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Abstract

Betas play a central role in modern finance. The estimation of betas from historical data and their

extrapolation into the future is of considerable practical interest. We propose two new methods: the first is a

direct generalization of the method in Blume (1975), and the second is based on Procrustes rotation in phase

space. We compare their performance with various competitors and draw some conclusions.
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1 Introduction

The beta parameter as a measure of an asset’s risk plays a central role in finance. Estimated betas and their

predictions are used in asset pricing, cash flow valuation, risk management, making investment decisions or

simply as a risk factor in models with more than one factor.

Because of their central role in portfolio theory, betas have been the object of enormous research interest.

The traditional setting is one where beta risk is assumed to be constant. In this framework, betas can be

estimated as the slope coefficient in a simple regression model fitted by ordinary least squares. However,

empirical evidence in numerous studies suggest that betas are not constant over time.

Blume (1971) found that historical data for “individual securities and smaller portfolios have limited

value in forecasting”, whereas “larger portfolios are remarkably accurate in predicting future portfolios

betas”. In that paper, Blume documents the existence of a tendency for the betas of even well-diversified

portfolios of extreme risk levels to regress towards the mean. Blume (1975) tested the reversion to the

“grand mean” of the betas over time, namely 1, and attributed the existence of the reversion to the mean to

the non-stationarity of the betas.

Furthermore, evidence on non-stability of beta coefficients is not tied to a particular market or type

of asset. Gooding & O’Malley (1977), Fabozzi & Francis (1978), Bos & Newbold (1984) and Collins,

Ledolter & Rayburn (1987) or Lee & Chen (1982) all present evidence for USA stocks. Faff, Lee & Fry

(1992), Brooks, Faff & Lee (1992), Brooks, Faff & Lee (1994) do the same for the case of Australian

stocks. Evidence for the German Stock Market is presented in Abberger (2004), Ebner & Neumann (2005),

and more recently in Eisenbeiß, Kauermann & Semmler (2007); and many more references could be given

covering different markets and assets.

The common finding of all this literature is that betas appear to be far from constant over time. Different

models and estimation techniques have been used to account for non stationarity: state space models with

different choices for the stochastic process of betas, the Hildreth & Houck (1968) random-coefficient model,

the random walk coefficient or AR(1) coefficient model and non-parametric regression techniques among

others: see for instance Fabozzi & Francis (1978) and Collins et al. (1987).

Lee & Chen (1982) detected some regression tendency of beta coefficients over time with a model that

allows for coexistence of both beta instability and beta tendency. González-Rivera (1997) found evidence

against the constancy of betas in favor of a random coefficient model, and concluded that the time variation

of betas is due to non-systematic behavior of the firms.

Brooks et al. (1992), Brooks et al. (1994), Faff et al. (1992), Clare, Priestley & Thomas (1997) and

Brooks, Faff, Gangemi & Lee (1997b) discuss different types of models for time varying betas. Abberger

(2004) and Eisenbeiß et al. (2007), among others, use non-parametric estimation techniques to account for
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non-stationarity in betas of individual stocks. They treat beta coefficients as unspecified functions of time.

In the following we will consider estimation of betas, both using past and contemporaneous information

(filtering) or just past information (prediction). However, betas are not directly observable. In order to test

the effectiveness of the filtering and prediction methods discussed, we compute “target betas” in various

ways, which use information in the future. Clearly, the performance of the filtering and prediction methods

will be relative to the target betas used. For instance, very smooth target betas favour prediction methods

with greater inertia. Since filtering and prediction methods have to be judged in association with the method

used to estimate the target betas, we provide results for each combination.

The remaining of this paper is organized as follows. Section 2 provides a quick review of some methods

proposed so far for the estimation of betas. Section 3 discusses the methods proposed in Vasicek (1973)

and Blume (1975) to adjust (filter) and predict betas. It is against the background of this last paper that

we motivate in Section 4 two new methods. Both can be seen as trying to endow Blume’s method with a

longer memory. Aside from its possible use in filtering or predicting betas, one of the methods generates

as by-products several interesting descriptive measures, which provide insight on the behaviour of betas. In

Section 5 we present our empirical results and Section 6 ends with some conclusions.

2 Estimating time varying betas

Sharpe (1964) and Lintner (1965) derive the Capital Asset Pricing Model (CAPM) assuming the existence

of lending and borrowing at a risk-free rate of interest. The model implies that the expected returnE(Ri) of

risky asseti (a single stock or a portfolio) must be linearly related to the covariance between its return and

the return of the market portfolio and is usually expressed by the equation

E(Ri)− rf = βi[E(R)− rf ], (1)

whereR is the return on the market portfolio andrf is the return on the risk-free asset. The beta coefficient,

βi, is the coefficient of systematic risk of asseti expressed as the ratio of the covariance between its return

and the return of the market portfolio and the market variance,

βi =
Cov(Ri, R)

V ar(R)
. (2)

The Sharpe-Lintner CAPM can be expressed in “excess returns” as

E(Zi) = βi[E(Z)] (3)

βi =
Cov(Zi, Z)

V ar(Z)
, (4)
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whereZi = Ri − rf is return of asseti in excess of the risk-free rate andZ is the excess return on the

market portfolio of assets.

Usually, the beta is estimated by the slope in the market model,

Zit = αi + βiZt + εit; t = 1, . . . , T. (5)

The equation (5) suggests that a plausible estimate ofβi might be the estimated coefficient of a regression

of excess asset returns on excess market returns, with or without intercept. There has been considerable

evidence, though, that the beta stability assumption implied by (3) and (5) must be rejected and some scheme

to accommodate time-varying betas should be adopted instead: see for instance Garbade & Rentzler (1981),

Dotan & Ofer (1984), Elton & Gruber (1995), and references therein, in addition to papers cited in the

Introduction. Attempts have been made to link beta’s changes to seasonal effects, Brooks, Faff & Josev

(1997a), market phase, Gooding & O’Malley (1977), and interest rates, Bildersee & Roberts (1981), among

other factors.

Traditionally, a “rolling regression” beta estimator has been used, Fama & MacBeth (1973); the regres-

sion suggested by (5) is carried on overlapping sets of contiguous observations. The estimate ofβit (thei-th

asset beta at timet) is thus given by the valuêβit minimizing

min
αit,βit

∑

j∈[t−q,t]

(Zij − αit − βitZj)2. (6)

The lengthq of the block of contiguous observations used plays a fundamental role: the largerq, the

smoother the variation of thêβit. Traditionally,q = 60 (five years of monthly data) have been used1.

Variations of the rolling approach exist in which (6) becomes a weighted regression problem:

min
αit,βit

∑

j

Kt,j(Zij − αit − βitZmj)2. (7)

In (7), Kt,j is a weight or kernel function, whose bandwidth (and therefore the implied smoothing in the

estimated betas) can be chosen by a data driven method (see for instance Esteban & Orbe (to appear)).

The rolling regression approach is by no means the only possibility. As we are dealing with unobservable

time-varying magnitudes, state-space models suggest themselves as an alternative. We can model{βit},
t = 1, T as a local level or local linear trend model, Harvey (1989), Durbin & Koopman (2001). Under the

local level specification,{βit} follows the simple dynamics:

βit = βi,t−1 + ηit. (8)

1Fisher (1970) and Gonedes (1973) among other authors have found empirically that with monthly data the optimal subsample is

between four and seven years: but there is no universal agreement on this issue, see also Meyers (1973) and Baesel (1974). Five years

is a common choice.
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The excess return of asseti at timet, Zit, is:

Zit = Ztβit + εit. (9)

Taken together, (8)–(9) define a state-space model, whose parameters (σ2
η and σ2

ε ) can be estimated by

maximum likelihood (assuming normality of the noises). The Kalman filter or smoother gives then estimates

of the stateβit for eacht, conditional on observations available at timet− 1 (one step ahead prediction), at

time t (filtering) or conditional on all observations, past and future (smoothing).

Other methods can also be used: Eisenbeiß et al. (2007) propose to minimize

min
αi,βi,β̃i(t)

∑
t

(
Zit − αi −

[
βi + β̃i(t)

]
Zt

)2

, (10)

whereβ̃i(t) is an “smooth” function of time constrained by
∑

t β̃i(t) = 0 (to preserve identifiability). The

“total”, time-varying, beta coefficient is thus estimated byβ̂i + β̃i(t), with β̃i(t) capturing the time variation.

The “smooth” functionβ̃i(t) is often a spline, and the amount of smoothing can be set arbitrarily or

chosen by cross-validation or other methods (see Hastie & Tibshirani (1991), Chapter 3 for instance).

As an illustration, Figure 1 shows the trajectories of estimated betas with monthly data for ten portfolios

over the period January 1934-August 2007, using the rolling regression approach and a local level model

with parameters estimated by maximum likelihood. (Data consists of 10 Industry portfolios, taken from

Prof. K.R. French’s Web page.)

There is good agreement between the two sets of estimates, and both show some compelling evidence

of variation in the betas, with a noticeable downward trend in the betas for Utilities and Durables, partly

reversed in the late nineties. There is also a sharp increase in the beta of the High Tech group around

the year 2000. (Incidentally, the smoother evolution of betas for the portfolios of Manufactures, Durables,

Health and Others also seems to occur in the German market: see Eisenbeiß et al. (2007).) We remark

that at each time point, betas are estimated with past and future data: thus, the estimates are retrospective

and cannot be computed at timet. However, they serve as targets to assess filtering and prediction methods

realizable in real time, which we will examine in Section 5.

In Figure 2 we have used a generalized additive model (GAM, see for instance Hastie & Tibshirani

(1991)), minimizing (10) with a spline in place of̃βi(t). The degree of smoothing has been chosen by

generalized cross-validation. We have also used a local linear trend model,

β`
it = β`

i,t−1 + βs
it + ηit (11)

βs
it = βs

i,t−1 + νit (12)

Zit = Ztβ
`
it + εit, (13)
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Figure 1: Alternative estimates of betas using rolling regression over periods ofq = 60 months and Kalman

smoothing with local level dynamics forβit. In both cases, pastand futuredata is used when estimatingβit at

time t. Monthly data for ten industrial portfolios in the period January 1934-August 2007.
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Figure 2: Alternative estimates of betas using a GAM with smoothing selected by generalized cross-validation

and Kalman smoothing with local linear trend dynamics forβit. In both cases, pastand futuredata is used when

estimatingβit at timet. Monthly data for ten industrial portfolios in the period January 1934-August 2007.
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with parameters estimated by maximum likelihood. In (11)–(13) the betasβ`
it follow a random walk with

stochastic driftβs
it, which itself follows a random walk. The local linear trend and GAM fits closely resemble

each other: in fact, except for the amount of smoothing, both methods should be equivalent (Durbin &

Koopman (2001), § 3.11).

The message of Figures 1 and 2 is that, while generally agreeing on their overall appearance, betas esti-

mated by different methods and using different time spans may have quite different behaviour. In particular,

with the span chosen, the rolling regression estimates in Figure 1 are jaggier than the smoothed estimates

based on a local level model, and jaggier also than those in Figure 2.

As anticipated in the introduction, the performance of a filtering or prediction method will be quite

dependent on what exactly we try to predict. Rather than using one single set of target betas as in e.g.

Brooks & Faff (1997), we will compare our filtered and predicted betas with different target betas.

3 Predicting time-varying betas

Because single-index models call for estimates of betas in order to select assets for inclusion in a portfolio,

considerable effort has been expended in trying to forecast these betas. We will review some of this work

before we proceed to propose yet another two methods in the next Section.

In an early paper, Blume (1975) tried to assess how much association there is between betas in one period

and their counterparts in the next period. He estimated betas fori = 1, . . . , n assets in two non-overlapping

seven-year periods. Letβit, t = 1, 2, denote the estimate of beta for asseti in periodt. If we regress{βi2}
on{βi1}, i = 1, . . . , n, fitting

βi2 = δ0 + δ1βi1 + εi2, (14)

we can obtain estimateŝδ0 andδ̂1. These estimates can be used to obtain adjusted estimates of beta att = 2

β̂i2 = δ̂0 + δ̂1βi1 (15)

or predicted betas for the next period, i.e.

β̂i3 = δ̂0 + δ̂1βi2. (16)

It order to relate this procedure with our proposal in Section 4, it will help us to stack equation (16) for

i = 1, . . . , n to form the single vector equation

β̂3 = δ̂01n + δ̂1β2 (17)

whereβ2
T = (β12, . . . , βn2) and1n is a vector ofn “ones”. The existing configuration of betas at timet

can be thought of as a pointβt in ann-dimensional space. The Blume forecast of the configuration of betas
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at timet + 1, β̂t+1, is a linear combination ofβt and1n. Quite often (as was indeed the case for the data

used in Blume’s original work) this will imply shrinkage of the vector of betas towards1n.

Vasicek (1973) does something similar. The assets’ betas,βi1, and their variances,σ2
βi1

, are computed

for period 1. Letβ1 be the average beta across the sample of assets (andσ2
β1

its variance). The predicted

beta for period 2 is computed as:

β̂i2 =
σ2

β1

σ2
β1

+ σ2
βi1

β1 +
σ2

βi1

σ2
β1

+ σ2
βi1

βi1 (18)

This is similar in spirit to equation (16): each predicted beta is a (convex) linear combination ofβ1 andβi1.

However, the coefficients change withi, so we can no longer stack equation (18) fori = 1, . . . , n and write

β̂2 as a linear combination of1n andβ1, as in (17). It is true, though, that Vasicek’s method relies, like

Blume’s, on shrinkage, this time towardsβ11n. Some variations exist, like the substitution ofβi1 in (18)

by β∗i1, obtained by updatingβi1 as in Blume’s method (see Marín & Rubio (2001), p. 404). The idea of

estimating betas by shrinking towards one or multiple points is reviewed and developed in Karolyi (1992).

4 Two new methods

We will look at the betas for then assets considered at each timet as a vectorβt in Rn. The history of

betas is then a trajectory in that “phase space”. In our case, with ten portfolios,n = 10, so this trajectory

wanders in 10-dimensional space. While we cannot visualize in more than three dimensions, it is useful

to look at some two-dimensional projections to get a feeling of how betas evolve in phase space. (In order

to develop some intuition on what is going on, we have found tools likeggobi , Cook, Swayne, Buja &

Lang (2008), to be of invaluable help.) Figure 3 shows a subset of two-dimensional projections of four betas

against another three. The betas are fitted using a GAM model (as represented in Figure 2 above).

Blume’s method can be seen as transforming the vectorβt of betas into a new

β̂t+1 = δ̂01n + δ̂1βt, (19)

whereδ̂0 andδ̂1 have been obtained by regressingβt on βt−1. This seems a reasonable transformation in

phase space for mapping one observed point to an approximation of the next.

One feature to notice is thatδ̂0 andδ̂1 have been estimated in a cross-section regression with onlyn− 2

degrees of freedom. Seen from another point of view, the transformation carryingβt into β̂t+1 dependsonly

on the evolution observed fromβt−1 to βt. Looking at the long quasi-linear stretches in the phase space

sections in Figure 3, one might conjecture that the change fromβt−1 to βt is likely to be quite similar to
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Figure 3: Twelve two-dimensional sections ofβt in phase space. The betas shown are estimated using a GAM

model. Monthly data for ten industrial portfolios in the period January 1934-August 2007. While some sharp

turns can be seen, most of the time the trajectories evolve in quasi-linear stretches.
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the changes at previous time steps. This suggests fitting the regression



βt

βt−1

...

βt−k+1




= δ0




1n

1n

...

1n




+ δ1




βt−1

βt−2

...

βt−k




+




εt

εt−1

...

εt−k+1




, (20)

i.e., stackingk cross-section regressions like (17) with the same parametersδ0, δ1. In other words, rather

than seek a transformation carrying one pointβt−1 in phase space into the next,βt, we seek a transforma-

tion carrying a group ofk consecutiven-dimensional points (which we will call an “epoch”) to the next.

Doing so, we force smoothness in the evolution of predicted betas and use more observations to estimateδ0,

δ1. The performance of this method, which we will name Blume-k, is examined in the sequel.

But we need not stop here: we may think of more general transformations carrying an epoch into the

next. A rather general family of transformations is made of all rigid rotations in phase space, possibly

followed by a dilation and translation.

Consider an epoch made ofβt, βt−1, . . . , βt−k+1 and stack all of its components as row vectors in the

k × n matrix Bt. Define likewise an epochBt+1. We may look for a constantρ, rotation matrixG and

vectorc such that:

Bt+1 ≈ ρBtG + 1kcT , (21)

whereG is restricted to be an orthogonal matrix,ρ is a non-negative constant andc is a n-dimensional

translation vector. Note thatρ, G andc are all dependent ont, a dependency we drop in the notation for

simplicity.

Consider initial and targetk × n matricesX andY , and the problem of findingρ, G andc such that

Y ≈ ρXG + 1kcT . (22)

A reasonable criterion is to minimize trace(ZT Z) with Z = Y − ρXG − 1kcT . The resultingρ, G and

c are said to perform a Procrustean rotation carryingX into Y , and can be readily obtained. Let̃X be the

matrix X after centering its columns, and perform the singular value decomposition ofY T X̃, so that let

UDV T = Y T X̃. It can be shown (see for instance Krzanowski (1988)) that the sought-forρ, G andc are

given by:

G = V UT (23)

ρ =
trace(D)

trace(X̃T X̃)
(24)

cT = 1T
k (Y − ρXG). (25)
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Use of these formulae will solve our problem. We will work in deviations from 1. Defining2

B∗
t = Bt − 1k,n, (26)

where1k,n is ak × n matrix of ones, we will consider

B∗
t+1 ≈ ρB∗

t G + 1kcT (27)

instead of (21) and use equations (23)–(25) withB∗
t andB∗

t+1 in place ofX andY respectively.

The estimation ofG, ρ andc which approximately carry one epochB∗
t into B∗

t+1 provides a way to

adjust and/or extrapolate betas, much in the same way as in our Blume-k generalization of Blume’s method:

givenρ, G, c andB∗
t , we can predictB∗

t+1 by

B̂∗
t+1 = ρB∗

t G + 1kcT . (28)

It is interesting to compare the last expression with Blume’s method. Transposing (28) and picking the

first column of the result, we have:

β̂∗
t+1 = ρGT β∗

t + c, (29)

which, sinceβ∗
t+1 = βt+1 − 1, can be written

β̂t+1 = ρGT βt + c + (In − ρGT )1n. (30)

In general,c will be close to zero: its only purpose is to shift the centroid of the transformed epoch so

as to match the centroid of the target epoch, see (25). Both these centroids will be close to zero most of the

time when we deal with betas expressed in deviations with respect to 1. We are left then with

β̂t+1 ≈ ρGT βt + (In − ρGT )1n; (31)

this givesβ̂t+1 as a “weighted average” ofβt and1n, much as in expression (19). However, unlike in (19),

the “weights” are matrices and unequal for different components ofβt.

As an example which may help to gain some intuition about the the performance of the rotation method,

we have computed the Procrustes rotation on epochs of 24 consecutive months,Bt andBt+1. Thus, each

epoch can be thought of as a set of 24 points inRn, wheren = 10 is the number of portfolios. Betas are

expressed as deviations from 1, i.e.β∗’s in the notation introduced in (26). The three panels of Figure 4

2The literature has reported a tendency of beta to revert to1.0. Blume (1971) detected a tendency for the betas of well-diversified

portfolios of extreme risk to regress toward the grand average of all betas. Blume (1975) tests that the mean is1.0. Gooding & O’Malley

(1977) confirms this tendency and assume that the causes are economic and not statistical. Goldberg (1981) and Garbade & Rentzler

(1981) follow up along the same line.
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Figure 4: Procrustes rotation statistics when rotating betas obtained by smoothing with a local linear trend

model. The panels show from top to bottom the dilation coefficientρ, cos(α), whereα is the angle of rotation

associated to matrixG and |c|, the modulus of the translation vector. Monthly data for the period January

1937-August 2007. Shaded bars identify recession periods as defined by the NBER.
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show respectively the estimates ofρ defined in (24), the cosine of the angleα rotated by the orthogonal

matrix G (computed ascos(α) = k−11T
k G1k) and the euclidean norm‖c‖ of the translation vectorc

defined in (25).

The results are interesting in themselves. A parameterρ smaller than 1 can be interpreted as a regression

of β∗ towards0 (and thus ofβ towards1); this implies that the betas of the different assets become more

alike. A parameterρ greater than 1, on the other hand, implies increasing asset differentiation.

In Figure 4,ρ wanders around 1, rarely deviating more than 5% from it. There seems to be, though, a

period with major beta convergence and then divergence: from the end of 1968 to the beginning of 1973.

Interestingly,cos(α) was rather stable and close to 1 for the whole of this period and|c| fairly small,

implying that the realignment of betas was a phenomenon common to all of them. The opposite is true for

the period through the early sixties, in which the orientation ofβ∗
t seemed to change repeatedly, as evinced

by the lowcos(α).

In an attempt to see if changes inβt are related to the economic cycle, we have shaded the periods which

correspond to recessions, as defined by the NBER. It seems that some of the major swings inρ, particularly

in the seventies, are associated to recessions, but no clear pattern emerges. There are also a few, but relatively

large, values of‖c‖ after the mid nineties, implying sudden changes inβ∗
t which cannot be accounted for

by rotation and dilation.

5 An empirical investigation

In order to assess the relative merits of the different prediction and adjusting beta methods, we have con-

ducted the following experiment. First, we have estimated target betas using four different methods de-

scribed in Section 2, and illustrated in Figures 1 and 2. As mentioned there, these estimations are not

realizable in real time, as they use observations in the future.

All computation was done in R (see R Development Core Team (2008)) and various packages built on

R, notably Petris (2007), Sarkar (2008) and Zeileis & Grothendiek (2005). All code is available from the

corresponding author.

All four tables presented in the following display mean square error (MSE) when target betasβ̃it are

approximated. Target betas are computed using past and future observations. The approximating betasβ̂it

only use past or past and present information at timet, and are computed using various estimation methods,

supplemented or not with a Blume-k or Procrustes transformation. Tables 1 and 2 show results for filtered

betas, i.e.̂βit are estimated with information up to timet. Tables 3 and 4 show results for predictions, when

β̂it are estimated with information up to timet− 1.
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The MSE figures have been computed as

MSE = N−1
∑

i

∑
t

(β̂it − β̃it)2, (32)

where the sums extend over all assetsi and allN available months (N may differ from one estimate to the

next, as the different methods force to discard a different number of observations at the start). Thus, the

MSE pools results for all assets and times in a single figure for each combination of target and estimation

method.

All tables have an “Unadjusted” panel, displaying the MSE for each combination of filtering/prediction

method and target betas when no Blume-k or Procrustes adjustment is performed.

In Table 1 we see, under the “Unadjusted” heading, the performance of four filtering methods for target

betas computed in different ways. For all filtering methods (except for the filtering based on the local linear

trend), the MSE is lower for the smoother targets betas —the rolling regression method with a bilateral

window extending over 60 months seems to produce poorly smoothed betas that are difficult to cope with

by the filtering methods. Aside from that, filtering based on the local level model appears far better than the

other filtering methods.

When betas go through a Procrustes transformation, results are largely unchanged, or even degraded,

except for the local linear filtered betas, whose MSE drops markedly. This is true for all targets, except

the RR60 variety, which all filtering methods appear to have trouble coping with. Overall, the Procrustes

method does not shine in the comparison, although it does improve the local linear trend (LLT) estimates

when the targets are LL, GAM and LLT.

More interesting patterns emerge when we use the Blume-k adjusting method. Whenk = 1 (i.e., for

Blume’s original method) the effect of the adjustment on the MSE is largely unnoticedexceptfor the local

linear filteredβ̂t and the smoother varietys (LL, GAM, LLT) of̃βt. Filtering with the local linear model

produces quite noisy betas and no matter what we do in introducing some constraints is useful.

The interesting part comes for the lower two panels: when using the Blume-k adjusting with epochs

of k = 24, the improvement is striking, with reductions in the MSE of about 50% in some cases. This

is even true with epochs ofk = 60 months, although for such largek some figures already show signs of

deterioration.

In order to gain some insight on the behaviour of the Procrustes and Blume-k method as the lengthk of

the epoch changes, we have computed the MSE as a function ofk for each combination of filtering method

and target betas. The results can be seen in Figure 5.

It is clear that Blume’s method (which corresponds to our Blume-k method in the particular case of

k = 1) can be improved upon by increasingk. The optimalk seems to be for most combinations of method
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and target betweenk = 30 andk = 60. In contrast, the Procrustes adjusting method does not appear to help

much except for the LLT variety of̂βt; and even then it seems dominated by the Blume-k method.

Aside from that, the estimation method based on the local level model (LL) seems clearly best for any

k and most targets, and remarkably insensitive to the choice ofk. When the targets are betas smoothed by

rolling regression (bilateral, using both past and future data), the MSE becomes quite sensitive to the choice

of k.

Tables 1 and 2 only tell part of the story. Both the Blume-k and Procrustes transformation method

are geared towards prediction. When using information up to timet, the Blume-k method estimates the

parametersδ0, δ1 fitting (20); let the estimates bêδ0(t), δ̂1(t), where we have modified the notation to

explicitly reflect the dependency of the estimates ont. Then, the adjusted betas for timet are given by

β̂t = δ̂0(t)1n + δ̂1(t)β̂t−1 (33)

and the one-step ahead predictions are computed as

β̂t = δ̂0(t− 1)1n + δ̂1(t− 1)β̂t−1. (34)

The adjusted estimates in Table 2 are basically one-step ahead predictions at timet−1 except for the fact that

δ̂0(t), δ̂1(t) are estimated using the observation at timet, which is only used in the estimation ofδ̂0(t) and

δ̂1(t); similarly for the Procrustes estimator. This is in contrast to filtering using a local level or local linear

trend model, which make fuller use of contemporaneous information. Therefore, one-step-ahead predictions

may be a fairer basis for comparison of the merits of the different methods.

Tables 3 and 4 provide the analogues of Tables 1 and 2, using MSE of prediction one step ahead. Patterns

mimic what we have seen in Tables 1 and 2. Most MSE figures are slightly larger, as one would expect given

that we are using less information in our attempt to approximateβ̂t. The local level model seems again the

strongest performer, both before and after adjusting with the Blume-k method and a suitablek; of the values

of k used in Table 4,k = 24 gives good results, whilek = 60 is clearly too large. Not only is the local level

method of prediction best, but it is also the one which stands to gain more from Blume-k adjusting.

6 Conclusions

Two new methods, Procrustes and Blume-k, have been introduced, aimed at the adjusting of raw betas

estimated by several traditional methods. Both can be seen as mappings in phase space shrinking towards

1.0, and are thus similar in spirit to Blume’s method. While the Procrustes method implements a rather

flexible mapping which, as a by-product, produces useful descriptive statistics, it appears of limited value

in terms of MSE reduction. The method that we have named Blume-k, on the other hand, implements a
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Figure 5: MSE for different combinations of target betas and estimation method, using Blume-k and Procrustes

adjusting withk = 1, . . . , 60.
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very simple mapping which exhibits considerable potential. Our main conclusion is that modifying Blume’s

method so as to have longer memory —as in the Blume-k method presented above— consistently improves

beta estimates. The Procrustes method, on the other hand, provides an attractive decomposition of beta

movements in phase space, but seems of lesser value as a predictive method.
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Table 1: Mean square error of approximation of several target betas using different filtering methods. Targets

are computed using past and future information. Methods listed in the left margin of the table use information

up to and including the present observation. The figures in each cell are MSE. Details in text.

Target betasβ̃t

Estimation Rolling Local level GAM Local linear

method for β̂t (RR60) (LL) model (LLT)

UNADJUSTED

RR (60 months) 0.037100 0.024729 0.027128 0.024917

RR (90 months) 0.041500 0.018204 0.018156 0.018475

Local level 0.032340 0.011472 0.013855 0.011610

Local linear 0.033437 0.033393 0.036142 0.032639

PROCRUSTES ROTATED: EPOCH= 6 MONTHS

RR (60 months) 0.037980 0.025075 0.027315 0.025292

RR (90 months) 0.042339 0.018574 0.018446 0.018870

Local level 0.032769 0.011588 0.013867 0.011762

Local linear 0.033968 0.021567 0.023978 0.020873

PROCRUSTES ROTATED: EPOCH= 12 MONTHS

RR (60 months) 0.038516 0.025269 0.027460 0.025501

RR (90 months) 0.042741 0.018780 0.018619 0.019102

Local level 0.032884 0.011632 0.013854 0.011827

Local linear 0.034049 0.020577 0.022888 0.019931

PROCRUSTES ROTATED: EPOCH= 18 MONTHS

RR (60 months) 0.038778 0.025421 0.027590 0.025666

RR (90 months) 0.042998 0.018985 0.018815 0.019314

Local level 0.032916 0.011692 0.013911 0.011897

Local linear 0.034062 0.019450 0.021735 0.018850
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Table 2: Mean square error of approximation of several target betas using different filtering methods. Targets

are computed using past and future information. Methods listed in the left margin of the table use information

up to and including the present observation. The figures in each cell are MSE. Details in text.

Target betasβ̃t

Estimation Rolling Local level GAM Local linear

method for β̂t (RR60) (LL) model (LLT)

UNADJUSTED

RR (60 months) 0.037100 0.024729 0.027128 0.024917

RR (90 months) 0.041500 0.018204 0.018156 0.018475

Local level 0.032340 0.011472 0.013855 0.011610

Local linear 0.033437 0.033393 0.036142 0.032639

BLUME ADJUSTING: USING 1 MONTHS

RR (60 months) 0.037611 0.024897 0.027240 0.025099

RR (90 months) 0.041984 0.018400 0.018327 0.018685

Local level 0.032720 0.011651 0.013982 0.011817

Local linear 0.033856 0.027499 0.030115 0.026838

BLUME ADJUSTING: USING 24 MONTHS

RR (60 months) 0.011806 0.020818 0.026441 0.020849

RR (90 months) 0.020985 0.011996 0.014158 0.011937

Local level 0.017391 0.006379 0.010010 0.006236

Local linear 0.017502 0.012989 0.016977 0.012051

BLUME ADJUSTING: USING 60 MONTHS

RR (60 months) 0.037985 0.028461 0.029850 0.029204

RR (90 months) 0.015019 0.011456 0.013214 0.011457

Local level 0.027277 0.008389 0.008988 0.008891

Local linear 0.031876 0.017619 0.017834 0.017683
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Table 3: Mean square error of approximation of several target betas using different one step ahead prediction

methods. Targets are computed using past and future information. Methods listed in the left margin predict

β̃t+1 using information up to and including timet. The figures in each cell are MSE. Details in text.

Target betasβ̃t

Estimation Rolling Local level GAM Local linear

method for β̂t (RR60) (LL) model (LLT)

UNADJUSTED

RR (60 months) 0.038337 0.025201 0.027310 0.025440

RR (90 months) 0.042499 0.018652 0.018444 0.018953

Local level 0.033096 0.011909 0.014089 0.012090

Local linear 0.033610 0.022684 0.025184 0.021902

PROCRUSTES ROTATED: EPOCH= 1 MONTHS

RR (60 months) 0.040283 0.026936 0.029022 0.027170

RR (90 months) 0.043437 0.019501 0.019315 0.019805

Local level 0.033738 0.012405 0.014589 0.012601

Local linear 0.035549 0.023105 0.025382 0.022431

PROCRUSTES ROTATED: EPOCH= 12 MONTHS

RR (60 months) 0.039919 0.026299 0.028348 0.026549

RR (90 months) 0.043533 0.019278 0.019044 0.019615

Local level 0.033536 0.012126 0.014271 0.012335

Local linear 0.035116 0.021317 0.023503 0.020690

PROCRUSTES ROTATED: EPOCH= 18 MONTHS

RR (60 months) 0.039986 0.026336 0.028392 0.026595

RR (90 months) 0.043713 0.019438 0.019217 0.019788

Local level 0.033517 0.012098 0.014252 0.012319

Local linear 0.034992 0.020117 0.022303 0.019532
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Table 4: Mean square error of approximation of several target betas using different one step ahead prediction

methods. Targets are computed using past and future information. Methods listed in the left margin predict

β̃t+1 using information up to and including timet. The figures in each cell are MSE. Details in text.

Target betasβ̃t

Estimation Rolling Local level GAM Local linear

method for β̂t (RR60) (LL) model (LLT)

UNADJUSTED

RR (60 months) 0.038337 0.025201 0.027310 0.025440

RR (90 months) 0.042499 0.018652 0.018444 0.018953

Local level 0.033096 0.011909 0.014089 0.012090

Local linear 0.033610 0.022684 0.025184 0.021902

BLUME ADJUSTING: USING 1 MONTHS

RR (60 months) 0.039666 0.026820 0.029177 0.027021

RR (90 months) 0.042859 0.019263 0.019201 0.019548

Local level 0.033523 0.012414 0.014766 0.012572

Local linear 0.035192 0.047748 0.050601 0.047096

BLUME ADJUSTING: USING 24 MONTHS

RR (60 months) 0.011933 0.020914 0.026551 0.020946

RR (90 months) 0.021020 0.012030 0.014199 0.011972

Local level 0.017452 0.006409 0.010050 0.006264

Local linear 0.017563 0.013038 0.017039 0.012098

BLUME ADJUSTING: USING 60 MONTHS

RR (60 months) 0.038048 0.028524 0.029920 0.029264

RR (90 months) 0.015046 0.011479 0.013240 0.011479

Local level 0.027310 0.008406 0.009011 0.008908

Local linear 0.031905 0.017640 0.017863 0.017704
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