ..., t*
along the scenario cluster related trees and simultangoastdinating the satisfaction of the related NAC for aé th
TNFs. Lower bounds of the optimal solution value for the mrddproblems are obtained by solving the MIP problems
(9) and (16) in a certain order, see below. Feasible solstiothe original DEM (2) are obtained by solving the MIP

problem (15) until getting the optimal solution. We shoulaint out that, for computationaligciency reasons, we
consider the implicit NAC in the problems (15) and (16).

15



Step O:

Step 1:

Step 2:
Step 3:
Step 4:
Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

(Initializations) Zyp := +c0, t:= 0, i = 0.

(Root node)Append cuts and solve the independent preprocessed Miteictubmodels (9).
Zo = Z?,:]_ z.
If xP variables do not satisfy (12), then go to Step 2.
If yP variables do not satisfy (13), then go to Step 7.
Otherwise Zuip := Z,, STOP.

(First iteration) Initializet := 1,i := 1 and go to Step 5.
(Next stageReset :=t+ 1. If t > t*, then go to Step 9.
(Next node)Reset =i + 1. If i > ny, then go to Step 3.
(Branch to 0)Branchx := 0,Ype # |CT"(p,g) =t.

(Cluster submodelsAppend cuts and solve the independent preprocessed Mieictudmodels (9).
Z,=30,2
If Z, > Zuip, then go to Step 8.
If xP variables do not satisfy (12), then go to Step 4.
If yP variables satisfy (13), then upd&gp := Z, and go to Step 8.

(TNF models)
Append cuts and solve the MIP model(15) to satisfy the NAGHery variables.
UpdateZyp := min{z'™NF, Zyip).
If t =t* andi = ny, then go to Step 8.
Append cuts and solve the MIP model (16) to satisfy the NAGHely variables,
where the integrality is relaxed on the non-yet branchetfixed atx variables.
If zf < Zwip and all the relaxed variables are 0-1Zyp := zf, go to Step 8.
If ZINF = Z' orz' > Zyp, then go to Step 8, otherwise go to Step 4.

(Prune)Prune the branch. bffi’ =0,peP|CT"(p,g) =t, then go to Step 11.
(Previous nodeReset :=i - 1.

If i = 0 andt = 0 then the optimal solution vali&yp has been foundSTOP.
If i =0, thent :=t- 1 and go to Step 4.

Step 10: (Check)if xt’? =1L Visngt<t,peP|CT"(p,g) =t then goto Step 9.

Step 11: (Branchto 1)Branchx! =1, pe | CT"(p,g) = t. Then go to Step 6.

It is well known that one of the most important contributidgaghe advancement of the theory and applications
of deterministic integer optimization has been the devwalept of the preprocessing techniques for solving large
scale instances infl@rdable computingféort, due to the tightening of the models and, so, reducind_théeasible
space without eliminating any feasible integer soluticat thotentially could become the optimal one. Some of the
key ingredients in preprocessing are the probing techsiflLie 12, 17] and schemes for identifying and appending
Gomory cuts [2, 3, 10] and clique cuts [4], among other imgrischemes. So, our algorithm for solving large
instances of the mixed integer DEM takes benefit from thegssing techniques of the optimization engine of choice.
They are used for solving the auxiliary mixed integer subeai®delated to the scenario clusters. Thedence in
computing time by using preprocessing compared with theradtive that does not use it is crucial in solving large

Figure 6: Nonsymmetric BFC-MS Algorithm

16



scale instances.

Figure 6 shows the main steps of tiensymmetric BFC-M&lgorithm. The strategies for selecting the branching
Twin Node Family (TNF) and fixing the 0-1 variables across Bfetrees have been taken from our previous work
[7], given the good results that have been obtained for sytmcrseenario trees.

7. Computational experience

The proposed approach has been implemented in-a&Xperimental code. It uses the open source optimization
engineCOIN-ORfor solving the LP relaxation and mixed 0-1 submodels, irtipalar, we have used the functions:
Clp (LP solver), Cbc (MIP solver), Cgl (Cut generator), G8siClp, OsiCbc and CoinUtils. As a result the total
computing time for obtaining the optimal solution of theginal DEM has been improved strongly, see below.

The computational experiments were conducted in a Woikst&ebian Linux (kernel v2.6.26 with 64 bits), 2
processors Xeon 5355 (Quad Core with 2x4 cores), 2.664 Gtz &Gb of RAM.

Table 4 gives the dimensions of the DEM of the full stochasimdel in compact representation foiffaiult
medium and large scale problems. Table 5 giyésihteger part of the meamando-, the standard deviation for the
dimensions of the cluster submodels; so, we can observeatiehility of the nonsymmetric clusters. The headings
are as followsm, number of constraintsix, number of 0-1 variablesty, number of continuous variablegel, number
of nonzero cofficients in the constraint matrix; am#ns constraint matrix density (in %).

Table 4: Testbed problem dimensions

Inst. m nx ny nel dens
P1 696 160 376 1550 0.42
P2 1202 530 241 3053 0.33
P3 7282 1878 4152 20818 0.05
P4 16172 4270 9340 53257 0.02
P5 23907 5560 11675 68937 0.02
P6 32914 6672 14010 105854 0.02
P7 2085 450 1155 9105 0.27
P8 4696 1090 2516 9935 0.06
P9 11298 2668 5962 25262 0.03
P10 16870 4600 10430 42015 0.02
P11 31648 7984 17676 83252 0.01
P12 40020 8847 19377 100680 0.01
P13 5256 1176 2904 12861 0.06
P14 11121 2538 6045 27315 0.03
P15 14570 3370 7830 32508 0.02
P16 28176 6584 15008 62934 0.01
P17 45844 10794 24256 102480 0.01
P18 76424 18108 40208 170954 0.00
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Table 5: Testbed cluster-subproblem dimensions

Inst.  [um] om [y Onx  [Hny] Ony [1nel] Onel Mdens Odens

P1 133 29.94 283 6.57 68 14.62 275 62.12 2.31 0.68
P2 496 67.77 230 20.41 101 16.33 1227 171.46 0.76 0.08
P3 869 305.42 193 70.06 431 149.96 2145 766.93 0.46 0.20
P4 1788 578.65 397 130.53 876 280.11 4961 1617.42 0.24 0.09
P5 2815 20.77 561 415 1181 8.31 6953 50.67 0.14 0.00
P6 3823 28.24 673 498 1417 9.97 10675 78.08 0.13 0.00
P7 750 187.13 160 43.01 415 104.16 3236 859.05 0.80 0.20
P8 643 190.64 138 41.02 320 94.11 1259 372.83 0.49 0.21
P9 1241 537.03 269 116.78 602 256.60 2544 1097.09 0.30 0.18
P10 2007 454.02 516 14594 1172 330.98 4711 1333.12 0.15 0.03
P11 3322 1207.93 729 265.57 1618 582.71 7608 2758.76 0.115 0.0
P12 3748 1454.9 740 287.61 1623 625.81 8423 3264.84 0.12 0.06
P13 950 259.56 199 55.92 492 137.05 2171 609.62 0.37 0.14
P14 1751 543.56 365 113.59 871 267.64 3930 1216.77 0.20 0.06
P15 1973 617.25 423 132.62 984 306.15 4081 1275.4 0.17 0.09
P16 3403 983.54 733 212.10 1673 482.39 7010 2025.25 0.09 0.03
P17 5000 2216.05 1081 479.50 2431 1075.64 10266 4548.74 0085

P18 5126 1966.84 824 316.76 1830 699.81 8604 3300.17 0.073 0.0

Table 6: Computational results. Stochastic solution

Instance q || |Gl Zip Zo ZMIP GARPp GAR ttp tto

P1 6 52 80 4395695 4654305 4654305 5.9 0 0.0 0.4

P2 3 6 12 75103.6 58589.1 58585.1 22.0 0.0 0.0 14.9

P3 10 247 313 5691.3 442336 573848 9982.9 29.7 0.1 4.6
P4 11 347 427 11601.4 725490 903367 7686.7 245 0.4 244
P5 10 1001 1112 4977.8 385471 468277 9307.4 21.5 0.7 326
P6 10 1001 1112 6116.5 540241 653638 10586 21.0 0.9 5438
P7 3 13 30 20210.9 964395 973038 4714.4 0.9 0.0 8.9

P8 8 377 545 3156.8 156064 156064 4843.7 0.0 0.1 2.7

P9 10 1021 1334 3829.5 239683 239683 6158.9 0.0 0.5 8.7
P10 9 674 920 5757.0 394469 505729 8684.6 28.2 0.5 40.2
P11 11 1569 1996 5474.1 401435 401435 7233.4 0.0 15 78.2
P12 12 2388 2949 3209.4 318391 370024 114295 16.8 2.7 248
P13 6 208 392 8071.8 371498 372296 4512.3 0.2 0.1 4.3

P14 7 523 846 6157.3 339381 339381 5411.8 0.0 0.3 3.3

P15 8 1140 1685 3941.7 212593 212593 5293.5 0.0 0.7 19.0
P16 9 2372 3292 3521.9 258977 258977 7253.3 0.0 2.4 78.8
P17 10 4063 5397 2629.0 303900 303900 11459.5 0.0 6.0 2.7
P18 11 7058 9054 3824.7 318958 318958 8239.5 0.0 17.9 6.2

Table 6 shows some results of our computational experirtientaThe headings are as followg; number of
clusters;|Q|, number of scenariogG|, number of scenario groupgip, solution value of the_P relaxation of the
original DEM problem in compact representatiafy, = >, z°, optimal expected solution value at the root node
obtained by solving independently the cluster submodgis; optimal solution value of the original DEM problem;
GAPLp, optimality gap defined a85-22 (in %); GAR, optimality gap defined a2 (in %); andtt, andtto,
elapsed time (in seconds) to obtain the andZ; solutions, respectively. We can observe the very big vatue f
GAPR.p and the very small value fdBAPR,. The latter lower bound is often optimal or very closed to dptimal
solution value (see also Figure 8, where the dist&&&, in the first iteration is very small). Intuitively, small wads
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of GAP, improve the convergence speed of the algorithm. Observeithaomputing timet, is very small, except
for the instances P11 and P16.

Table 7:Nonsymmetric BFC-MBerformance v8&B

Clustering by break stage | Nonsymmetric BFC-M$ B&B

Instance| T @ nTNF tt te tt ttc

P1 4 {1,6,21,52 1 0.4 0.3 4000.2 0.8
P2 4 {1,2,3,6} 114 198.1 138.§ 1304.2 1304.2
P3 4 {1,10,55,247 8 2138 1.7 41.4 1.7
P4 4 {1,11,68 347 16 171.6 11.7 1530.8 194
P5 4 {1,10,100 1001 8 1621 8.8 448.5 134
P6 4 {1,10,100,100% 10 229.5 8.5 889.7 48.4
P7 5 {1,3,5,8,13} 81 1425 418 188.3 35.9
P8 5 {1,8,35,124 377 1 2.7 0.9 272.3 6.1
P9 5 {1,10,55,247,1021 1 9.1 14 100.0 4.5
P10 5 {1,9,46,190 674 10 206.6 45.8 7992.7 296.4
P11 5 {1,11,68,3347 1569 1 80.2 149 121131 126.8
P12 5 {1,1281,467,2388 7 513.8 66.8| 3566.2(*) 867.5
P13 6 {1,6,21,52 104 208 3 132 2.6 1304.2 10.2
P14 6 {1,7,28 81206523 1 142 3.5 — 22.9

P15 6 {1,8,35124377,1140 1 197 4.9| 7226.3(*) 19.2
P16 6 {1,9,46,190674 2372 1 812 26.4] 628.5(*) 48.5(*)

P17 6 {1,10,55 24710214063 1 152.8 8.7 1897.3 67.3
P18 6 {1,11,68 3471569 7058 1 3770 241 — 202.9

—: Time limit exceeded (6 hours)
(*): Optimum not reached after 6 hours of computing, timedbtaining a 0.05 quasi-optimal soln

Table 7 shows theficiency and stability of thélonsymmetric BFC-M8lgorithm. The headings are as follows:
T, number of stage%), set of possible number of clustersif NF, number of TNFsB& B, plain use of the Branch-
and-Bound procedure for the full model by using the Cbc fiomcof COIN-OR andtt andttc, total elapsed time
(in seconds) without and with preprocessing (in our casegiisists of using probing techniques and schemes for
identifying and appending Gomory cuts and clique cuts imgleted in the functions cOIN-OR). Although other
break stages have been considered, we have obtained theddts for the break stage = 1 and, theng = |G|
for both without and with preprocessing options. Althoughlick of space we do not report all the detailed results
(but they are available upon request to the authors), it ikhydo remark that for the scenario partition+ 1 = T
(g =19Q)) i.e., no cluster partition is considered, the executioalbthe instances exceeded the time limit of six hours
of computing. We can observe (1) thieiency of using the preprocessing techniques and (2) tlomiaking small
computing time required by thidonsymmetric BFC-M8lgorithm, such that it clearly outperforms the plain use of
the optimization engine of choice.

Figure 7 depicts the elapsed time (seconds) in increasiey of the number of 0-1 variables related to the testbed
whose results are reported in Table 7. The times for sohiegoroblems using B&B plus cuts, using the algorithm
BFC and using BFC plus cuts have been represented in redabtligreen.
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BFC-MS vs BB under COIN-OR
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Figure 7: CPU-time for BFC-MS vs BB (increasing ordemoj

Figure 8 depicts an illustrative example of the convergence Lower/Upper bounds

of the algorithm. It corresponds to the instance P7. The
procedure exploits the TNF branching selection and fixiég
of the 0-1 variables along the grougs € U_,G: at ~
the stages. 8hTNF are required to be branched untg |
obtaining the optimal solution. It obtains lower boun&s
(given by the cluster submodels, in vertical) and upper
bounds (in horizontal stair steps) of the optimal solutign
value (red dashed line) for the mixed 0-1 problems at the
TNFs. The vertical empty lines correspond to branches téa.

0

. A 20 a0 60
are pruned due to infeasibilities. nTNF (iterations)
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Figure 8: BFC-MS convergence

8. Conclusions and future work

In this work a modeling approach and an exact Branch-and=Bixrdination algorithmic framework, so-called
Nonsymmetric BFC-MShave been proposed for solving multi-stage mixed 0-1 robklunder uncertainty in the
parameters, being the uncertainty represented by scertagies. It can appear in any d¢beient of the objective
function, constraint matrix and right-hand-side at angeta’he 0-1 and continuous variables can also appear at any
stage. The approach treats the uncertainty by scenari@chrsalysis, allowing the scenario tree to be nonsymmetric
This last feature has not been considered in the literabatente are aware of. However, in our opinion, it is crucial for
solving medium and large scale problems, since the reahiifked integer optimization problems under uncertainty
that, at least, we have encountered have very frequentlgymametric scenarios to represent the uncertainty. As
expected theféciency of the preprocessing techniques (i.e., probing amth@y and clique cuts identification and
appending schemes) is remarkable for the cluster submtudeéssolved at the candidate Twin Node Families (TNF)
and the TNF integer sets. The computational time that wertéposolving large scale multi-stage stochastic mixed
0-1 problems is very small and it seems to validate the newcagh. On the other hand, it clearly outperforms the
plain use of the optimization engine of choice.

As a future work we are considering Lagrangean Decompaog(tiB) as a powerful tool for iteratively obtaining
strong lower bounds to the optimal solution value of the sodets to be solved at the candidate TNFs and TNF
integer sets. The key point in LD is the dualization of theamtitipativity constraints (NAC) in the scenario cluster
submodels, see in [9] the good results that have been obtainkighly combinatorial stochastic problems. Another
point of future research derives from the observation ofrtdependent character of the cluster submodels, such that
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it paves the way to use parallel computing for solving thenthsd the result could be a parallelizBinsymmetric
BFC-MSalgorithm.
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Appendix A. Constraint matrix structure for the illustrati ve example. Case 1t* = 1 and q = 2 clusters

AL X B, y! by
A A X B B Y; b
mOA . AL ARE
Mo B 15 I 15 7| o
A/42 A, , xA2t 542 B; , zé bz21
A , A , x‘31 B, , B; , 7 bg
. A; A % ; B} BS y% E4
Ai4 4 % BEL4 B4 & béji
A’34 Aé Xg 2 B'24 B4 y¢21 b£21
5 5 5 '35 3 5 2 g
As 9 A3 A 1% . By » B3 . 1Bl - b‘31
A4 A’5 A4 A5 Xg B4 B’S B4 BS g Eg
4 4 X 4 4
A? AS Xt B B e b
A/ A Xa B, =/ Y4 b}

N
™ Notation. A, A, B, BY: scenario matriced: scenariahsfor the corresponding stage arg, y: scenario 0-1 and continuous variables, respectively.
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Appendix B. Constraint matrix structure for the illustrati ve example. Case 2t* = 2 and g = 4 clusters

A/l Xi B/l yi bl
AZl 2221 A% )% BZl S’él Bl y% E%
NS d ‘8 i | o

Az o) L B2 g) ) (i

ﬁil A% Xi S'l 1 Bl zi gi
s 4 R

ar i) LR 82 8 ) (3 b}

AL X% B, yi b1

A A < |, B/ B vl | e

A A " B B vi| = o

aroat) U e et ) (yvi) L

Aq Xi B1 yi by
Y AL < | | B B vl e
e 1] fEe 1]
NI d o AlE

A/ A X4 B/ B; Ya bj

Notation. A, A®, B, BY: scenario matricedy”: scenariahs for the corresponding stage argl, y*: scenario 0-1 and continuous variables, respectively.



Appendix C. Constraint matrix structure for the illustrati ve example. Case 3t* = 3 and q = 7 clusters

Case 3Theq = 7 clusters are as follows:

Aq Xi B, y% bl
A’21 11 1 X% + B/Zl B’%l 1 : y% = b%
SERARN B = e ) g
P 4 4 By 4 /1

Ay Xi B y% by
A A 1%, 8 B IR AR
A A X By Bj Y b,

A A X, B/ B} Ya b

Ay Xi B y} by
A A [ .] e e ]| e
A2 A % B2 B % b}
A2 o) U e; 5 ) \yi) o]

Aq Xi B y% by
Ko A 4| | 8 e I
A AL X5 B B: Y3 by
AL AU BY B/ \y; b

Aq Xi B1 y% by
Y R ||| e
A? 5 xg By Bg y2 bg
Ay A Xy B, Bj yzgl by

Aq Xi B; yi by
A 4| [ e e L
Ay A xg By B3 b§
AY A Xy By Bj 3/481 by

Aq Xi B: y% bl
A AR IKIRE
A? 5 xg By Bg y; bg

Al A Xy B/ B; Ya by

Notation. A, A¢, B, B@: scenario matricedy’: scenariahs for the corresponding stage awg, y&*: scenario 0-1
and continuous variables, respectively.
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Appendix D. Storage of the variables )S and yfi in the cluster submodelp

Table D.8: Storage order of the variables in clugier

Explicit NAC
| Staget* |
| Stage 1 | Staget Variable Position
Variable  Position . 1
X11 1 X1 El Ny +1
p .
Xqn P n t
Inxy X1 Xeen, P ¥ nti
t* =
Explicit NAC
| Staget* |
| Stage 1 | Staget Variable Position
Variable Position - =
yi1 nt+1 Y1 Mt 2 My +1
p p .
YinP Ny + Ny p,. S p
Nyp Y nytg ng + El Ny

Implicit NAC
| Staget” + 1 | | StageT |
Staget
Variable Position Variable Position
T, I,
Xt +1,1 2Ny +1 XT1 2Nk +1
t=1 t=1
t*+1 T
p p_ P
Xer1nd, El M XTnd El Mt = M
Implicit  NAC
Staget* + 1 | | StageT |
Staget
Variable Position Variable Position
p. 8o p P
Yes+1,1 ny + 121 nyg +1 Y71 Ny + tZl Ny +1
t*+1 T
p p PP _ P p
. n, + Ny +Ny =ng+ Y n
Y +Lnyh X El Nyt yTWTp x Ty x tgl yt

Note: For simplicity we have eliminated the upperindein the name of the variables corresponding to the relatestenu
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Appendix E. Storage of the 0-1 variables g in the full model

Explicit NAC .
p Implicit  NAC
Staget*
| — 9 - | | Staget” + 1 | | StageT |
| usterp = pl’ = | | Cluster 1 | | Cluster 1 |
Variable — !‘Posnmn Variable Position Variable Position
t-11P 3 T-1
1 T orn el 1 3 L
X Ny +1
il P e X112 Eln“ +1 T1 E‘l xt
. voawh t 1 5 L
X nl +n 1 1 X Nt + N
tnl, El h§1 X X nt v 21 Mt + Mg T El T
XU+ -
| Stage 1 | Clusterp = p} Cluster 2 : Clus;telr 2
- — 1Pl rd 2 S 1
Variable Position p h 1 2 i X: Nyt + N+ 1
T 1 EE e 21 hgl M+ Myge +1 Xr11 2 M+ My, +1 e T =1 T
! == t=1
T-1 2
e t 2 X2 > e+ > nh
A e p n 1 p 2 h q Xt xT
X > oy ny+n,. +n X >N+ >N Tn = =
1 —_nl P Xt * o Xt T t=1 h=1
g Ma =My U t=1 h=1 oo teln2 o & el | |
Clustern = o STt Clusterq
usterp=pl .. usterq ; 1 .
vl Pl q v E X1 2 M+ 2 M +1
P n n Xiey11 DM+ XN, +1 =1 fi=1
Xieq X XM+ X om+1 . =1 =
t=1 h=1 h=1 N q T
o t* q X q Ny =3 Ny =
t [ x3 S+ 3t T t=1
X Y=Y 3 il t=1 hp X Tt I h
TN t=1 t=1h=1 ’ 21 Ny + hzl N
t=. =

Note: After theny 0-1 variables, the continuous variabieare stored in similar way.
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