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TE ESCUCHÉ

Te escuché, a cada progreso le sumabas un nuevo ĺımite,
un nuevo ”no vas a poder” y otro nuevo miedo a traspasar

sin palabras.

Te escuché, confundiendo entre tanta sensación si esa voz
surǵıa de las profundidades de mı́ misma.

Y, mientras te escuchaba, aprend́ı a respirar con calma lo
que dećıas; a notar cómo al exhalar te despegabas de mı́
como el aceite lo hace del agua, diferenciando cuál es la

naturaleza de cada sustancia.

Escuché llenándome de aire, que ya no eras más que
pensamiento flotando en la superficie.

Te escucho ahora. Ya sé quién eres, pero lo más
importante es que tú, mente asustada, emepiezas a saber

quién soy YO.

Olatz Uranga Barandiaran
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Abstract

The present project is devoted to analyze the electronic structure of the ground and excited elec-

tronic states and the associated optical properties of organic dyes and supramolecular assemblies

of potential interest for optical applications. Following these points, the project has been classi-

fied in three interrelated research lines. First, we report a join experimental and computational

investigation at the DFT level on monomers and covalently-linked dimers of borondifluoride

complexes of curcuminoid derivatives, a prototype example of conjugated organic dyes. The

nature of the electronic states was analyzed by employing an effective approach based on the

development of the electronic wave functions in terms of diabatic basis states. A similar ap-

proach was used in a second study for rationalizing the absorption and fluorescence emission

properties of conjugated dyes composed of dimethylamino flavylium heterocycles linked by a

polymethine chain, which were recently reported to act as efficient shortwave infrared emit-

ters. Finally, a third study focused on the development of a new theoretical approach allowing

the precise characterization of electronic excited states resulting from the interaction between

chromophoric units in model molecular aggregates. Theoretical descriptions of such systems

are usually achieved by means of excitonic models, using effective Hamiltonians built on a ba-

sis of diabatic states that enable physical interpretations in terms of local excitations, charge

transfer, or multiexcitonic configurations. The alternative approach that has been developed

is based on a diabatization scheme, which allows the decomposition of the adiabatic excited

state energies of molecular aggregates into contributions issued from intermolecular couplings,

without requiring any a priori definition of diabatic states. This methodology constitutes a

promising tool to extract accurate ab initio diabatic state energies and interstate couplings for

eventual derivation of model excitonic Hamiltonians.
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Laburpena

Jarraian aurkezten den tesia kolorante organiko eta agregatu molekularren egoera fundamen-

tal eta kitzikatuen estruktura elektronikoa eta horiei dagozkien propietate optikoak aztertzean

datza. Gainera, beren izaera fisikoa eta agregatu egonkorrak sortzeko beharrezkoak diren in-

dar eta interakzioak identifikatzea ere izan dugu helburu. Azkenik, lan honen bidez espezie

molekular berriei dagozkien propietate optiko eta prozesu fotofisiko bakarren arrazoiketa eta

aurreikuspena bultzatu da.

Absortzio eta emisio fluoreszente propietateak dituzten kolorante organikoen diseinuak bere-

biziko garrantzia hartu du, hainbat aplikazio eskaintzen baitituzte alor zientifiko eta teknologikoan.

Biologia zientzian, esaterako, ehunen argazkigintzan eta fotokaltean [1, 2, 3] oso erabilgar-

riak dira; ikuspegi eta argi detekzioan [4, 5, 6] ere abantailak dituzte; fotosintesi eta kon-

plexu antenak [7, 8] sortzeko; teknologia munduan, fotokatalisirako [9, 10], gailu fotoboltaikoak

egiteko [11, 12], argazkigintzan [13, 14], fotoaparatuak egiteko [15, 16], espektroskopia kon-

bentzionalean, zein denboraz ebatzirikoan [17, 18]; etab. Izugarrizko erabilgarritasun hau es-

kaintzen dituzten abantailen ondorioa da: merkeak dira, jasangarriak, finak, arinak, tolesgar-

riak, gardenak eta aldatzen errazak diren propietate elektroniko eta optikoak dituzte. Nor-

malean, aipatutako aplikazio guzti horietan behar diren prozesu fotofisikoak ez ditu monomero

isolatuak erakusten, baizik eta molekulen asoziazio baten ondorio dira. Horiei agregatu moleku-

lar deritze; kobalenteki lotu gabe, entropikoki eta van der Waals indarren eraginez sortzen di-

ren molekula taldeak dira. Interakzio horiek, enpaketatze moduaren menpe daude eta horien

araberakoa da agregaturiko fasean erakutsiko duten erantzun fotofisikoa, baita agregatu hauek

izango duten energia eta karga garraioa ere. Tesi honetan garrantzi handia eman zaio π-
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sistemen kromoforoen arteko interakzioei, izan ere, berriki interes handia piztu dute ikasketa

konputazional munduan, oraindik erronka handia suposatzen duten galdera asko erantzun gabe

daudelako. Konturatu gaitezen, ordenagailuen hardwareetan eman den aurrerapena dela medio

eta azkenaldian kimika kuantikoan sortu diren algoritmo berrien ondorioz bakarrik izan dela

posible tesi honetan biltzen diren adibideei kimika kuantikoari dagokion goi mailako trataera

ematea.

π-hurrenkera duten agregatuetan kromoforoen artean dagoen interakzioak baldintzatzen du

beren karga zein energia garraioa [19, 20, 21, 22, 23, 24]. Ikusi dugunez, agerikoa da elektronika

orkanikoaren munduan eta fotonikan zein garrantzitsu den molekulen agregazioa eta, beraz,

komeni da ikertzea zer lotura dagoen solido organikoetan orbitalen gainjartzea eta haien propi-

etate optiko eta elektronikoen artean. Hala ere, betebehar zaila da halakoa; izan ere, kristal

egoeran exzitoien arteko interakzioa parametro estruktural anitzen araberakoa da. Gainera,

kristaletan eta film mehetan dagoen hiru-dimentsioko molekulen agregazioa aurreikustea oso

zaila da [25]. Gauzak horrela, garbi dago neurrira egindako material berrien diseinua ez dela

batere lan xamurra.

Hasteko, kitzikaturiko egoera elekronikoen kontzeptu basikoak aurkezten saiatu gara. Horrez

gain, molekula isolatuta egotetik beste askorekin taldekatu eta agregatuta dagoenera pasatzen

denean bere egoera elektronikoan ematen diren aldaketak erakustarazi nahi izan dira. Horre-

tarako, modelo exzitoniko bat garatu dugu, egoera kitzikatuen karakterizazio zehatza egiten

ahalbidetu diguna. Lan honetan “exziton” terminoak honakoa adierazten du: bere baitan kro-

moforo asko biltzen dituen egoera kitzikatu bat da, delokalizatuta dagoena kromoforo horietako

batean edo gehiagotan, baina, aldi berean, subunitate jakinetan espazialki lokalizatuta dauden

egoera kiztikatu desberdinen konbinazio lineal moduan errepresentatu daitekeena. Exzitoien

teoria molekularra aspalditik erabili izan da biologikoki eta fotosintesian garrantzi berezia duten

sistemen portaera espektroskopikoa ulertzeko; berriki, ordea, antena konplexuen agregazio

propietateak karakterizatzeko ere erabilgarria suertatzen ari da.

Beraz, agregatuen fotofisika ulertzeko egoera elektroniko desberdinen kalkulua egiteaz gainera,

funtsezkoa da oinarrizko eta kitzikatutako egoeren karakterizazio zehatza burutzea, bereziki es-
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pezie molekular horiei behatu ez zaizkien prozesuetarako. Lan honetan, egitura elektronikoan

oinarritutako adierazle errazak definitu ditugu, maila baxuko egoera kitzikatuen propietateak

neurtzeko, baita oinarrizko egoeraren trantsizio elektronikoak ere. Zehatzago esanda, kalku-

latu digun egoerak momentu dipolar lokalen eta totalaren, osziladoreen indarren eta elektroi-

dentsitatearen lokalizazio espazialaren bidez aztertu dira. Puntu hauek jarraituz, agregatu

molekularretan unitate kromoforikoen arteko elkarrekintzaren ondoriozko egoera kitzikatu elek-

tronikoak karakterizatzeko aukera ematen duen prozedura garatu dugu. Azkenik, kontuan izan,

nahiz eta eskala kuantikoko kimika fisikoaren arloko proiektu teoriko eta konputazionala den,

lanak esperimentuarekin lotura sendoak ezartzea ere izan duela helburu, konposatu berrien

propietateak simulatuz eta arrazionalizatuz eta sistema molekular berriak diseinatuz eta pro-

posatuz, zeinak esperimentalki probatu beharreko propietate interesgarriak dituzten.

Proiektu honetan zehar erabili den metodologia algoritmo konputazional eta sistema kimiko des-

berdinen egitura elektroniko eta atomikoa ondo deskribatzen duten tresna desberdinei dagokie.

Guztiek dute gaitasuna ikasitako sistema molekular eta prozesuen egitura eta energia mailak

zehaztasun handiz deskribatzeko. Aurrean dugun erronkaren arabera, ordea, beren konplex-

utasuna dela medio, beharrezkoa da modelo kuantiko batzuk sortzea, egitura eta propietate

fotofiskoak modu egokian arakatu ahal izateko. Zehazki, nahitaezkoa izan da (i) hurbilketen

hierarkia bat ezartzea parametro garrantzitsuen konputaziorako eta zehaztasun estandarrak

ezartzea; (ii) zentzuzko hurbilketa teorikoak sortzea koste konputazionala murrizteko eta ik-

erketa sistema handiagoetara zabaltzeko; (iii) literaturan sortzen ari diren kimika kuantikoko

ereduen berri izan iragarpenen zehaztasuna areagotzeko.

Azken urteetan, metodo konputazional ugari erabili izan dira egoera kitzikatuen propietateak

kalkulatzeko. Tesi honetan garrantzi gehien dutenen oinarriak argitu ditugu. Guztien artean,

Time-Dependent Density Functional Theory (TDDFT) deritzona da bereziki nabarmendu dena

sistema organikoen egoera kitzikatuak kalkulatzeko. Horrenbeste, lan honetan ageri diren

emaitza gehienek TDDFT kalkuluetan dute funtsa. Izan ere, metodologia honek zehaztasunaren

eta koste konputazionalaren artean konpromiso ona adierazten du eta ertarinak zein handiak

diren molekulen egoera kitzikatuak kalkulatzea posible egiten du.
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Proiektuak hiru ardatz nagusi ditu.

Lehenik eta behin, kurkuminen eratorri diren borodifluoruro konposatuen ikerketa experimen-

tal eta konputazionala aurkezten dugu. Konposatu hauek elektroi igorle zein hartzaile izaera

duten unitateak konbinatzen dituzte, igorle-hartzaile-igorle arkitektura kuadroplarrean, non

hartzailea erdian dagoen dioxaborano eraztuna den eta igroleak, berriz, bazterretan dauden

eraztun aromatikoak diren. Gainera, kolorante organiko konjokatuak dira eta propietate optiko

interesgarriak eskaintzen dituzte egoera solidoan. X-izpien difrakzio ikasketek borodifluoruro

kurkuminak agregatu egiten direla adierazten dute, beraien artean interakzio indartsuak sortuz.

Horregatik, monomero gisa, zein kobalenteki lotutako dimero gisa aztertu ditugu, beraien artean

dauden desberdintasunak zeintuk diren jakin nahian. Monomero eta dimero hauen UV-vis ab-

sortzio propietateak ikertu ditugu. Beren egoera elektronikoak karakterizatze aldera, oinarri

diabatikoa aukeratu dugu, ongi definituriko egoera diabtikoak erabilita Hamiltoniano efektibo

bat eraikitzeko. Ikerketa honen ondorioa honakoa izan da: monomeroen kasuan, absortzioa

bazterretako igorle unitateetaik erdiko hartzaile unitatera gertatzen den karga transferentziak

karakterizatzen du. Dimeroei dagokienean, absortzio propietateak bi monomeroen arteko karga

transferentzien araberakoak direla frogatu dugu. Lan hau Pr. F. Fages-en taldearekin (CINAM,

Marseilako Unibertsitatea) batera eraman da aurrera.

Bigarren ikerketa modura, flavinen familia aurkezten dugu. Beste behin, igorle-hartzaile-igorle

arkitekitura kuadrupolarra duten konposatu konjokatuak aztertu ditugu. Gainera, uhin luzera

txikiko argi infragorriaren igorle (SWIR deritzon 1000-2000 nm tarte optikoa) on gisa eza-

gunak diren molekulak dira. Irradiazio horietan lan egiteak abantaila ugari ditu aplikazio

biologikoetan, ugaztunen ehunak inbaditu gabe barneratzea lortzen baita. Hauekin ere antzeko

jarduera burutu dugu: DFT kalkuluak burutu ditugu eta diabatizazioaren bidez beren ab-

sorpzio eta emisio fluoreszentea ikasi nahi izan ditugu. Flavinen familia honetan lau molekula

aztertzen hasi gara, denak ere polimetilo kate bidez loturiko dimetilamino flavilio heterozik-

loak. Aldaketa bakarra polimetil katearen luzera izan da (Flav1-Flav7), zenbat eta luzeago,

orduan eta konjokazio elektroniko handiagoa izanik. Emaitzek agerian utzi digute katea luzatu

ahala, konposatuen emisioa batokromatikoki aldatzen dela, gero eta igorle hobeak lortuz. Hari

honi jarraituz, aldaketa gehiago egin ditugu molekula hauetan. Hartzaile izaera duen polimetil
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kateari konjokaziorik gabeko ziklo bat eta elektroi hartzaile ona den kloro atomo bat gehitu

dizkiogu, harik eta aldaketa batokromatiko handiagoa lortzen den arte emisioan. Azkenik,

bazterretan dauden dimetilamino flavilio heterozikloen izaera igorlea areagotu nahi izan dugu.

Horretarako, dimetilmino taldearen ordez difenilamino taldea sartu dugu eta emaitzek agerian

uzten dutenez, sortutako molekula berria SWIR igorle onena da ikertu ditugun guztien artean.

Honenbeste, aurkeztu dugun diabatizazio eskemak irudi arrazionalizatzaile argi eta intuitiboa

eskaintzen du eta, horri esker, teorikoki diseinatutako fluoroforo berriak proposatu ahal izan

ditugu, uhin laburreko eskualdean aurrekaririk gabeko igorpena dutenak eta, ondorioz, irudi

biologikorako interes handia dutenak.

Azken ikerketa lanak metodo teoriko berri baten garapena aukezten du, kitzikatutako ego-

era elektronikoen ezaugarriratze zehatza emango diguna. Metdodo honek agregatu molekular

modeloen unitate kromoforikoen interakzioa aztertzean du muina. Egoera kitzikatuen karak-

terizazio sakona egiteko Orbital Molekularrak erabiltzea lan nekeza da, orbitalak kromoforo

askotan deslokalizatuta ageri direlako. Ondorioz, agregatu molekularren fotofisikaren deskrib-

apen teoriko eta konputazionala normalean eredu exzitonikoak erabiliz lantzen da. Hala ere,

planteamendu hauek egoera diabatiko jakinen definizioan oinarritzen dira, eta horrek aztergai

dugun sistemaren aurre-ezagutza ona eskatzen du. Lan honen lorpen nagusietako bat estrategia

alternatibo baten erabilera izan da, egoera kitzikatuen diabatizazio eskemen eta eredu exzi-

tonikoetatik eratorritako energia-adierazpenen arteko lotura ahalbidetzen duena. Horrelako

erlazioek agregatu molekularren trantsizio elektronikoen propietateak ezaugarritzea ahalbidet-

zen dute eta, are gehaigo, haien kitzikapen-energiak jatorri fisiko ezberdina duten akoplamendu

ekarpenetan deskonposatzea. Prozedura honen bidez egoera adiabatikoen ezaugarriak ikusgarri

gelditzen dira, oso ongi definitutako egoera diabatikoetan deskonposatzen baitira, konbinazio

linealaren bidez. Egoera diabatiko hauek honakoak izan daitezke: kitzikapen monomerikoak;

monomeroen arteko karga tarnsferentzia edo, azkenik, egoera multiexzitonikoak, non bi kro-

moforo edo gehiagoren aldi bereko kitzikapena gerta litekeen. Egoera adiabtikoen deskon-

posaketak informazio erabilgarria ematen du, baina, horrez gainera, egoera diabatikoen arteko

interakzioak ere ezaugarri asko eskaintzen dizkigu. Gure hautua diabatizazio prozedura izan

da. Horrela, agregatu molekularren kitzikatutako egoera adibatikoen energiak deskonposatu
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ditugu akoplmemendu intermolekularrak oinarri dituzten kontribuzioetan; egoera diabatikoen

inolako aurretiako definiziorik sortu gabe. Metodologia hau tresna bikaina da energia dia-

batiko eta egoera diabatikeon arteko akoplamendu energiak lortzeko ab initio, gerora Hamil-

toniano exzitoniko modeloak sortu ahal izateko. Gauzak horrela, eskuizkribu honetan egoera

kitzikatuak zehazki deskribatzeko baliagarriak diren ekuazio orokorrak aurkeztu ditugu eta ego-

era kitzikatuen energiak ekarpen mota desberdinetan deskonposatu ditugu dimero molekular

baliokideentzat eta ez-baliokideentzat. Tresna guzti hauek, azkenik, etileno-etileno eta etileno-

tetrafluoroetileno dimeroen konformazioak sistema eredu gisa hartuta, beren energia baxuko

kitzikapenak aztertzeko aplikatu ditugu.

Laburbilduz, kimika konputazionalaren ikuspegi global batetik, lan honek frogatu du karakter-

izazio tresna sinpleak garatzearen garrantzia, kimikariaren intuiziotik hurbil, sistema organiko

(supra)molekularretako egoera kitzikatuen izaera arrazionalizatzeko eta haien propietate op-

tikoak hobeto ulertzeko eta kontrolatzeko. Lan honetan aurkezten den metodologia ekarpen

ezberdinen pisua kuantifikatzeko gai da supersistemaren egitura elektronikoko ab initio kalku-

luetatik, aldez aurretik definitutako egoera diabatikoen erabilera saihestuz, bai eta akopla-

mendu elektronikoen kalkuluetarako hurbilketa sendoak egin beharrik gabe ere. Oro har,

metodologia honek kromoforo elkarreragileetan eragina duten exzitoien egonkortze-indarren

eragile garrantzitsuenak identifikatzea ahalbidetzen du.
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Chapter 1

Introduction

1.1 General context of the thesis

The design of organic dyes with targeted absorption or fluorescence emission properties is a

red hot topic for applications in many scientific and technological advanced fields. In biological

sciences, they are related to photoaging and photodamage [1, 2, 3], to vision and light detection

[4, 5, 6], to photosynthesis and light harvesting [7, 8]. In technology, they are central for photo-

catalysis [9, 10], photovoltaics, [11, 12] imaging, [13, 14] photodevices, [15, 16] conventional and

time-resolved spectroscopy [17, 18]. This is so because of the wide variety of advantages they

offer: they are cheap, sustainable, thin, light in weight, foldable, transparent and have tunable

electronic and optical properties. Usually, the photophysical processes exploited in the appli-

cations listed above do not originate from an isolated monomer, but arise from an association

of dyes. We define molecular aggregates as noncovalently bound molecular assemblies formed

via entropic and van der Waals driving forces. Such interactions, strongly dependent on the

packing arrangement, play a crucial role in determining the photophysical response as well as

the nature of energy and charge transport in the aggregated phase. In this work, special focus

is laid on the interactions between chromophores in π-systems, which have recently attracted

substantial interest for computational studies because many challenging questions are still to be

answered. Note that as a consequence of progress in computer hardware and quantum chemical
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algorithms, high-level quantum chemistry treatment of many of the examples discussed in this

thesis has become accessible only in the last years. The present project is devoted to (i) analyze

the electronic structure of the ground and excited states in molecular aggregates and the as-

sociated electronic properties; (ii) identify the physical nature and strength of the interactions

involved in their formation and stability; and (iii) rationalize and predict the unique optical

properties and photophysical processes that are not present in the pristine molecular species.

The methodologies to be employed throughout the course of this work correspond to a variety

of computational algorithms and tools for the description of the atomic and electronic structure

of chemical systems. The project heavily relies on their capability to accurately describe the

structures and energy levels implicated in the studied molecular systems and processes. Their

complexity will make it necessary to integrate several quantum chemistry models depending on

the type of problem to be studied in order to properly explore their structural and photophysical

properties. In this sense, this research work has taken advantage of a variety of state-of-the-art

methods and computational tools in the study of the ground and excited states. In particular,

it has been necessary to (i) establish a hierarchy of approximations to be applied for the

computation of the key parameters and set up accuracy standards; (ii) introduce reasonable

theoretical approximations to reduce computational costs and to extend the study to larger

systems; (iii) be aware of emerging quantum chemistry models in the literature to increase the

accuracy of the predictions.

In addition to the computation of electronic states, the detailed characterization of the ground

and excited states is fundamental in order to understand the photophysics in aggregates, espe-

cially for those processes not observed for the corresponding molecular species. In this work,

we have defined simple indicators based on the electronic structure to measure the properties

of the low-lying excited states as well as the electronic transitions from the ground state. More

precisely, the computed states were analyzed by means of local and total dipole moments, oscil-

lator strengths and spatial localization of the electron density. Following these points, we have

developed a procedure that allows the characterization of electronic excited states resulting

from the interaction between chromophoric units in molecular aggregates. Finally, note that,

although this is a theoretical and computational project within the area of physical chemistry
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at the quantum scale, the work also aimed to establish strong connections with experiment, by

simulating and rationalizing the properties of novel compounds and by designing and proposing

new molecular systems with interesting properties to be tested experimentally.

1.2 Outline and structure of the thesis

In this thesis, different organic dyes with interest for optoelectronic applications have been

studied from a computational point of view. In addition, the manuscript also presents the

development of a theoretical procedure in order to characterize the electronic excited states re-

sulting from interchromophoric interactions in molecular aggregates. The rest of this manuscript

is divided in five chapters:

Basic concepts on electronic excited states are introduced in Chapter 2. In this Chapter, we also

discuss how the electronic states of molecules change as they assemble to form an aggregate.

We introduce an exciton model that enables the characterization of excited states. In our work,

the term ”exciton” refers to an excited state of a collection of chromophores that is delocalized

across one or more of them, but which can nevertheless be represented as a linear combination

of excited states that are spatially localized on particular subunits. Molecular exciton theory

has been applied in the past to explain the spectroscopic behaviour of systems of interest in

biology and photosynthesis [26] and, more recently, to characterize the aggregation properties

of light harvesting complexes [27].

Over the last years, a large number of computational methods have been employed to calcu-

late excited-state properties. The foundations of the most important ones are summarized in

Chapter 3. Among the theoretical approaches available in the computational chemist toolbox,

those rooted on the Time-Dependent Density Functional Theory (TDDFT) are probably the

most widely exploited in the calculation of excited states of organic systems. Hence, most of

the results presented in this work are based on TDDFT calculations. This methodology repre-

sents a balanced compromise between accuracy and computational cost, and allows to perform

excited states calculations of medium and large sized molecules.
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In the following chapters the results obtained during the thesis are presented. In Chapter 4 we

report a computational investigation on monomers and dimers of borondifluoride complexes of

curcuminoid derivatives, a prototype example of conjugated organic dyes. This study shows

that the absorption in monomers is characterized by an intramolecular charge transfer pro-

cess, arising from the combination of electron donor (D) and acceptor (A) units in a D-A-D

quadrupolar-like architecture, in which A is the central dioxaborine ring and D is the terminal

aromatic moiety acting as an electron donor substituent. Then, we considered covalent dimers

of curcuminoid derivatives linked through a polymethylenic chain, which mimic aggregated

structures in the solid-state, and demonstrated that the absorption properties in these systems

are driven by a significant charge transfer between the two monomeric units. In order to provide

an accurate description of the charge transfer interactions between the monomers, we used a

localized diabatic model by constructing an effective Hamiltonian that describes the electronic

structure in terms of a few diabatic basis states. This work was conducted in collaboration

with the group of Pr. F. Fages (CINAM, University of Marseille) and was the object of an

article published in 2018 [28].

A similar computational approach is used in Chapter 5 for rationalizing the absorption and flu-

orescence emission properties of conjugated dyes composed of dimethylamino flavylium hetero-

cycles linked by a polymethine chain, which were recently reported to act as efficient shortwave

infrared emitters [29]. In this part, TDDFT is used to characterize the electronic structure

of the low-lying excited states as a function of the polymethine chain length. Decomposition

of the computed excitations in terms of diabatic states was also performed to deconvolute the

excited states wavefunction into charge-transfer intramolecular excitations. Based on these re-

sults, chemical substitution patterns consisting in enhancing the electron-withdrawing strength

of the polymethine bridge and the electron-donating ability of the lateral flavylium fragments,

were proposed to further redshift the photoluminescence of the fluorophores. This work was

published in 2020 [30].

Finally, Chapter 6 presents the development of a new theoretical approach allowing the precise

characterization of electronic excited states resulting from the interaction between chromophoric

units in molecular aggregates. Theoretical descriptions of such systems are usually achieved by
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means of excitonic models, using effective Hamiltonians built on a basis of diabatic states that

enable physical interpretations in terms of local excitations, charge transfer, or multiexcitonic

configurations. The alternative approach that has been developed is based on a diabatization

scheme, which allows the decomposition of the adiabatic excited state energies of molecular

aggregates into contributions issued from intermolecular couplings, without requiring any a

priori definition of diabatic states. This methodology constitutes a useful tool to extract

accurate ab initio diabatic state energies and interstate couplings for eventual derivation of

model excitonic Hamiltonians, and was published in 2019 [31].
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Chapter 2

Photophysics of molecular aggregates

2.1 Chemist’s description of electronic excited states

In order to model and understand the interaction between light and matter, several approxi-

mations are usually adopted. The first one is to treat light as a classical electromagnetic field

while matter is treated with quantum mechanics, within the framework of the semiclassical

theory of light-matter interactions. Then, the most popular approximation in the physics com-

munity is imposed, which is the first order truncation of the perturbation operator, expressed

as a multipolar expansion of the electric field. This is called the electric dipole approximation

[32] and it is valid if the wavelength of the electromagnetic radiation inducing the transition is

much larger than the size of the considered molecule interacting with the photons. This is a

reasonable assumption when dealing with UV/Visible range of the electromagnetic spectrum.

Because of the coupling between the oscillating electric field of the radiation and the electronic

density of the molecule, an excitation may occur.

Frontier molecular orbitals (MOs) are among the tools used by chemists to characterize photo-

induced electronic transitions from the ground state. Promotion of electrons from occupied

to virtual orbitals leads to different excited states, which can be classified according to their

symmetry. For instance, the spatial symmetry of an excited state dominated by a single con-

figuration of an HOMO-LUMO transition is given by the direct product of the irreducible
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representations to which these two orbitals belong. Moreover, the excited states have also dif-

ferent spin symmetries. In this thesis we have mainly dealt with singlet spin states. The ground

state of the molecules under investigation has always been a closed shell singlet, and low-lying

singlet excited states have been systematically calculated and characterized.

In addition, excited states can be optically active or dark. When the molecule has a well

defined symmetry and belongs to a given point group, it is easy to know, within the transition

dipole approximation, which transitions will be symmetry forbidden, based on the irreducible

representation of each state and the coupling operator (the electric dipole moment). However,

for molecules with no symmetry elements (except the trivial one), i.e., molecules belonging to

the C1 point group,the optical activity of the transition could be predicted by looking at the

molecular orbitals and their overlap.

2.2 Photophysical processes

The diagram in Figure 2.1 gathers the principal photophysical processes investigated in this

work. Both the ground (lowest energy electronic state) and excited states are shown as energy

profiles represented as parabolas along a given normal mode distortion. The picture is very

simplified, since each potential energy surface (PES) has 3N − 6 dimensions, where N is the

number of atoms of the molecule. According to the Born–Oppenheimer approximation, due to

the fact that the nuclear masses are heavier than the electronic mass, the electronic transitions

can be considered to be so fast as compared to the nuclear motion that the nuclei could be

considered to be fixed during the transition. This is known as the Franck–Condon principle. The

resulting state is called a Franck–Condon state. Such processes appear as straight vertical lines

in the diagram and the computed interstate energy difference for a frozen molecular geometry

is known as the vertical transition energy. This thesis only deals with photophysical processes

described in this diagram. In photochemistry, when reactions occur in electronic excited states,

the picture can be more complex.

Absorbance is the method by which an electron is excited from a lower energy level to a higher
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energy level. The energy of the photon is transferred to the particular electron. That electron

then transitions to a different eigenstate corresponding to the amount of energy transferred.

For a closed shell ground state molecule, excited singlet states will be those mainly populated

immediately after photoabsorption, according to whether they are dark or optical states. Once

an electron is excited, there are a multitude of ways that the excess of energy is dissipated.

One is vibrational relaxation, a non-radiative process. In this case the energy deposited by the

photon into the electron is given away to other vibrational modes as kinetic energy: the energy is

released through collisions with the environment triggered by molecular motion and resulting in

the generation or transfer of heat energy. Such a relaxation is very fast and, thus, it is extremely

likely to occur immediately following absorbance. Once molecule relaxes vibrationally to the

minimum of the excited state, the vertical radiative process takes place: if the emission takes

place from a singlet excited state, it is called fluorescence, while if it happens from a triplet

state it is known as phosphorescence. Nonetheless, non-radiative processes may also happen

before the minimum of the excited state PES is reached, since it may encounter crossings with

other states. If vibrational energy levels strongly overlap electronic energy levels, a possibility

exists that the excited electron can transition from a vibration level in one electronic state to

another vibration level in a lower electronic state. This process is called internal conversion

(IC) and mechanistically is identical to vibrational relaxation. IC occurs because of the overlap

of vibrational and electronic energy states. As energies increase, the manifold of vibrational

and electronic eigenstates becomes ever closer distributed. At energy levels greater than the

first excited state, the manifold of vibrational energy levels strongly overlap with the electronic

levels. This overlap gives a higher degree of probability that the electron can transition between

vibrational levels that will lower the electronic state. IC occurs in the same time frame as

vibrational relaxation, therefore, it is a very likely way for molecules to dissipate energy arising

from light perturbation. Hence, it is easy to understand that, commonly, Kasha’s rule [33]

is obeyed; the rule states that emission takes place from the lowest excited state of a given

multiplicity. Another possibility is the so called intersystem crossing (ISC), where the transition

occurs between states of different spin multiplicity (say a singlet and a triplet). For this process

to take place, the singlet and the triplet states must be coupled either via the spin-orbit coupling
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(SOC) operator or through higher order terms (vibronic). In the case where they involve the

decay to the ground state, the ISC and IC processes compete with the emission and, hence, the

final scenario of the molecule will be governed by the relative rates of the different processes.

Figure 2.1: Schematic diagram of the ground and excited states with typical molecular photo-
physical processes studied in this thesis. Emission could be fluorescent or phosphorescent and
the non-radiative transitions may be IC or ISC.

Each process outlined above can be represented in a Perrin-Jablonski diagram, commonly

referred as Jablonski diagram, used to easily see the complex inner workings of how electrons

change eigenstates in different conditions. Below is a typical Jablonski diagram illustrating

the possible radiative and non-radiative transitions. It is important to note that the transition

possibilities are dependent on their relative time scales. The faster the transition, the more

likely it is to happen as determined by selection rules. Therefore, understanding the time

scales each process can happen is imperative to understanding if the process may happen. The

diagram also includes the typical time scale range for each process in parenthesis.
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Figure 2.2: A typical Jablonski diagram showing the possible radiative and non-radiative tran-
sitions.

2.3 Photophysics of molecular aggregates through exci-

tonic models

In addition to the calculation of excited wave functions and energies, the characterization of the

electronic nature and properties of the states involved in the target processes is crucial in order

to gather detailed physical insight. The computational characterization of electronic transitions

becomes especially appealing in the study of molecular aggregates, molecular crystals or thin

films of organic chromophores, where excited states hold recognizable properties of the electronic

transitions of its molecular constituents, but also novel features may appear as a result of the

interchromophoric interactions, which deeply affect the optical spectra.

The main blueprint for understanding how molecular aggregation impacts photophysical prop-

erties was drafted by Michael Kasha. He showed that an isolated molecule (a monomer) displays

different optical properties than when it is aggregated or interacting with others [34, 35, 36].

In Figure 2.3 we present the electronic state diagram for an isolated monomer and interacting

aggregates. Actually, we consider the simplest case of aggregation, i.e., a dimer where two

molecules are interacting with each other, and the electronic coupling is approximated as the
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interaction between the transition dipole moments of each molecule. We may have two differ-

ent cases of aggregation: H (shown in blue) and J (in red). In the case of H aggregation, the

alignment of the transition dipoles is “side-by-side”. This leads to a 1st excited state that is

optically dark and a second one which is active and higher in energy than that of the monomer.

Therefore, H aggregation results in a blue shift in the absorption spectra and a fluorescence

quenching. On the other hand, in J aggregates, the transition dipole moments align head-to-

tail leading to a spectral red shift (absorption energy is decreased) and an enhanced radiative

decay.

Abs = blue shiftAbs = red shift

Em = allowed
Em = forbidden

Figure 2.3: Left: ground (G) and excited (E) state energy diagrams of a monomer and con-
ventional Kasha aggregates, in this case dimers. Each monomer is illustrated by its transition
dipole moment. Right: image of Michael Kasha.

Although many examples of H and J aggregates have been observed, there are also many “un-

conventional” aggregates, which are not understood within the confines of Kasha’s theory. In

such aggregates the electron density of different molecules overlap [37, 38], and the dipole-

dipole interaction approximation is no longer valid. Moreover, short separation might induce

inter-monomer charge-transfer (CT) contributions to the excitation. Interchromophoric CT

was early recognized as a source of impressive spectroscopic phenomena in absorption spectra

of molecular materials, both in the visible and near-IR spectral regions [39]. A detailed under-
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standing of the electronic states in photoactivated aggregates and the properties emerging from

interchromophoric couplings allows the rationalization of the nature of low-lying transitions,

e.g., the formation of the H- and J-aggregation phenomena, and can help to disentangle the

mechanism of novel photophysical events resulting from the interaction of two or more opti-

cally active molecules, such as in singlet fission [40, 41, 42], triplet-triplet annihilation [43], or

aggregation induced emission [44].

The analysis of the nature of the excited states in molecular aggregates by inspection of the

MOs results to be rather difficult, since in many cases the MOs are delocalized over multi-

ple chromophores. Therefore, theoretical descriptions for such systems are usually achieved

by means of excitonic models, using effective Hamiltonians built on a basis of diabatic states.

More precisely, excitonic models rely on the decomposition of the adiabatic wavefunctions as

a linear combination of well-characterized diabatic configurations. Typically, electronic excita-

tions in the presence of two or more chromophores can be deconvoluted in terms of monomeric

excitations (LE) and possibly novel excitations emerging from dye-dye interactions, such as

CT excitations, and multiexcitonic (ME) states corresponding to the concomitant excitation of

two or more chromophores. In addition to the information derived from the decomposition of

adiabatic states, the interaction between diabatic states contains very useful information.

The two-fold adiabatic or diabatic representation of electronic states arises from the fact that

the nuclear kinetic energy operator (T̂nuc) and the electronic Hamiltonian (Ĥel) do not commute,

meaning that these two operators do not have a common basis set. The eigenstates of Ĥel are

the adiabatic states typically calculated with electronic structure codes, while the eigenstates

of T̂nuc are the diabatic states, which are seldom used in computational quantum chemistry.

Therefore, adiabatic states are coupled by T̂nuc via nonadiabatic couplings while diabatic states

are electronically coupled (the coupling terms being the off-diagonal elements of Ĥel). Note that

the nature of a diabatic state does not change with nuclear coordinates, since the off-diagonal

terms of T̂nuc in the diabatic representation are equal to zero, contrary to the situation in

adiabatic states.

In 1982 Mead an Truhlar mathematically demonstrated that ideal diabats cannot be obtained
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from a finite number of adiabatic states [45]. However, this does not mean that one cannot define

diabatic states for different domains of applicability. Our interest in this thesis is in designing

diabatic states which are relevant to describe electron transfer. We have used the Edmiston-

Ruedenberg diabatization scheme [46], based on the maximization of the self-interaction of the

diabatic states, in analogy to the MO localization technique [47]. Within this scheme, diabatic

states ({Ξi}) are obtained as linear combinations of adiabatic states ({Φi}) through a rotation

matrix U:

|Ξi〉 =
N∑
j=1

|Φj〉Uji. (2.1)

In practice, one has to choose a finite number of adiabatic states (N in Eq. 2.1) that represent

the diabatic states of interest. In this sense, the off-diagonal terms of the diabatic electronic

Hamiltonian will be the electronic couplings between the diabatic states. We will see in the next

Chapters that the diabatization procedure allows the decomposition of the adiabatic excited

state energies of molecular aggregates into contributions issued from intermolecular couplings,

without requiring any a priori definition of diabatic states.

20



Chapter 3

Quantum chemistry methods

This chapter is devoted to describe the methods employed during this thesis work. The objective

is to provide a general introduction of the theoretical methods and computational techniques

employed, rather than an in depth and detailed report. The interested reader is referred to the

given references.

3.1 Wave function based methods

Chemistry is the science dealing with construction, transformation and properties of molecules.

Computational Chemistry is an interdisciplinary subfield where mathematical methods are com-

bined with fundamental laws of the classical or quantum physics to study atoms, molecules and

processes of chemical relevance by means of computational resources. Quantum Theory often

describes the arrangement of protons, neutrons and electrons with a mathematical function

called wave function, Ψ. All the information of a stationary quantum system, whether it is an

atom, a molecule or a molecular assembly, is contained in such wave function. It is obtained

solving the so-called time-independent Schrödinger Equation:

ĤΨtot(ri,Rα) = EtotΨtot(ri,Rα) (3.1)
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where Ĥ is the Hamiltonian operator and Etot the energy of the system. Rα and ri are the

set of nuclear and electronic coordinates, respectively. For a system with Ne electrons and NN

nuclei, the scalar non-relativistic Hamiltonian, in atomic units, would be expressed as follows,

Ĥ = T̂e+ T̂n+ V̂ee+ V̂en+ V̂nn = −
N∑
i=1

∆2
i

2
−

M∑
A=1

∆2
A

2MA

+
N∑
i>j

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

+
M∑
A>B

ZAZB
RAB

(3.2)

where T̂e and T̂n represent the kinetic energy operators of electrons and nuclei, while V̂ee,

V̂en and V̂nn denote the electron-electron, electron-nucleus and nucleus-nucleus interactions,

respectively. MA is the mass of the nucleus A with respect to the mass of an electron, while ZA

and ZB denote the atomic numbers of nuclei A and B. Finally, rij, riA and RAB are the distance

between the electrons i and j, electron i and nucleus A, and nuclei A and B, respectively.

3.1.1 Born-Oppenheimer approximation

Since nuclei are much heavier than electrons, on the time-scale of electron motion nuclei can

be considered as stationary objects, fixed at certain positions in space. Accordingly, electrons

are assumed to respond instantaneously to any change of the nuclear configuration. Based on

this assumptions, the so-called Born-Oppenheimer approximation (BO hereafter), decouples

the electronic and nuclear motions. For the electronic motion, the nuclear kinetic term T̂n can

be neglected and the nucleus-nucleus potential energy term V̂nn can be regarded as a constant,

since nuclei are considered to be fixed. Therefore, a simplified Schrödinger equation which does

not treat nuclear motion is solved for electrons only.

ĤeΨe = (T̂e + V̂ee + V̂en + V̂nn)Ψe = EeΨe (3.3)

The so-obtained electronic wave function Ψe explicitly depends on the electronic coordinates,

but depends parametrically on the nuclear coordinates:

ĤeΨe({ri}, {Rα}) = Ee({Rα})Ψe({ri}, {Rα}) (3.4)
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Under the same assumptions made to formulate the electronic problem, it is possible to write

down the equations for the nuclear motion. As the electrons move much faster than the nuclei,

the latter are considered to move in the mean field generated by the former. In other words,

the electronic energy Ee, added to the internuclear repulsion V̂nn, provides the potential energy

surface VN for the nuclei. Then, the nuclear part of the Schrödinger equation reads as:

(T̂n + Ee + V̂nn)Ψn({Rα}) = EtotΨn({Rα}) (3.5)

The potential energy surface of the system represent the central quantity to obtain information

about the roto-vibrational levels, equilibrium geometries, and chemical reactivity.

3.1.2 The Hartree-Fock method

In 1927, Hartree introduced self consistent theory and later, Slater and Fock pointed out the

requirement of an antisymmetrized determinant, giving rise to the Hartree-Fock (HF) method in

1930 [48, 49]. The HF method is central to attempts at providing an approximate solution to the

electronic Schrödinger equation. It assumes that the electronic wave function can be represented

by a single Slater determinant and finds out the set of spin orbitals which variationally minimize

the energy of the system. The formulation of the method could be summarized as follows:

1. A N independent particle Schrödinger equation is broken down into separated N inde-

pendent monoelectronic equations.

2. The approximated wave function ΨHF is obtained as a single determinant built up from

the spin orbitals obtained in step 1.

3. A trial energy is computed for ΨHF constructed in step 2.

EHF =

∫
Ψ∗HF ĤΨHFdτ (3.6)

4. The variational principle, which states that the best wave function is the one providing

the lowest possible energy, is applied to EHF . By minimizing EHF with respect to the
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choice of the spin orbitals, one can derive a set of mono-electronic eigenvalue equations

describing the motion of a given electron in the mean field generated by the rest of the

N − 1 electrons. These equations, known as HF equations, determine the optimal spin

orbitals (ψ) and read as

f̂(i)ψ(i) = εiψ(i) (3.7)

where εi is the energy of the ith orbital and f̂(i) is the mono-electronic Fock operator of

the form:

f̂(i) = −1

2
∇2
i −

M∑
A=1

ZA
riA

+ νHF (i) (3.8)

where νHF (i) is the averaged potential experienced by the ith electron due to the other

electrons.

5. Since νHF (i) depends on the spin orbitals of the other electrons, the HF equations are

nonlinear and have to be solved iteratively, through the self-consistent-field (SCF) proce-

dure, until νHF (i) no longer changes and the spin orbitals converge to the eigenfunctions

of the Fock operator.

One might try to solve the HF equations numerically. In fact, numerical solutions are common

in atomic calculations. In the case of molecules, however, no practical recipes are available

for obtaining such solutions. Roothaan and Hall overcame this drawback showing that, by

introducing a set of known spatial basis functions, the coupled differential equations could be

transformed to a set of algebraic equations and solved by standard matrix techniques. Following

the recipe proposed by Roothaan and Hall, let us write the unknown molecular orbitals ψ(i)

as a linear combination of K known basis functions φq

ψ(i) =
K∑
q=1

ciqφq; i = 1, 2, ..., K (3.9)

If the set φq was complete, equation 3.9 would be an exact expansion. For practical computa-

tional reasons, however, one is always restricted to a finite set of basis functions. Therefore, it is

important to choose a set that will deliver, as much as possible, a reasonably accurate expansion

for the exact molecular orbitals. Substituting equation 3.7 in equation 3.9, the Roothaan-Hall
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equations are obtained:

K∑
q=1

ciq(Fpq − Spqεi) = 0; i = 1, 2, ..., K (3.10)

where the overlap matrix S with elements

Spq =

∫
φ∗p(1)φp(1)dr1 (3.11)

and the Fock matrix F with elements

Fpq =

∫
φ∗p(1)f̂(1)φp(1)dr1 (3.12)

have been introduced. In matrix notation, equation 3.10 reads as

FC = SCE (3.13)

where C is a K ×K square matrix of the expansion coefficients cij and E is a diagonal matrix

of the orbital energies εi. The elements of the F matrix are:

Fpq = hpq +
∑
r

∑
s

Prs

(
〈pq|rs〉 − 1

2
〈ps|rq〉

)
(3.14)

where hpq stands for the mono-electronic integrals:

hpq =

∫
φ∗p(1)ĥ(1)φp(1)dr1 (3.15)

ĥ(1) is the one-electron Hamiltonian operator for electron 1 and Prs refers to the matrix elements

of the so-called density matrix P:

Prs = 2
∑
j

c∗rjcjs (3.16)

and 〈pq|rs〉 represents the bi-electronic integrals of the form:

〈pq|rs〉 =

∫
φ∗p(1)φ∗q(1)

1

r12
φr(2)φs(2)dr1dr2 (3.17)
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Note that the elements Fpq of the Fock matrix depend on the molecular orbital expansion

coefficients cij by means of the density matrix P. Thus, once again, the procedure has to be

solved iteratively, using an initial guess for the density matrix and repeating the construction

and the diagonalization of the Fock matrix until converegence is reached. Summarizing, the

Roothaan-HF method comprises the following steps:

1. Evaluation of the mono- and bi-electronic integrals, hpq and 〈pq|rs〉, for all the basis

functions in the set {φq}.

2. Assignment of an initial guess to the expansion coefficients cij and evaluation of the trial

density matrix P.

3. Construction of the Fock matrix F.

4. Solution of the eigenvalue problem 3.13 to obtain the eigenvalues C and the eigenvectors

E.

5. Convergence check, by comparing the actual density matrix with that of the previous

step.

(a) If the procedure has not converged, return to step 2 with the new density matrix.

(b) If the procedure has converged, use the resultant solutions to calculate expectation

values and other quantities of interest.

3.1.3 Post-Hartree-Fock methods

The HF Method, though meeting with success in many cases, is a mean-field theory that

neglects electron correlation, that is, explicit electron-electron interactions. The correlation

energy is defined as follows [50]:

Ecorr = E0 − EHF (3.18)

where E0 is the exact nonrelativistic energy of the system and EHF stands for the HF energy.

Since the HF method is variational, EHF constitutes an upper bound to the exact energy and,
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therefore, the correlation energy is negative. Typically, EHF represents, in absolute terms, 99%

of the E0. The portion left, Ecorr, small as it may be, undertakes sizable changes in chemical

processes and much effort has been required to recover it. As a consequence, a plethora of

quantum chemical approaches based on the HF determinant have emerged, also known as

post-HF methods. Examples of such approaches are presented in the following lines.

Møller-Plesset Perturbation Theory

Within the Møller-Plesset Pertubation Theory [50] the model Hamiltonian Ĥ0, also called

Fockian F̂ , represents a model of N non-interacting electrons and has the form:

F̂ =
∑
i

(ĥi + Ĵi + K̂i) =
∑
i

(ĥi + ĝi) (3.19)

where ĝi is the bielectronic operator comprising the Coulomb (Ĵi) and exchange (K̂i) operators.

Ĵiψj(1) =

∫
ψ∗i (2)

1

r12
ψi(2)dr2ψj(1) (3.20)

K̂iψj(1) =

∫
ψ∗i (2)

1

r12
ψj(2)dr2ψi(1) (3.21)

The perturbation operator V̂ , also termed fluctutation potential, is given by the difference

V̂ = Ĥ − F̂ (3.22)

As one may notice from equation 3.19, the HF wave function Ψ
(0)
0 is eigenfunction of F̂ , and

the corresponding eigenvalue E
(0)
0 is

E
(0)
0 = 〈Ψ(0)

0 |F̂ |Ψ
(0)
0 〉 =

N∑
a

εa (3.23)

where a runs over the occupied orbitals. Similarly, any other Slater determinant, Ψ
(0)
i =

{Ψr
aΨ

rs
ab, ...}, built up from the HF wave function by substituing occupied molecular orbitals

a, b with unoccupied r, s, is also eigenfunction of F̂ . The first order correction (MP1) delivers
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the HF energy. Accordingly, the first contribution to the correlation energy comes from the

second order term:

E
(2)
0 = 〈Ψ(0)

0 |V̂ |Ψ
(0)
0 〉 = −

∑
k 6=0

|〈Ψ(0)
0 |V̂ |Ψ

(1)
k 〉|2

E
(0)
k − E

(0)
0

(3.24)

Only doubly excited determinants contribute to equation 3.24. Singly-excited determinants do

not interact with the HF wave function, as stated by Brillouin’s theorem [50].

Configuration Interaction

The configuration interaction (CI) is a post-HF linear variational method. It expresses the

wave function of a N -electron system |Φ0〉 as a linear combination of Slater determinants. The

expansion reads as follows

|Φ0〉 = c0|Ψ0〉+
∑
ar

cra|Ψr
a〉+

∑
a<b,r<s

crsab|Ψrs
ab〉+

∑
a<b<c,r<s<t

crstabc|Ψrst
abc〉+ ... (3.25)

where |Ψ0〉 stands for the ground state HF wave function and |Ψr
a〉, |Ψrs

ab〉 and |Ψrst
abc〉 refer to

singly, doubly and triply excited configurations, with a, b and c denoting occupied orbitals

and r, s, and t unoccupied ones in |Ψ0〉. Coefficients c0, c
r
a, c

rs
ab, c

rst
abc, etc., are variationally

optimized. As the basis set becomes infinitely flexible, full CI (FCI) approaches the exact

solution of the time-independent, non-relativistic Schrödinger equation. The FCI method has

many of the desirable features of a theoretical model. It is well-defined, size-consistent, and

variational. However, it is also computationally very expensive and impractical for all but the

very smallest systems. Practical CI methods augment the HF wavefunction by adding only

a limited set of substitutions, truncating the CI expansion at some level of substitution. For

example, the CIS method adds only single excitations to the HF determinant, CID adds double

excitations, CISD adds both singles and doubles, CISDT adds singles, doubles, and triples, and

so on.

However, one of the main troubles of truncated CI models is that they do not satisfy the size-

extensivity properties, in the sense that the energy does not grow linearly with the number of

electrons in the system. Nevertheless, the truncation is often justified because the vast major-
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ity of the excited configurations contribute minimally to the ground state wave function and

correlation energy. According to the calculation of electronic excited states, the configuration

interaction singles (CIS) method defined above is the simplest excited state method. However,

excitation energies calculated with the CIS method are often overestimated by about 0.5-2.0

eV compared with experimental values or highly accurate calculations [51]. This is because CIS

lacks dynamic correlation. A way to improve CIS is reached by including dynamical correlation

through a perturbative correction. This is the case of the CIS(D) approach [52, 53], which

introduces double excitation effects for the excited states. Within the CIS(D) approach, the

excitation energies are improved relative to those calculated with CIS and it is applicable to

relatively large molecules by the use of the resolution of identity (RI) approximation [54, 55],

where the use of auxiliary basis expansions reduces considerably the computational cost. An

additional improvement could be obtained by the SOS-CIS(D) approximation [56], which semi-

empirically scales the opposite-spin components of the CIS(D) expression, leading to a greater

accuracy and also to a reduction of computational cost. The RI and SOS approaches, however,

are still rather expensive and limited to small and medium-size molecules.

Coupled Cluster

Within the Coupled Cluster (CC) method [57, 58] the exact wave function of the ground state

of a N -electron system |Φ0〉, written in the second quantization language, reads as

|Φ0〉 = eT̂ |Ψ0〉 (3.26)

where |Ψ0〉 stands for the ground state HF wave function and T̂ refers to the cluster operator.

This latter comprises several terms

T̂ = T̂1 + T̂2 + T̂3 + ... (3.27)
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which, expressed in terms of the creation (a+r ) and annihilation operators (aa), have the form

T̂1 =
∑
a,b

craa
+
r aa (3.28)

T̂2 =
∑
a,b

∑
r,s

crsaba
+
r a

+
s aaab (3.29)

where a and b denote occupied orbitals and r and s unoccupied ones. Recall that the creation

operator (a+r ) creates an electron in orbital r included in |Φ0〉, whereas the annihilation operator

(aa) annihilates an electron in orbital a, in such a way that

a+r aa|Φ0〉 = |Φr
a〉 = |Φ1Φ2...Φa−1ΦrΦa+1...ΦN〉 (3.30)

a+r a
+
s aaab|Φ0〉 = |Φrs

ab〉 = |Φ1Φ2...Φa−1ΦrΦa+1...Φb−1ΦsΦb+1...ΦN〉 (3.31)

The choice of the exponential ansatz effectively introduces high order excitations. For example,

the quadruples and sextuples excitations can be written in term of the doubles. Besides, the

exponential form of the CC ansatz guarantees the size extensivity of the solution as long as a

suitable reference function is chosen. A criticism of the method is that it is not variational, so

the total energy can be lower than the true total energy. However, this is not a problem since

we are usually interested in relative energies rather than the absolute values. The abbreviations

for coupled-cluster methods usually begin with the letters ”CC” (for ”coupled cluster”) followed

by S, D, T, Q for single, double triple or quadruple excitations, respectively. CCSD is often

employed for benchmark purposes. CCSD(T) poses a further improvement, which includes the

triples excitations in a perturbative fashion.

The post-HF methods presented up to now might be quite demanding computationally and

they are amenable a limited set of small to medium size systems. Among the ab initio meth-

ods devised to recover the electronic correlation, the perturbative Möller-Plesset (MP) method,

truncated to the second-order of perturbation (MP2), is probably the better suited for large sys-

tems. To understand the construction of the MP2 approach, the basic notions of the Rayleigh-

Schrödinger Perturbation Theory should be given.
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3.2 Density functional theory

The problem in wave function based methods is that the electronic wave function is a 3N -

dimensional object (or 4N -dimensional if spin is considered) and its complexity rapidly increases

with the size of the system. In this framework, density functional theory (DFT) [59] emerged

as a promising method for electronic structure calculations. It replaced the N -electron wave

function by the electron density, which is a function of three spatial variables, and, therefore,

much simpler. In essence, the method takes the electron density as the variable of a functional,

concretely, the energy of the system is described as the functional of the electron density,

E[ρ(r)].

In this work, DFT is applied within the Born-Oppenheimer approximation, which means that

the nuclei are fixed and the electrons move in the potential created by those fixed nuclei, known

as the external potential (see section 3.1.1).

Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn came with a paper that constituted a real breakthrough [60].

Their theorems laid the theoretical foundations of the currently available DFT methodology.

Theorem 1: The external potential V̂ext(r) is a unique functional of the electron density ρ(r).

Since Ĥ is determined by V̂ext(r), the full many particle ground state is a unique functional of

ρ(r).

In other words, the ground state energy and other properties of a system are uniquely defined

by the density ρ(r), i.e., the energy is a functional of the electron density E[ρ(r)]. Remarkably,

such a one-to-one mapping is only possible for the ground state density ρ0(r). The original

Hohenberg-Kohn argument was limited to non-degenerate ground states. Such limitation was

later lifted by Levy [61].
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Let us write the ground state energy E0 as a functional of the ground state density:

E0 = E0[ρ0(r)] (3.32)

Broken down into its several contributions, E0 reads as

E0[ρ0] = T [ρ0] + Eee[ρ0] + Vext[ρ0] = T [ρ0] + Eee[ρ0] + Een[ρ0] (3.33)

where T , Eee, Een and Vext stand for the kinetic energy, electron-electron repulsion, nucleus-

electron attraction and external potential respectively. Notice that T and Eee are universal,

while Een depends on the actual system. Collecting the system independent terms into the so

called Hohenberg-Kohn functional, FHK [ρ0], E0 in equation 3.33 reads as

E0[ρ0] = FHK [ρ0] + Een[ρ0] = FHK [ρ0] +

∫
ρ(r)ν(r)dr (3.34)

where ν(r) is the external potential due to the nuclei, given by

ν(r) = −
∑
α

Zα
r1α

(3.35)

where Zα is the nuclear charge of nucleus α and r1α is the distance between electron 1 and

nucleus α. The Hohenberg-Kohn functional FHK [ρ] is central to DFT. If it was known, the

Schrödinger equation could be solved exactly. Moreover, it is universal and therefore, it applies

equally to all the imaginable chemical systems. Unfortunately, neither T [ρ] nor Eee[ρ] present

in FHK are known. Eee[ρ] could be divided into two

Eee[ρ] = J [ρ] + Encl[ρ] (3.36)

where J [ρ] refers to the classical Coulomb part

J [ρ] =
1

2

∫
ρ(r1)ρ(r2)

r12
dr1dr2 (3.37)
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and Encl[ρ] stands for the non-classical contributions to the electron-electron interaction, namely

the self-interaction correction, and the exchange and Coulomb correlations.

The first theorem establishes that the ground state density ρ0(r) is sufficient to obtain all

the properties of interest of a system. Nevertheless, it does not give a procedure to find out

such ρ0(r). At this stage, the second theorem of Hohenberg-Kohn comes into play.

Theorem 2: For any trial density ρ̃(r), the energy obtained from the Hohenberg-Kohn density

functional represents an upper bound for the true ground state energy E0.

This means that the Hohenberg-Kohn functional delivers the lowest energy if and only if the

input density is the true ground state density. Therefore, this second theorem shows a way

to obtain ρ0(r) variationally. However, the variational ρ̃(r) has some conditions to be fulfilled.

First, it has to be associated with some external potential ν(r) (ν-representavility). Second,

it must be N -representable. It means that the density stems from an antisymmetric wave

function, so that ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = N .

Kohn-Sham equation

The Hohenberg-Kohn theorems do not provide a explicit form of the density functional, nor

do they show a way to obtain the density. In 1965 Kohn and Sham formulated an avenue to

approximate the unknown Hohenberg-Kohn functional [62]. They realized that the toughest

part to calculate the density functional laid on the kinetic energy. In this framework, since the

orbital-based approaches like HF perform better, they introduced a non-interacting assistant

system with the same density as the real system. Great part of the kinetic energy of such a

system can be accurately computed. The motion of non-interacting particles is dependent on

an effective one-particle potential, consisting of the external potential, the Coulomb interaction

between electrons, and the exchange and correlation terms. Once the effective potential is

known, Kohn-Sham (KS) method is solved in a self consistent way. In the HF approach, the

ground state wave function is approximated as a single Slater determinant ΨHF constructed
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from N spin orbitals χi. ΨHF would be the exact wave function of an assistant system of N

non-interacting electrons, moving in the effective potential VHF . The Hamiltonian for such

system is

ĤS = −1

2

N∑
i

∆2
i +

N∑
i

VS(ri) (3.38)

where VS(r) stands for the effective local potential. Since ĤS does not contain any electron-

electron interactions, its ground state wave function can be described by a Slater determinant

ΨS(x1, x2, ..., xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) ... ϕN(x1)

ϕ1(x2) ϕ2(x2) ... ϕN(x2)

... ... ...

ϕ1(xN) ϕ2(xN) ... ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.39)

and solved by the variational principle

f̂KSϕi = εiϕi (3.40)

where εi is the energy of the (ϕi) Kohn-Sham orbital and f̂KS is the one-electron Kohn-Sham

operator, defined as:

f̂KS = −1

2
∆2
i + VS(r) (3.41)

where we sum the kinetic energy to an effective potential VS(r). In the Kohn-Sham formulation,

the effective potential VS(r) is chosen so that the density of the assistant non-interacting system,

obtained from the Kohn-Sham orbitals (ϕi), is the same as the one of the real system:

ρs(r) =
N∑
i

∑
s

|ϕi(r, s)|2 = ρ0(r) (3.42)

By analogy with the HF approach, the exact kinetic energy of the non-interacting reference

system with the same density as the real one can be written as:

TS = −1

2

N∑
i

〈ϕi|∆2|ϕi〉 (3.43)
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which is different from the real system. Therefore, Kohn and Sham rewrote the HK functional

as:

F [ρ(r)] = TS[ρ(r)] + J [ρ(r)] + EXC [ρ(r)] (3.44)

where the exchange-correlation energy is introduced, defined as:

EXC [ρ(r)] = (T [ρ(r)]− TS[ρ(r)]) + (Eee[ρ(r)− J [ρ(r)]) = TC [ρ(r)] + Encl[ρ(r)] (3.45)

TC is the residual part of the kinetic energy between the real and the assistant systems and

Encl is the non-classical electrostatic contribution. Therefore, the exchange-correlation term

contains everything that is unknown. Let us rewrite the energy of the interacting system in

terms of the quantities defined above:

E[ρ(r)] = TS[ρ(r)] + J [ρ(r)] + EXC [ρ(r)] + Ene[ρ(r)]

= TS[ρ(r)] +
1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + EXC [ρ(r)] +

∫
Vne[ρ(r)]dr

= −1

2

N∑
i

〈ϕi|∆2|ϕi〉+
1

2

N∑
i

N∑
j

∫ ∫
|ϕi(r1)|2 1

r12
|ϕi(r2)|2dr1dr2

+ Exc[ρ(r)]−
N∑
i

∫ M∑
A

ZA
r1A
|ϕi(r1)|2dr1 (3.46)

The variational minimization of this expression, applying the constraint 〈ϕi|ϕj〉 = δij, leads to

the following set of mono-electronic equations, known as Kohn-Sham equations:

(
−1

2

N∑
i

∇2 +

[∫
ρ(r2)

r12
dr2 + Vxc(r1)−

M∑
A

ZA
r1A

])
ϕi =

(
−1

2

N∑
i

∇2 + Veff (r1)

)
ϕi = εiϕi

(3.47)

Comparing the above equation with the one-particle equations in the non-interacting reference

system, we have that Veff is identical to VS:

VS(r) ≡ Veff (r) =

∫
ρ(r2)

r12
dr2 + Vxc(r1)−

M∑
A

ZA
r1A

(3.48)
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Vxc is due to the exchange-correlation energy Exc which is unknown. So is the potential for

which we have no clue to its explicit form. Therefore, Vxc is defined as the functional derivative

of Exc with respect to ρ:

Vxc ≡
∂Exc
∂ρ

(3.49)

Unlike HF model, the Kohn-Sham approach is in principle exact. One would ”just” need to

know Exc and Vxc. However, this is a daunting task and approximations are needed. The

modern DFT is intended to find out the best approximation for these two terms.

Note that once VS is known, the orbitals are determined, which dictate the ground state density

and the ground state energy. However, VS already depends on the density (and thus on the

orbitals) through the Coulomb term J [ρ]. Therefore, the Kohn-Sham one-electron equations

have to be solved iteratively, just like HF equations.

3.3 Time-dependent density functional theory

Time-dependent density functional theory (TDDFT) [63, 64], represents one of the promi-

nent approaches to calculate excited-state properties (such as excitation energies, oscillator

strengths, excited-state geometries, etc.), especially when excited states of medium-sized or

large molecular systems are under investigation [65]. This is so beacuse it provides an excellent

compromise between the computational cost and chemical accuracy [66]. Compared to wave

function approximations, TDDFT accounts for dynamic correlation at relatively much lower

computational cost. Therefore, the calculation of vertical excitation energies with TDDFT

has become a sensible choice and the quality of the energies often lies within 0.1-0.5 eV [51]

compared to exeperimental data. Nevertheless, one needs to be careful with TDDFT since

results are quite sensitive to the choice of the exchange-correlation functional. Consequently,

it is important to check the reliability of TDDFT calculations by having a wave function-based

benchmark or comparing them to experimental data, as well as checking the sensitivity of the

results to the choices of exchange-correlation functional.
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3.3.1 Formal Foundations

The formal foundations of TDDFT rely on the Runge-Gross theorems [67], which in a sense are

analogous to the Hohenberg-Kohn theorems for the ground state DFT. Runge-Gross theorem

proves that densities ρ(r, t) and ρ′(r, t) of two systems evolving from the same initial state

Ψ(r, t0) under the influence of the scalar potentials ν(r, t0) and ν ′(r, t0), both Taylor expandable

about t0 and differing by more than a purely time-dependent function, will always differ. Simply

put, it states that for a given initial wave function, there exists a unique mapping between the

time-dependent external potential and its time-dependent density. This theorem represents the

time-dependent analogue of the first Hohenber-Kohn Theorem. The time-dependent density

may be obtained from the time-dependent Schrödinger equation. This could be obtained via

the popular Kohn-Sham approach. Excitation energies and other properties could then be

obtained by solving the time-dependent KS equation via two different strategies (taking the

strength of the time-dependent potential into consideration). One strategy, useful in case the

potential is strong, is to propagate the KS wave function in real time. The second strategy,

reasonable when the the potential is weak, is to use linear response TDDFT (LR-TDDFT).

Within this approach, the time-dependent KS equation is solved perturbatively to first order

in the frequency domain. This is appropriate for many practical situations in spectroscopy, in

which the spectral response of a system to a weak probe is determined [64].

In the LR-TDDFT framework, the excitation energies (ω) and transition amplitudes are ob-

tained from the following non-Hermitian eigenvalue equation (known as Casida’s equation [64]),

as eigenvalues and corresponding eigenvectors, respectively:

 A B

B∗ A∗


 X

Y

 = ω

 1 0

0 -1


 X

Y

 (3.50)

where the matrix elements depend on the exchange-correlation functional. For a hybrid exchange-

correlation functional (incorporating part of exact exchange from Hartee-Fock theory), they are
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are defined as follows:

Aarσ,bsτ = δσ,τδa,bδr,s(εr,σ − εa,τ ) + (aσrσ|jτsτ )− δσ,τcHF (aσbσ|rτsτ ) + (1− cHF )(aσrσ|fσ,τ |bτsτ )

(3.51)

Barσ,bsτ = (aσrσ|sτbτ )− δσ,τcHF (aσsσ|rτbτ ) + (1− cHF )(aσrσ|fσ,τ |sτbτ ) (3.52)

where indices a, b correspond to ground state occupied orbitals ϕa, ϕb, indices r, s correspond

to virtual orbitals ϕr, ϕs and σ, τ represent spin variables. cHF is the coefficient of the HF

exchange in the hybrid functional and εi,σ is the energy of the spin-orbital ϕiσ . The four index

integrals expressed in Mulliken notation are

(aσrσ|bτsτ ) =

∫ ∫
ϕa(r1)ϕr(r1)r−112 ϕb(r2)ϕs(r2)dr1dr2 (3.53)

(aσrσ|fσ,τ |bτsτ ) =

∫ ∫
ϕa(r1)ϕr(r1)fσ,τϕb(r2)ϕs(r2)dr1dr2 (3.54)

where fσ,τ is the time-independent non-local exchange-correlation kernel in the adiabatic ap-

proximation, which form depends on the chosen exchange-correlation functional.

The Tamm-Dancoff approximation (TDA) [68] was introduced as a further approximation to

Casida’s equation. It corresponds to neglecting the matrix B, that is, all contributions to the

excitation energies coming from de-excitation of the correlated ground state are decoupled from

the ground state excitations. This leads to a Hermitian eigenvalue equation

AX = ω X (3.55)

Remarkably, TDA is often a very good approximation to TDDFT, because it is simpler and

provides, in general, excitation energies of similar quality. The TDA equation is closely related

to the the CIS method, but with the A matrix depending on the exchange-functional. This

is because the TDA approximation leads in the Time Dependent Hartree Fock (TDHF) case

(also known as random-phase approximation, RPA) to CIS, while in the TDDFT case one gets

TDDFT/TDA equations. Therefore, the advantage of TDA is the connection it has with wave
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functions, which facilitates the characterization of electronic excitations. In practice, ground

state approximate exchange-correlation density functionals are used in TDDFT calculations, in

the so-called adiabatic approximation [65, 69] with the assumption that the electronic density

varies slowly in time.

3.3.2 Failures of TDDFT with standard exchange-correlation func-

tionals

Charge Transfer Excited States

TDDFT performs very well to calculate low-lying valence excited states, however, it has a

difficulties in describing Rydberg states and CT excitations [70, 71, 72, 73, 74]. The excita-

tion energies for CT states are severely underestimated (if pure standard xc-functionals are

employed), what is more, the potential energy curves of CT states do not exhibit the proper

1/R dependence along a charge separation coordinate R [72, 75, 76]. The positive and negative

charges in a CT state electrostatically attract each other and, therefore, separation of these

charges must result in an attractive 1/R dependence. Such asymptotic behaviour of the energy

along the CT separation can be grasped by considering a donor system and an acceptor system

separated by a distance R. In the case of an electron transfer from the donor to the acceptor,

the donor needs at least the energy corresponding to its ionization potential (Id) and there

will be an energy gain of the acceptor’s electron affinity (Aa). In addition, once the electron

is transferred, there will be an electron at the acceptor and a hole in the donor, which will

electrostatilcally be attracted to each other, leading to a Coulombic energetic gain of −1/R.

Consequently, the energy required to create the CT state is

E(R) = Id − Aa −
1

R
(3.56)

From the above model, one would expect the excitation energy of a CT to increase as −1/R.

However, this is not the case when pure xc functionals, i.e, with no HF exchange, are used [77].
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Imagine a CT state, where an electron is transferred from an occupied orbital i of molecule A

to a virtual orbital a of another molecule B. For simplicity, we will assume that the overlap

between orbitals on molecule A and orbitals on molecule B is zero. For such a state, the only

terms that do not vanish of matrix A (from equation 3.51) are the first and the third, which

are the difference of one-particle energies of donor orbital i on A and the acceptor orbital a

on B and the nonlocal HF exchange part of Kohn Sham operator. This last term is not zero

since orbitals i and j are both on the molecule A and the orbitals a and b are on molecule

B. This is a Coulomb-like term because the created holes (orbitals i and j corresponding to

the positive charge in the CT state) interact with the electrons (orbitals a and b reflecting

the negative charge in the CT state), which relates to the electrostatic attraction within the

CT state. Consequently, this term is crucial for the correct 1/R asymptotic behaviour of the

potential energy curve along the intermolecular separation of the donor and the acceptor units,

hence, the presence of exact exchange is vital. Similarly, matrix B (equation 3.52) is zero if the

two orbitals involved in the CT state do not overlap.

So, all in all, it is now obvious that pure xc functionals (that is, cHF = 0) drastically underesti-

mate excitation energies of CT states, because they are simply given by the difference between

the energies of the acceptor and the donor MOs, εa and εi, respectively. Within HF theory this

is already a rough estimate for the energy of the CT state at large distances, since Koopman’s

theorem states that, −εi and −εa correspond to the ionization potential of molecule A and to

the electron affinity of molecule B. This is because the occupied orbitals are calculated for the

N-electron system, while the virtual orbitals are formally evaluated for the (N+1)-electron sys-

tem. This is not the case in density functional theory following the Kohn-Sham formalism, since

the same potential is used to calculate the occupied and virtual orbitals. As a consequence,

while the HOMO still corresponds to the ionization potential, the LUMO is generally more

strongly bound in DFT than in HF theory and cannot be related to the electron affinity. Since

the negative of the LUMO energy is therefore much larger than the true electron affinity, the

orbital energy difference corresponding to a CT state is usually a drastic underestimation of its

correct excitation energy [78]. Therefore, such self-interaction error in DFT leads to artificial

underestimation of the HOMO-LUMO gap. In addition, this electron transfer self-interaction
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error leads to a wrong asymptotic energy profile of CT states computed with standard func-

tionals [79]. The energy of the accepting orbital contains the Coulomb repulsion of orbital a

with all occupied orbitals of the ground state including orbital i, which is no more occupied in

the CT state. This means that the transferred electron in orbital a experiences the electrostatic

repulsion with itself being in orbital i. This can be cancelled by including exact exchange.

Long-range corrected (LRC) functionals [80, 81] have been shown to be a good solution to

address the failure of TDDFT for CT states. Such functionals smoothly include long-range

Hartree-Fock exchange [82, 83], hence, resulting to be successful for the calculation of CT

states of diverse systems. The Coulomb operator of the Hamiltonian is split into short-range

and long-range components, which can be obtained by the use of the error function:

1

r12
=

1− erf(ωr12)

r12
+

erf(ωr12)

r12
(3.57)

The first term of the right hand side is the short-range component and on a length of ≈ 1/ω

it decays to zero, while the one on the left hand side consists of a long-range component. The

ω parameter determines the proportion between the two ranges depending on the value of r12

and it is determined empirically or by physical arguments [84], and the most commonly used

values are in the 0.2-0.4 bohr−1 range [84]. The range-separated functional includes short-

range exchange from a density functional and the long-range part is calculated with exact HF

exchange. This solution of the CT problem has the clear advantage that one takes profit of the

correct short-range behaviour of standard DFT xc functionals, while its incorrect long-range

asymptotic behaviour due to the self-interaction error is replaced by the correct Hartree-Fock

one.

3.4 Basis sets

The flexibility of the employed finite basis set is a critical aspect in order to obtain reliable

results in electronic structure calculations. For instance, the basis set choice is very important

for modeling chemical bonding, because the bonds are often polarized. The charge distribution
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about an atom in a molecule is usually perturbed in comparison with the isolated atom. For

example, the electron cloud in an isolated hydrogen atom is symmetrical, but when the hydrogen

atom is present in a molecule the electrons are attracted towards the nuclei. The distortion can

be considered to correspond to mixing p-type character into the 1s orbital of the isolated atom

to give a form of sp hybrid. In a similar manner, the unoccupied d orbitals introduce asymmetry

into p orbitals. The most common solution to this problem is to introduce polarisation functions

into the basis set. The polarisation functions have a higher angular quantum number and so

correspond to p orbitals for hydrogen and d orbitals for the first- and second-row elements.

With these, one can model the correct shape of atomic orbitals which then become molecular

orbitals within the typically applied LCAO (Linear Combination of Atomic Orbitals) approach.

The calculation of electronically excited states demands careful attention on the choice of the

basis set. Polarization functions are mandatory when dealing with excited states. Also, the

use of diffuse functions usually improves the computed transition energies and excited state

properties. These are extended Gaussian basis functions with a small exponent, which give

flexibility to the ”tail” portion of the atomic orbitals, far away from the nucleus. Therefore,

they are important for describing long-range interactions, as it is the case in electronically

excited states, in which charge transfer processes may take place between far apart regions [85].

3.4.1 Basis set superposition error (BSSE)

The BSSE is a technical problem, specially notorious in dimers and molecular aggregates in

general. The problem arises as a consequence of the sharing of basis set corresponding to each

monomer, whenever they form a bigger system. Originally introduced by Liu and McLean

in 1973 [86], it was firstly reported by Kestner in 1969 [87]. Let us consider a dimer (AB)

formed by monomers A and B, each monomer being stabilized at the dimer since B donates

basis functions to A and vice versa. This situation cannot occur in the separated monomers

and, therefore, the dimer results to be overstabilized. The BSSE would be expected to be

particularly significant when small, inadequate basis sets are used, e.g., the minimal basis STO-

nG basis sets, which do not provide an adequate representation of the electron distribution far
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from the nuclei, particularly in the region where non-covalent interactions are strongest. The

counterpoise correction [88] is a rather simple technique to mitigate the BSSE. It includes the

neighbour monomer’s orbitals in the monomeric calculations so as to have ”the same” basis set

as in the dimer. In the general case:

A+B → AB (3.58)

∆E = E(AB)− [E(A) + E(B)] (3.59)

The calculation of the energy of the individual species A is performed in the presence of ’ghost’

orbitals of B; that is, without the nuclei or electrons of B. A similar calculation is performed for

B using ghost orbitals on A. An alternative approach is to use a basis set in which the orbital

exponents and contraction coefficients have been optimised for molecular calculations rather

than for atoms. The relevance of the BSSE and its dependence upon the basis set and the level

of theory employed remains a subject of much research.

3.5 Accounting for solvent effects. The polarizable con-

tinuum model

The vast majority of the experimental studies regarding the photophysical/photochemical

properites of molecular systems are performed in solution. Therefore, it is important to mimic

solvent effects in electronic structure calculations. When specific solute-solvent interactions,

e.g., hydrogen bonds, non-covalent interactions, etc., are not relevant, the electrostatic inter-

action between the solute an the solvent could be modelled with implicit solvation models.

Conceptually, a solvated molecule can be thought as a process in which first a cavity has to be

created in the solvent in order to place the solute molecule. Then, the cavity is polarized due

to the electric field created by the solvent. The produced cavity’s polarization generates an

electric field at the solvent molecule. It is this last effect that can be modelled as a perturbation

operator that is added to the Hamiltonian of the solute in the gas phase.
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The most popular implicit solvation model among standard quantum chemistry packages are

polarizable continuum models (PCM) [89, 90, 91], also known as dielectric continuum models

or ”apparent surface charge” SCRF models, in which the quantum chemical description of

a molecular system is coupled to a continuum description of the environment. Among this

family, the most popular implemented versions are the conductor-like model (C-PCM) and

the ”integral equation formalism” (IEF-PCM). In such models, the solute is embedded in a

polarizable continuum of dielectric ε. First a cavity is created in order to accommodate the

solute. The free energy variation of this step is called cavitation energy. When the molecule

of the gas phase geometry and electronic structure is placed inside the cavity, the electric field

created by the molecule polarizes the continuum and an electrostatic potential arises in the

cavity. Such electrostatic potential is called reaction potential and interacts with the molecule

and generates a total free energy change. The free energy change arising from the solute-solvent,

solvent-solvent and internal solute electrostatic interactions is called electrostatic contribution.

Finally, the solute-solvent dispersion energy gives rise to the dispersion term. The solvation

free energy is the free energy change to transfer a molecule from vacuum to solvent and can be

defined as follows:

∆Gsol = ∆Gelec + ∆Gdisp + ∆Gcav (3.60)

When the solvent is treated as a continuum, the Laplacian of the reaction potential (φ(r)) is

related to the free charge density (ρ(r)) by the Poisson’s equation for a constant dielectric:

ε∆φ(r) = −4πρ(r) (3.61)

The polarizable continuum model solves the electrostatic problem by introducing a charge

distribution spread on the cavity surface [92, 93]. The cavity volume is obtained by adding the

van der Waals spheres of the solute’s atoms. Since the surfaces of these volumes are irregular,

no analytic function could fit them and, therefore, ∆Gelec is calculated numerically. The cavity

surface is divided into a large number of small surface elements, refered to as tesserae, and a

point charge is associated with each surface element. The reaction potential is then added to

44



the solute Hamiltonian and it is solved iteratively by SCF.

Ĥ = Ĥ0 + φ(r) (3.62)

After each SCF iteration new values of the surfaces charges are calculated from the current wave

function to update the reaction potential, which is used in the next iteration until the solute

wave funtion and the surface charges are self-consistent. Overall, these models determine the

total electrostatic potential arising from the given charge distribution by solving the classical

Poisson equation with several approximations. The total potential consists of the solute’s

potential and the continuum’s solvent one, the latter one being a reaction field potential arising

from polarization of the solvent medium.

When considering an excited state, there is a sudden change in the solute’s charge distribution.

In that scenario, the solvent responds in two different ways to changes in the state of the solute:

the solvent have time to polarize its electron distribution, this process is very rapid and only

the electrons of the solvent can follow such a response. The remaining degrees of freedom

(nuclei), follow a slow process and remain unchanged as in the initial state. Such splitting of

the solvent response can be treated in two extreme time regimes: the non-equilibrium and the

equilibrium regime. In the non-equilibrium regime, the fast and the slow processes are treated

separately: the electronic polarization of the solvent is treated in equilibrium with the solute’s

excited state electronic density, while the slow degrees of freedom remain in equilibrium with

the ground state electron density. An equilibrium calculation, on the other hand, describes a

situation where all degrees of freedom (both the electronic and nuclear) of the solvent had time

to fully respond to the solute, thus, they are considered equilibrated with the electron density

of the electronic state that wants to be studied of the solute. It is important to know that the

non-equilibrium solvation is appropriate for processes which are too rapid for the solvent to have

time to fully respond to changes in the solute, this is the case of vertical excitations. However,

the equilibrium solvation should be chosen for slower process, such as a geometry optimization

(a process that takes place on the same time scale as molecular motion in the solvent). PCM

is able to describe both situations because two different dielectric constants can be considered.
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When dealing with non-equilibrium solvation, the dynamic (optical) dielectric constant of the

solvent is used. While for equilibrium solvation, the static (zero-frequency) dielectric constant

is considered. In the literature, two different approaches have been developed for describing

nonequilibrium solvent effects: the linear response (LR) approach [94] and the state-specific

(SS) [95]. In the LR formulation, the dynamic polarization of the solvent to the excitation is

computed from the transition density. This means that the excitation energies are determined

from the solvated ground state and the SCRF is included in the conventional excited state

calculation. The LR is well-suited for transitions in which there is a small change of the

electron density, because the electrostatic interaction between the solvent and the excited state

density does not vary a lot compared to that of the ground state. By contrast, when excitations

involving a large density rearrangement are computed, the SS approach should be used, since

it considers the capability of part of the solvent degrees of freedom to instantaneously respond

to changes in the solute wave function upon excitation and this effect is not accounted for in

the LR approach. In the SS approach, a single excited state is modelled and its energy is

determined by making the electrostatic potential generated by the excited state density self

consistent with the solvent reaction field, that is, the solute is polarized self-consistently with

respect to the solvent’s reaction field. Consequently, in the SS approach, the excitation energies

are calculated from the difference in the energy of each state, for which each electronic density

is solved self consistently with the solvent reaction field.

3.6 Computational tools for the characterization of ex-

cited states

3.6.1 Transition dipole moment and oscillator strength

According to the electric dipole approximation, the probability for a transition between two

electronic states (Ψi and Ψf ) is proportional to the square of the transition dipole moment µ,

which in the basis of adiabatic states (stationary states of the electronic Hamiltonian within
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the Born-Oppenheimer approximation) is given as

µ = 〈Ψi|qr|Ψf〉 (3.63)

This expression represents the effective electric dipole moment of the molecule in a transition

between two electronic states. In this case, we have considered the Franck-Condon [96] approx-

imation, taking µ to be independent of the nuclear coordinates, that is, truncating the Taylor

series of µ about the equilibrium geometry of the initial state to first order.

The transition dipole moment is related to the oscillator strength f as follows:

f =

(
8π2meν

3he2

)
|µ|2 (3.64)

where ν is the excitation frequency, me is the mass of the electron, e is the charge of the electron

and h is the Planck constant.

The oscillator strength does not have any dimension and is also related to the intensity of an

electronic transition by the area under the absorption band:

f = 4.135 · 10−9
∫
ε(ν̄)dν̄ (3.65)

where ν̄ is the mean absorption frequency and ε is the molar extinction coefficient measured

experimentally when recording an absorption spectrum and the numerical prefactor is in units

of cm−1. Consequently, the oscillator strength is able join the macroscopic world (the exper-

imental intensities of a spectrum) with a quantum mechanical observable, which accounts for

the electronic structure of the absorbing molecules.

Within the Thomas-Reiche-Kuhn sum rule [69], the sum of the oscillator strengths of the

transitions from one state to all the other states must be equal to the total number of electrons

of the system. This rule is valid when calculations are performed with TDDFT and only if the

basis set is complete (containing an infinite set of functions). However, this is not the case for
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excitations in real systems. In addition, the rule is not satisfied for TDA calculations neither.

The probability of an excitation can be deduced from the expressions in 3.63 and 3.64. Since

TDA is related to CIS, we could think of an excited state wave function as a linear combination

of single excitations from the reference ground state Slater determinant. Imagine that the first

excited state (S1) of a system corresponds mainly to an HOMO-LUMO transition, because

of the one-electron nature of the dipole moment operator in expression 3.63, the integral will

only depend on these orbitals. Therefore, in this single-excitation picture, HOMO and LUMO

orbitals need to overlap with each other, but because of the presence of the position operator,

the larger it is the separation between them, the larger will be the transition dipole moment.

As a result, the structure of Donor- π- Acceptor dyes suits perfectly to obtain large oscillator

strengths, since the HOMO and LUMO are spatially separated, but still they overlap because

of the π-conjugated bridge.

3.6.2 Charge Transfer Characterization

Mulliken charges come from the Mulliken Population Analysis (MPA) [97, 98] and give a good

estimation of partial atomic charges from the density matrix. The method is very simple and,

as a result, have become popular to provide qualitative interpretations. When excited states are

calculated, Mulliken charges associated to an electronic transition can be estimated from hole

and particle transition density matrices. In this way, one can easily measure the CT extent of an

excited state: the difference in charge between the initial and final states (the transition charge)

quantifies the number of electrons relocated in the molecule upon the excitation. However, the

problem is that Mulliken charges are very sensitive to the basis set choice, since charges on

atomic centers are assigned on the basis of the total electron density in basis functions located on

each center. In addition, it is well accepted that MPA can result in unreasonable atomic charges

due to incompleteness of atom-centred basis sets and the presence of diffuse functions that do

not resemble atomic orbitals. Natural Population Analysis (NPA) proposed by Weinhold and

Reed [99, 100] was designed to fix the problems existing in the Mulliken scheme by constructing

a set of natural atomic orbitals (NAOs) in an arbitrary atomic basis set. The construction of
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these natural orbitals begins with occupancy-weighted symmetric orthogonalization of atom-

centred basis functions that are separated into a highly occupied natural minimal basis and a

largely unoccupied natural Rydberg basis [101]. This procedure produces an orthonormal set

of atomic orbitals that retain a great degree of their atom-centred features, thus ensuring that

the shape of the strongly occupied orbitals is preserved better than that of the weakly occupied

ones (referred to as Rydberg orbitals) that consist of many diffuse orbitals from using extended

basis sets. The diagonal elements of the density matrix made from the NAOs represent the

electron occupancies of each NAO summing exactly to the total number of electrons. The

natural orbitals are known to be inherent to the wave function, rather the quality of the basis

set. The NPA scheme has been recognized as a reliable tool for calculating atomic charges and

has been widely used for studying donor–acceptor interactions [100]. Therefore, both MPA and

NPA are an efficient way to quantify the CT character of electronic states.
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Chapter 4

Optical properties of quadrupolar and

bi-quadrupolar dyes: intra and inter

chromophoric interactions

4.1 Introduction

The dynamics of charge and energy transport in biological systems and functional organic

materials strongly rely on how chromophores interact in π-stacked assemblies [19, 20, 21, 22,

23, 24]. Because dye aggregation has important outcomes in the area of organic electronics

and photonics, there is a strong need to establish reliable relationships between orbital overlap

in organic solids and optical and electronic properties. However, this task remains extremely

difficult owing to the manifold structural parameters that dictate exciton coupling in the crystal

state. Moreover, three-dimensional organization of dye molecules in single crystals and thin

films is very hard to predict [25], which makes it difficult to design new materials with tailored

functions.

Boron difluoride complexes of curcuminoids represent a versatile class of dyes combining elec-

tron donor (D) and acceptor (A) units in a D-A-D quadrupolar-like architecture, in which A is
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the central dioxaborine ring (DOB) and D are the terminal aromatic moieties [102, 103, 104,

105, 106]. Optical properties in the solid state are among the most interesting attributes of

curcuminoids-BF2 [107, 108]. Thin films of those dyes for example were shown to display an

intense near infrared fluorescence emission, which led to the generation of electroluminescent

and lasing materials with unprecedented performances [109]. Single-crystal X-ray diffraction

studies have shown that curcuminoids-BF2 molecules self-assemble into π-stacks in which the

π-conjugated backbones are tightly packed and interact strongly [102, 107, 108]. These obser-

vations prompted us to undertake the design of model dimeric aggregates and the investigation

of their UV-vis absorption properties in order to derive insights into exciton coupling in well-

defined aggregate packings.

The work presented herein was performed within the framework of a collaboration with the

group of Prof. Frédéric Fages in the University of Marseille, in which we were in charge of

the computational part. Nevertheless, for the sake of completeness, we report in this Chap-

ter the entirety of the results, including experimental syntheses and optical characterizations.

The group of Fages synthesized a series of covalently-tethered bichromophoric dyes in which

two curcuminoid-BF2 units are connected through a polymethylenic chain that acts as a flex-

ible transparent linker (Figure 4.1). Many examples can be found in literature that report

folding-driven intramolecular interaction between polycyclic aromatic hydrocarbons and dyes

in nonconjugated systems. They enabled the investigation of excimer and exciplex formation

[110], exciton coupling [111, 112] photodimerization [113], electron and electronic energy trans-

fer [114, 115]. Unlike aromatic compounds that generally form excited-state dimers (excimers)

[110], dipolar dyes possessing a large value of the dipole moment have a strong ability to self-

associate in the ground state [112]. In their bichromophores, the preference for the open vs.

folded form is directly linked to the ability of the solvent to solvate the chromophore [112, 116].

Symmetrically substituted curcuminoid-BF2 have a ground state dipole moment oriented per-

pendicularly to the long molecular axis and its value has been found between 5 and 12 D

depending on the strength of the lateral electron D group [108]. Electrostatic dipole-dipole

interactions are thus expected to provide a large contribution to noncovalent chromophore

ground state self-assembly toward the folded form in solvents of low polarity. This behavior is
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in agreement with that prevailing in dipolar chromophores, but the main difference in the latter

systems relative to curcuminoids is that the dipole moment is aligned with the donor-acceptor

molecular axis [117].

Here we describe the synthesis of bichromophoric compounds 1’-3’ (Figure 4.1) in which

an oct-1,8-diyl chain linker has been chosen in order to limit geometrical constraints in the

folding process. The optical properties of 1’-3’ are compared to those of the corresponding

monomeric reference compounds 1-3. Compound 1 is a symmetric chromophore with two

para-methoxyphenyl (PMP) electron donor units while dye 2 is a nonsymmetric molecule con-

taining PMP and triphenylamino (TPA) as donor groups. Compound 3 is the meso-phenyl

(mPh) derivative of dye 1. We provide a theoretical investigation of monomers 1-3 and teth-

ered dimers 1’-3’, and correlate the calculated data with data obtained from UV-vis spectra

in solvents of different polarity. We also bring useful insights into the electronic nature of the

ground and singlet excited states.
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1: R1 = H, R2 = OMe
2: R1 = H, R2 = N(Ph)2
3: R1 = Ph, R2 = OMeR1
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Figure 4.1: Borondifluoride curcuminoid monomers 1-3 (top), as well as open (middle) and
folded (bottom) homodimers chemically linked through an octyl chain. Covalent dimers of 1-3
are labeled 1’-3’ in the text.
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4.2 Experimental and computational details

4.2.1 UV-vis absorption measurements

The group of Prof. Fages recorded UV/Vis absorption spectra at room temperature (20-25 ◦C)

on a Varian Cary 50. Solutions were prepared using spectroscopic grade solvents with concen-

trations ranging from 5×10−5 to 5×10−7 M in order to check the absence of any contribution of

intermolecular aggregation. UV/Vis measurements were performed using quartz cuvettes with

1 cm and 5 cm optical path.

4.2.2 Quantum chemical calculations

Ground state geometry optimizations of curcumin derivative monomers and structural conform-

ers of curcumin dimers were performed using DFT with the ωB97X-D exchange-correlation

functional [118] (XCF) and the 6-31+G(d) basis set. The use of a long-range dispersion-

corrected XCF was employed in order to accurately describe weak interactions, in particular

the chromophore packing in the folded conformations of dimeric species. Basis set superposi-

tion error (BSSE) [119, 120] between energies of folded and open forms was corrected by means

of the counterpoise (CP) scheme [121]. The computed CP energy correction is 3.7 kcal/mol

(see Appendix A). Molecular structures of monomers were confirmed to be real minima on

the potential energy surface by subsequent calculation of harmonic vibrational frequencies at

the same level of theory. The structures showed positive force constants for all normal modes

of vibration. Computed vibrational frequencies have been scaled by a 0.95 factor in order to

correct the systematic slight overestimation obtained at the DFT level [122].

Molecular excitation energies were calculated using TDDFT (time-dependent density functional

theory) with and without the Tamm-Dancoff approximation (TDA) [123]. The dependence of

excitation energies and electronic character of low-lying transitions has been explored for dif-

ferent XCFs and basis sets (Tables A1-A10 and A19). The nature of computed states obtained

with B3LYP, Coulomb-attenuating B3LYP (CAM-B3LYP) [124] and ωB97X-D [118] energy
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functionals are qualitatively equivalent for the three considered monomers and the folded con-

formations of dimers 1’ and 3’, as well as for the two lowest excited singlets of the V-shaped

form of dimer 2’ (Figures A2 and A3, and Tables A5 and A10). In this chapter, we only discuss

the results obtained with the B3LYP functional, which provides vertical excitation energies at

the Franck-Condon region closer to experimental absorption maxima.

Solvent effects were taken into account by means of the conductor-like polarized continuum

model (C-PCM) [125, 126, 127]. Transition energies in solution have been computed with the

linear response (LR) approach [128, 129].

Computation of the diabatic states ({Zi}) was performed for TDA states in vacuum and

by means of the Edmiston-Ruedenberg localization scheme [130], since it is not available for

TDDFT states. The number of adiabatic states considered correspond to the number of intra

and inter-CT contributions in each case, i.e., 2 intra-CT in monomers 1 and 2, and 3 intra-CT

in monomer 3. Curcumin dimers also include the 4 inter-CT excitations. Concretely, diaba-

tization of curcumin monomers was obtained from 2 adiabatic states for dyes 1 and 2, and 3

adiabats for molecule 3, while the diabatization of the corresponding covalent homodimers was

performed by considering the lowest 8 (1’ and 2’) and 10 (3’) excited singlets. Electronic in-

teraction between diabatic states (electronic couplings) have been obtained as the off-diagonal

elements of the diabatic Hamiltonian (Hij = 〈Zi|Ĥ|Zj〉). All calculations were performed with

the Gaussian09 package [131] and the Q-Chem program [132].

4.3 Results and discussion

4.3.1 Synthesis

The synthetic routes to the compounds are described in Appendix A (Scheme A1). Monomers

1 and 3 were synthesized as described previously [102]. The synthesis of compound 2 was

performed in two steps according to procedures reported for the preparation of nonsymmetric

curcuminoids-BF2.[133, 134] The BF2 complex of hemicurcuminoid H1 was subjected to an
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aldol-type condensation reaction with 4-(N,N-diphenylamino)benzaldehyde (TPA-aldehyde) to

give 2.

Similarly, the synthesis of the bichromophoric dyes required dissymetrisation of the correspond-

ing (acetylacetonato)difluoroboron to obtain a hemi-curcuminoid derivative. To this end, two

synthetic routes have been followed (Scheme A1). Dimer 1’ was obtained in 12% yield from the

condensation of hemicurcuminoid H1 with 4,4’-[1,8-octanediylbis(oxy)]bis-benzaldehyde [135].

Synthesis of the dimers 2’ and 3’ involved instead the preparation of the bis-hemicurcuminoid

dimers H2 and H3 (yields 35% and 15%, respectively) that were reacted in a second step with

the corresponding aldehyde. Finally, 2’ and 3’ were obtained as pure solids after chromatog-

raphy on silica gel (yields 11% and 18%, respectively). The structure of all compounds was

confirmed by 1H and 13C NMR spectroscopy (for the soluble compounds) and by high resolution

mass spectrometry (HRMS).

4.3.2 Low-lying excited singlets of curcuminoid monomers

Ground state optimized geometry of 1 exhibits all carbon and oxygen atoms on the same

molecular plane, allowing for π-electron delocalization along the π-conjugated path containing

an odd number of sp2-hybridized carbon atoms. The conjugation extent in the other two

molecules is similar, with tilted edge Ph groups of TPA in 2 and the mPh group orthogonal to

the main molecular plain in 3, i.e., dihedral angle θ = 90◦. Ground state potential energy profile

along the torsion mode of the mPh moiety in 3 indicates that room temperature thermal energy

should be enough to allow the rotation of the phenyl within a rather wide range, i.e. 60◦ ≤

θ ≤ 90◦ (Figure A4). Therefore, in addition to the computationally most stable geometry of 3

(θ = 90◦), in the following study we also include the results for a non-orthogonal conformation

with an energetically accessible rotation angle (θ = 62◦) [102]. Although occupied (virtual)

molecular orbitals (MOs) are mostly localized on donor (acceptor) groups, the coplanarity

between molecular fragments promotes important electron delocalization, as indicated by the

shapes of the frontier MOs in Figure 4.2. Despite their structural similarities, MOs anticipate

important differences between the three dyes. Namely, the asymmetric nature of the donor
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groups in 2 results in the localization of the highest occupied MO (HOMO) and HOMO-1

on the TPA and PMP moieties, respectively. On the other hand, frontier MOs of monomer

3 anticipate the potential involvement of the mPh π-electrons in the transition to the lowest

excited states.

Figure 4.2: Frontier molecular orbitals of the curcumin monomers 1-3 calculated at the
B3LYP/6-31+G(d) level.

Experimental absorption maxima (Figure 4.3) and computed singlet-singlet vertical transition

energies and oscillator strengths of the three curcuminoids are shown in Table 4.1. TDDFT

excitation energies to the lowest bright state (S1 state) obtained for solvated molecules are in

good quantitative agreement with experimental data. Besides, TDA yields excitation energies

which are very close to the corresponding (full) TDDFT values, showing that the performance

of TDA is essentially the same as TDDFT for this series of systems.

As shown in a previous study [134], the electronic excitation to the S1 state of 1 at the Franck-

Condon region corresponds to a π → π∗ transition mainly described by the HOMO→LUMO

electronic promotion. Moreover, as expected for symmetrical quadrupolar D-π-A-π-D chro-

mophores [136], S1 exhibits rather strong optical absorption (with large oscillator strength f),

while the S0 → S2 transition is dipole forbidden, i.e., dark state (f ∼ 0). In the asymmetric

monomer 2, both S1 and S2 states are bright, and the magnitude of the computed strengths

indicate larger transition probability to S1 than to S2, in agreement with the intensity of the
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experimental absorption bands (Figure 4.3). Since the TPA moiety is a stronger electron donor

group than PMP, the main contribution to the lowest excited singlet (HOMO→LUMO) corre-

sponds to an intramolecular charge transfer (intra-CT) excitation from the TPA fragment to

the central dioxaborine acceptor. The S2 state of 2 is an intra-CT from the PMP unit. Finally,

introducing a phenyl unit in the meso position (monomer 3) brings out a new bright low-lying

excited state, not present in 1 and 2. At the ground state minimum (θ = 90◦), this new state

arises as an intra-CT excitation from the meso substituent to the acceptor ring (S2 state in

Table 4.1). For the non-orthogonal disposition (θ = 62◦) the conjugated orbitals of the mPh

group mix with the π-system of the rest of the chromophore (Figure 4.2 and S5) and the lowest

states correspond to mixings of intra-CT from both mPh and the lateral PMP groups. The

redshift of the main absorption band of 3 with respect to 1 is an indirect indication of the

involvement of mPh in the electronic transition.

Table 4.1: Vertical transition energies (eV), oscillator strengths (in parenthesis) and orbital
contributions (in %) of curcumin monomers 1-3 in DCM solution calculated using the full-
featured TDDFT and the TDA at the B3LYP/6-31+G(d) level, and experimental excitation
energies corresponding to absorption maxima. Values in italics of 3 correspond to θ = 62◦.
Orbital contributions correspond to TDA calculations. H = HOMO, L = LUMO.

Comp. State Exp. TDDFT TDA Orbital contributions
1 S1 2.54 2.50 (2.299) 2.60 (2.299) 87 H→L

S2 - 3.01 (0.004) 3.12 (0.004) 85 H-1→L
2 S1 2.23 2.29 (0.982) 2.40 (0.990) 68 H→L, 18 H-1→L

S2 2.90 2.83 (0.746) 2.83 (0.747) 11 H→L, 72 H-1→L
3 S1 2.46 2.60 (2.153) 2.67 (2.154) 90 H→L

2.30 (0.799) 2.36 (0.800) 93 H→L
S2 - 3.01 (0.022) 3.15 (0.020) 97 H-2→L

2.84 (1.007) 2.90 (1.007) 83 H-2→L
S3 - 3.33 (0.002) 3.38 (0.002) 87 H→L+1

2.85 (0.017) 2.87 (0.018) 53 H-1→L, 37 H→L+1

To get a deeper insight on the nature of the various excited states in the three curcumin

derivatives, we decompose the lowest (adiabatic) electronic transitions in terms of well defined

contributions, referred to as diabatic states or diabats (Figure 4.4 and Table 4.2). Detailed

description of the electronic diabats in terms of fragment Mulliken charges can be found as

in Appendix A (Tables A13-A18). The lowest excited singlets of the symmetrical monomer

1 are built as the in-phase and out-of-phase combinations of two degenerated zwitterionic
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Figure 4.3: Normalized absorption spectra of molecules 1-3 recorded in DCM solution.

states (S1,2 = Z1 ± Z2), respectively corresponding to intra-CT from each PMP moieties. The

electronic coupling between the two diabats (Z1 and Z2) is strong (H12 = 0.22 eV), which

results in a large computed gap between S1 and S2 (∼ 0.4 eV). The different electron donating

character of the terminal groups in compound 2 decouples the two diabatic states (H12 =

0.02 eV), and the two localized intra-CT diabats do not mix to form the adiabatic transitions.

Diabatization of the three lowest states of the meso-substituted compound (3) at θ = 90◦

identifies S1 and S3 as being equivalent to the two lowest states in 1 (i.e. Z1 and Z2 symmetric

mixings), while S2 corresponds to the pristine excitation from mPh (Z3). At θ = 62◦ the energy

ordering of diabatic states changes, and the intra-CT from mPh (Z3) becomes the lowest state

(Figure 4.4). The non-orthogonality between mPh and PMP π-conjugated densities allows the

mixing of Z3 with the localized intra-CT from PMP units (Z1 and Z2), with Z3 being the main

contribution to S1. Electronic couplings between diabatic states for 1, 2 and the two explored

conformations of 3 are shown in Appendix A (equations A6-A12).
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Figure 4.4: Diagramatic representation of diabatic (zwitterionic, Zi) excited states and
TDA/B3LYP/6-31+G(d) energy gaps (in eV) for curcumin monomers 1-3. Different groups
are indicated as circles (PMP), hexagons (DOB), squares (TPA) and triangles (mPh). In-
crease and decrease of fragment electron density upon excitation are indicated in blue and red,
respectively.

Table 4.2: Weights (in %) of the diabatic states (Zi) contributing to the adiabatic states (Si)
of 1-3. Values in parenthesis of 3 correspond to θ = 62◦.

Comp. State Z1 Z2 Z3

1 S1 50 50 -
S2 50 50 -

2 S1 100 0 -
S2 0 100 -

3 S1 49 50 1
(17) (17) (66)

S2 3 3 94
(38) (38) (24)

S3 49 47 4
(45) (45) (10)

4.3.3 Electronic absorption spectra

Solvatochromism of monomers

Comparison between excitation energies computed in gas phase and in different solvents informs

of the relative stabilization of ground and excited states by means of solute-solvent dielectric
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interactions (Table 4.3). In all three cases, increasing the solvent polarity induces a redshift of

the transition energies to the lowest singlet in accordance with the intra-CT character of the

excitation to S1. It is also worth noticing that the largest solvatochromic effect, evaluated either

by the relative position of absorption maxima recorded in different solvents (Figure A1) or as

computed excitation energies, is observed for monomer 2. This behavior can be rationalized

by the dipolar nature of the transition to S1 in 2, while S1 in 1 corresponds to a quadrupole

[136].

Table 4.3: Excitation energies (eV) calculated at the TDDFT level (B3LYP/6-31+G*) and
experimental absorption maxima for the curcumin derivatives 1-3 in solvents with different
polarities: cyclohexane (CH, ε = 2.0), di-n-butyl ether (DBE, ε = 3.1) and dichloromethane
(DCM, ε = 8.31). (b) = bright state, (d) = dark state.

gas cyclohexane di-n-butyl ether dichloromethane
comp. state TDDFT TDDFT Exp. TDDFT Exp. TDDFT Exp.

1
S1 (b) 2.98 2.66 2.63 2.63 2.61 2.50 2.54
S2 (d) 3.42 3.07 - 3.05 - 3.01 -

2
S1 (b) 2.94 2.41 2.34 2.33 2.33 2.29 2.23
S2 (b) 3.30 2.85 2.99 2.84 2.97 2.83 2.90

S1 (b) 2.56 2.33 2.54 2.31 2.51 2.30 2.45
3 S2 (b) 3.18 2.81 2.71 2.85 2.68 2.84 -

θ = 62◦ S3 (d) 3.21 2.83 - 2.80 - 2.85 -

S1 (b) 2.82 2.63 2.54 2.61 2.51 2.60 2.45
3 S2 (d) 3.22 3.08 - 3.02 - 3.01 -

θ = 90◦ S3 (d) 3.49 3.36 - 3.35 - 3.33 -

Vibronic absorption profile of monomers

Absorption profiles of monomers 1 and 3 in solution exhibit vibronic resolution with absorption

peaks separated by about 1260 and 1320 cm−1, respectively. Frequency calculations (Figures

A7 and A8) allowed us to identify the different peaks of the spectrum with the coupling of

the S0 → S1 transition to in-plane vibrational modes computed within the 1260-1340 cm−1

(1340-1430 cm−1) range for chromophore 1 (3). These modes are activated upon excitation

to the S1 state due to the π → π∗ character of the transition. On the other hand, the more

localized intra-CT nature of the two lowest singlets in 2 result in two absorption bands with

no vibronic resolution.

60



4.3.4 Low-lying excited singlets of covalent curcumin dimers

Structural conformers

In the following we investigate the optical properties of covalent homodimers of borondifluoride

curcuminoid derivatives 1-3 chemically linked through a polymethylenic chain (referred to as

1’-3’, respectively). Since the length and flexibility of the polymethylenic bridge does not im-

pose any particular arrangement between the two curcuminoid moieties, two possible structural

conformations were considered: an open form in which the two curcuminoid monomers do not

interact, and a folded form in which they are closely packed (Figure 4.1). The relative stability

between the two structural forms is dictated by the strengths of the solvent-dye and π-stacking

interactions, respectively favoring isolation of chromophores (open form) or the binding of the

two dyes (folded form).

Figure 4.5: Optimized geometries for the folded form of dimers 1’ (left) and 3’ (right), and
dimer 2’ (middle) in the V-shape conformation.

Electronic structure calculations of dimer 1’ (without taking into consideration entropic con-

tributions or explicit solvent-solute interactions) predict the preference towards the folded con-

former (Figure 4.5). The 1’ (folded) optimized geometry shows a sandwich-like structure of the

two monomers very close to an eclipsed disposition (inter monomer slip of ∼ 1.2 Å) with large

superposition between equivalent PMP and DOB groups, and with the two BF2 pointing to

opposite directions in order to minimize steric hindrance and dipole-dipole interactions. The

distance between the two monomeric planes is computed at 3.40 Å, i.e., within the range of

typical π-π stacking interactions [137, 138, 139]. Relative energies between open and folded
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conformers of 1’ computed in different solvents show how increasing the solvent’s dielectric con-

stant, which increases the chromophore’s solubility, systematically reduces the relative stability

of the folded form (Figure A6). Hence, increasing the strength of the dye-solvent interactions

stabilizes the open form with respect to the folded conformation. This trend is in agreement

with the change in experimental absorption profile measured in different solvents (Figure 4.6).

The absorption spectrum of 1’ in dichloromethane (DCM) is virtually identical to the one

recorded for the monomer. Decreasing the polarity of the solvent from DCM (ε = 8.3) to

di-n-butyl ether (DBE, ε = 3.1) facilitates the coupling between the two chromophores within

the dimer, modifying the absorption of 1’. In particular, the absorption spectrum of 1’ in

DBE exhibits a change in the relative intensity of the vibronic peaks, which might be related

to the presence of H-aggregation between dyes [140]. In less polar solvents like cyclohexane

(CH, ε = 2.0), the solubility of 1’ decreases and the compounds tend to form intermolecular

aggregates, resulting in a large broadening of the spectrum.

Similarly, the absorption profile of dimer 3’ in solution shows a progressive change in the relative

intensity of the two main vibronic peaks upon variation of the solvent’s dielectric constant, again

suggesting the appearance of interactions between the two chromophoric moieties of the dimer.

The computationally optimized folded form of 3’ resembles the geometry obtained for 1’, with

a similar inter-monomer separation and relative orientation, although the presence of the two

mPh groups induces a larger interchromophoric slip (∼ 2.5 Å) along the long molecular axis

(Figure 4.5).

Substitution of terminal PMP groups by TPA donors (2’ dimer) substantially modifies the

landscape of the ground state potential energy surface. The volume of the TPA group prevents

the formation of the folded form and forces to decouple the two dyes, resulting in a strong pref-

erence for the open structure. Conformational search identifies a low-energy V-shaped structure

of 2’ with weak inter-monomer interaction (Figure 4.5). The experimental absorption profiles

of the monomer and dimer are almost identical. Moreover, the absorption coefficient of dimer

2’ measured in DCM solution (ε = 132200 M−1 cm−1) is, within uncertainties of the UV-Vis

spectra of the two compounds, twice that of the monomer 2 (ε = 68000 M−1 cm−1), in ac-

cordance with a ground state open form with no detectable interaction between dyes. Only

62



the absorption of 2’ recorded in CH shows some deviation with respect to the spectrum of 2

pointing towards the presence of H-aggregation, i.e. the presence of vibronic peaks with 0→ 2

more intense than the 0 → 1 transition, which might indicate the presence of intradimer or

intermolecular 2’· · ·2’ interactions due to low solubility.

Figure 4.6: Normalized absorption spectra of dimers 1’-3’ recorded in different solvents.
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Low-lying excited states of dimers

The ground state molecular geometry of the covalent curcumin derivative dimers has a large im-

pact on their electronic properties. In the open conformations the two monomers are spatially

well separated and, since the chromophores are linked through a saturated chain, the properties

regarding low-energy electronic transitions correspond to two independent monomers as ana-

lyzed along the previous sections. On the other hand, the coupling of the two moieties in the

folded and V-shape configurations, i.e., dimers in low-dielectric solvents, can sensibly modify

the photophysical properties of dimers. In the following we characterize the low-lying electronic

transitions for the folded conformation of 1’ and 3’, and the V-shape of dimer 2’, since they

represent the most interesting and computationally challenging situations.

Figure 4.7: Frontier MOs of curcumin dimers 1’ and 3’ (folded conformer) and 2’ (V-shape
form) computed at the B3LYP/6-31+G(d) level.

While frontier MOs of 1’ and 3’ are strongly delocalized over the two monomers, the lack of

interchromophoric orbital interaction in 2’ results in a set of doubly degenerated localized MOs

(Figure 4.7). In all cases, the polymethylenic bridge has merely a structural role, keeping the

two monomers linked, without contributing to the photophysics of 1’-3’. Computed excitation

energies to the two lowest excited singlets of dimer 2’ (Table A.20) are very close to the

value obtained for S1 state of monomer 2 (Table 4.1). Analysis of excitation amplitudes and

evaluation of charge displacements (Table A17) suggest that S1 and S2 of 2’ correspond to the
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out-of-phase and in-phase combinations of intra-CT excitations from TPA, respectively. The

gap between S1 and S2 in 2’ is in the order of 0.1 eV, in good agreement with the classical

approximation of dipole-dipole Coulomb interactions (Vdd) between transition dipoles in oblique

orientation [141].

Vdd =
1

4πε0

[
µ1 · µ2

|R|3
− 3

(µ1 ·R)(µ2 ·R)

|R|5

]
= 0.11 eV (4.1)

where µ1 and µ2 are the transition dipole moments for each monomer and R is the distance

vector between the two transition dipoles (see Appendix A for details). Computed excitation

energies for 1’ predict H-type behavior, with a lowest optically inactive S0 → S1 transition and

a strongly dipole allowed S0 → S2 transition at 2.19 and 2.59 eV, respectively. Approximately

0.1 eV above the bright S2 state lie two nearly degenerated one-photon allowed transitions,

which cannot be rationalized in terms of the Kasha’s model [34] for the interaction of two

chromophores. Similarly, the two lowest excited singlets of 3’ respectively correspond to dark

and bright states. Transition energy to S1 is very close to the energy obtained for dimer 1’,

while excitation to S2 is computed at lower energy. The folded form of 3’ exhibits another

low-lying dipole-allowed transition (S3), while the rest of the computed spin-singlet transitions

have rather small oscillator strengths (Tables A8 and A9).

Table 4.4: Excitation energies (in eV) and oscillator strengths (in parenthesis) computed at the
TDDFT B3LYP/6-31+G* level in DCM solution for the folded forms of 1’ and 3’ dimers and
the V-form of 2’.

dimer state ∆E (strength)

S1 2.19 (0.008)
1’ S2 2.59 (2.307)

(folded) S3 2.68 (1.196)
S4 2.71 (1.192)

2’ S1 2.40 (1.171)
(V-shape) S2 2.49 (1.222)

S1 2.20 (0.009)
3’ S2 2.23 (2.302)

(folded) S3 2.40 (1.489)
S4 2.55 (0.071)
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Diabatic decomposition of dimers

Diabatization of the computed states for 1’ allows to describe low-lying singlet states in terms of

intra- and inter-monomer CT contributions (Figure 4.8). Concretely, the lowest-energy diabats

of dimer 1’ correspond to four degenerate (PMP→DOB) CT excitations in which electron

density is transferred between monomers (Zinter). The intra-monomer excitations (Zintra) lie at

slightly higher energies and they can be expressed as two doubly degenerated sets of diabats

that split upon their symmetry and nature of the dipole-dipole interactions. Overall, computed

excited state singlets for the folded form of 1’ exhibit large mixings between inter and intra

CT diabats. In general, inter-monomer contributions dominate the composition of the lowest

singlets, indicating strong electronic couplings (equation A10). The presence of important inter-

CT suggests that the Kasha’s rule does not hold for this system and allows for the presence of

three low-lying optically active states (S2, S3 and S4).

Table 4.5: Contributions (in %) of the diabatic states (Zinter, Zintra and Zmeso) for the four
lowest adiabatic states (Si, i = 1, 4) of dimers 1’ and 3’ (folded forms).

1’ 3’
State Za

inter Zb
intra Zc

inter Zd
intra Ze

meso

S1 67 33 60 38 2
S2 74 26 72 27 1
S3 66 34 14 86 0
S4 23 77 11 89 0

a Zinter = Z1 + Z2 + Z3 + Z4,
b Zintra = Z5 + Z6 + Z7 + Z8,

c Zinter = Z2 + Z3 + Z7 + Z8,
d Zintra = Z1 + Z4 + Z9 + Z10,

e Zmeso = Z5 + Z6.

Low-energy states of 3’ are even more convoluted than in 1’ since they also include intra-

monomer CT contributions from the mPh group. Moreover, the interchromophoric longitudinal

slip along the long molecular axis breaks the symmetry between the two PMP groups within

the monomer, resulting in a lower degree of degeneracy of diabatic state energies. It is worth

noticing that, since the mPh substituents on each monomer are oriented opposite to the other

monomer, inter-dye interactions can only stabilize CT states with PMP as the donor group.

As a result, despite mPh has a major role in the lowest states of monomer 3 (Table 4.2), the

lowest diabats do not involve excitations from the meso group. The lowest diabat corresponds

66



to favorable dipole-dipole coupling of intra-CT from PMP, with the participation of two donor

and two acceptor moieties (Figure 4.8, right).

Diabatization of electronic transitions of 2’ confirms the local character of the two lowest excited

singlets corresponding to the linear combination of intra-CT from TPA, with no mixing with

inter-monomer CT contributions (Zintra ∼ 100% for S1 and S2). This result is in agreement with

the presence of weak electronic interaction between monomers in the excited state manifold due

to the large spatial interchromophoric separation in the V-form. Higher states computed at the

B3LYP level do not correspond to pristine linear combinations of the S2 state of monomer 2

and hold strong inter monomeric CT character. On the other hand, the nature of the S3 and S4

states computed with exact exchange at long inter-electronic distances (CAM-B3LYP) do not

show sizable inter-CT mixings, and seems to indicate that the large inter-CT presence for S3 and

S4 obtained with B3LYP is a spurious effect due to the large excitation energy underestimation

of electronic transitions with strong CT character (small overlap between hole and electron) by

standard hybrid functionals [142]. Diabatic decomposition of low-energy excited singlet states

of 2’ computed with different exchange-correlation functionals can be found in Appendix A

(Table A19).
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Figure 4.8: Diagramatic representation of diabatic (ZINTER, ZINTRA and ZMESO) excited states
and TDA/B3LYP/6-31+G(d) energy gaps (in eV) for curcumin dimers 1’ (left) and 3’ (right).
Different groups are indicated as circles (PMP), hexagons (DOB) and triangles (mPh). Increase
and decrease of fragment electron density upon excitation are qualitatively indicated in blue
and red, respectively. Numerical charges can be found in the Tables A.13-A.18.

4.4 Conclusions

Three curcumin derivatives and their covalent dimers with a polymethylenic chain as the linker

have been synthesized and characterized through absorption spectroscopy in solution and with

a variety of theoretical calculations and computational tools. Deconvolution of the computed

excitations in terms of diabatic states quantifies the involvement of the different chromophoric

unities and helps to characterize the nature of the low-lying excited singlet states of the three

molecules and their homodimers.

Computed vertical transition energies of molecules 1-3 are in very good agreement with ex-

perimental absorption maxima in solution. Despite the similarities of the recorded absorption

spectra for the three chromophores, the different nature of the donor moieties imposes rather

distinct electronic properties. The symmetric arrangement of the two PMP donor groups in
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1 results in a bright lowest excited state (S1) and a higher dark state (S2) corresponding to

the out-of-phase and in-phase combinations of the two intra-CT donor-acceptor (PMP→DOB)

electronic transitions. The stronger donor character of TPA with respect to PMP breaks the

left/right symmetry of chromophore 2, which presents two (localized) optically active excita-

tions. The phenyl substitution in the meso position (molecule 3) introduces a new low-energy

transition that can mix with the two lowest states of the pristine 1 molecule. In fact, TDDFT

calculations suggest that the lowest excited singlet has a strong participation of mPh as a donor

group.

Molecular structures of covalent dimers 1’ and 3’ exhibit a solvent dependent equilibrium be-

tween the open conformation (no interaction between chromophores) and a folded form (stack-

ing of monomers), while the bulkyness of the TPA group in 2’ prevents the stabilization of

the stacking interactions characteristic of the folded dimer. A larger spatial separation be-

tween the two π-clouds in 2’ stems from the favored occurrence of the V-form and induces

much weaker electronic interactions. In this case, low-lying excitations can be rationalized in

terms of classical dipole-dipole interaction models. The situation is different for 1’ and 3’.

Conclusions drawn from quantum chemical calculations and experimental data converge to

show the formation of a H-aggregate species when the two curcuminoid-BF2 chromophores are

linked via a long alkyl chain. Computational characterizations of low-lying transitions in the

folded dimers reveal strong interchromophoric coupling and important inter-CT contributions.

The latter feature is very interesting in the context of the photophysics of aggregated D-A-D

chromophores. More particularly, it is likely that the radiative deactivation of such inter-CT

excited states underpins the strongly redshifted fluorescence of curcuminoid-BF2 derivatives in

the solid state. Investigating this hypothesis by characterizing the full photophysical of 1’ and

related derivatives containing a linker of different length and chemical nature constitutes an

important perspective of this work.
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Chapter 5

Flavylium fluorophores as near-infrared

emitters

5.1 Introduction

Organic fluorophores exhibiting bright emission in the 1000-2000 nm optical range, referred to as

the second near-infrared (NIR-II) window or shortwave infrared (SWIR), present high interest

for biological imaging. Compared to far-red visible or NIR-I wavelengths (700-900 nm), NIR-II

wavelengths offer important advantages for in vivo applications, such as deeper penetration,

reduced autofluorescence, higher spatial resolution and lower optical absorption and scattering

[143]. Despite the library of organic dyes emitting in the NIR-II window has expanded in the

past few years [144, 145, 146, 147, 148, 149, 150, 151, 152], the design of exogenous contrast

agents for NIR-II fluorescence imaging remains challenging. In fact, the current strategy to

design SWIR-emissive fluorophores relies on making structural modifications to molecular dyes

already used for optical imaging emitting at the visible and NIR-I region [39]. Among them,

polymethine dyes constitute a promising class of bright and tunable fluorophores. These dyes

are charged quadrupolar molecules that contain two heterocycles such as indolenines linked by

a methine chain. Lengthening the polymethine linker, extending the electron conjugation or

adding electron-donating groups onto the lateral heterocycles in order to enhance the quadrupo-
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lar donor-acceptor-donor (D-A-D) character of the structure, have been shown to be promising

strategies to bathochromically shift the emission properties of this class of fluorophores. In a

recent work, Cosco et al. reported the synthesis of polymethines composed of dimethylamino

flavylium heterocycles linked by methine chains of different length (F1-5 and F7a, Figure 5.1),

whose emission ranges from far-red to shortwave infrared wavelengths [29]. Notably, F7a was

used to visualize the vasculature of the hind limb of a mouse, and was reported as the brightest

SWIR polymethine probe employed so far for fluroescence imaging.

Since they provide insights on the relationships linking the chemical structure of the chro-

mophores to their absorption and emission properties, computational approaches are also useful

to design novel SWIR-emissive materials, by providing rational guidelines for eventual synthe-

ses. In this Chapter, we report density functional theory (DFT) calculations on the absorption

and emission properties of flavylium polymethine fluorophores reported by Cosco et al. De-

composition of the computed excitations in terms of diabatic states is also carried out in order

to identify and quantify the nature of the relevant electronic transitions. In the light of these

results, chemical functionalization patterns are proposed to further improve the absorption and

emission capabilities of these compounds in the NIR-II optical window.
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Figure 5.1: Flavylium derivatives investigated in this study. The conjugated segment used to
calculate the bond length alternation is shown in red for F7.
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5.2 Computational details

Geometry optimizations of the ground (S0) and first excited singlet (S1) states of flavylium

molecules were performed using density functional theory (DFT) and its time-dependent (TDDFT)

version respectively, together with the B3LYP functional and the 6-31+G(d,p) basis set. Molec-

ular structures were confirmed to be real minima of the S0 and S1 potential energy surfaces on

the basis of their real harmonic vibrational frequencies.

Electronic excitation energies were calculated by means of the (full) TDDFT, as well as its

implementation using the Tamn-Dancoff approximation (TDA) [123]. The dependence of S0 →

S1 transition energies on different exchange-correlation functionals (XCFs) and basis sets has

been addressed for the F3 and F7a molecules (Annex B). Since B3LYP provides vertical excita-

tion energies at the Franck-Condon region closer to experimental absorption maxima, this XCF

was selected to characterize the optical properties of the investigated fluorophores. The com-

putation of electronic transitions with important electron/hole spatial separation represents a

challenge for TDDFT, which requires the use of energy functionals with the correct 1/R asymp-

totic behavior, e.g., range-separated XCFs [153, 79]. Despite that, it is important to notice

that the charge transfer (CT) character of low-lying singlet-singlet excitations in the studied

chromophores is not severe, as can be deduced from the sizeable HOMO/LUMO overlaps. As

a result, in this case, the intramolecular CT character of low-lying states is well recovered by

a hybrid functional with a 20% of exact exchange, i.e., B3LYP. The suitability of the B3LYP

functional has been confirmed by comparing the results with other functionals (Tables B.2 and

B.3), and in particular to range-separated functionals (CAM-B3LYP and ωB97X-D). But, even

more importantly, the nature of the lowest excited singlets does not change between B3LYP

and CAM-B3LYP or ωB97X-D. Moreover, the suitability of B3LYP to characterize electronic

excitations in quadrupolar dyes has been recently demonstrated [28].

The effects of structural relaxation on the electronic structure of the S1 state were also ad-

dressed by calculating the adiabatic transition energies, defined as the energy difference of the

S1 and S0 states in their respective minimum (Eadia = Eopt
S1
−Eopt

S0
). The 0-0 energies were then

evaluated as the sum of the adiabatic contribution and the difference of zero-point vibrational
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energy (ZPVE) between S1 and S0 (E0−0 = Eadia + ∆EZPV E).

Solvent effects were taken into account by means of the conductor-like polarized continuum

model (C-PCM) [154, 155, 156], both in the geometry optimizations and calculations of the

optical properties. Vertical transition energies were computed with the linear response (LR) ap-

proximation [157, 158] within a non-equilibrium state specific (SS) approach. Dichloromethane

was used in all calculations, since this solvent was used for the experimental characterizations.

The character of the electronic adiabatic excited states was analyzed using a deconvolution in

terms of diabatic states or diabats, computed in dichloromethane by means of the Edmiston-

Ruedenberg localization scheme [46] at the TDA level. As discussed below, two adiabatic

states were considered in the diabatization scheme, corresponding to the donor-to-acceptor

charge transfer contributions along the two branches of the molecules. Diabatization from two

(adiabatic) transitions has been shown to be a reasonable approximation to describe the lowest

singlet states in quadrupolar chromophores [28]. Electronic interactions between diabatic states

are defined as the off-diagonal elements of the diabatic Hamiltonian. All calculations presented

in this chapter were performed with the Q-Chem package [132].

5.3 Results and Discussion

5.3.1 Impact of polymethine chain length

Ground state (S0) molecular structures exhibit a high degree of planarity across the entire

conjugated system (Annex B). Despite the different molecular length, bond lengths, angles and

dihedrals are very similar along the F1-7 series (Table 5.1). Molecular geometries optimized

on the first excited state (S1) potential energy surface (PES) preserve molecular planarity and

do not present major structural changes with respect to S0. The main structural differences

between S0 and S1 minima are found for some bond distances along the central polyene linker.

In particular, bond length alternation (BLA) is systematically larger in the first excited state,

indicating that π-electron conjugation decreases upon relaxation on the S1 PES.
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Table 5.1: Bond distances and bond length alternation (BLA = (d1+d3−2d2)/2, all values in Å)
along the polymethine linker of the flavylium derivatives calculated at the C-PCM:B3LYP/6-
31+G(d,p) level in dichloromethane. See Figure 5.1 for bond labels.

d1 d2 d3 d4 BLA
molecule S0 S1 S0 S1 S0 S1 S0 S1 S0 S1

F1 1.433 1.427 - - - - - - - -
F3 1.420 1.434 1.411 1.414 1.412 1.413 - - 0.005 0.010
F5 1.425 1.435 1.410 1.412 1.411 1.419 - - 0.008 0.014
F7 1.425 1.436 1.410 1.420 1.413 1.436 1.411 1.423 0.009 0.016

F7a 1.413 1.421 1.395 1.407 1.407 1.429 1.397 1.412 0.015 0.018
F7b 1.427 1.412 1.408 1.420 1.420 1.410 1.427 1.433 0.016 0.009

Natural (NPA) and Mulliken populations reported in Tables 5.2 and B.1 show that the positive

charge is equally distributed over the two lateral electron-donating groups in the electronic

ground state of the molecules, with negligible delocalization on the central polyenic chain.

Upon electronic excitation and relaxation on the S1 PES, electron density is transferred from the

donor extremities to the central linker, whose charge amounts to about −0.2|e| independently

of its size.

Table 5.2: Sum of the NPA charges for the atoms in the donor (D) and acceptor (A) groups
for the S0 and S1 states of F1-7, F7a and F7b molecules in their respective energy minimum.
Charge at D column corresponds to the average between D1 and D2 moieties.

S0 S1

molecule D A D A
F1 0.491 0.018 0.598 -0.195
F3 0.489 0.022 0.598 -0.195
F5 0.492 0.017 0.602 -0.203
F7 0.494 0.012 0.604 -0.209

F7a 0.481 0.038 0.596 -0.193
F7b 0.485 0.029 0.603 -0.206

As illustrated in Figure 5.2, the highest occupied and lowest unoccupied molecular orbitals

(HOMO and LUMO) of the F1-7 derivatives are largely delocalized over the entire molecule,

with slightly more electron density on the two donor and the acceptor moieties in HOMO and

LUMO, respectively. Adding methine units at the central fragment from F1 to F7 increases the
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molecular conjugation length, resulting in energetically higher HOMO and lower LUMO. Con-

sequently, the HOMO-LUMO energy gap shrinks considerably with the length of the molecule

(Table 5.3).

Figure 5.2: HOMO (bottom) and LUMO (top) of F1-7 computed at the C-PCM:B3LYP/6-
31+G(d,p) level in dichloromethane.

Table 5.3: HOMO and LUMO energies (εH and εL), and HOMO-LUMO gaps (∆εHL) computed
at the C-PCM:B3LYP/6-31+G(d,p) level in dichloromethane for the falvylium derivatives. All
values in eV.

molecule εH εL ∆εHL
F1 -5.578 -3.277 2.33
F3 -5.415 -3.326 2.09
F5 -5.279 -3.417 1.86
F7 -5143 -3.462 1.68

F7a -5.143 -3.510 1.63
F7b -5.070 -3.510 1.56

Table 5.4 reports the Franck-Condon vertical excitation energies (Evert
GS ) and de-excitation en-

ergies from the excited state minima (Evert
ES ), as well as the adiabatic (Eadia) and 0-0 transition

energies (E0−0) calculated at the TDDFT level for the investigated compounds.

As shown in previous studies [159, 28], the S0 → S1 electronic excitation at the Frank-Condon

region corresponds to a π → π∗ electronic transition between the HOMO and LUMO. Although
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they systematically overestimate the experimental absorption energies, vertical S0 → S1 ener-

gies computed at the TDDFT level fairly reproduce the experimental redshifts of the absorption

maximum when increasing the polymethine chain length. The evolution of theoretical S1 →

S0 de-excitation energies is also in good qualitative agreement with the experimental data, as

well as that of 0-0 energies, which can be related to experimental crossing points between the

absorption and fluorescence curves (from Ref. [29], ∼1.87 eV, ∼1.63 eV and ∼1.40 eV for F1,

F3 and F5, respectively).

Computed oscillator strengths are rather large, suggesting intense photo absorption and emis-

sion capabilities, and in agreement with the strong optical responses experimentally obtained.

The S0 → S1 (and S1 → S0) transition dipole moments are aligned along the long molecular

axis (Figure B.1 and Table B.5), as typically obtained in quadrupolar dyes [28].

As shown in Table B.8, TDA yields excitation energies which are very close to values provided

by full-featured TDDFT calculations (as it is usually a good approximation to low-lying singlet-

singlet excitations [123, 160]), showing that TDA, used in the following for electronic states

diabatization, performs similarly as TDDFT for this series of systems.

Table 5.4: Vertical excitation energies to the excited state (S1) at the ground state geometry
(Evert

GS ) and de-excitation energies from the S1 minima (Evert
ES ) for the series of derivatives, as well

as adiabatic (Eadia) and 0-0 transition energies (E0−0) calculated at the TDDFT/B3LYP/6-
31+G(d,p) level in dichloromethane. Oscillator strengths are reported in parentheses. The
experimental absorption and emission band maxima [29] are given in the last two columns. All
energy values are in eV.

molecule Evert
GS Evert

ES Eadia E0−0 Eexp
abs Eexp

em

F1 2.09 (2.059) 1.83 (2.049) 1.89 1.86 1.91 1.80
F3 1.89 (2.783) 1.66 (2.930) 1.79 1.77 1.66 1.62
F5 1.73 (2.382) 1.44 (2.302) 1.62 1.54 1.44 1.36
F7 1.59 (2.948) 1.31 (2.669) 1.48 1.47 - -

F7a 1.57 (2.963) 1.19 (2.801) 1.45 1.44 1.21 1.19
F7b 1.44 (2.956) 1.06 (2.996) 1.37 1.35 - -

The low-lying transitions of linear quadrupolar dyes with the donor-acceptor-donor (D1-A-D2)

pattern, are obtained as the combination of two intramolecular charge transfer (CT) states

defined as donor-to-acceptor electronic excitations, that is CT1 and CT2 corresponding to

D1 →A and D2 →A electronic transitions, respectively [161]. For symmetric systems, i.e., D1
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equal to D2, the two CT states are degenerated and the two lowest (adiabatic) spin-singlet

transitions are built as the in-phase (S+) and out-of-phase (S−) combinations of CT states:

|S±〉 =
1√
2

(|CT1〉 ± |CT2〉). (5.1)

Typically, the lowest excitation is optically bright, as seen in the previous section for the F1-

7 family, and corresponds to the S− eigenstate, in agreement with the favorable head-to-tail

alignment of transition dipole moments of CT1 and CT2 (Figure 5.3). The energy separation

between S1 ≡ S− and S2 ≡ S+ is obtained as the interaction between CT1 and CT2. Therefore,

the energy of the lowest excited singlet, directly related to the emission wavelength, will be

dictated by the CTs diabatic energy and their electronic coupling V ≡ 〈CT1|Ĥ|CT2〉.

Figure 5.3: Diagramatic representation of the diabatization of the two lowest singlet excitations
in flavylium molecules as the antisymmetric (S−, bright) and symmetric (S+, dark) combina-
tions of the two CT states (CT1 and CT2). Localization of hole and electron upon excitation
indicated as h and e respectively.

Diabatization of S1 and S2 states in flavilyum derivatives allows to decompose them in terms

of CT1 and CT2, and transforms the (diagonal) adiabatic Hamiltonian into the (non-diagonal)

diabatic Hamiltonian, with degenerate diabatic energies at the diagonal and electronic coupling

as the off-diagonal term. The obtained energies and couplings for the F1-7 series are shown in

Table 5.5. Characterization of the two intramolecular CT states for each molecule in terms of

the variation of Mulliken fragment charges can be found in Annex B (Table B.6).

Diabatic energy of the intramolecular CT state decreases with the length of the linker, approxi-

mately 0.2 eV for each additional methine unit, in agreement with computed adiabatic energies

and the experimental bathochromic shift observed for the emission frequencies. Electronic cou-
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Table 5.5: Vertical excitation energies to the first excited state (S1 ≡ S−), CT diabats (CTi, i =
1, 2) energies and electronic couplings (V ≡ 〈CT1|Ĥ|CT2〉) computed at the (TDA) B3LYP/6-
31+G(d,p) level at the S1 optimized geometry. State energies and couplings are given in eV
and meV, respectively.

molecule E(S1) E(CTi) V
F1 1.98 2.16 247
F3 1.75 2.00 209
F5 1.53 1.82 171
F7 1.39 1.52 145

F7a 1.28 1.50 295
F7b 1.14 1.20 280

plings between the two diabats (V ) are rather strong for all molecules, and slightly decrease

from F1 to F7. This behavior results from larger delocalization of the negative charge in longer

acceptor moieties, diminishing the overlap integral between the CT1 and CT2 diabats. Overall,

while the CT energy is the main factor controlling the energy of the emitter in the flavylium

series, electronic coupling further tunes the stabilization of the bright excitation with respect

to ground state.

5.3.2 Impact of chemical substitution

The computational results in the previous section help to rationalize the trend in the fluorescent

emission properties of the flavylium family, that is the increase in emission wavelength with

the length of the molecule. Following, we attempt to further redshift the photoluminescence of

these fluorophores. To that aim we consider two different chemical substitutions at the acceptor

(F7a) and donor (F7b) moieties of the longest F7 compound (Figure 5.1).

With a view to enhancing the electron withdrawing strength of the polymethine bridge, we

introduce a chlorine atom at the central methylene unit of the F7 molecule. Moreover, we

slightly modify the linker with the formation of a six-membered non-conjugated ring, as it

precisely corresponds to a flavylium dye recently synthesized for SWIR imaging [29].

The increased acceptor character of the central moiety of F7a with respect to F7 stabilizes

the energy of the LUMO, while the energy level of the HOMO does not change (Table 5.3, see
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Figure 5.4 for MO shapes). Such reduction in the occupied-virtual gap results in a 0.12 eV

red shift in the S1 → S0 de-excitation energy (from 1.31 to 1.19 eV), while the strength of the

transition slightly increases (Table 5.4).

Computed diabatic energy in F7a is barely lower than in F7. On the other hand, the coupling

between the two diabats is approximately 2 times larger (Table 5.5). Since the coupling between

CT1 and CT2 strongly depends on the overlap of the two states at the shared acceptor moiety,

we argue that the improved electron acceptor character of the chlorine-substituted polyene

bridge increases the diabatic interaction, which further stabilizes the lowest excited singlet

(and destabilizes the S2 state).

Figure 5.4: Frontier molecular orbitals, HOMO (bottom) and LUMO (top), of F7a and F7b
calculated at the C-PCM:B3LYP/6-31+G(d,p) level.

Next, we aim to bring the emission band to even shorter wavenumbers by increasing the electron-

donor ability of the two side fragments. In consequence, we propose the replacement of the

dimethylamino groups in F7a by diphenylamino (F7b).

The stronger donor character of diphenylamino pushes the HOMO to a less negative energy,

while the energy of the LUMO does not change with respect to F7a, reducing the HOMO-

LUMO gap (Table 5.3). In accordance, the S1 state in F7b shows smaller excitation and de-

excitation energies and strong oscillator strengths (Table 5.4), making it an excellent candidate

for SWIR imaging.

From a diabatic point of view, the redshift of excited state energy is mainly obtained as the
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result of a large decrease of the CT diabatic state energy (Table 5.5). On the other hand, the

electronic coupling remains nearly as strong as in F7a, in accordance with the fact that V is

mainly tuned by the properties of the electron-acceptor moiety.

5.4 Conclusions

The absorption and emission properties of recently reported flavylium fluorophores were ra-

tionalized by means of TDDFT calculations and subsequent decomposition of the computed

excitations in terms of diabatic charge transfer states. Diabatization of the lowest-energy ex-

cited state evidenced that the bathochromic shift of the emission wavelength observed when

elongating the polymethine chain in the F1-7 series mainly originates from the decrease of the

diabatic CT energy. Enhancing the electron-withdrawing strength of the polymethine bridge by

chlorine substitution of the linker in F7a was shown to further redshift the photo-luminescence

of the fluorophore, as a result of the increase of the coupling between the diabatic states, which

stabilizes the lowest (bright) excited singlet. Finally, increasing the electron-donor ability of

the two lateral fragments by replacing the dimethylamino groups in F7a by diphenylamino

substituents (F7b) was found to induce a large decrease of the CT diabatic state energy, which

further stabilizes the emitting excited state. This new theoretically-designed fluorophore is thus

expected to exhibit unprecedented bright emission in the shortwave infrared region, with high

potential for biological imaging.
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Chapter 6

Photophysics of molecular aggregates

from excited state diabatization

6.1 Introduction

The computational characterization of electronic transitions becomes specially appealing in the

study of molecular aggregates, molecular crystals, or thin films of organic chromophores, where

excited states hold recognizable properties of the electronic transitions of its molecular con-

stituents, but also novel features may appear as a result of the interchromophoric interactions.

The detailed understanding of the electronic states in photoactivated aggregates and the prop-

erties emerging from interchromophoric couplings allows to rationalize the nature of low-lying

transitions, e.g., the formation of the H- and J-aggregation phenomena [162, 163, 33, 164, 35, 36],

and can help to disentangle the mechanism of novel photophysical events resulting from the

interaction of two or more optically active molecules, such as singlet fission [40, 41, 42], triplet-

triplet annihilation [165, 166, 167, 168], or aggregation induced emission [169].

The theoretical and computational description of photophysics in molecular aggregates is typi-

cally tackled by the use of exciton models [170], where excitonic states are obtained by combin-

ing well defined monomeric (diabatic) states through the definition of an effective Hamiltonian

build as state energies and inter-state couplings. The excitonic model approach directly propor-
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tionates physical characterization of excitons in terms of local excitations (LE), charge transfer

(CT) configurations, or even multiexcitons (ME); and allows the computation of complex sys-

tems with a moderate cost. However, the results are strongly dependent on the choice of

important diabatic states (diabats), which requires good pre-knowledge of the system under

study. Alternatively, the description of electronic states of aggregates in terms of different elec-

tronic contributions can be achieved by the deconvolution of computed eigenstates from the

employed model chemistry using a diabatization scheme. This procedure does not pre-impose

the nature of states and only relies on the strategy employed to define the adiabatic-to-diabatic

transformation. Despite these advantages, the characterization of excitons from the computa-

tion of adiabatic states is not as trivial and direct as in the exciton model.

The present study focuses on the development of the theoretical framework and implementa-

tion of a computational algorithm for the description and rationalization of excitonic states

based on the diabatization of electronic eigenstates in molecular aggregates. In this manuscript

we present the general equations for the description of excitonic states and deconvolute their

energies in different types of contributions for equivalent and non-equivalent molecular dimers.

Then we apply these tools to the study of low-energy excitations for different conformations of

the ethylene-ethylene and ethylene-tetrafluoroethylene dimers as model systems.

6.2 Theory

6.2.1 Excited state diabatization

Let us first recall the principle of excited state diabatization already introduced in Chapter 3.

By definition, electronic diabatic states {Φi} are those with zero derivative coupling elements:

dαij = 〈Φi|∇α|Φj〉 = 0 (6.1)

where α index corresponds to a nuclear coordinate. In practice, ideal diabats for which all

derivative couplings perfectly vanish cannot be obtained from a finite number of adiabatic
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states [45]. One possible path to obtain a basis of diabatic (or quasi-diabatic) states eluding

a direct (arbitrary) definition is through the diabatization of eigenstate solutions of model

chemistries, i.e., adiabatic states. Diabatization of a finite set of adiabatic electronic states

({Ψi}; i = 1, N) can be achieved through the action of a rotation matrix U (equation 6.3).

ĤΨi = EiΨi (6.2)

Φi =
N∑
j=1

UjiΨj (6.3)

Then, an orthonormal basis of diabatic states ({Φi}; i = 1, N) is constructed as linear combina-

tions of adiabats. Such approach is not free from human input, since final diabatic states might

depend on the size of adiabatic basis considered and the procedure employed to define U. De-

composition of adiabatic wave functions as a sum of well characterized diabatic configurations

(equation 6.4) provides a direct analysis of the nature of the electronic (adiabatic) states, and

it has shown to be a valuable tool in the characterization of electronic excitations of complex

systems such as in covalent dimers [171, 172], or in the aggregation of quadrupolar dyes [28].

Ψi =
N∑
j=1

c
(i)
j Φj, i = 1, N. (6.4)

Several strategies and procedures exist in order to construct diabatic states: (i) explicit mini-

mization of derivative couplings [173, 174, 175], (ii) implicit minimization by designing diabatic

states according to specific physical and/or mathematical properties [176], and (iii) through

the use of a physical observable, e.g., dipole moment [177].

In addition to the information derived from the decomposition of adiabatic states (equation

6.4), the (non-diagonal) diabatic Hamiltonian contains very useful information. Diagonal pieces

represent the energy level of diabats, while off-diagonal elements Hij ≡ 〈Φi|Ĥ|Φj〉 correspond

to interstate electronic couplings, which upon the electronic nature of the coupled states can

be related to different processes, e.g., exciton or electron (hole) transfer [178].
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6.2.2 Diabatic states in aggregates

The diabatization of electronic states is particularly appealing in aggregates of interacting chro-

mophores. Typically, electronic excitations in the presence of two or more chromophores can be

deconvoluted in terms of monomeric excitations (LE) and possibly novel excitations emerging

as the result of dye-dye interactions, such as CT excitations found in extended structures of

organic chromophores, and ME states corresponding to the concomitant excitation of two or

more chromophores.

Excitonic models rely on the use of a basis of well defined (diabatic) states to describe electronic

excitations in aggregates. In this diabatic basis, the eigenstates of an aggregate of M molecular

species is generally expressed as:

Ψi =
∑
j∈LE

c
(i)
j Φj +

∑
k∈ME

c
(i)
k Φk +

∑
q∈CT

c(i)q Φq (6.5)

where j, k, and q indexes run over LE, ME, and CT excitations, respectively. Comparison of

equation 6.5 to equation 6.4 gives a direct connection between excitonic models and diabati-

zation of excited states. In other words, the electronic nature of the diabatic states and their

role as pieces of the excited states weighted by the amplitudes of the different contributions in

equation 6.5 could be in principle obtained through diabatization of adiabatic states.

6.2.3 Excitonic model for symmetric dimers

The general wave function expression of molecular aggregates largely simplifies in the case of

molecular dimers. Furthermore, when the two lowest molecular singlet-to-singlet excited states

are energetically well separated (E(S1) << E(S2)) and disregarding ME excitations, equation

6.5 reduces to:

Ψi = c
(i)
10Φ10 + c

(i)
01Φ01 + c

(i)
ACΦAC + c

(i)
CAΦCA (6.6)

where subindices indicate local excitation in either monomer (10 and 01), and charge separation

cation/anion (CA) and anion/cation (AC) diabats. If the two monomers in the dimer are
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equivalent, i.e. homodimers in a symmetric disposition, it is possible to express states {Ψi}

as symmetric (+) and antisymmetric (−) combinations of LE and CT diabats, that is Frenkel

excitions (FE) and charge resonances (CR), respectively.

Φ
(±)
FE =

1√
2

(Φ10 ± Φ01) (6.7)

Φ
(±)
CR =

1√
2

(ΦAC ± ΦCA) (6.8)

Since symmetric (antisymmetric) FE can only mix with CR with the same symmetry, excited

states of equivalent dimers can be also written as:

Ψi = c
(i)
FEΦ

(±)
FE + c

(i)
CRΦ

(±)
CR; for i = 1, 4 (6.9)

in which c
(i)
FE = ±

√
1− c(i)2CR by normalization of the electronic wave function, 〈Ψi|Ψi〉 = 1. Ex-

panding eigenenergy expressions Ei = 〈Ψi|Ĥ|Ψi〉 for the two symmetric and two antisymmetric

states allows to decompose them in different types of contributions as:

E
(±)
i = ELE ± VDC + 2 sign

(i)
h,e λi

√
1− λ2i (Ve ± Vh) + λ2i [ECT − ELE ± (VCT − VDC)] (6.10)

where super-indices (+)/(−) indicate symmetric/antisymmetric states, λi = |c(i)CR|, sign
(i)
h,e is

the sign resulting from the product of FE and CR amplitudes (equation 6.11), ELE and ECT

correspond to diabatic state energies:

sign
(i)
h,e =

c
(i)
FEc

(i)
CR

|c(i)FEc
(i)
CR|

(6.11)

ELE = 〈Φ10|Ĥ|Φ10〉 = 〈Φ01|Ĥ|Φ01〉 (6.12)

ECT = 〈ΦAC |Ĥ|ΦAC〉 = 〈ΦCA|Ĥ|ΦCA〉, (6.13)
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and VDC , VCT , Ve, and Vh are the direct, CT, electron, and hole couplings, respectively:

VDC = 〈Φ10|Ĥ|Φ01〉 (6.14)

VCT = 〈ΦAC |Ĥ|ΦCA〉 (6.15)

Ve = 〈Φ10|Ĥ|ΦCA〉 = 〈Φ01|Ĥ|ΦAC〉 (6.16)

Vh = 〈Φ01|Ĥ|ΦCA〉 = 〈Φ10|Ĥ|ΦAC〉 (6.17)

Notice that adiabatic state energies in terms of diabatic energies and couplings can be also

achieved through explicit diagonalizaton of the diabatic Hamiltonian (Appendix C).

For high energy CT states (ECT >> ELE) charge separated configurations do not mix with

LE states and the two lowest-lying transitions correspond to the symmetric and antisymmetric

FE (λ1, λ2 = 0), in agreement with the Kasha’s model for weakly interacting chromophores

[33]. The sign and magnitude of VDC , which depend on the spatial disposition of the two

chromophores, controls the energy splitting between FE states. Approximating electronic states

within the (minimal) HOMO-LUMO orbital space of each chromophore, VDC can be obtained

as:

VDC ≈ 2(hAlA|lBhB)− (hAhB|lBlA) (6.18)

where hX and lX indicate HOMO and LUMO orbitals of chromophore X, and (ij|kl) is the

two electron integral between spatial orbitals:

(ij|kl) =

∫
dr1dr2φ

∗
i (r1)φj(r1)r

−1
12 φ

∗
k(r2)φl(r2) (6.19)

In the case of the long-range coupling between dipole allowed transitions, Coulomb interaction

dominates and the direct coupling is often further approximated to the classical (through space)

expression for dipole-dipole interactions,

VDC ≈ JCoul =
µ2(1− 3cos2θ)

4πεR3
(6.20)

where µ is the norm of the molecular transition dipole moment, R is the intermolecular distance,
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θ is the angle between µ and R, and ε is the dielectric constant.

The direct coupling approximation in equation 6.20 is often employed in the Föster theory

of exciton energy transfer [179], which produces very good results within the weak coupling

regime found in spatially separated chromophores (typically for R >> 4 Å), but as soon as the

electron density of different molecules overlap, short-range interactions, such as exchange or

Ve and Vh, need to be taken into account. Short-range LE/CT couplings are typically written

as the electron and hole transfer integrals (equations 6.21 and 6.22), which result from the

HOMO-LUMO orbital space approximation, likewise for the VDC term in equation 6.18.

Vh ≈ th ≡ −〈hA|Ĥ|hB〉 (6.21)

Ve ≈ te ≡ 〈lA|Ĥ|lB〉 (6.22)

In the perturbative limit, and considering intermediate normalization of the perturbed wave

function, the CT amplitudes are computed as −(Ve±Vh)/(ECT −ELE) and the super-exchange

energy contributions of the two lowest states are approximated as the sum of the self-energy

∆CT and the short-range coupling JCT [180]:

E
(±)
1,2 ' ELE ± VDC + ∆CT ± JCT (6.23)

∆CT = − V 2
e + V 2

h

ECT − ELE
(6.24)

JCT = − 2VeVh
ECT − ELE

(6.25)

Equation 6.23 indicates that the relative magnitude of JCT with respect to VDC and the signs

of Ve and Vh control the nature of the lowest transitions and selectively stabilize either the

symmetric or antisymmetric solution, eventually inducing the formation of H- or J-aggregation

[37].
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6.2.4 Connection between diabatization and the excitonic model

Diabatization of low-lying states directly produces the pieces, i.e., diabatic energies and cou-

plings, corresponding to energy contributions of different nature. Concretely, the terms con-

tributing to the eigenenergies of dimer states (equation 6.10) in different orders of CR ampli-

tudes can be directly correlated to the state energies and couplings defined in excitonic models.

In general, the application of a diabatization scheme does not ensure the generation of electronic

configurations with a well defined relative phase, e.g., using a phase convention based on the

system’s symmetry, as assumed in equations 6.14-6.17. As a result, the off-diagonal elements

of the diabatic Hamiltonian (HX) correspond to electronic couplings (equations 6.14-6.17) with

a sign uncertainty, HX = ±VX . On the other hand, the overall sign of the product between

amplitudes and couplings for each contribution is well defined and independent of the employed

convention, i.e. the sign of amplitudes and couplings are linked to each other. Therefore, in

order to avoid the definition of relative phases between diabatic states, we include the state

specific sign of each energy contribution in equation 6.10 to each corresponding coupling term

and rewrite the adiabatic excitation energy of state i as:

Ei = ELE +W
(i)
DC + 2λi

√
1− λ2i (W (i)

e +W
(i)
h ) + λ2i (ECT − ELE +W

(i)
CT −W

(i)
DC) (6.26)

W
(i)
DC = sign

(i)
DC〈Φ10|Ĥ|Φ01〉 (6.27)

W
(i)
h = sign

(i)
h 〈Φ10|Ĥ|ΦAC〉 (6.28)

W (i)
e = sign(i)

e 〈Φ10|Ĥ|ΦCA〉 (6.29)

W
(i)
CT = sign

(i)
CT 〈ΦCA|Ĥ|ΦAC〉 (6.30)

where we define couplings W
(i)
X as the product between off-diagonal elements of the diabatic

Hamiltonian (HX) and the sign of the contribution obtained as the normalized product of

amplitudes (Appendix C). Finally, we reorganize energy contributions upon the nature of the

state-state couplings in terms of diagonal energy shifts (∆i), direct couplings (Ω
(i)
DC), super-

exchange hole (Ω
(i)
h ) and electron (Ω

(i)
e ) contributions as the ones arising from W

(i)
h and W

(i)
e ,
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and inter-CT couplings (Ω
(i)
CT ) as:

Ei = ELE + ∆i + Ω
(i)
DC + Ω

(i)
SX + Ω

(i)
CT (6.31)

∆i = λ2i (ECT − ELE) (6.32)

Ω
(i)
DC = (1− λ2i )W

(i)
DC (6.33)

Ω
(i)
CT = λ2iW

(i)
CT (6.34)

Ω
(i)
h = 2λi

√
1− λ2i W

(i)
h (6.35)

Ω(i)
e = 2λi

√
1− λ2i W (i)

e (6.36)

Ω
(i)
SX = Ω

(i)
h + Ω(i)

e (6.37)

In equation 6.26 the contributions arising from the LE/CT interaction, i.e. W
(i)
e and W

(i)
h ,

appear as the lowest order in the CT mixings, and for the typical case in which ELE < ECT

the two lowest singlet excitations still have a predominantly LE (or FE) character (small λi).

At the λi → 0 limits the energies of the two lowest states can be expressed (to the first order)

as:

Ei ' ELE +W
(i)
DC + 2λi(W

(i)
e +W

(i)
h ) +O(λ2i ); i = 1, 2 (6.38)

The linear term in λi in the r.h.s of equation 6.38 is directly related to second order perturbative

correction to FE energies employed to include the main effects arising from LE/CT mixings

(super-exchange) [180]. Equation 6.38 closely resembles the perturbative exciton model in

equation 6.23, although it explicitly contains the CR amplitude λi. The terms corresponding

to the product of λi with W
(i)
e and W

(i)
h can be directly related to the JCT term (equation

6.25), and their overall contribution can eventually control the nature of the lowest lying excited

singlet, resulting in H- or J-aggregation properties.

The construction of an excitonic model from a diabatization scheme presents several advantages

over the standard approaches based on the initial calculation of diabatic states. The diaba-

tization scheme does not rely on an arbitrary definition of diabatic states and all interstate

couplings are obtained free of approximations such as the ones in equations 6.18-6.22. More-

over, contrary to the standard perturbative approach in the diabatic approximation that is only
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valid for weak LE/CT couplings, the state energy expressions obtained as the diabatization of

eigenstates in terms of explicit CR amplitudes are applicable to the entire range of LE/CT

mixings, i.e., weak and strong couplings.

6.2.5 Non-equivalent chromophores

So far, the performed analysis has considered the interaction of chemically and structurally

equivalent molecules. If the two coupled chromophores are non-equivalent, either due to non-

symmetrical disposition of homodimers or in heterodimers, the general energy equation 6.31

remains valid, but the symmetry relationships in equations 6.7 and 6.8 can no longer be applied.

In those situations, the explicit expression for each of the energy contributions needs to be

modified according to the asymmetry between LE and CT states:

∆i = λ2i (ECT − ELE) + δ
(i)2
LE ∆ELE + δ

(i)2
CT ∆ECT (6.39)

Ω
(i)
DC =

[
(1− λ2i )2 − δ

(i)4
LE

]1/2
W

(i)
DC (6.40)

Ω
(i)
CT =

[
λ4i − δ

(i)4
CT

]1/2
W

(i)
CT (6.41)

Ω
(i)
h =

[
λ2i (1− λ2i ) + λ2i δ

(i)2
LE + (1− λ2i )δ

(i)2
CT + δ

(i)2
LE δ

(i)2
CT

]1/2
W

(i)
h

+
[
λ2i (1− λ2i )− λ2i δ

(i)2
LE − (1− λ2i )δ

(i)2
CT + δ

(i)2
LE δ

(i)2
CT

]1/2
W

(i)
h′ (6.42)

Ω(i)
e =

[
λ2i (1− λ2i ) + λ2i δ

(i)2
LE − (1− λ2i )δ

(i)2
CT − δ

(i)2
LE δ

(i)2
CT

]1/2
W (i)
e

+
[
λ2i (1− λ2i )− λ2i δ

(i)2
LE + (1− λ2i )δ

(i)2
CT − δ

(i)2
LE δ

(i)2
CT

]1/2
W

(i)
e′ (6.43)

where ELE and ECT are the LE and CT average energies, ∆ELE and ∆ECT correspond to half

the diabatic energy gaps, δ
(i)2
LE and δ

(i)2
CT are the squared amplitude asymmetries:

ELE =
E10 + E01

2
; ECT =

EAC + ECA
2

(6.44)

∆ELE =
E10 − E01

2
; ∆ECT =

EAC − ECA
2

(6.45)

λ2i = c
(i)2
AC + c

(i)2
CA ; δ

(i)2
LE = c

(i)2
10 − c

(i)2
01 ; δ

(i)2
CT = c

(i)2
AC − c

(i)2
CA (6.46)
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W
(i)
DC and W

(i)
CT are defined in equations C.10 and C.15, and the hole and electron (non-

symmetric) signed couplings are defined as:

W
(i)
h = sign

(i)
h 〈Φ10|Ĥ|ΦAC〉; W (i)

h′ = sign
(i)
h′ 〈Φ01|Ĥ|ΦCA〉 (6.47)

W (i)
e = sign(i)

e 〈Φ10|Ĥ|ΦCA〉; W (i)
e′ = sign

(i)
e′ 〈Φ01|Ĥ|ΦAC〉. (6.48)

Notice that if we consider the case with no asymmetries, that is W
(i)
h = W

(i)
h′ , W

(i)
e = W

(i)
e′ and

∆ELE = ∆ECT = δ
(i)
LE = δ

(i)
CT = 0, then equations 6.39-6.43 converge to equations 6.32-6.36.

While ∆ELE and ∆ECT can be seen as direct energy measurements of the asymmetry between

chromophores, δ
(i)2
LE and δ

(i)2
CT can be used to evaluate the asymmetry resulting from electronic

interactions, i.e. they quantify the degree of LE and CT coherence in the i-th excited state,

with δ
(i)2
X = 0 indicating perfect resonance.

6.3 Computational details

Molecular geometries have been optimized at the MP2/cc-pVTZ level. Calculations of molecu-

lar dimers have been done considering the (frozen) optimized geometries at the molecular level.

Excited states of molecules and dimers have been computed at the configuration interaction

singles (CIS) level with the 6-31G basis set. Calculation of excitation energies and electronic

couplings with a larger basis set (6-31G(d)) do not show significant differences (Figures C1 and

C2). Diabatization of electronic states was performed with the Edmiston-Ruedenberg (ER) lo-

calization scheme [46] for the four electronic states with participation of the π → π∗ electronic

promotions, that is excitations between the molecular HOMOs and LUMOs.

All calculations discussed in this chapter were performed with the Q-Chem program [132].
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6.4 Examples

In the following, we exemplify the use of excited state diabatization in the analysis of transition

energies and electronic properties of low-lying singlet-to-singlet excitations in molecular dimers.

We explore a variety of stacked conformations of symmetric and non-symmetric dimers corre-

sponding to a wide range of electronic couplings, and rationalize the origin of the electronic

nature of low-lying excited states in molecular dimers.

6.4.1 Eclipsed ethylene dimer

In order to exemplify the methodology described above, we investigate singlet-singlet electronic

transitions in the ethylene dimer in different relative conformations. The employed molecular

orientation and π-frontier molecular orbitals (MOs) of the ethene molecule involved in the

studied electronic states are indicated in Figure 6.1.

Figure 6.1: Molecular orientation of ethene molecule employed along the study (left), and higher
occupied MO (HOMO) and lower unoccupied MO (LUMO) computed at the CIS/6-31G level.

First we consider the case of two ethylene molecules in the eclipsed (D2h) disposition at different

intermolecular (z-axis) separations, which results in H-aggregation. The energy profiles for the

two singlet states emerging from the (π → π∗) 11B3u state of the monomer are shown in Figure

C.1, corresponding to the lowest S1 dark state belonging to the B2g representation, and the

bright S2 state with B3u symmetry.

92



Figure 6.2: (a) Energy profiles (in eV) of the four lowest π → π∗ excited singlet states and
(b) diabatic LE and CT energies for the eclipsed ethylene dimer at different intermolecular
separations (z in Å) computed at the CIS/6-31G level.

At large molecular separations the energies of the two lowest singlets (11B2g and 11B3u) converge

towards the excitation energy of the monomer, which is equivalent to the (constant) LE diabatic

energy. The two states resulting from the symmetric and antisymmetric π → π∗ CT mixings

(Φ
(±)
CR) involving the highest and lowest molecular orbitals (HOMO and LUMO) of the two

monomers belong to the same irreducible representations of S1 and S2 (S3 ∈ B3u and S4 ∈ B2g)

and appear at higher energy. For z > 4.5 Å both states are virtually degenerated to the CT

(diabatic) energy, which exhibits the expected 1/R dependence.

At shorter distances the interaction induced by orbital overlap and LE/CT mixings results

in an important stabilization and destabilization of the dark (B2g) S1 and S4 states, while S2

and S3 profiles present mild deviations with respect to LE and CT energies, indicating weaker

interchromophoric interactions.
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Figure 6.3: Contributions to the (a) dark S1 and (b) bright S2 excitation energies (in eV);

(c,d) decomposition of the super-exchange Ω
(i)
SX in electron (Ω

(i)
e ) and hole (Ω

(i)
h ) parts, and λ2i

of both excited singlets for the eclipsed ethylene dimer at different intermolecular separations
computed at the CIS/6-31G level. JCoul corresponds to the classical dipole-dipole Coulomb
interaction (equation 6.20).

In order to rationalize the excitation energies along the intermolecular separation coordinate

R (in the z-direction), in the following we explore the different terms and contributions as

described in equation 6.31. As shown in Figure C.3a, along the entire D2h distortion the direct

coupling and super-exchange terms contribute to lower the energy of the 11B2g state with

respect to the lowest monomer transition (ELE), while the second order contribution in LE/CT

mixings (∆1) is positive since its sign is defined by ECT − ELE difference.

As expected, the absolute magnitude of all interaction terms increases as R decreases. At large

R, λ1,2 → 0 and the two lowest singlets mainly correspond to the symmetric and antisymmetric

combinations of the two LE diabats (Frenkel excitons Φ
(±)
FE). In that region, the S1/S2 energy

splitting is controlled by the direct coupling, which is the predominant interaction for the

excitation energy to 11B2g at long distances (R > 4.5 Å), and along the entire separation range
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for the 11B3u state. The Ω
(i)
DC contribution exhibits opposite signs for the two lowest excitons, in

agreement with the Kasha’s rule [33]. The classical expression for the dipole-dipole interaction

(JCoul in equation 6.20) matches very well with Ω
(i)
DC energies at the long range, while slightly

deviates from it as the two molecules approach to each other (Figure C3).

At lower distances the orbital overlap between the two monomers becomes significant and the

magnitude of LE/CT mixing (λ21) and of the super-exchange Ω
(1)
SX coupling (and ∆1) increase

rapidly compared to Ω
(1)
DC . As a result, super-exchange becomes the most important (stabilizing)

contribution to the energy of S1 for R < 4.3 Å, and the ∆1 term turns out to be also very

important. Notice that both hole and electron pieces of Ω
(1)
SX contribute to lower the energy of S1

(Figure C.3c). On the other hand, super-exchange and second order contributions for the 11B3u

bright state, i.e., Ω
(2)
SX and ∆2 respectively, are rather small compared to the 11B2g counterparts.

Moreover, the hole and electron contributions emerging from the LE/CT interaction (Ω
(2)
h and

Ω
(2)
e ) virtually cancel each other (Figure C.3d) resulting in a marginal role of the super-exchange

energy contribution to the overall transition to 11B3u. Consequently, the blue-shifting Ω
(2)
DC

term dominates the energy change with respect to the excitation in the monomer, that is H-

aggregation (Figure C.3b), in agreement with small λ2 values and with the rather constant

energy profile of 11B3u (Figure C.1).

6.4.2 Slip-stacked ethylene dimer

In this section we will discuss the energies, couplings and contributions for coplanar ethylene

dimers with different in-plane displacements for two fixed intermolecular distances, correspond-

ing to weak (z = 4.7 Å) and strong (z = 3.5 Å) LE/CT interaction regimes. Slip-stacked

distortions of the ethylene dimer reduce the D2h symmetry of the eclipsed conformation and, in

general, only the inversion center remains as a symmetry element (Ci symmetry). Hence, the

two lowest excited singlets belong to the Ag and Au representations. For linear displacements

(x = 0 Å or y = 0 Å) the dimer holds C2h symmetry (S1 ∈ Ag and S2 ∈ Bu), with the two-

fold rotational symmetry axis corresponding to the x- and y-axis for x = 0 and y = 0 linear

displacements, respectively.
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Excitation energy surfaces in the xy-plane at z = 3.5 Å (z = 4.7 Å) for the 21Ag and 11Au

states are shown in Figure C.4 (Figure C4). The excitation energy to the dark 21Ag state has

a minimum at the eclipsed conformation (x = y = 0 Å), which continuously increases towards

ELE when slipping the molecules along the short molecular axis y. On the other hand, slip-stack

displacement in the x-direction exhibits two shallow energy maxima at x ' ±3.0 Å (y = 0.0

Å). The PES of 11Au is rather smoother than the 21Ag one, with transition energy maximum

and minima at the displacements corresponding to the minimum and maxima of 21Ag. Again,

the energy of the two states converge to ELE at large intermolecular distances. Moreover,

it is worth noticing that the energy ordering of the two states swaps along the long-axis (x)

displacement, corresponding to the transition from H- to J-aggregation (Figure C.4c), while

the ethylene dimer remains as H-aggregate for y-distortions (Figure C.4d). For y = 0.0 Å the

energy crossings are located at x = ±2.0 Å .

At larger separation between the molecular planes (z) the two PESs qualitatively exhibit the

same characteristics as in Figure C.4, although with weaker stabilizations (destabilizations)

with respect to ELE. The crossing between the two states in the x-direction appears at larger

displacements (x = 3.0 Å in Figure C4b).

Likewise along the symmetry preserving z-distortion, the computed energy for the LE diabat

remains constant in the xy-plane, that is flat PES, while the PES of the pristine CT config-

uration presents the 1/R topology with larger well depths for shorter inter-planar z-distances

(Figure C5).
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Figure 6.4: Adiabatic energies (in eV) of the two lowest excited singlet states in the xy-plane
(a,b), and corresponding energy profiles along the long (c) and short (d) axes for the coplanar
ethylene dimer at z = 3.5 Å, computed at the CIS/6-31G level.

Decomposition of the adiabatic energies of dark and bright states in diabatic contributions

within the strong electronic coupling regime (z = 3.5 Å) is shown in Figure C.6. The direct

coupling term for 21Ag (11Au) state exhibits and intense minimum (maximum) at the D2h

symmetry origin with vertical nodes crossing the x-axis at the H- to J-aggregation transition

region. Super-exchange energy stabilizes both S1 and S2 states, although they hold highly

different profiles and magnitudes. In the 21Ag state, Ω
(1)
SX has a deep minimum at the eclipsed

disposition that, in conjunction with Ω
(1)
DC , promotes the formation of the excimer state. As

evaluated along the D2h-symmetry distortion (Figure C.3a), Ω
(1)
SX dominates over Ω

(1)
DC for small

(x, y) slip-stacking distortions at z = 3.5 Å, but it vanishes faster than the direct coupling as

the distance between the molecules increases.

As shown in Figure C.3, the LE/CT mixing in the 11Au state is much weaker than in 21Ag,

resulting in smaller super-exchange energy. The Ω
(2)
SX term has minima at the long-axis displaced
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geometries (x ' ±2.5 Å), for which super-exchange accounts for approximately ∼ 0.2 eV

stabilization energy (at z = 3.5 Å) with respect to the monomeric excitation energy (ELE).

Hence, the LE/CT coupling also acts as the driving force for the stabilization of the bright

state at slightly long-axis displaced structures, while the direct coupling imposes a rather strong

energy penalty for x→ 0 coplanar arrangements on the bright state PES.

Like Ω
(i)
SX , the destabilizing ∆i terms for the two excited singlets are also controlled by LE/CT

mixing degree (λ2i ) and their contributions to the transition energies hold the same topologies

as their super-exchange counterparts, but with small absolute values since they correspond

to second order corrections. Energy contributions Ω
(i)
DC , Ω

(i)
SX and ∆i at larger inter-planar

separation exhibit qualitatively similar landscapes as the ones in Figure C.6, but with rather

weaker intensities (Figure C6).
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Figure 6.5: Contributions (in eV) to the excitation energies for the two lowest excited singlets

in the xy-plane at z = 3.5 Å computed at the CIS/6-31G level. (a,b) Direct couplings (Ω
(i)
DC);

(c,d) super-exchange (Ω
(i)
SX); and (e,f) second order energy term ∆i.

To clearly evaluate the relative role of direct, LE/CT and CT/CT couplings we represent their

profiles along the x and y mono dimensional slip-stacking displacements for the weak and strong

interaction regimes for the 21Ag state (Figure C.7). Equivalent representations for the bright

state can be found as Appendix C (Figure C7). Individually, the profiles of Ω
(1)
DC , Ω

(1)
SX , Ω

(1)
CT and

∆1 show similar behaviors in both regimes (z = 3.5 and 4.7 Å), but there are important quan-

titative differences, as mainly indicated by the degree of LE/CT mixing (λ21), which eventually
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controls the relative magnitude of the electronic couplings beyond the direct exciton-exciton

term.

At the D2h geometry, for relatively short vertical intermolecular separation (z = 3.5 Å) the

lowest dark state holds a sizable LE/CT mixing accounting for 20% of the transition. This

contribution rapidly diminishes as we break the D2h symmetry and the Ω
(1)
SX contribution be-

comes smaller than the direct coupling. Following the long-axis displacement, the H to J

transition occurs at the displacement (x = ±2.0 Å) where Ω
(1)
SX (and λ21) go to zero, and very

close where there is a sign inversion of Ω
(1)
DC . Along the y-distortion the dimer remains as

an H-aggregate with Ω
(1)
SX and Ω

(1)
DC contributions always negative and crossing each other at

y = ±2.0 Å.

The absolute magnitude of all the couplings diminishes at larger vertical separations (z = 4.7

Å), specially for λ11 and λ21 terms, since they strongly depend on the effective inter-monomer

orbital overlaps. As a result, Ω
(1)
DC controls the chromophoric interaction in the excited state at

all (x, y) points for z = 4.7 Å.
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Figure 6.6: Energy contributions (in eV) and LE/CT mixings (λ21) to the excitation energies
to the 21Ag state along the long molecular x-axis with y = 0.0 Å and at (a) z = 3.5 Å and
(b) z = 4.7 Å, and along the short molecular y-axis with x = 0.0 Å and at (c) z = 3.5 Å and
(d) z = 4.7 Å, computed at the CIS/6-31G level.

6.4.3 Ethylene-tetrafluoroethylene dimer

In the last example we explore the nature of electronic excitations and couplings in non-

equivalent chromophores. To that end we consider the coplanar ethylene-tetrafluoroethylene

dimer. In this dimer the LE and CT pairs of diabats are no longer degenerate, with the lowest

singlet-singlet excitation on C2H4 and the lowest charge separation configuration corresponding

to the electronic transfer from C2H4 to C2F4 (Figure 6.7).
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Figure 6.7: Frontier molecular orbital diagram of ethylene (left) and tetrafluoroethylene (right).
HOMO to LUMO arrows indicate LE (orange) and CT (blue) diabatic transitions.

At the coplanar C2v conformation the four ππ∗ singlet adiabatic states of the dimer belong

to the same irreducible representation (B1), with their energies at dissociation tending to the

C2H4 and C2F4 LE states, and C2H
+

4 · · ·C2F
–

4 and C2H
–

4 · · ·C2F
+

4 CT energies, respectively

(Figure 6.8). The profiles of the average LE and CT energies (equation 6.44) are very close to

the symmetric case (Figure C.1b), with constant ELE and 1/R dependence of ECT .

Figure 6.8: Energy profiles (in eV) of the four lowest π → π∗ excited singlet states (red
dashed lines) and diabatic LE (blue) and CT (orange) average energies for the C2v ethene-
tetrafluoroethene dimer at different intermolecular separations (z in Å) computed at the CIS/6-
31G level.

The dependence of electronic couplings with R for the S1 state is similar to the symmetrical

case, but with much lower LE/CT mixings (λ21). At large separation (z > 5 Å) S1 corresponds

to the pristine LE on C2H4 with no mixings with other diabats (λ21 = 0, δ
(1)2
LE = 1) and with
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Ω
(1)
DC = Ω

(1)
SX = Ω

(1)
CT = 0 (Figure 6.9a). At shorter distances the π-orbitals of the two molecules

effectively interact, mixing the transition on C2F4 into the lowest adiabatic singlet (1−δ(1)2LE > 0).

The coupling of the two LE states stabilize the lowest singlet (Ω
(1)
DC < 0). Simultaneously, super-

exchange contribution becomes a stabilizing factor as λ21 grows, while CT configurations play

virtually no role to the S1 energy. It should be noticed that, due to the localized nature of the

lowest singlet at dissociation in the asymmetric case, the direct exciton coupling is effective in a

rather shorter range than in the D2h ethylene dimer. Both hole and electron LE/CT couplings

contribute to Ω
(1)
SX (Figure 6.9b), which is directly related to the interaction of both frontier

monomeric orbitals, HOMOs and LUMOs, respectively.

Figure 6.9: (a) Excitation energy coupling contributions (in eV) to the S1 state and (b) de-

composition of the super-exchange Ω
(1)
SX in electron (Ω

(1)
e ) and hole (Ω

(1)
h ) parts, and λ21 and

1 − δ(1)2LE of the lowest excited singlets for the C2H4 · · ·C2F4 dimer at different intermolecular
separations computed at the CIS/6-31G level.

6.5 Conclusions

In this chapter we have presented a connection between excited states diabatization schemes

and energy expressions derived from excitonic models. Such relationships allow to characterize

the properties of electronic transitions in molecular aggregates and decompose their excitation

energies in contributions issued from couplings with different physical origin. Moreover, the

methodology presented in this work is able to quantify the weight of the different contributions

from ab initio electronic structure calculations of the super system, avoiding both the use of pre-

defined diabatic states and strong (potentially unjustified) approximations for the calculations
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of electronic couplings.

Our methodology has been tested in symmetric and non-symmetric molecular dimers. The

present results show how, in symmetric systems, super-exchange is the most important exciton

stabilization driving force in strongly interacting chromophores (short range) controlling the

nature of the lowest transition, e.g., H- or J-aggregation, while direct coupling prevails at the

weakly coupling regime. The localized character of low-lying states in non-symmetric dimers

can also hinder the LE/LE interaction at long range, only allowing the presence of short range

effective couplings.

It is worth noticing that the methodology introduced is variational within the window of chosen

adiabats and can be applied to the entire range of coupling regimes, while approximations based

on perturbation theory typically employed in the construction of excitonic Hamiltonians are

ill-defined in the strong coupling regime, which might drive to incorrect interpretations. On the

other hand, like in any methodology based on the diabatization of a finite number of adiabatic

states, the presented scheme depends on the set of adiabatic states. The selection of the space

of adiabatic states is not unique and in some cases might not appear as straightforward as

in the examples explored in this manuscript. At the same time, we believe that our analysis

might help to identify problematic diabatization schemes and can be also used to better select

or improve the space of adiabatic states.

The presented theory and methodological approach for the characterization of electronic transi-

tions in interacting chromophores has been developed for the case of two interacting molecules

based on the diabatization of four singlet excitons, but it can be generalized to the pres-

ence of multiple chromophores and/or to the case of more than four adiabatic (and diabatic)

states. Moreover, beyond the detailed characterization of electronic transitions in aggregates,

the present approach could eventually be used to check the validity of diabatic state energies

and interstate couplings employed in excitonic models, determine their range of applicability

or to obtain ab initio diabatic state energies and interstate couplings that can be eventually

plugged into model excitonic Hamiltonians to explore electronic transition in large aggregates

or in molecular solids.
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Chapter 7

General conclusions

In the present thesis, different computational approaches for the characterization of electronic

excited states have been implemented and applied to the study of different organic systems.

In particular, we have seen that the computational characterization of electronic transitions

becomes specially appealing in the study of molecular aggregates, where excited states hold

recognizable properties of the electronic transitions of its molecular constituents, but also novel

features may appear as a result of the interchromophoric interactions. This thesis is largely de-

voted to understand such interchromophoric interactions in order to characterize the electronic

states in photoactivated aggregates and to study their properties. The specific conclusions for

each project have already been stated in the respective Chapters. Accordingly, the following

lines are intended to give an end to the manuscript by highlighting the main results of the work

and providing some directions for future work.

As discussed in the previous Chapters, the theoretical and computational description of pho-

tophysics in molecular aggregates is typically tackled by the use of exciton models. However,

these approaches are based on the definition of relevant diabatic states, which requires good

pre-knowledge of the system under study. One of the main achievements of this work was the

use of an alternative strategy, which enables a connection between excited states diabatization

schemes and energy expressions derived from excitonic models. Such relationships allow to char-

acterize the properties of electronic transitions in molecular aggregates and decompose their
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excitation energies in contributions issued from couplings with different physical origin. The

methodology presented in this work is able to quantify the weight of the different contributions

from ab initio electronic structure calculations of the super system, avoiding both the use of

pre-defined diabatic states and strong (potentially unjustified) approximations for the calcula-

tions of electronic couplings. This methodology, tested on model symmetric and non-symmetric

molecular dimers in Chapter 6, allowed to identify the important exciton stabilization driving

forces in interacting chromophores.

As reported in Chapter 4, deconvolution of the computed excitations in terms of diabatic states

also allowed quantifying the involvement of the different chromophoric unities and character-

izing the nature of the low-lying excited singlet states of three curcumin derivatives and their

covalent dimers linked through a polymethylenic chain. With the example of flavylium flu-

orophores, we demonstrated in Chapter 5 that such a methodology is also highly helpful for

gaining clear physical insights on the nature of the excited states of isolated conjugated dyes.

Here, diabatization of the lowest-energy excited state evidenced that the bathochromic shift of

the emission wavelength observed when elongating the polymethine chain in the investigated

series of compounds mainly originates from the decrease of the diabatic charge transfer energy.

The clear and intuitive rationalizing picture offered by the diabatization scheme allowed us to

propose new theoretically-designed fluorophores, which are expected to exhibit unprecedented

bright emission in the shortwave infrared region, with high potential for biological imaging.

From a global viewpoint of computational chemistry, this work has thus demonstrated that

the relevance of developing simple characterization tools, close to the chemist’s intuition, for

rationalizing the nature of excited states in organic (supra)molecular systems and better un-

derstanding and control of their optical properties.
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Appendix A

Optical properties of quadrupolar and

bi-quadrupolar dyes: intra and

interchromophoric interactions

A.1 Synthesis of the curcumin derivatives

All solvents for synthesis were of analytic grade. NMR spectra were recorded at room temper-

ature on a JEOL JNM ECS 400 (400 and 100 MHz for 1H and 13C, respectively) spectrometer.

Data are listed in parts per million (ppm) and are reported relative to tetramethylsilane (1H and

13C); residual solvent peaks of the deuterated solvents were used as internal standards. High

resolution mass spectra were obtained in Spectropole, Marseille (http://www.spectropole.fr).

1,8-Bis(4-formylphenoxy)octane was obtained according a previously described procedure.[135]

All starting chemical products and solvents were purchased from Sigma-Aldrich or TCI and

used without further purification.
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A.1.1 Difluoro(3-phenylpentane-2,4-dionato)boron

Boron trifluoride diethyletherate (3.51 mL, 27.92 mmol) was added dropwise to a solution

of 3-phenylpentane-2,4-dione (4.1 g, 23.27 mmol) in dichloromethane (100 mL). The reaction

mixture was stirred at 40 ◦C overnight. After cooling, solvents were removed under vacuum

and the crude was purified on silica gel column with dichloromethane/cyclohexane (1/1 v:v) as

eluent. The result product was obtained as a white solid (5.01 g, 96 %). 1H NMR (400 MHz,

CDCl3, ppm): δ = 7.50− 7.40 (m, 3H), 7.20− 7.14 (m, 2H), 2.11 (s, 6H). 13C NMR (100 MHz,

CDCl3, ppm): δ = 191.2, 133.1, 130.7, 129.7, 129.1, 23.8.

108



A.1.2 BF2-hemicurcuminoid H1

(Acetylacetonato)difluoroboron (5.38 g, 36.40 mmol) was dissolved into 100 mL of toluene and

stirred at reflux for 30 min under argon. Then a solution of p-anisaldehyde (1.11 mL, 9.10 mmol)

and tri-n-butylborate (2.71 mL, 10.01 mmol) in 100 mL of toluene was added dropwise and the

reaction mixture was stirred for 30 min under reflux. A first portion of n-butylamine (450 µL,

4.55 mmol) was added and after 2 h a second portion of n-butylamine (450 µL, 4.55 mmol) was

added and the reaction mixture was stirred under reflux overnight. Solvent was removed under

vacuum and the crude was purified on silica gel column with cyclohexane/dichloromethane (1/1

v:v) as eluent. The product was obtained as a yellow powder (1.47 g, 61 %). 1H NMR (400

MHz, CDCl3, ppm): δ = 8.05 (d, J = 15.5 Hz, 1H), 7.58 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8

Hz, 2H), 6.51 (d, J = 15.5 Hz, 1H), 5.96 (s, 1H), 3.88 (s, 3H), 2.32 (s, 3H). 13C NMR (100

MHz, CDCl3, ppm): δ = 190.5, 180.9, 163.2, 148.7, 131.6, 126.7, 117.2, 115.0, 101.2, 55.7, 24.4.

A.1.3 Bis(BF2-hemicurcuminoid)-α, ω-octane H2

(Acetylacetonato)difluoroboron (3.33 g, 22.56 mmol) was dissolved into 50 mL of toluene and

stirred at reflux for 30 min under argon. 1,8-Bis(4-formylphenoxy)octane (1.0 g, 2.82 mmol) and

tri-n-butylborate (763 µL, 2.82 mmol) were dissolved into 100 mL of toluene and the solution

was added dropwise to the reaction mixture. After stirring for 30 min at reflux, a first portion
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of n-butylamine (139 µL, 1.41 mmol) was added. A second portion of n-butylamine (139 µL,

1.41 mmol) was added after 3h and the reaction mixture was stirred at reflux overnight. After

cooling, the reaction mixture was filtered and the solvent was removed under vacuum. The

crude was purified on silica gel column with dichloromethane/cyclohexane (1/1 v:v) as eluent.

The product was obtained as an orange powder (601 mg, 35 %). 1H NMR (400 MHz, CDCl3,

ppm): δ = 8.04 (d, J = 15.5 Hz, 2H), 7.56 (d, J = 8.8 Hz, 4H), 6.92 (d, J = 8.8 Hz, 4H), 6.50

(d, J = 15.5 Hz, 2H), 5.96 (s, 2H), 4.02 (t, J = 6.4 Hz, 4H), 2.32 (s, 6H), 1.87− 1.75 (m, 4H),

1.53− 1.36 (m, 8H). 13C NMR (100 MHz, CDCl3, ppm): δ = 180.9, 162.9, 148.8, 131.6, 129.0,

126.5, 117.0, 115.4, 101.2, 28.4, 29.3, 29.1, 26.0, 24.4.

A.1.4 BF2-hemicurcuminoid H3

Difluoro(3-phenylpentane-2,4-dionato)boron (4.0 g, 17.86 mmol) was dissolved into 50 mL of

toluene and stirred at reflux for 30 min under argon. Solution of 1,8-bis(4-formylphenoxy)octane

(1,58 g, 4.47 mmol) and tri-n-butylborate (1.45 mL, 5.36 mmol) in 100 mL of toluene was added

dropwise into the reaction mixture. After stirring for 30 min at reflux, a first portion of n-

butylamine (221 µL, 2.24 mmol) was added to the reaction mixture. A second portion of

n-butylamine (221 µL, 2.24 mmol) was added after 2h and the reaction mixture was stirred at

reflux overnight. After cooling, the precipitate was filtered under vacuum. The product was

purified on silica gel column with cyclohexane/dichloromethane (7/3 v:v) as eluent to give the

product as an orange powder (452 mg, 15 %). 1H NMR (400 MHz, CDCl3, ppm): δ = 8.07 (d,

J = 15.4 Hz, 2H), 7.54− 7.42 (m, 6H), 7.34 (d, J = 8.8 Hz, 4H), 7.26− 7.21 (m, 4H), 6.83 (d,

J = 8.8 Hz, 4H), 6.26 (d, J = 15.4 Hz, 2H), 3.96 (t, J = 6.5 Hz, 4H), 2.13 (s, 6H), 1.82− 1.71
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(m, 4H), 1.51 − 1.31 (m, 8H). 13C NMR (100 MHz, CDCl3, ppm): δ = 178.8, 162.8, 149.1,

133.2, 131.8, 131.5, 129.5, 128.9, 126.9, 115.9, 115.2, 114.3, 68.4, 29.4, 29.1, 26.0, 23.9.

A.1.5 Monomer 2

BF2-hemicurcuminoid H1 (0.5 g, 1.88 mmol) was dissolved into 30 mL of ethyl acetate and

heated to 60 ◦C. A solution of 4-(N,N -diphenylamino)benzaldehyde (0.62 g, 2.26 mmol) and

tri-n-butylborate (612 µL, 2.26 mmol) in 30 mL of ethyl acetate was added to the reaction

mixture and stirred for a further 30 min at 60 ◦C. Then, n-butylamine (74.3 µL, 0.75 mmol)

was added to the solution. A second portion of the n-buthylamine was made (37.2 µL, 0.38

mmol) after 4h. The reaction mixture was stirred at 60 ◦C overnight. After cooling, the

solvent was removed under vacuum and the crude was purified on silica gel column with cyclo-

hexane/dichloromethane (1/1 v:v) as eluent. Precipitation from cyclohexane/dichloromethane

gave the product as a brown powder (122 mg, 12 %). 1H NMR (400 MHz, CDCl3, ppm): δ

= 7.99 (d, J = 15.6 Hz, 1H), 7.98 (d, J = 15.3 Hz, 1H), 7.57 (d, J = 8.8 Hz, 2H), 7.44 (d,

J = 8.8 Hz, 2H), 7.37− 7.30 (m, 4H), 7.20− 7.12 (m, 6H), 6.98 (d, J = 8.8 Hz, 2H), 6.94 (d,

J = 8.8 Hz, 2H), 6.57 (d, J = 15.6 Hz, 1H), 6.53 (d, J = 15.3 Hz, 1H), 5.98 (s, 1H), 3.87 (s,

3H). 13C NMR (100 MHz, CDCl3, ppm): δ = 179.5, 178.8, 162.8, 151.6, 147.2, 146.4, 146.3,

131.2, 131.0, 129.8, 127.3, 126.7, 126.2, 125.1, 120.6, 118.4, 117.2, 114.9, 101.9, 55.7. HRMS

(ESI): Calcd. For C32H26NO3F2BNa+ [M+Na]+: 544.1871. Found: 544.1872 (-0.2 ppm).
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A.1.6 Dimer 1

BF2-hemicurcuminoid H1 (1.0 g, 3.76 mmol) was dissolved into 15 mL of ethyl acetate and

heated to 60 ◦C. 1,8-Bis(4-formylphenoxy)octane (0.48 g, 1.50 mmol) and tri-n-butylborate

(810 µL, 3.00 mmol) were dissolved into 10 mL of ethyl acetate and the solution was added

to the reaction mixture. After 30 min at 60◦C, a first portion of n-butylamine (75 µL, 0.75

mmol) was added to the solution. A second portion of n-butylamine (75 µL, 0.75 mmol) was

made after 2 h. After cooling, the precipitate was filtered under vacuum. The product was

purified on silica gel column with dichloromethane as eluent (0.37 g, 32 %). 1H NMR (400

MHz, DMSO, ppm): δ = 7.97 (d, J = 15.6, 4H), 7.85 (d, J = 8.8, 4H), 7.83 (d, J = 8.8, 4H),

7.10 − 7.01 (m, 12H), 6.50 (s, 2H), 4.06 (t, J = 6.4, 4H), 3.84 (s, 6H), 1.80 − 1.67 (m, 4H),

1.48− 1.31 (m, 8H). HRMS (ESI): Calcd. For C48H48O8F4B2Na+ [M+Na]+: 873.3380. Found:

873.3379 (+ 0.1 ppm).

A.1.7 Dimer 2

BF2-hemicurcuminoid H2 (0.78 g, 1.27 mmol) was dissolved into 20 mL of toluene and stirred

at reflux. 4-(N,N -Diphenylamino)-benzaldehyde (0.70 g, 2.54 mmol) and tri-n-butylborate

(687 µL, 2.54 mmol) were dissolved into 40 mL of toluene and added to the reaction mixture.
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n-Butylamine (62.0 µL, 0.63 mmol) was added after 30 min at reflux. A second addition

of the n-buthylamine (62.0 µL, 0.63 mmol) was made after 2 h. The reaction mixture was

stirred at reflux overnight. After cooling, the solvent was removed under vacuum and the crude

was purified on silica gel column with cyclohexane/dichloromethane (1/1 v:v) as eluent. The

precipitation from cyclohexane/dichloromethane gave the product as a brown powder (144 mg,

11 %). 1H NMR (400 MHz, CDCl3, ppm): δ = 7.97 (d, J = 15.4 Hz, 2H), 7.95 (d, J = 15.4 Hz,

2H), 7.53 (d, J = 8.7 Hz, 4H), 7.43 (d, J = 8.8 Hz, 4H), 7.37− 7.29 (m, 8H), 7.20− 7.12 (m,

12H), 6.97 (d, J = 8.7 Hz, 4H), 6.90 (d, J = 8.8 Hz, 4H), 6.54 (d, J = 15.4 Hz, 2H), 6.51 (d,

J = 15.4 Hz, 2H), 5.97 (s, 2H), 4.01 (t, J = 6.4 Hz, 4H), 1.88− 1.74 (m, 4H), 1.49− 1.36 (m,

8H). 13C NMR (100 MHz, CDCl3, ppm): δ = 162.4, 151.6, 150.9, 147.1, 146.4, 131.2, 131.0,

129.8, 127.0, 126.7, 126.2, 125.1, 120.5, 118.2, 117.2, 115.3, 115.0, 101.8, 68.3, 29.2, 27.1, 25.9.

HRMS (ESI): Calcd. For C70H62N2O6F4B2Na+ [M+Na]+: 1147.4644. Found: 1147.4648 (+0.3

ppm).

A.1.8 Absorption spectra of monomers 1 and 2 in different solvents

Figure A.1: Normalized absorption spectra of curcumin monomers 1 (left) and 2 (right)
recorded in different solvents.
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A.2 Excitation energies: functional and basis set

A.2.1 Curcumin monomers

Figure A.2: Frontier molecular orbitals of the curcumin monomers 1-3 calculated at the ωB97X-
D/6-31+G(d) level. Molecular orbitals of 3 corresponds to the θ = 62◦ case.

ωB97X-D BLYP B3LYP CAM-B3LYP
state TDA TDDFT TDA TDDFT TDA TDDFT TDA TDDFT

S1 3.43 3.32 2.58 2.47 2.98 2.86 3.37 3.26
(2.47) (2.13) (1.75) (1.42) (2.30) (2.25) (2.48) (2.11)

S2 4.34 4.15 2.74 2.68 3.42 3.33 4.24 4.05
(0.10) (0.08) (0.02) (0.02) (0.00) (0.02) (0.09) (0.07)

Table A.1: Excitation energies (in eV) of monomer 1 obtained with different energy functionals
and the 6-31+G(d) basis set in vacuum. Oscillator strengths indicated in parenthesis.

6-31+G(d) 6-311++G(d,p)
state TDA TDDFT TDA TDDFT

S1 3.43 (2.47) 3.32 (2.13) 3.42 (2.46) 3.30 (2.13)
S2 4.34 (0.10) 4.15 (0.08) 4.32 (0.10) 4.13 (0.08)

Table A.2: Excitation energies (in eV) of monomer 1 computed with the ωB97X-D functional
and different basis sets. Oscillator strengths indicated in parenthesis.
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ωB97X-D B3LYP CAM-B3LYP
TDA TDDFT TDA TDDFT TDA TDDFT

S1 3.82 (1.33) 3.73 (1.32) 2.94 (0.98) 2.82 (0.98) 3.75 (1.28) 3.72 (1.28)
S2 4.00 (0.99) 3.91 (1.00) 3.30 (0.75) 3.18 (0.78) 3.97 (0.98) 3.93 (0.97)

Table A.3: Excitation energies (in eV) of monomer 2 obtained with different energy functionals
and the 6-31+G(d) basis set in vacuum. Oscillator strengths indicated in parenthesis.

ωB97X-D B3LYP
TDA TDDFT TDA TDDFT

S1 3.07 (1.02) 3.00 (0.92) 2.56 (0.80) 2.43 (0.79)
S2 4.04 (1.20) 3.96 (1.19) 3.18 (1.01) 3.14 (0.96)
S3 4.14 (0.02) 4.08 (0.01) 3.21 (0.02) 3.16 (0.20)

Table A.4: Excitation energies (in eV) of monomer 3 obtained with different energy functionals
and the 6-31+G(d) basis set in vacuum. Oscillator strengths indicated in parenthesis.

comp. state ωB97X-D B3LYP transition
1 S1 88 87 H→L

S2 83 85 H-1→L
2 S1 63 68 H→L

23 18 H-1→L
S2 70 20 H-1→L

12 11 H→L
3 S1 94 92 H→L

S2 78 83 H-2→L
S3 56 51 H-1→L

39 37 H→L+1

Table A.5: Main orbital contributions (in %) for the low-lying singlet excitations of monomers
1-3 computed at the TDA level with B3LYP and ωB97X-D energy functionals and the 6-
31+G(d) basis set in vacuum. H and L indicate HOMO and LUMO, respectively.
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A.2.2 Curcumin derivative dimers

Figure A.3: Frontier molecular orbitals of the curcumin dimers 1’-3’ calculated at the ωB97X-
D/6-31+G(d) level.

ωB97X-D B3LYP
state TDA TDDFT TDA TDDFT
S1 3.03 (0.02) 2.96 (0.02) 2.48 (0.01) 2.35 (0.02)
S2 3.39 (2.56) 3.27 (3.22) 2.90 (2.34) 2.78 (2.30)
S3 3.52 (1.27) 3.47 (0.56) 3.03 (1.08) 2.86 (1.18)
S4 3.64 (1.27) 3.57 (0.37) 3.10 (1.08) 2.97 (1.18)
S5 4.02 (0.09) 3.94 (0.06) 3.28 (0.06) 3.06 (0.01)
S6 4.11 (0.01) 4.05 (0.01) 3.33 (0.01) 3.16 (0.04)
S7 4.31 (0.02) 4.28 (0.02) 3.39 (0.00) 3.26 (0.00)
S8 4.41 (0.01) 4.38 (0.01) 3.41 (0.00) 3.32 (0.00)

Table A.6: Excitation energies (in eV) of dimer 1’ (folded) obtained with different energy func-
tionals and the 6-31+G(d) basis set in vacuum. Oscillator strengths indicated in parenthesis.
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ωB97X-D B3LYP CAM-B3LYP
state TDA TDDFT TDA TDDFT TDA TDDFT

S1 3.81 (1.46) 3.80 (1.45) 2.92 (1.17) 2.91 (1.17) 3.73 (1.96) 3.71 (1.95)
S2 3.81 (1.46) 3.80 (1.45) 2.95 (1.22) 2.95 (1.21) 3.73 (1.91) 3.71 (1.94)
S3 4.00 (0.96) 3.99 (0.96) 2.98 (0.40) 2.96 (0.41) 4.00 (0.90) 3.99 (0.89)
S4 4.00 (0.96) 3.99 (0.96) 3.04 (0.41) 3.04 (0.41) 4.00 (0.87) 3.99 (0.87)
S5 4.32 (0.01) 4.33 (0.01) 3.22 (0.02) 3.22 (0.02) 4.34 (0.01) 4.32 (0.01)
S6 4.34 (0.01) 4.34 (0.01) 3.24 (0.03) 3.24 (0.03) 4.35 (0.01) 4.32 (0.01)
S7 4.45 (0.02) 4.42 (0.01) 3.25 (0.02) 3.25 (0.02) 4.45 (0.02) 4.42 (0.02)
S8 4.45 (0.03) 4.43 (0.02) 3.28 (0.00) 3.28 (0.00) 4.46 (0.07) 4.43 (0.04)

Table A.7: Excitation energies (in eV) of dimer 2’ (V-shape) obtained with different energy
functionals and the 6-31+G(d) basis set in vacuum. Oscillator strengths indicated in parenthe-
sis.

ωB97X-D B3LYP
state TDA TDDFT TDA TDDFT

S1 2.78 (0.02) 2.76 (0.01) 2.39 (0.01) 2.37 (0.01)
S2 3.28 (2.51) 3.26 (2.50) 2.40 (2.32) 2.39 (2.32)
S3 3.43 (1.58) 3.40 (1.58) 2.58 (1.49) 2.55 (1.59)
S4 3.71 (0.11) 3.68 (0.09) 2.69 (0.08) 2.69 (0.06)
S5 3.88 (0.28) 3.79 (0.19) 2.73 (0.12) 2.70 (0.09)
S6 4.12 (0.07) 4.10 (0.05) 2.75 (0.03) 2.73 (0.02)
S7 4.16 (0.07) 4.14 (0.06) 2.77 (0.03) 2.76 (0.03)
S8 4.26 (0.02) 4.24 (0.02) 2.89 (0.02) 2.88 (0.01)
S9 4.27 (0.01) 4.25 (0.01) 2.91 (0.01) 2.90 (0.01)
S10 4.28 (0.00) 4.25 (0.00) 2.93 (0.00) 2.92 (0.01)

Table A.8: Excitation energies (in eV) of dimer 3’ (folded) obtained with different energy func-
tionals and the 6-31+G(d) basis set in vacuum. Oscillator strengths indicated in parenthesis.
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gas phase DCM
dimer state TDDFT TDA TDDFT TDA

S1 2.35 (0.016) 2.48 (0.009) 2.19 (0.008) 2.28 (0.009)
S2 2.78 (2.301) 2.90 (2.342) 2.59 (2.307) 2.63 (2.307)
S3 2.86 (1.178) 3.03 (1.083) 2.68 (1.196) 2.74 (1.076)

1’ S4 2.97 (1.182) 3.10 (1.085) 2.71 (1.192) 3.80 (1.091)
(folded) S5 3.06 (0.010) 3.28 (0.059) 2.87 (0.022) 2.96 (0.032)

S6 3.16 (0.045) 3.33 (0.005) 2.98 (0.007) 3.04 (0.004)
S7 3.26 (0.002) 3.39 (0.001) 3.03 (0.001) 3.13 (0.001)
S8 3.32 (0.001) 3.41 (0.000) 3.11 (0.000) 3.20 (0.000)

S1 2.91 (1.172) 2.92 (1.169) 2.40 (1.171) 2.41 (1.170)
S2 2.95 (1.211) 2.95 (1.221) 2.49 (1.222) 2.49 (1.220)
S3 2.96 (0.401) 2.98 (0.401) 2.58 (0.402) 2.60 (0.400)

2’ S4 3.04 (0.406) 3.04 (0.389) 2.59 (0.401) 2.63 (0.399)
(V-shape) S5 3.22 (0.017) 3.22 (0.009) 2.67 (0.013) 2.67 (0.009)

S6 3.24 (0.028) 3.27 (0.028) 2.70 (0.026) 2.73 (0.021)
S7 3.25 (0.021) 3.28 (0.010) 2.80 (0.023) 2.82 (0.019)
S8 3.28 (0.002) 3.28 (0.012) 2.82 (0.002) 2.84 (0.002)

S1 2.37 (0.009) 2.39 (0.010) 2.20 (0.009) 2.29 (0.011)
S2 2.39 (2.319) 2.40 (2.320) 2.23 (2.302) 2.30 (2.324)
S3 2.55 (1.487) 2.58 (1.488) 2.40 (1.489) 2.49 (1.490)

3’ S4 2.69 (0.063) 2.69 (0.076) 2.55 (0.071) 2.63 (0.074)
(folded) S5 2.70 (0.086) 2.73 (0.120) 2.56 (0.089) 2.64 (0.096)

S6 2.73 (0.021) 2.75 (0.026) 2.60 (0.021) 2.69 (0.022)
S7 2.76 (0.028) 2.77 (0.027) 2.61 (0.026) 2.71 (0.029)
S8 2.88 (0.014) 2.89 (0.019) 2.71 (0.021) 2.79 (0.017)
S9 2.90 (0.012) 2.91 (0.009) 2.75 (0.011) 2.81 (0.010)
S10 2.92 (0.006) 2.93 (0.003) 2.78 (0.001) 2.82 (0.001)

Table A.9: Excitation energy (in eV) and oscillator strengths (in parenthesis) at B3LYP/6-
31+G(d) level of theory in the gas phase and in DCM solution for the three different curcumin
covalent dimers.
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comp. state ωB97X-D B3LYP transition
1’ S1 78 75 H-1→L

18 19 H→L
S2 56 55 H→L

26 27 H-1→L
S3 58 62 H→L+1

20 30 H→L
S4 83 78 H-1→L+1

2’ S1 76 80 H-1→L
S2 82 85 H→L+1

3’ S1 41 43 H→L
7 6 H-1→L

S2 49 47 H→L
32 36 H-1→L

S3 47 45 H→L+1
28 31 H→L

S4 34 31 H→L+1
13 15 H-1→L

Table A.10: Main orbital contributions (in %) for the low-lying singlet excitations of dimers
1’-3’ computed at the TDA level with B3LYP and ωB97X-D energy functionals and the 6-
31+G(d) basis set in vacuum. H and L indicate HOMO and LUMO, respectively.
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A.3 Rotation of the meso-phenyl in monomer 3

Figure A.4: Ground state potential energy profile along the torsion of the mPh group of
monomer 3 computed at the B3LYP/6-31+G(d) level in DCM solution.

Figure A.5: Excitation energies (left) and oscillator strengths (right) for the two lowest excited
singlet states of 3 along the torsion of the mPh group computed at the B3LYP/6-31+G(d)
level in DCM solution.
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A.4 Relative energies between open/folded conformers

The relative stability between opened and folded structural conformations of curcumin deriva-

tive covalent dimers is dictated by the competition between the solvent-chromophore interac-

tions and the π-stacking between the two monomers. As a result, apolar solvents like cyclohex-

ane show a higher preference towards the folded form compared with more polar solvents.

The relative energy between the two forms (∆E = E(open) − E(folded)) has been computed

in different solvents. Basis set superposition error (BSSE) have been corrected through the

counterpoise procedure. To perform CP in covalent dimers we evaluate the CP correction at

the folded from without the linker as:

Ecp = 2(E∗(mono))− E(mono)) (A.1)

where E(mono) is the energy of the monomer, and E∗(mono) is the energy of the monomer in

the presence of basis set functions in the positions of the second monomer in the folded form.

Then, the corrected energy for the open conformer is obtained as:

Ec(open) = E(open) + Ecp (A.2)

Relative energies in different solvent are shown in Figure A.6.

Figure A.6: Computed relative stability (in kcal/mol) between the open and folded conformers
of dimer 1’ as a function of the polarity of the solvent. Points at the graph correspond to the
dielectric constants of benzene, Bu2O, DCM and water (in increasing order of ε).

121



Our results systematically indicate a preference for the folded conformation of dimer 1’. These

results should not be taken quantitatively, since entropic effects (stabilizing the open form) are

not included. On the other hand, the trend of relative energies demonstrates how increasing the

solvent’s polarity shifts the equilibrium between the two forms towards the open conformation.

A.5 Absorption spectra: vibronic resolution

Figure A.7: Frequency modes of 1 computed at the ωB97X-D potentially involved in the
vibronic profile of absorption spectra (experimental vibronic gap ∼1260 cm−1).

Figure A.8: Frequency modes of 3 computed at the ωB97X-D potentially involved in the
vibronic profile of absorption spectra (experimental vibronic gap ∼1320 cm−1).
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A.6 Diabatization of low-lying states

A.6.1 Diabatization scheme: Edmiston-Ruedenberg localization

Diabatic electronic states {|Ξi〉} are obtained through the mixing of N adiabatic states {|φj〉}

via a rotation matrix U as:

|Ξi〉 =
N∑
j=1

|φj〉Uji; i = 1...N (A.3)

There are several techniques for generating the rotation matrix U using a variety of different

approaches. This rotation matrix is chosen by optimizing some diabatization function f(U).

In this case we use the Edmiston-Ruedenberg (ER) diabatization scheme, corresponding to the

maximization of self-interaction energy:

fER(U) = fER({|Ξi〉}) =
N∑
j=1

∫
dR1

∫
dR2
〈Ξi|ρ(R2)|Ξi〉〈Ξi|ρ(R1)|Ξi〉

|R1 −R2|
(A.4)

where the density operator at position R is

ρ(R) =
∑
j

δ(R− r(j)) (A.5)

and r(j) represents the position of the j-th electron.
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A.6.2 Decomposition in the diabatic basis: dimers

state Zinter Zintra

S1 67 33
S2 74 26
S3 66 34
S4 23 77
S5 54 46
S6 33 67
S7 34 66
S8 49 51

Table A.11: Contributions (in %) of the diabatic states (Zinter and Zintra) for the eight lowest
adiabatic states (Si, i = 1, 8) of dimer 1’.

state Zinter Zintra Zmeso

S1 60 38 2
S2 72 27 1
S3 14 86 0
S4 11 89 0
S5 22 20 58
S6 46 18 36
S7 43 32 25
S8 31 7 62
S9 22 70 8
S10 80 10 10

Table A.12: Contributions (in %) of the diabatic states for the ten lowest adiabatic states (Si,
i = 1, 10) of dimer 3’. Zinter = Z2+Z3+Z7+Z8, Zintra = Z1+Z4+Z9+Z10 and Zmeso = Z5+Z6.

A.6.3 Electronic Hamiltonians

By definition, the adiabatic states of a system {|φj〉} are those electronic states that diagonalize

the electronic Hamiltonian, assuming that the nuclei are fixed. The spectrum ({Ej}) of these

adiabatic states yields fixed-nuclei energies for the ground and excited electronic states of

a system. The off-diagonal elements of the Hamiltonian (Hij = 〈Zi|Ĥ|Zj〉) are known as

electronic couplings.
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Electronic Hamiltonians of curcumin monomers

Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative 1 computed

at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =

 3.22 0.22

0.22 3.22

 ; Ead =

 2.98

3.42

 (A.6)

Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative 2 computed

at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =

 2.94 0.02

0.02 3.30

 ; Ead =

 2.94

3.30

 (A.7)

Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative 3 (θ = 90◦)

computed at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =


3.25 0.33 −0.02

0.33 3.25 0.02

−0.02 0.02 3.32

 ; Ead =


2.92

3.32

3.59

 (A.8)

Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative 3 (θ = 62◦)

computed at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =


3.11 0.33 0.04

0.33 3.11 −0.04

0.04 −0.04 2.72

 ; Ead =


2.56

3.18

3.21

 (A.9)
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Electronic Hamiltonians of curcumin dimers

Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative dimer 1’

computed at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =



3.15 0.20 0.02 0.00 0.03 0.13 −0.18 −0.07

0.20 3.15 0.00 0.11 0.01 0.03 0.04 0.15

0.02 0.00 3.15 0.20 0.11 0.14 −0.15 −0.03

0.00 0.11 0.20 3.15 0.11 −0.08 −0.03 −0.02

0.03 0.01 0.11 0.11 3.20 0.11 0.14 −0.05

0.13 0.03 0.14 −0.08 0.11 3.20 0.11 −0.16

−0.18 0.04 −0.15 −0.03 0.14 0.11 3.29 0.09

−0.07 0.15 −0.03 −0.02 −0.05 −0.16 0.09 3.29



; Ead =



2.48

2.90

3.03

3.10

3.28

3.33

3.39

3.41



(A.10)

Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative dimer 2’

computed at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =



2.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 2.95 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 2.98 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.01 3.04 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 3.22 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.01 3.27 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 3.28 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.02 3.28



; Ead =



2.92

2.95

2.98

3.04

3.22

3.27

3.28

3.28



(A.11)
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Diabatic Hamiltonian (Hdiab) and adiabatic energies (Ead) for curcumin derivative dimer 3’

computed at the B3LYP/6-31+G(d) level within TDA in vacuum (values in eV):

Hdiab =



2.50 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00

0.00 2.60 −0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 −0.19 2.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.12 0.00 0.00 2.66 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 2.72 0.16 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.16 2.73 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 2.77 −0.09 0.07 0.07

0.00 0.00 0.00 0.00 0.00 0.00 −0.09 2.77 0.07 0.07

0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 2.78 −0.08

0.00 0.00 0.00 0.00 0.00 0.00 0.07 −0.08 0.07 2.79



; Ead =



2.39

2.40

2.58

2.69

2.73

2.75

2.77

2.89

2.91

2.93


(A.12)

A.7 Fragment charge distribution

A.7.1 Curcumin derivatives: monomers

Comp. State Fragment
PMP1 DOB PMP2

1 Z1 0.347 -0.322 -0.025
Z2 -0.031 -0.326 0.357

TPA DOB PMP
2 Z1 0.450 -0.392 -0.057

Z2 0.038 -0.374 0.343
PMP1 DOB PMP2 mPh

3 Z1 0.345 -0.325 -0.020 0.000
θ = 90◦ Z2 -0.020 -0.325 0.345 0.000

Z3 0.042 -0.400 0.042 0.315
3 Z1 0.346 -0.323 -0.020 -0.002

θ = 62◦ Z2 -0.001 -0.324 0.347 -0.010
Z3 0.040 -0.394 0.050 0.302

Table A.13: Relative Mulliken fragment charges of diabatic states of curcumin monomers 1-3
with respect to the ground state charge distribution computed at the B3LYP/6-31+G(d) level.
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Comp. State Fragment
PMP1 DOB PMP2

1 S1 0.113 -0.234 0.120 -
S2 0.203 -0.415 0.212 -

TPA DOB PMP
2 S1 0.449 -0.391 -0.057 -

S2 0.021 -0.362 0.341 -
PMP1 DOB PMP2 mPh

3 S1 0.110 -0.235 0.120 0.005
θ = 90◦ S2 0.042 -0.400 0.042 0.315

S3 0.205 -0.420 0.210 0.005
3 S1 0.067 -0.330 0.066 0.190

θ = 62◦ S2 0.142 -0.354 0.139 0.071
S3 0.157 -0.346 0.156 0.033

Table A.14: Relative Mulliken fragment charges of adiabatic states of curcumin monomers
1-3 with respect to the ground state charge distribution computed at the B3LYP/6-31+G(d)
level.

A.7.2 Curcumin derivatives: dimers

Fragment
diabat PMP1a DOB1 PMP1b PMP2a DOB2 PMP2b

Z1 0.000 -0.310 0.012 0.000 -0.037 0.335
Z2 0.010 -0.310 0.000 0.340 -0.040 0.000
Z3 0.000 -0.036 0.338 0.000 -0.310 0.008
Z4 0.338 -0.026 0.000 0.001 -0.315 0.000
Z5 0.000 -0.111 0.111 0.109 -0.109 0.000
Z6 0.109 -0.110 0.000 0.000 -0.109 0.110
Z7 0.000 -0.110 0.110 0.000 -0.111 0.111
Z8 0.109 -0.109 0.000 0.110 -0.110 0.000

Table A.15: Relative Mulliken fragment charges of diabatic states of curcumin dimer 1’
(folded) with respect to the ground state charge distribution computed at the B3LYP/6-
31+G(d) level. Nomenclature: PMP1a-DOB1-PMP1b-(CH2)8-PMP2b-DOB2-PMP2a.
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Fragments
diabat TPA1 DOB1 PMP1 TPA2 DOB2 PMP2

Z1,Z2 0.450 -0.400 -0.050 0.450 -0.450 -0.050
Z3,Z4 0.210 -0.260 0.085 -0.018 -0.155 -0.100
Z5,Z6 0.145 -0.190 0.0520 -0.005 -0.210 0.100
Z7,Z8 0.030 -0.370 0.335 0.030 -0.370 0.335

Table A.16: Relative Mulliken fragment charges of diabatic states of curcumin dimer 2’ (V-
shape) with respect to the ground state charge distribution computed at the B3LYP/6-31+G(d)
level. Nomenclature: TPA1-DOB1-PMP1-(CH2)8-PMP2-DOB2-TPA2.

Fragment
state TPA1 DOB1 PMP1 TPA2 DOB2 PMP2

S1 0.422 -0.394 -0.008 0.392 -0.476 0.065
S2 0.398 -0.469 0.071 0.418 -0.408 -0.009
S3 0.216 -0.256 0.012 0.038 -0.146 0.135
S4 0.032 -0.143 0.133 0.219 -0.257 0.013
S5 0.164 -0.168 0.078 0.007 -0.187 0.103
S6 0.003 -0.186 0.100 0.170 -0.164 0.077
S7 0.034 -0.360 0.335 0.014 -0.362 0.339
S8 0.011 -0.361 0.338 0.039 -0.360 0.333

Table A.17: Mulliken analysis of the difference in charge in comparison to the ground state
for the adiabatic states for the dimer 2’ (V-shape) computed at the B3LYP/6-31+G(d) level.
Nomenclature: TPA1-DOB1-PMP1-(CH2)8-PMP2-DOB2-TPA2.

Fragment
diabat mPh1 PMP1a DOB1 PMP1b PMP2a DOB2 PMP2b mPh2

Z1 -0.006 0.199 -0.193 0.005 0.005 -0.194 0.211 -0.070
Z2 0.001 0.152 -0.091 0.005 0.005 -0.163 0.089 0.001
Z3 0.002 0.090 -0.162 0.005 0.004 -0.090 0.149 0.001
Z4 0.001 0.078 -0.169 0.039 0.063 -0.111 0.096 0.002
Z5 0.002 0.005 -0.002 0.002 0.041 -0.379 0.042 0.287
Z6 0.291 0.041 -0.379 0.039 0.005 -0.004 0.003 0.002
Z7 0.111 0.053 -0.211 0.048 0.044 -0.210 0.051 0.113
Z8 0.109 0.049 -0.210 0.044 0.056 -0.207 0.050 0.111
Z9 0.113 0.045 -0.211 0.051 0.052 -0.210 0.051 0.109
Z10 0.107 0.052 -0.209 0.045 0.050 -0.210 0.053 0.112

Table A.18: Mulliken analysis of the difference in charge in comparison to the ground state
for the diabatic states of dimer 3’ (folded form) computed at the B3LYP/6-31+G(d) level.
Nomenclature: (mPh1,PMP1a)-DOB1-PMP1b-(CH2)8-PMP2b-DOB2-(PMP2a,mPh2).
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A.8 Splitting of S1 and S2 in dimer 2’

The evaluation of the (classical) dipole-dipole interaction (equation A.13) corresponding to

the interaction between monomeric excitations in dimer 2’ has been done by considering the

following parameters from S1 transition in monomer 1 and the optimized V-shape structure of

dimer 2’ in DCM solution at the B3LYP/6-31+G(d) computational level.

∆E =
1

4πε0

[
d1 · d2

|R|3
− 3

(R · d1)(R · d2)

|R|5

]
(A.13)

where di are the transition dipole moments for the two monomers, R is the distance between

the two dipoles and ∆E is the energy shift of the excitation energies of the dimer with respect

to the transition energy for the monomer. Data: |di| = 36.3865 D; |R| = 18.52 Å; θ12 = 65.36º;

θ12 = 65.36º; θ1 = 57.79º; θ2 = 56.85º.

Figure A.9: Dipole-dipole interaction representation for dimer 2’.

The gap between the two lowest singlet states of the dimer, i.e. Davydson splitting, is obtained

as the sum of the energy shifts corresponding to in-phase and out-of-phase combinations of the

d1 and d2 dipoles and corresponds to ∆EDav = 2∆E = 0.11 eV.
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A.9 Dimer 2’: CAM-B3LYP calculations

Electronic structure of low-lying states of curcumin dimers 1’ and 3’ obtained with hybrid

GGA (B3LYP) and long-range corrected (CAM-B3LYP) functionals provide qualitatively the

same transitions with excitation energies systematically larger for CAM-B3LYP. On the other

hand, the nature of electronic transitions (beyond S2 state) in 2’ present larger discrepancies

between B3LYP and CAM-B3LYP due to the large interchromophoric separation in 2’ and the

strong stabilization of inter-CT transitions by non LRC functionals, such as B3LYP. In the

following we present additional calculations on the singlet excited states of dimer 2’.

dimer state ∆E strength

S1 3.73 1.965
S2 3.73 1.906
S3 4.00 0.898

2’ S4 4.00 0.867
(V-shape) S5 4.34 0.006

S6 4.35 0.005
S7 4.45 0.015
S8 4.46 0.172

Table A.19: Excitation energies (in eV) and oscillator strengths (in parenthesis) computed at
the CAM-B3LYP/6-31+G(d) level within TDA in gas phase for the open form of 2’ dimer.

dimer state ∆E

Z1 3.73
Z2 3.73
Z3 3.99

2’ Z4 4.00
(V-shape) Z5 4.32

Z6 4.34
Z7 4.45
Z8 4.45

Table A.20: Diabatic excitation energies (in eV) computed at the CAM-B3LYP/ 6-31+G* level
(within TDA) in gas phase for the V-shaped form of 2’ dimer.
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Fragment
diabat TPA1 DOB1 PMP1 TPA2 DOB2 PMP2

Z1,Z2 0.430 -0.420 -0.010 0.430 -0.420 -0.010
Z3,Z4 0.030 -0.370 0.335 0.030 -0.370 0.335
Z5 0.000 -0.080 0.210 0.000 -0.150 0.020
Z6 0.000 -0.150 0.020 -0.005 -0.080 0.210
Z7 0.150 -0.050 0.015 0.000 -0.120 0.005
Z8 0.000 -0.120 0.005 0.150 -0.050 0.015

Table A.21: Mulliken analysis of the difference in charge in comparison to the ground state for
the two diabatic states for the dimer 2’ (V-shape) computed at the CAM-B3LYP/6-31+G(d)
level. Nomenclature: TPA1-DOB1-PMP1-(CH2)8-PMP2-DOB2-TPA2.
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Appendix B

Flavylium fluorophores as near-infrared

emitters

B.1 Atomic charges

Table B.1: Sum of the Mulliken charges for the atoms in the donor (D) and acceptor (A) groups
for the S0 and S1 states of F1-7, F7a and F7b molecules in their respective energy minimum.
Charge at D column corresponds to the average between D1 and D2 moieties.

S0 S1

molecule D A D A
F1 0.495 0.010 0.601 -0.202
F3 0.486 0.028 0.595 -0.189
F5 0.495 0.010 0.605 -0.210
F7 0.492 0.016 0.602 -0.204

F7a 0.479 0.041 0.596 -0.192
F7b 0.488 0.024 0.607 -0.213
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B.2 Excitation energies

Table B.2: Functional dependence of calculated (full) TDDFT and TDA S0 → S1 energies
(Evert

GS , in eV) for the F3 molecule. Second-order perturbative corretion to the configuration
interaction singles (CIS(D)) and its spin-opposite scaled version (SOSCIS(D)) have been per-
formed with the resolution of the identity (RI) approximation. All calculations have been done
with the 6-31+G(d,p) basis set. Oscillator strengths are given in parenthesis. CIS(D) and
SOSCIS(D) oscillator strengths are obtained with the CIS transition dipole moment. Experi-
mental absorption maximum is 1.66 eV.

functional Full TDDFT TDA
PBE 1.76 (2.145) 1.90 (2.996)
B3LYP 1.89 (2.783) 2.04 (3.076)
M06-2X 1.99 (2.037) 2.12 (3.012)
CAM-B3LYP 2.03 (2.049) 2.15 (2.876)
ωB97X-D 2.06 (2.138) 2.15 (3.045)
CIS 2.59 (2.220)
CIS(D) 1.63 (1.397)
SOSCIS(D) 1.28 (1.097)

Table B.3: Functional and basis set dependence of calculated (full) TDDFT and TDA S0 → S1

energies (Evert
GS , in eV) for the F7a molecule. Second-order perturbative corretion to the con-

figuration interaction singles (CIS(D)) and its spin-opposite scaled version (SOSCIS(D)) have
been performed with the resolution of the identity (RI) approximation. Oscillator strengths are
given in parenthesis. CIS(D) and SOSCIS(D) oscillator strengths are obtained with the CIS
transition dipole moment. Experimental absorption maximum is 1.21 eV.

functional basis Full TDDFT TDA
B3LYP 6-311++G(d,p) 1.57 (2.763) 1.75 (4.157)
B3LYP 6-31+G(d,p) 1.57 (2.763) 1.75 (4.157)
PBE 6-31+G(d,p) 1.50 (2.379) 1.67 (3.518)
M06-2X 6-31+G(d,p) 1.56 (2.850) 1.69 (3.460)
CAM-B3LYP 6-31+G(d,p) 1.59 (2.942) 1.70 (3.091)
ωB97X-D 6-31+G(d) 1.55 (2.837) 1.67 (3.291)
CIS 6-31+G(d,p) 1.97 (2.790)
CIS(D) 6-31+G(d,p) 1.20 (1.695)
SOSCIS(D) 6-31+G(d,p) 0.74 (1.050)
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Table B.4: Functional dependence of S1 → S0 (Evert
ES , in eV) calculated at the TDDFT level

with and without TDA and the 6-31+G(d,p) basis for the F7a molecule . Oscillator strengths
are given in parenthesis. Experimental emission maximum is 1.19 eV.

method TDDFT TDA
B3LYP 1.19 (2.801) 1.28 (3.598)
CAM-B3LYP 1.24 (2.885) 1.36 (3.265)

Table B.5: Norm of the transition dipole moment (in atomic units) for the S0 → S1 (ground
state geometry) and S1 → S0 (excited state geometry) for F1-7 molecules computed at the
B3LYP/6-31+G(d,p) level in dichloromethane.

molecule S0 → S1 S1 → S0

F1 3.054 4.010
F3 3.649 4.648
F5 3.754 4.898
F7 3.918 5.316

Figure B.1: Representation of the S0 → S1 transition dipole moment vector of F7 computed
at the B3LYP/6-31+G(d,p) level in dichloromethane. Transition dipole moments in the rest of
the Fn series show similar alignment on the long molecular axis.
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B.3 Diabatic states

Table B.6: Sum of the change in Mulliken charges upon excitation to diabatic states CT1

(D1 → A) and CT2 (D2 → A) for F1-7 molecules. D1 and D2 indicate donor groups, and A
corresponds to the electron acceptor bridge.

molecule diabat D1 A D2

F1 CT1 0.318 -0.308 -0.010
CT2 -0.020 -0.306 0.326

F3 CT1 0.321 -0.310 -0.011
CT2 -0.019 -0.309 0.328

F5 CT1 0.322 -0.309 -0.013
CT2 -0.016 -0.309 0.325

F7 CT1 0.320 -0.308 -0.012
CT2 -0.014 -0.310 0.324

Table B.7: Vertical excitation energies at the ground (Evert
GS ) and excited (Evert

ES ) state minima,
zero-point vibrational energies (ZPVE), and adiabatic (Eadia) and 0-0 (E0−0) energies of the
series of derivatives calculated at the TDDFT/B3LYP/6-31+G(d,p) level in dichloromethane.
All energy values are in eV.

molecule EZPV E
GS EZPV E

ES Evert
GS Evert

ES Eadia E0−0
F1 9.17 9.14 2.09 1.83 1.89 1.86
F3 17.55 17.53 1.89 1.66 1.79 1.77
F5 18.43 18.35 1.73 1.44 1.62 1.54
F7 19.48 19.47 1.59 1.31 1.48 1.47

F7a 21.36 21.35 1.57 1.19 1.45 1.44
F7b 20.74 20.72 1.44 1.06 1.37 1.35

Table B.8: Vertical excitation energies at the ground (Evert
GS ) and excited (Evert

ES ) state minima of
the series of derivatives calculated at the TDA/B3LYP/6-31+G(d,p) level in dichloromethane.
Oscillator strengths are reported in parentheses. All energy values are in eV.

molecule Evert
GS Evert

ES

F1 2.20 (2.077) 1.98 (2.049)
F3 1.98 (2.988) 1.75 (2.312)
F5 1.80 (2.458) 1.53 (2.822)
F7 1.69 (2.612) 1.39 (3.235)

F7a 1.66 (2.963) 1.28 (3.598)
F7b 1.52 (2.956) 1.14 (3.552)
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Appendix C

Photophysics of molecular aggregates

from excited state diabatization

C.1 Diabatic Hamiltonian

Adiabatic energies in terms of diabatic state energies and couplings can be achieved through

the diagonalization of the diabatic Hamiltonian. In the case of a symmetric dimer, this can be

written as:

Hdiab =



ELE VDC Ve Vh

VDC ELE Vh Ve

Ve Vh ECT VCT

Vh Ve VCT ECT


(C.1)

Block diagonalization of equation C.1 results in:

H =



E
(+)
FE 0 Ve + Vh 0

0 E
(−)
FE 0 Ve − Vh

Ve + Vh 0 E
(+)
CR 0

0 Ve − Vh 0 E
(−)
CR


(C.2)

where E
(±)
FE = ELE ± VDC and E

(±)
CR = ECT ± VCT correspond to the energies of the sym-

metric/antisymmetric Frenkel excitons (FE) and charge resonances (CR) respectively. Finally,
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adiabatic energies are obtained as the full diagonlization of Hdiab.

Hadiab =



E
(+)
1 0 0 0

0 E
(+)
2 0 0

0 0 E
(−)
1 0

0 0 0 E
(−)
2


(C.3)

E
(±)
1 =

1

2

[
E

(±)
FE + E

(±)
CR −

√
(E

(±)
FE − E

(±)
CR )2 + 4(Ve ± Vh)2

]
(C.4)

E
(±)
2 =

1

2

[
E

(±)
FE + E

(±)
CR +

√
(E

(±)
FE − E

(±)
CR )2 + 4(Ve ± Vh)2

]
(C.5)

with eigenvectors written in the (Φ
(±)
FE, Φ

(±)
CR) basis as:

Ψ
(±)
1 =

Φ
(±)
FE + c

(±)
1 Φ

(±)
CR√

1 + c
(±)2
1

; Ψ
(±)
2 =

Φ
(±)
FE + c

(±)
2 Φ

(±)
CR√

1 + c
(±)2
2

(C.6)

where

c
(±)
1 =

1

2(Ve ± Vh)

[
E

(+)
CR − E

(+)
FE −

√
(E

(±)
FE − E

(±)
CR )2 + 4(Ve ± Vh)2

]
(C.7)

c
(±)
2 =

1

2(Ve ± Vh)

[
E

(+)
CR − E

(+)
FE +

√
(E

(±)
FE − E

(±)
CR )2 + 4(Ve ± Vh)2

]
(C.8)

Notice that the charge resonance amplitudes λi = |c(i)CR| are defined as:

λi =
c
(±)
i√

1 + c
(±)2
i

(C.9)
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C.2 Electronic couplings

Definition of signed electronic couplings W
(i)
X as the product of normalized amplitude products

and off-diagonal terms of the diabatic Hamiltonian:

W
(i)
DC = sign

(i)
DC〈Φ10|Ĥ|Φ01〉 =

c
(i)
10c

(i)
01

|c(i)10c
(i)
01 |
〈Φ10|Ĥ|Φ01〉 (C.10)

W
(i)
h = sign

(i)
h 〈Φ10|Ĥ|ΦAC〉 =

c
(i)
10c

(i)
AC

|c(i)10c
(i)
AC |
〈Φ10|Ĥ|ΦAC〉 (C.11)

W
(i)
h′ = sign

(i)
h′ 〈Φ01|Ĥ|ΦCA〉 =

c
(i)
01c

(i)
CA

|c(i)01c
(i)
CA|
〈Φ01|Ĥ|ΦCA〉 (C.12)

W (i)
e = sign(i)

e 〈Φ10|Ĥ|ΦCA〉 =
c
(i)
10c

(i)
CA

|c(i)10c
(i)
CA|
〈Φ10|Ĥ|ΦCA〉 (C.13)

W
(i)
e′ = sign

(i)
e′ 〈Φ01|Ĥ|ΦAC〉 =

c
(i)
01c

(i)
AC

|c(i)01c
(i)
AC |
〈Φ01|Ĥ|ΦAC〉 (C.14)

W
(i)
CT = sign

(i)
CT 〈ΦAC |Ĥ|ΦCA〉 =

c
(i)
CAc

(i)
AC

|c(i)CAc
(i)
AC |
〈ΦAC |Ĥ|ΦCA〉 (C.15)

where c
(i)
X indicates the amplitude of the X-diabat in the i-adiabatic state. Notice that for a

symmetric dimer W
(i)
h = W

(i)
h′ and W

(i)
e = W

(i)
e′ .
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C.3 Basis set effect

Contributions to the excitation energy of S1 dark state of the eclipsed (D2h) ethylene dimer for

different molecular separations computed at the CIS/6-31G(d) level.

Figure C.1: Energy profiles (in eV) of the four lowest π → π∗ excited singlet states and diabatic
LE and CT energies for the eclipsed ethylene dimer at different intermolecular separations (z
in Å) computed at the CIS/6-31G(d) level.

Figure C.2: Contributions to the (a) dark S1 and (b) bright S2 excitation energies (in eV) and
λ2i of both excited singlets for the eclipsed ethylene dimer at different intermolecular separations
computed at the CIS/6-31G(d) level. JCoul corresponds to the classical dipole-dipole Coulomb
interaction.
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C.4 Direct coupling in ethylene dimer

In order to analyze the in more detail the origin of the direct coupling energy contribution in

the lowest excited state of the D2h ethylene dimer, we decompose W
(1)
DC in one electron (Ω

(1)
DC,1),

Coulomb (Ω
(1)
DC,1) and exchange (Ω

(1)
DC,K) contributions defined as:[? ]

Ω
(1)
DC = Ω

(1)
DC,1 + Ω

(1)
DC,J + Ω

(1)
DC,K (C.16)

Ω
(1)
DC,1 = sign

(1)
DC

(∑
iab

taXit
Y b
i Fab −

∑
iab

tXai tY aj Fij

)
(C.17)

Ω
(1)
DC,J = sign

(1)
DC

(∑
ijab

tXai tY bj (ia|jb)

)
(C.18)

Ω
(1)
DC,K = −sign

(1)
DC

(∑
ijab

tXai tY bj (ij|ab)

)
(C.19)

where indices i, j (a, b) correspond to occupied (virtual) orbitals, tai are the CIS excitation

amplitues, Fij are Fock matrix elements, (ij|ab) are two electron orbital integrals (equation

19), X and Y indicate 10 and 01 excitonic diabats, respectively.

Figure C.3: Decomposition of the direct coupling Ω
(1)
DC for the dark S1 state in terms of Ω

(1)
DC,1,

Ω
(1)
DC,J , and Ω

(1)
DC,K ; and λ21 for the eclipsed ethylene dimer at different intermolecular separations

computed at the CIS/6-31G level. JCoul corresponds to the classical dipole-dipole Coulomb
interaction.
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C.5 Slip-stacked ethylene dimer

Figure C.4: Adiabatic energies (in eV) of the two lowest excited singlet states in the xy-plane
(a), and corresponding energy profiles along the long (b) and short (c) axes for the coplanar
ethylene dimer at z = 4.7 Å, computed at the CIS/6-31G level.
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Figure C.5: Excitation energies (in eV) of the LE (blue) and CT (red) diabats in the xy-plane
for the coplanar ethylene dimer at (a) z = 3.5 Å and (b) z = 4.7 Å, computed at the CIS/6-31G
level.
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Figure C.6: Contributions (in eV) to the excitation energies for the two lowest excited singlets

in the xy-plane at z = 4.7 Å computed at the CIS/6-31G level. (a,b) Direct couplings (Ω
(i)
DC);

(c,d) super-exchange (Ω
(i)
SX); and (e,f) second order energy term ∆i.
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Figure C.7: Energy contributions (in eV) and LE/CT mixings (λ22) to the excitation energies
to the 11Bu state along the long molecular x-axis with y = 0.0 Å and at (a) z = 3.5 Å and
(b) z = 4.7 Å, and along the short molecular y-axis with x = 0.0 Å and at (c) z = 3.5 Å and
(d) z = 4.7 Å, computed at the CIS/6-31G level.
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