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Abstract

Betas play a central role in modern finance. The estimation of betas from historical data and their
extrapolation into the future is of considerable practical interest. We propose two new methods: the firstis a
direct generalization of the method in Blume (1975), and the second is based on Procrustes rotation in phase

space. We compare their performance with various competitors and draw some conclusions.
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1 Introduction

The beta parameter as a measure of an asset’s risk plays a central role in finance. Estimated betas and their
predictions are used in asset pricing, cash flow valuation, risk management, making investment decisions or
simply as a risk factor in models with more than one factor.

Because of their central role in portfolio theory, betas have been the object of enormous research interest.
The traditional setting is one where beta risk is assumed to be constant. In this framework, betas can be
estimated as the slope coefficient in a simple regression model fitted by ordinary least squares. However,
empirical evidence in numerous studies suggest that betas are not constant over time.

Blume (1971) found that historical data for “individual securities and smaller portfolios have limited
value in forecasting”, whereas “larger portfolios are remarkably accurate in predicting future portfolios
betas”. In that paper, Blume documents the existence of a tendency for the betas of even well-diversified
portfolios of extreme risk levels to regress towards the mean. Blume (1975) tested the reversion to the
“grand mean” of the betas over time, namely 1, and attributed the existence of the reversion to the mean to
the non-stationarity of the betas.

Furthermore, evidence on non-stability of beta coefficients is not tied to a particular market or type
of asset. Gooding & O'Malley (1977), Fabozzi & Francis (1978), Bos & Newbold (1984) and Collins,
Ledolter & Rayburn (1987) or Lee & Chen (1982) all present evidence for USA stocks. Faff, Lee & Fry
(1992), Brooks, Faff & Lee (1992), Brooks, Faff & Lee (1994) do the same for the case of Australian
stocks. Evidence for the German Stock Market is presented in Abberger (2004), Ebner & Neumann (2005),
and more recently in Eisenbeil3, Kauermann & Semmler (2007); and many more references could be given
covering different markets and assets.

The common finding of all this literature is that betas appear to be far from constant over time. Different
models and estimation techniques have been used to account for non stationarity: state space models with
different choices for the stochastic process of betas, the Hildreth & Houck (1968) random-coefficient model,
the random walk coefficient or AR(1) coefficient model and non-parametric regression techniques among
others: see for instance Fabozzi & Francis (1978) and Collins et al. (1987).

Lee & Chen (1982) detected some regression tendency of beta coefficients over time with a model that
allows for coexistence of both beta instability and beta tendency. Gonzéalez-Rivera (1997) found evidence
against the constancy of betas in favor of a random coefficient model, and concluded that the time variation
of betas is due to non-systematic behavior of the firms.

Brooks et al. (1992), Brooks et al. (1994), Faff et al. (1992), Clare, Priestley & Thomas (1997) and
Brooks, Faff, Gangemi & Lee (1998Y discuss different types of models for time varying betas. Abberger

(2004) and Eisenbeil? et al. (2007), among others, use non-parametric estimation technigues to account for



non-stationarity in betas of individual stocks. They treat beta coefficients as unspecified functions of time.

In the following we will consider estimation of betas, both using past and contemporaneous information
(filtering) or just past information (prediction). However, betas are not directly observable. In order to test
the effectiveness of the filtering and prediction methods discussed, we compute “target betas” in various
ways, which use information in the future. Clearly, the performance of the filtering and prediction methods
will be relative to the target betas used. For instance, very smooth target betas favour prediction methods
with greater inertia. Since filtering and prediction methods have to be judged in association with the method
used to estimate the target betas, we provide results for each combination.

The remaining of this paper is organized as follows. Section 2 provides a quick review of some methods
proposed so far for the estimation of betas. Section 3 discusses the methods proposed in Vasicek (1973)
and Blume (1975) to adjust (filter) and predict betas. It is against the background of this last paper that
we motivate in Section 4 two new methods. Both can be seen as trying to endow Blume’s method with a
longer memory. Aside from its possible use in filtering or predicting betas, one of the methods generates
as by-products several interesting descriptive measures, which provide insight on the behaviour of betas. In

Section 5 we present our empirical results and Section 6 ends with some conclusions.

2 Estimating time varying betas

Sharpe (1964) and Lintner (1965) derive the Capital Asset Pricing Model (CAPM) assuming the existence
of lending and borrowing at a risk-free rate of interest. The model implies that the expected#éiyirof
risky asset (a single stock or a portfolio) must be linearly related to the covariance between its return and

the return of the market portfolio and is usually expressed by the equation
E(R;) —ry = Bi[E(R) —rg], 1)

whereR is the return on the market portfolio ang is the return on the risk-free asset. The beta coefficient,
Bi, is the coefficient of systematic risk of asseixpressed as the ratio of the covariance between its return

and the return of the market portfolio and the market variance,

Cov(R;, R)
C_ Ukddy 2
’ Var(R) @
The Sharpe-Lintner CAPM can be expressed in “excess returns” as
E(Zi) = Bi[E(Z)] (3)
_ Cov(Z;,2)
ﬁ’L - VaT(Z) I (4)
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whereZ; = R; — ry is return of asset in excess of the risk-free rate atiflis the excess return on the
market portfolio of assets.

Usually, the beta is estimated by the slope in the market model,
Zip =0+ BiZi +ey; t=1,....T. (5)

The equation (5) suggests that a plausible estimatgmight be the estimated coefficient of a regression
of excess asset returns on excess market returns, with or without intercept. There has been considerable
evidence, though, that the beta stability assumption implied by (3) and (5) must be rejected and some scheme
to accommodate time-varying betas should be adopted instead: see for instance Garbade & Rentzler (1981),
Dotan & Ofer (1984), Elton & Gruber (1995), and references therein, in addition to papers cited in the
Introduction. Attempts have been made to link beta’s changes to seasonal effects, Brooks, Faff & Josev
(1997), market phase, Gooding & O’Malley (1977), and interest rates, Bildersee & Roberts (1981), among
other factors.

Traditionally, a “rolling regression” beta estimator has been used, Fama & MacBeth (1973); the regres-
sion suggested by (5) is carried on overlapping sets of contiguous observations. The estipdte®f-th
asset beta at tim# is thus given by the valug;; minimizing

min Z (Zij — i — BinZj)*. (6)

oty Bit
JElt—q:t]

The lengthg of the block of contiguous observations used plays a fundamental role: the tarties
smoother the variation of th&,. Traditionally,q = 60 (five years of monthly data) have been used
Variations of the rolling approach exist in which (6) becomes a weighted regression problem:

min Z K j(Zij — i — BitZmj)* @
J

ait,Bit

In (7), K, ; is a weight or kernel function, whose bandwidth (and therefore the implied smoothing in the

estimated betas) can be chosen by a data driven method (see for instance Esteban & Orbe (to appear)).
The rolling regression approach is by no means the only possibility. As we are dealing with unobservable

time-varying magnitudes, state-space models suggest themselves as an alternative. We c&n;mpdel

t = 1,T as a local level or local linear trend model, Harvey (1989), Durbin & Koopman (2001). Under the

local level specification{ 3;; } follows the simple dynamics:

Bit = Bit—1 + Nit- (8)

Fisher (1970) and Gonedes (1973) among other authors have found empirically that with monthly data the optimal subsamp

between four and seven years: but there is no universal agreement on this issue, see also Meyers (1973) and Baesel (1974). Five

is a common choice.



The excess return of asgedt timet, Z;;, is:
Zit = ZyPBir + €4t 9

Taken together, (8)—(9) define a state-space model, whose param:é%tasd(af) can be estimated by
maximum likelihood (assuming normality of the noises). The Kalman filter or smoother gives then estimates
of the states3;, for eacht, conditional on observations available at titne 1 (one step ahead prediction), at
time¢ (filtering) or conditional on all observations, past and future (smoothing).

Other methods can also be used: Eisenbeil3 et al. (2007) propose to minimize

w3 (Za-ai-[p+80] 2) 10)

where;(t) is an “smooth” function of time constrained By, 3;(t) = 0 (to preserve identifiability). The
“total”, time-varying, beta coefficient is thus estimateddy- 3;(¢), with 3;(¢) capturing the time variation.

The “smooth” function@-(t) is often a spline, and the amount of smoothing can be set arbitrarily or
chosen by cross-validation or other methods (see Hastie & Tibshirani (1991), Chapter 3 for instance).

As an illustration, Figure 1 shows the trajectories of estimated betas with monthly data for ten portfolios
over the period January 1934-August 2007, using the rolling regression approach and a local level model
with parameters estimated by maximum likelihood. (Data consists of 10 Industry portfolios, taken from
Prof. K.R. French’'s Web page.)

There is good agreement between the two sets of estimates, and both show some compelling evidence
of variation in the betas, with a noticeable downward trend in the betas for Utilities and Durables, partly
reversed in the late nineties. There is also a sharp increase in the beta of the High Tech group around
the year 2000. (Incidentally, the smoother evolution of betas for the portfolios of Manufactures, Durables,
Health and Others also seems to occur in the German market: see Eisenbei3 et al. (2007).) We remark
that at each time point, betas are estimated with past and future data: thus, the estimates are retrospective
and cannot be computed at tirheHowever, they serve as targets to assess filtering and prediction methods
realizable in real time, which we will examine in Section 5.

In Figure 2 we have used a generalized additive model (GAM, see for instance Hastie & Tibshirani
(1991)), minimizing (10) with a spline in place qﬁi(t). The degree of smoothing has been chosen by

generalized cross-validation. We have also used a local linear trend model,

L= B+ B (11)
i = Bl TtV (12)
Zy = ZiBf + e, (13)



Figure 1: Alternative estimates of betas using rolling regression over periagds-060 months and Kalman
smoothing with local level dynamics faf;. In both cases, paaind futuredata is used when estimating at

time t. Monthly data for ten industrial portfolios in the period January 1934-August 2007.
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Figure 2: Alternative estimates of betas using a GAM with smoothing selected by generalized cross-validat
and Kalman smoothing with local linear trend dynamicsdgr In both cases, paand futuredata is used when

estimatings;; at timet. Monthly data for ten industrial portfolios in the period January 1934-August 2007.
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with parameters estimated by maximum likelihood. In (11)—(13) the bgfdsllow a random walk with
stochastic driff3;,, which itself follows a random walk. The local linear trend and GAM fits closely resemble
each other: in fact, except for the amount of smoothing, both methods should be equivalent (Durbin &
Koopman (2001), § 3.11).

The message of Figures 1 and 2 is that, while generally agreeing on their overall appearance, betas esti-
mated by different methods and using different time spans may have quite different behaviour. In particular,
with the span chosen, the rolling regression estimates in Figure 1 are jaggier than the smoothed estimates
based on a local level model, and jaggier also than those in Figure 2.

As anticipated in the introduction, the performance of a filtering or prediction method will be quite
dependent on what exactly we try to predict. Rather than using one single set of target betas as in e.g.

Brooks & Faff (1997), we will compare our filtered and predicted betas with different target betas.

3 Predicting time-varying betas

Because single-index models call for estimates of betas in order to select assets for inclusion in a portfolio,
considerable effort has been expended in trying to forecast these betas. We will review some of this work
before we proceed to propose yet another two methods in the next Section.

In an early paper, Blume (1975) tried to assess how much association there is between betas in one period
and their counterparts in the next period. He estimated betasfdr, . . . , n assets in two non-overlapping
seven-year periods. L&, t = 1,2, denote the estimate of beta for assiget periodt. If we regres 3,2}
on{pBi},i=1,...,n,fitting

Biz = 8o + 618i1 + €i2, (14)

we can obtain estimatés andd;. These estimates can be used to obtain adjusted estimates of beta at
Bio = 00 + 01511 (15)
or predicted betas for the next period, i.e.
Bis = do + 61 Bsa. (16)

It order to relate this procedure with our proposal in Section 4, it will help us to stack equation (16) for

i =1,...,ntoform the single vector equation
Bs = doln + 0182 (17)
wheregd,’ = (G12, - - -, Bn2) and1,, is a vector ofn “ones”. The existing configuration of betas at time

can be thought of as a poipt in ann-dimensional space. The Blume forecast of the configuration of betas
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attimet + 1, Bt+1, is a linear combination g8; and1,,. Quite often (as was indeed the case for the data
used in Blume’s original work) this will imply shrinkage of the vector of betas towaygs

Vasicek (1973) does something similar. The assets’ bgtasand their variancesr,%“, are computed
for period 1. Let3, be the average beta across the sample of assets;rg?rits variance). The predicted

beta for period 2 is computed as:

Bin = 3 B+ = Bia (18)

%, g
og + o3 og + o35
This is similar in spirit to equation (16): each predicted beta is a (convex) linear combinatigraati 3;; .
However, the coefficients change wittso we can no longer stack equation (18)#fet 1, ..., n and write
,6’2 as a linear combination df,, and3,, as in (17). It is true, though, that Vasicek’s method relies, like
Blume’s, on shrinkage, this time towards1,,. Some variations exist, like the substitution/f in (18)
by 37, obtained by updating;; as in Blume’s method (see Marin & Rubio (2001), p. 404). The idea of

estimating betas by shrinking towards one or multiple points is reviewed and developed in Karolyi (1992).

4 Two new methods

We will look at the betas for the assets considered at each timas a vecto3, in R". The history of

betas is then a trajectory in that “phase space”. In our case, with ten portfolies]0, so this trajectory
wanders in 10-dimensional space. While we cannot visualize in more than three dimensions, it is useful
to look at some two-dimensional projections to get a feeling of how betas evolve in phase space. (In order
to develop some intuition on what is going on, we have found toolsdiebi , Cook, Swayne, Buja &

Lang (2008), to be of invaluable help.) Figure 3 shows a subset of two-dimensional projections of four betas
against another three. The betas are fitted using a GAM model (as represented in Figure 2 above).

Blume’s method can be seen as transforming the vggitof betas into a new

Biy1r = 001y + 615, (19)

WhereSO andd; have been obtained by regressjigon 3;_1. This seems a reasonable transformation in
phase space for mapping one observed point to an approximation of the next.

One feature to notice is thag andd; have been estimated in a cross-section regression withnonlg
degrees of freedom. Seen from another point of view, the transformation caflyin 3,1 dependsnly
on the evolution observed fro,_; to B;. Looking at the long quasi-linear stretches in the phase space

sections in Figure 3, one might conjecture that the change f#am to 3; is likely to be quite similar to



Figure 3: Twelve two-dimensional sections@fin phase space. The betas shown are estimated using a GAN
model. Monthly data for ten industrial portfolios in the period January 1934-August 2007. While some sha

turns can be seen, most of the time the trajectories evolve in quasi-linear stretches.
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the changes at previous time steps. This suggests fitting the regression

Bt 1, Bt—1 €t
Be—1 1 Bt—2 €1
= | | +a| |+ ], (20)
| Bt—kt1 | | 1n Bt—k| |€t—k+1]

i.e., stackingt cross-section regressions like (17) with the same param&teds. In other words, rather
than seek a transformation carrying one pgpt ; in phase space into the neg;, we seek a transforma-

tion carrying a group ok consecutive:-dimensional points (which we will call an “epoch”) to the next.
Doing so, we force smoothness in the evolution of predicted betas and use more observations todgstimate
01. The performance of this method, which we will name Bluinés examined in the sequel.

But we need not stop here: we may think of more general transformations carrying an epoch into the
next. A rather general family of transformations is made of all rigid rotations in phase space, possibly
followed by a dilation and translation.

Consider an epoch made 8f, B:_1, - . ., Bt—k+1 and stack all of its components as row vectors in the
k x n matrix B;. Define likewise an epocB;;1. We may look for a constant, rotation matrixG' and
vectore such that:

Bii1 ~ pBiG + 1", (21)

whereG is restricted to be an orthogonal matrjxjs a non-negative constant ards a n-dimensional
translation vector. Note thai G andc are all dependent o) a dependency we drop in the notation for
simplicity.

Consider initial and targédt x n matricesX andY’, and the problem of finding, G andc such that
Y ~ pXG + 1t (22)

A reasonable criterion is to minimize trd&&’ Z) with Z = Y — pX G — 1,c’. The resultingo, G and
c are said to perform a Procrustean rotation carndfgnto Y, and can be readily obtained. LAt be the
matrix X after centering its columns, and perform the singular value decompositibi¥d€, so that let

UDVT = YTX. It can be shown (see for instance Krzanowski (1988)) that the sought-€andc are

given by:
G = vUT (23)
tracd D
tracd X~ X))
' = 17(Y - pXG). (25)

11



Use of these formulae will solve our problem. We will work in deviations from 1. Deffning
B} =By — 1, (26)
wherely, ,, is ak x n matrix of ones, we will consider
B}, =~ pB;G + 1c" (27)

instead of (21) and use equations (23)—-(25) WhandB{, , in place ofX andY respectively.

The estimation of, p andc which approximately carry one epods; into B}, ;

adjust and/or extrapolate betas, much in the same way as in our Blgmeeralization of Blume’s method:

provides a way to

givenp, G, cand By, we can predicB;, ; by

B*

41— pB{G + e (28)

It is interesting to compare the last expression with Blume’s method. Transposing (28) and picking the

first column of the result, we have:
Bri1=rG B; +c, (29)

which, since;@;*le = B¢y1 — 1, can be written
Beyr = pG B+ c+ (In — pG")1,,. (30)

In general,c will be close to zero: its only purpose is to shift the centroid of the transformed epoch so
as to match the centroid of the target epoch, see (25). Both these centroids will be close to zero most of the

time when we deal with betas expressed in deviations with respect to 1. We are left then with
Bev1 = pGT By + (In — pGT)1y; (31)

this givesﬁt+1 as a “weighted average” @f; and1,,, much as in expression (19). However, unlike in (19),
the “weights” are matrices and unequal for different componeng; of

As an example which may help to gain some intuition about the the performance of the rotation method,
we have computed the Procrustes rotation on epochs of 24 consecutive nigntrs] B, ;. Thus, each
epoch can be thought of as a set of 24 point®ih wheren = 10 is the number of portfolios. Betas are

expressed as deviations from 1, i@*’s in the notation introduced in (26). The three panels of Figure 4

2The literature has reported a tendency of beta to reveritoBlume (1971) detected a tendency for the betas of well-diversified
portfolios of extreme risk to regress toward the grand average of all betas. Blume (1975) tests that thd de@oaling & O'Malley
(1977) confirms this tendency and assume that the causes are economic and not statistical. Goldberg (1981) and Garbade & Re

(1981) follow up along the same line.

12



Figure 4: Procrustes rotation statistics when rotating betas obtained by smoothing with a local linear tre
model. The panels show from top to bottom the dilation coeffigienbs(«), wherea is the angle of rotation
associated to matri& and|c|, the modulus of the translation vector. Monthly data for the period January

1937-August 2007. Shaded bars identify recession periods as defined by the NBER.
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show respectively the estimates ofiefined in (24), the cosine of the anglerotated by the orthogonal
matrix G (computed asos(a) = k=17 G 1) and the euclidean norifc| of the translation vectoe
defined in (25).

The results are interesting in themselves. A paramesenaller than 1 can be interpreted as a regression
of 3* towards0 (and thus of3 towardsl); this implies that the betas of the different assets become more
alike. A parametep greater than 1, on the other hand, implies increasing asset differentiation.

In Figure 4,p wanders around 1, rarely deviating more than 5% from it. There seems to be, though, a
period with major beta convergence and then divergence: from the end of 1968 to the beginning of 1973.
Interestingly,cos(a) was rather stable and close to 1 for the whole of this period |ahéhirly small,
implying that the realignment of betas was a phenomenon common to all of them. The opposite is true for
the period through the early sixties, in which the orientatio@pteemed to change repeatedly, as evinced
by the lowcos(«).

In an attempt to see if changes@p are related to the economic cycle, we have shaded the periods which
correspond to recessions, as defined by the NBER. It seems that some of the major swjipgstioularly
in the seventies, are associated to recessions, but no clear pattern emerges. There are also a few, but relatively
large, values of|c|| after the mid nineties, implying sudden changeg@jnwhich cannot be accounted for

by rotation and dilation.

5 An empirical investigation

In order to assess the relative merits of the different prediction and adjusting beta methods, we have con-
ducted the following experiment. First, we have estimated target betas using four different methods de-
scribed in Section 2, and illustrated in Figures 1 and 2. As mentioned there, these estimations are not
realizable in real time, as they use observations in the future.

All computation was done in R (see R Development Core Team (2008)) and various packages built on
R, notably Petris (2007), Sarkar (2008) and Zeileis & Grothendiek (2005). All code is available from the
corresponding author.

All four tables presented in the following display mean square error (MSE) when targethetae
approximated. Target betas are computed using past and future observations. The approximatfhig betas
only use past or past and present information at tinaed are computed using various estimation methods,
supplemented or not with a Blunieer Procrustes transformation. Tables 1 and 2 show results for filtered
betas, i.e/3;; are estimated with information up to timeTables 3 and 4 show results for predictions, when

B:¢ are estimated with information up to tinte- 1.

14



The MSE figures have been computed as
MSE =N""Y"> (B — Bun)*, (32)
[ t

where the sums extend over all assedsd all N available months{ may differ from one estimate to the

next, as the different methods force to discard a different number of observations at the start). Thus, the
MSE pools results for all assets and times in a single figure for each combination of target and estimation
method.

All tables have an “Unadjusted” panel, displaying the MSE for each combination of filtering/prediction
method and target betas when no Bluiner Procrustes adjustment is performed.

In Table 1 we see, under the “Unadjusted” heading, the performance of four filtering methods for target
betas computed in different ways. For all filtering methods (except for the filtering based on the local linear
trend), the MSE is lower for the smoother targets betas —the rolling regression method with a bilateral
window extending over 60 months seems to produce poorly smoothed betas that are difficult to cope with
by the filtering methods. Aside from that, filtering based on the local level model appears far better than the
other filtering methods.

When betas go through a Procrustes transformation, results are largely unchanged, or even degraded,
except for the local linear filtered betas, whose MSE drops markedly. This is true for all targets, except
the RR60 variety, which all filtering methods appear to have trouble coping with. Overall, the Procrustes
method does not shine in the comparison, although it does improve the local linear trend (LLT) estimates
when the targets are LL, GAM and LLT.

More interesting patterns emerge when we use the Bliradjusting method. Wheh = 1 (i.e., for
Blume'’s original method) the effect of the adjustment on the MSE is largely unnaicazptfor the local
linear filtered3, and the smoother varietys (LL, GAM, LLT) qit. Filtering with the local linear model
produces quite noisy betas and no matter what we do in introducing some constraints is useful.

The interesting part comes for the lower two panels: when using the Bluadjusting with epochs
of k = 24, the improvement is striking, with reductions in the MSE of about 50% in some cases. This
is even true with epochs d&f = 60 months, although for such largesome figures already show signs of
deterioration.

In order to gain some insight on the behaviour of the Procrustes and Bumethod as the length of
the epoch changes, we have computed the MSE as a functiofoofach combination of filtering method
and target betas. The results can be seen in Figure 5.

It is clear that Blume’s method (which corresponds to our Bluimaethod in the particular case of

k = 1) can be improved upon by increasihgThe optimalk seems to be for most combinations of method

15



and target betweel = 30 andk = 60. In contrast, the Procrustes adjusting method does not appear to help
much except for the LLT variety of;; and even then it seems dominated by the Blunmeethod.

Aside from that, the estimation method based on the local level model (LL) seems clearly best for any
k and most targets, and remarkably insensitive to the choiée When the targets are betas smoothed by
rolling regression (bilateral, using both past and future data), the MSE becomes quite sensitive to the choice
of k.

Tables 1 and 2 only tell part of the story. Both the Blumend Procrustes transformation method
are geared towards prediction. When using information up to tintke Blumek method estimates the
parametersy, J; fitting (20); let the estimates b&](t), 5 (t), where we have modified the notation to

explicitly reflect the dependency of the estimateg.ofhen, the adjusted betas for tirhare given by

Bt = do(t) 1 + 61(1)Be—1 (33)

and the one-step ahead predictions are computed as
Be = do(t — 1)1y + 01(t — 1)By—1. (34)

The adjusted estimates in Table 2 are basically one-step ahead predictions attimeept for the fact that

bo(t), 61(t) are estimated using the observation at timenhich is only used in the estimation 6f(¢) and

Sl(t); similarly for the Procrustes estimator. This is in contrast to filtering using a local level or local linear
trend model, which make fuller use of contemporaneous information. Therefore, one-step-ahead predictions
may be a fairer basis for comparison of the merits of the different methods.

Tables 3 and 4 provide the analogues of Tables 1 and 2, using MSE of prediction one step ahead. Patterns
mimic what we have seen in Tables 1 and 2. Most MSE figures are slightly larger, as one would expect given
that we are using less information in our attempt to approxim3atehe local level model seems again the
strongest performer, both before and after adjusting with the Blamethod and a suitable of the values
of k used in Table 4% = 24 gives good results, while = 60 is clearly too large. Not only is the local level

method of prediction best, but it is also the one which stands to gain more from Bladjesting.

6 Conclusions

Two new methods, Procrustes and Blukehave been introduced, aimed at the adjusting of raw betas
estimated by several traditional methods. Both can be seen as mappings in phase space shrinking towards
1.0, and are thus similar in spirit to Blume’s method. While the Procrustes method implements a rather
flexible mapping which, as a by-product, produces useful descriptive statistics, it appears of limited value

in terms of MSE reduction. The method that we have named Bl the other hand, implements a

16



Figure 5: MSE for different combinations of target betas and estimation method, using BlanteProcrustes

adjusting withk = 1, ..., 60.
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very simple mapping which exhibits considerable potential. Our main conclusion is that modifying Blume’s
method so as to have longer memory —as in the Bldmeethod presented above— consistently improves
beta estimates. The Procrustes method, on the other hand, provides an attractive decomposition of beta

movements in phase space, but seems of lesser value as a predictive method.
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Table 1: Mean square error of approximation of several target betas using different filtering methods. Tarc

are computed using past and future information. Methods listed in the left margin of the table use informati

up to and including the present observation. The figures in each cell are MSE. Details in text.

Target betasg;
Estimation Rolling Local level GAM Local linear
method for 3;  (RR60) (LL) model (LLT)
UNADJUSTED
RR (60 months) 0.037100 0.024729 0.027128  0.024917
RR (90 months) 0.041500 0.018204 0.018156  0.018475
Local level 0.032340 0.011472 0.013855 0.011610
Local linear 0.033437 0.033393 0.036142  0.032639

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

PROCRUSTES ROTATED EPOCH= 6 MONTHS

0.037980 0.025075 0.027315  0.025292
0.042339 0.018574 0.018446  0.018870
0.032769 0.011588 0.013867 0.011762
0.033968 0.021567 0.023978  0.020873

PROCRUSTES ROTATED EPOCH= 12 MONTHS

0.038516  0.025269 0.027460  0.025501
0.042741 0.018780 0.018619  0.019102
0.032884 0.011632 0.013854  0.011827
0.034049 0.020577 0.022888  0.019931

PROCRUSTES ROTATED EPOCH= 18 MONTHS

0.038778 0.025421 0.027590  0.025666
0.042998 0.018985 0.018815  0.019314
0.032916 0.011692 0.013911  0.011897
0.034062 0.019450 0.021735  0.018850
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Table 2: Mean square error of approximation of several target betas using different filtering methods. Tarc

are computed using past and future information. Methods listed in the left margin of the table use informati

up to and including the present observation. The figures in each cell are MSE. Details in text.

Target betasg;
Estimation Rolling Local level GAM Local linear
method for 3;  (RR60) (LL) model (LLT)
UNADJUSTED
RR (60 months) 0.037100 0.024729 0.027128  0.024917
RR (90 months) 0.041500 0.018204 0.018156  0.018475
Local level 0.032340 0.011472 0.013855 0.011610
Local linear 0.033437 0.033393 0.036142  0.032639

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

BLUME ADJUSTING: USING 1 MONTHS

0.037611 0.024897 0.027240  0.025099
0.041984 0.018400 0.018327  0.018685
0.032720 0.011651 0.013982  0.011817
0.033856 0.027499 0.030115 0.026838

BLUME ADJUSTING: USING 24 MONTHS

0.011806 0.020818 0.026441  0.020849
0.020985 0.011996 0.014158  0.011937
0.017391 0.006379 0.010010 0.006236
0.017502 0.012989 0.016977  0.012051

BLUME ADJUSTING: USING 60 MONTHS

0.037985 0.028461 0.029850  0.029204
0.015019 0.011456 0.013214  0.011457
0.027277 0.008389 0.008988  0.008891
0.031876 0.017619 0.017834  0.017683
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Table 3: Mean square error of approximation of several target betas using different one step ahead predic

methods. Targets are computed using past and future information. Methods listed in the left margin prec

Bt_H using information up to and including tinte The figures in each cell are MSE. Details in text.

Target betasg;
Estimation Rolling Local level GAM Local linear
method for 3,  (RR60) (LL) model (LLT)
UNADJUSTED
RR (60 months) 0.038337 0.025201 0.027310  0.025440
RR (90 months) 0.042499 0.018652 0.018444  0.018953
Local level 0.033096 0.011909 0.014089  0.012090
Local linear 0.033610 0.022684 0.025184  0.021902

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

PROCRUSTES ROTATED EPOCH= 1 MONTHS

0.040283 0.026936 0.029022  0.027170
0.043437 0.019501 0.019315  0.019805
0.033738 0.012405 0.014589 0.012601
0.035549 0.023105 0.025382  0.022431

PROCRUSTES ROTATED EPOCH= 12 MONTHS

0.039919 0.026299 0.028348  0.026549
0.043533 0.019278 0.019044  0.019615
0.033536  0.012126 0.014271  0.012335
0.035116  0.021317 0.023503  0.020690

PROCRUSTES ROTATED EPOCH= 18 MONTHS

0.039986 0.026336 0.028392  0.026595
0.043713 0.019438 0.019217  0.019788
0.033517 0.012098 0.014252  0.012319
0.034992 0.020117 0.022303  0.019532
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Table 4: Mean square error of approximation of several target betas using different one step ahead predic

methods. Targets are computed using past and future information. Methods listed in the left margin prec

Bt_H using information up to and including tinte The figures in each cell are MSE. Details in text.

Target betasg;

Estimation Rolling Local level GAM Local linear
method for 3,  (RR60) (LL) model (LLT)
UNADJUSTED
RR (60 months) 0.038337 0.025201 0.027310  0.025440
RR (90 months) 0.042499 0.018652 0.018444  0.018953
Local level 0.033096 0.011909 0.014089  0.012090
Local linear 0.033610 0.022684 0.025184  0.021902

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

RR (60 months)
RR (90 months)
Local level

Local linear

BLUME ADJUSTING: USING 1 MONTHS

0.039666 0.026820 0.029177  0.027021
0.042859 0.019263 0.019201  0.019548
0.033523 0.012414 0.014766  0.012572
0.035192 0.047748 0.050601  0.047096

BLUME ADJUSTING: USING 24 MONTHS

0.011933 0.020914 0.026551  0.020946
0.021020 0.012030 0.014199  0.011972
0.017452 0.006409 0.010050  0.006264
0.017563 0.013038 0.017039  0.012098

BLUME ADJUSTING: USING 60 MONTHS

0.038048 0.028524 0.029920  0.029264
0.015046 0.011479 0.013240  0.011479
0.027310 0.008406 0.009011  0.008908
0.031905 0.017640 0.017863  0.017704
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