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The control of Variable-Speed Wind-Turbines (VSWT) extracting electrical power from the
wind kinetic energy are composed of subsystems that need to be controlled jointly, namely
the blade pitch and the generator torque controllers. Previous state of the art approaches
decompose the joint control problem into independent control subproblems, each with
its own control subgoal, carrying out separately the design and tuning of a parameterized
controller for each subproblem. Such approaches neglect interactions among subsystems
which can introduce significant effects. This paper applies Actor-Critic Reinforcement
Learning (ACRL) for the joint control problem as a whole, carrying out the simultaneous
control parameter optimization of both subsystems without neglecting their interactions,
aiming for a globally optimal control of the whole system. The innovative control architec-
ture uses an augmented input space so that the parameters can be fine-tuned for each
working condition. Validation results conducted on simulation experiments using the
state-of-the-art OpenFAST simulator show a significant efficiency improvement relative
to the best state of the art controllers used as benchmarks, up to a 22% improvement in
the average power error performance after ACRL training.
� 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Onshore wind energy has become one of the most competitive renewable alternatives to traditional fossil-based energy
sources [1] because it has the lowest operational costs and environmental footprints among the renewable energy sources.
Hence, the growing number of Variable-SpeedWind-Turbines (VSWT) deployedworldwide. Designing an efficient VSWT con-
troller is challenging because of the complex dynamics induced by the wind variability, and the large number of variables to
be controlled simultaneously. Most of the research work on VSWT control [2–7] has addressed these challenges in two ways:

a) Using simplified dynamic models of VSWT operation that allow easy derivation of analytical expressions instead of
detailed, complex, and non-linear dynamical models that
b) Decomposing the control problem into subtasks where each subsystem local control goal contributes toward the glo-
bal control goal.

Departing from these conventional approaches, this paper provides two alternative approaches:
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a) Validating the control models over highly accurate simulations using OpenFAST [8], which is the state-of-the-art open
source simulation suite for VSWT. To the best of our knowledge, this is the first time a RL-based approach has been val-
idated on such numerically accurate VSWT simulator despite being extremely demanding computationally.
b) Optimizing the VSWT control parameters as a whole according to the global control objective formulated as ‘‘maximize
the power extraction efficiency”.

Reinforcement Learning (RL) allows to learn the parameters of a decision policy with minimal input from the designer and
without domain-specific knowledge in the form of labelled samples, which makes RL a promising research tool to develop
VSWT control systems. This paper presents a novel approach that optimizes the parameters of VSWT baseline controllers
using Actor-Critic RL (ACRL) as a function of additional system variables not used by the baseline controller. This approach
augments the input space of the learned controller decoupling it from the simplified model baseline control. Thus, it is pos-
sible to carry out fine-tuning of the parameters for different working conditions while preserving the modular structure of
the controller.

This paper reports results of proof-of-concept experiments on two baseline controllers that will be denoted accross the
paper by the name of their respective authors, i.e. Vidal [9], and Boukhezzar [10]. Accordingly, we will denote the optimized
controllers obtained after ACRL training as Vidal� and Boukhezzar�. The experiments have two phases: The first phase is a
grid-search on the baseline controller parameter space in order to select the best performing parameter values for each base-
line controller. The second phase carries out the ACRL training using the results of the grid-search as the initial condition.
Experimental results show a significant performance improvement over both baseline controllers after ACRL training.

Summarizing, the contributions of this paper are as follows:

� We carry out the overall system control design, without decomposing the problem into subproblems. The optimization
problem is tackled as a whole, taking into account interactions that are neglected in other approaches.
� We define an augmented input space for the ACRL training of the controller, which is different from the input space of the
baseline controller, allowing more flexibility in the definition of operational conditions and experiments.
� We propose a global measure of the VSWT efficiency, namely the power extraction efficiency, which is the global reward
function in the ACRL process.
� Up to the best of our knowledge, this is the first time a RL-based approach has been validated over a high quality dynam-
ically accurate (and computationally expensive) VSWT simulator like OpenFAST.
� The experimental design provides a comprehensive exploration of the ACRL metaparameters space.

The outline of the paper is as follows. Section 2 reviews the state of the art of VSWT control approaches. Section 3 pro-
vides relevant RL background. Section 4 describes the proposed approach. Section 5 reports experimental settings and
results. Section 6 provides conclusions and further work ideas.
2. Variable-Speed Wind-Turbines control state of the art

In the last years, a great scientific effort has been made toward finding alternatives to fossil fuels with a lower environ-
mental impact. One of the most promising renewable energy sources is wind energy. Wind-Turbines (WT) transform the
wind kinetic energy into electrical energy with the smallest known environmental impact [11]. Furthermore, wind energy
is available in such quantities that it could potentially replace all the other sources still providing many times the energy
consumed by the whole world population [12]. However, WT are not able to harvest 100% of the energy passing through
the disk area drawn by the WT blades.Only a fraction according to the following expression is converted into electrical
power:
Pa ¼ 1
2
q � p � R2 � v3 � Cp; ð1Þ
where q is the air density, R is the radius of the disk area drawn by the blades, v is the wind-speed, and Cp is the power coef-
ficient of the WT. This coefficient is a unimodal function of the tip speed ratio k, with k ¼ xr �R

v , wherexr is the rotor’s angular
speed. A gearbox transmits the speed of the rotor to the generator ng ¼ xg

xr
, where ng is gearbox ratio, andxg is the generator’s

angular speed.
There are two types of WT: Fixed-Speed WT (FSWT) and Variable-SpeedWT (VSWT). FSWT operate at a fixed rotor speed,

hence, since x is constant, the power coefficient Cp only changes with v. Thus, FSWT can only reach maximum efficiency
(maximum Cp) for a specific wind speed. VSWT on the other hand, can change the rotor speed to operate at maximum Cp

for a broad range of wind speeds. For this reason, VSWT is more widespread than FSWT. The downside is that the control
of VSWT is more complicated because the controller must set both the blade pitch b and the generator torque Tg with a single
control objective: maximizing the power extraction efficiency.
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2.1. Baseline controllers

State of the art aproaches [13,10,9] tackle VSWT control by decomposing the problem into two separate control subtasks:

� control the blade pitch b to track a reference value for the generator speedxref that depends on v, i.e. the blade pitch con-
troller aims at minimizing the absolute generator speed error exg ¼ xg �xref

�� ��, and
� control the torque Tg to reduce the absolute power error ep ¼ Pe � Pref

�� ��, where Pe is the electrical power generated and
Pref is the reference value of electrical power to be achieved (which also depends on v).

These two subtasks are usually tackled by a proportional-integral-derivative (PID) feedback controller that aims to min-
imize the error variable e, whose parameters are denoted by ki; i ¼ 1 . . .n. In the conventional approaches, these parameters
are usually set by manual tuning or using a heuristic method [14], and they are kept constant during the entire life-cycle of
the system. The baseline controllers Vidal [9] and Boukhezzar [10] are both analytically derived from a simplified one-mass
dynamic model of a VSWT [10,4,3,5,6].

The Vidal model is specified by the following formulae:
_Tg ¼ 1
xg
�Tg A �xg þ _xg

� �þ A � Pref þ Ka � sgn ep
� �� �

; ð2Þ

b ¼ 1
2
Kpexg � 1þ sgn exg

� �� �þ Kitexg ; ð3Þ
where A;Ka;Kp and Ki are the controller parameters.
The Boukhezzar model is defined by the following two expressions:
_Tg ¼ 1
xg

Coep � 1
Jt

TaTg � KtxgTg � T2
g

� �	 

; ð4Þ

b ¼ Kpexg þ Kitexg ; ð5Þ

where C0;Kp and Ki are the controller parameters, Jt;Kt are parameters of the VSWT one-mass model and Ta is the aerody-
namic torque on the rotor blades.

2.2. Alternative control design approaches

In the literature, the modeling of the VSWT dynamics is simplified in order to achieve an analytical derivation of the con-
trollers [15], or to carry out simulations in affordable time. Examples of simplifications are the use of the two mass system as
a surrogate of the VSWT dynamics in [16], or the linearization of the VSWT model using extended Kalman filter [17] in order
to select the operation regime that must be feed to the PID controller.

Alternatives to PID controller design have been approached from diverse points of view, like the insertion of active ten-
dons inside the blades to achive reduction of vibrations due to wind turbulence [18]. The use of fuzzy modelling of control
command generation for blade pitch control [19] requires an a priori definition of the response strategy and the identification of
operating regimes that should be detected by a discrete event supervision subsystem. Fuzzy Mamdani ’s inference method has been
demonstrated for improved pitch control, requiring manual construction of the fuzzy rules [20]. A sensorless method based on the
readings of voltage and current at the output of the generator was developed to avoid WT overloading [21]. The modeling of non-
linear slide mode controller allows to cope with high frequency oscillations [22], and for large scale WT power optimization without
wind speed sensors [23], while Artificial Neural Networks have been also reported to assist in the speed control of the switched
reluctance generator driven by an VSWT [24]. Previous works reporting results of the application of RL to VSWT control design
[25–27] have been limited to learn one of the control subtasks according to its local control goal, testing the controller on simplified
VSWT models to reduce the computational costs. Moreover, these approaches have used the same input variables for the controller
and the learner. The approach proposed in this paperdeparts from such limitations, learning the control of the entire VSWT system
and carrying out the validation on high quality dynamic simulations.

3. Reinforcement learning

The trial-and-error interaction between an agent and its environment is modeled in the RL framework as a Markov Deci-
sion Processes S;A; T;Rh i, where S is the set of observable variables defining the system state space, A is the set of actions that
the agent can take, T : S� A� S! 0;1½ � is a stochastic transition function that gives the probability of observing state s0 after
executing action a in state s, and R is a reward function assessing the value of the outcome of a transition s; a; s0h ihas been. In
control applications, the agent’s goal is to learn a deterministic policy p sð Þ that maximizes the value function V sð Þ, that is
defined as the accumulated discounted rewards to be expected if the agent follows deterministic policy p sð Þ:
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Vp sð Þ ¼ E
X1
k¼0

rtþkþ1 � ct st ¼ sj
( )

; ð6Þ
where c is the discount factor weighting immediate and future rewards.
In Actor-Critic RL (ACRL) methods the agent has two components: the Actor whose task is to learn an optimal determin-

istic policy p� sð Þ from the interaction with the environment, and the Critic whose task is to estimate the value Vpt sð Þ of the
Actor current deterministic policy pt sð Þ at time t. Because the deterministic function that implements the policy and the
function that computesits value are modelled independently, the ACRL architecture allows to formulate and learn continu-
ous valued policies. This is a key feature for most real-world control problems, thus ACRL methods dealing with continuous
control problems have become widespread [28,29]. The main ACRL iteration loop follows a simple procedure: a) the Actor
observes the state s and selects an action a applying its deterministic policy a ¼ p sð Þ. b) The Critic, after observing the result-
ing state s0 and received reward rt , proceeds to update its estimate of Vpt sð Þ, and to give the Actor a critique dt . Finally, c) the
Actor updates its deterministic policy ptþ1 according to the critique. In this paper, the critique dt is computed following the
Temporal-Difference error formulation
dt ¼ rt þ c � Vpt s0ð Þ � Vpt sð Þ; ð7Þ

assessing whether the last selected action improved over the expected value of the deterministic policy.

3.1. Function approximation

Real-world control problems [30] often have continuous state and action spaces, which are best modelled using Value
Function Approximation (VFA) to represent the action value maps as parameterized functions instead of lookup tables
[31]. There are two main types of VFAs: linear and non-linear. Non-linear VFAs and Deep Reinforcement Learning (Deep
RL) [32] have been key to recent RL advances and thus, have received a lot of attention from the scientific community.
Although they can approximate more complex high-dimensional functions, non-linear VFAs are very expensive computa-
tionally and not suitable for real-time adaptation. On the other hand, linear VFAs require much less computation and have
better understood theoretical properties than non-linear VFAs [33], so that the effect of parameter variations are easier to
understand. Additionally, faster function evaluation and parameter update make linear VFA a priori better suited to real-
time control problems, such as VSWT control.

In this paper, the approximating function is as follows:
f xð Þ ¼~hT~/ xð Þ; ð8Þ

where~h is the vector of parameters learned by the agent, and / : X ! U is a feature extraction function mapping the input

space X (i.e, the state space S) to a feature vector ~/ xð Þ ¼ /1 . . ./m½ � in feature space U, following a kernel transformation
approach [34]. The experiments in this paper have used Gaussian Radial Basis Functions (GRBF) as feature extraction kernels:
/i xð Þ ¼ exp�
x�cik k2
2r2 ; ð9Þ
where i is the feature index, ci and r (which is the same for all GRBFs) are the parameters of the Gaussian kernel. Kernel
parameters are initialized by a grid search. For simplicity, this expression assumes that x is a real-valued scalar variable,
but it can be extended to vector states using a separate grid search for each state variable.

3.2. Exploration

The Actor deterministic policy can only be improved if the agent is allowed to explore alternative policies. When learning
a continuous valued policy function, exploration can be implemented in two ways: either by modeling the Actor policy dur-
ing the learning process as a stochastic process p : S� A! 0;1½ � [35], or by adding a perturbation signal to the output of the
deterministic policy computation. In the former case, the actual action is generated by a stochastic sampling process where
the exploration takes place. From a systems control perspective, the latter approach makes more sense because control com-
mands should be generated univocally for each system state, hence it has been adopted in the computational experiments.
To avoid biasing the exploration, the perturbation signal must follow a stochastic process whose distribution has zero mean
and is symmetric around the mean. Specifically, in this paper it follows an Ornstein-Ühlenbeck process O tð Þ [36], which is a
symmetric mean-reverting process widely used to implement the exploration in control applications of RL [32] because it
produces time correlated perturbation samples that result in a more natural exploratory behavior. The Ornstein-Ühlenbeck
stochastic process is defined by the following stochastic differential equation:
dgt ¼ �qgtdt þ rdWt; ð10Þ

where parameters q and r control how far the perturbation signal departs from its mean value and how fast it returns to it,
respectively. Wt is a Wiener process [37]. The following formula provides the discrete realization of the process:
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gtþ1 ¼ gt � qgtDt þ r
ffiffiffiffiffiffi
Dt
p

N 0;1ð Þ: ð11Þ

Specifically, the perturbation signal used in the experiments is defined as
O tð Þ ¼ gt � w; ð12Þ

where w is the scaling factor modulating the amplitude of the perturbation signal without changing its statistical properties.
This perturbation signal is added to the Actor policy to generate the action executed at each time-step t:
at ¼ pt þ O tð Þ ð13Þ
3.3. Learning rules

The ACRL approach to VSWT control design is implemented by a Continuous Actor Critic Learning Automaton (CACLA)
[38]. The Critic is implemented as a Temporal-Difference (TD) learning rule [28]defined as follows:
~wtþ1  ~wt þ ac � dt � rVt stð Þ; ð14Þ

where wt

�!c is the VFA weight learned by the Critic at time t, and ac is the learning rate that can be annealed for improved
convergence. In the case of linear VFA, the rule reduces to
~wtþ1  ~wt þ ac � dt � /c stð Þ; ð15Þ

where /c stð Þ denotes the Critic kernel. The Actor parameter learning rule is a gradient descent algorithm that updates the
policy function parameters only when a value improvement is observed:
~htþ1  ~ht þ aa � at � pt st;~ht
� �� �

� rpt st ;~ht
� �

if dt > 0; ð16Þ
where ha is the weight vector of the policy linear approximation function learned by the Actor, at is the action taken by the
agent at time-step t, and aa is the Actor’s learning rate. The linear approximation rule used in the experiments is as follows:
~htþ1  ~ht þ aa � at � pt st;~ht
� �� �

� /a stð Þ if dt > 0; ð17Þ
where /a stð Þ is the Actor kernel. Moreover, if there is no exploration (i.e. at ¼ p stð Þ) then the learning rule stops to work,
because the Actor will become purely deterministic. This is contrary to conventional policy gradient methods that would
update the policy in the opposite direction (2pt stð Þ � at) when the evaluation of the action by the Critic results in a negative
TD dt value. Therefore, CACLA doesn’t assume that 2pt stð Þ � at may have a value greater than at , because when dt < 0 there is
no evidence that gradient descent will improve the value of the policy. CACLA learning strategy avoids fluctuations of the
policy [38]. The argument is that adaptation when dt > 0 follows an evidence of improvement, while adaptation when
dt < 0 does not ensure improving future values of the policy, thus inviting dynamic oscillations.

In order to decide which Actor learning procedure is most appropriate for our problem, we have carried out preliminary
experiments comparing CACLA with Deep-CACLA [29], deep Q-network (DQN) [39] (in this approachwe explored two learn-
ing rates 10�4 and 10�5), and deep deterministic policy gradient (DDPG) [40] (in this approach we explored two learning
rates 10�4 and 10�5 for the critic and 10�5 and 10�6 for the actor). We allowed 50 training episodes to each approach.As
explained in Section 5.5 below, each RL experiment is time consuming due to the VSWT dynamical simulation, so these
exploratory experiments were not exhaustive. Table 1 contains the best results for each approach, and the computation time
of each approach relative to that of CACLA. CACLA achieve the greater average reward in both controller models Vidal* and
Boukhezzar*, besides CACLA computational time requirements is several orders of magnitude smaller than that of the deep RL
approaches, as shown in Table 1. One reason for this significant difference lies in the specifics of the initialization of CACLA
that can not be used by the deep RL architectures.

3.4. Convergence issues

There are no theoretical results that ensure general convergence of both CACLA and the competing deep RL approaches,
hence much of the work follows heuristic guidelines. The overall process is a strongly non-linear optimization process. Often,
the best we can obtain is a good suboptimal parameter setting, close enough to the global optima to be useful in practice. To
ensure the convergence of the RL, the adequate management of the exploration is crucial. While exploration is active, the RL
process is allowed to jump between local optima attractors. Once exploration isswitched off, the RL optmization process
remains in the attractor of a, hopefully, good suboptimal solution. Another critical issue for convergence is the initialization
of the agent. To speed up convergence, we have initialized the modules to the best PID parameter settings achieved by con-
ventional procedures.

The CACLA is an on-policy approach that updates the parameters of the policy applying actions selected by the policy
being learned. On the other hand, off-policy algorithms are able to learn from experience tuples where the actions are drawn
from any other policy [31]. The literature suggests that on-policy approaches are more unstable with longer convergence
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Table 1
Comparative performance of CACLA and deep RL alternatives on preliminary experiments, measured by the achieved average reward, and by the relative
computational cost (CACLA computation time is the unit).

Vidal* Boukhezzar* Vidal* Boukhezzar*
Average reward Computational cost

CACLA 0.821 0.956 1 1
Deep-CACLA 0.652 0.768 33.65 24.2

DQN 0.126 0.208 134.77 98.33
DDPG 0.390 0.130 143.84 115.45
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times but more adaptable to changing environments than off-line approaches [41–43]. In the [44] seminal paper on achiev-
ing human level performance by RL, two techniques were reported to improve convergence of on-policy RL algorithms,
namely experience replay and target function freezing.Algorithm 1 specifies the CACLA implementation and the application
of these two features. Experience replay uses a fixed-size buffer to store experience tuples E ¼ s; a; s0; rh if g, where new tuples
are introduced at random preserving the maximum allowed buffer size. The experience buffer is used in step 7 of the algo-
rithm to compare the actual action generated applying the current policy against the best valued stored action.Experience
replay reduces the temporal correlation between tuples improving the learning performance. Target function freezing is a
technique that evolves two sets of parameters of the Actor function learned: the online weights that are updated every time
step, and the target weights. The latter are a copy of the online weights updated every m time steps , which stays frozen dur-
ing this period. Online weights are the ones actually used to generate the on-policy action decision.

Algorithm1 An episode of the CACLA enriched with experience replay and target function freezing.

Notation:card() is the cardinality of the set, mod() is the modulus operation. Ne maximum size of the set of experience

E. m is the interval between renewal of the frozen target function parameters. ~hf and ~ht are the frozen and current

parameters of the Actor’s policy functional approximation pt st ;~h
� �

. ~wt are the parameters of the current Critic’s state

value function approxmation Vpt st; ~wtð Þ. O tð Þ is anOrnstein-Ühlenbeck process.

Input: Initial parameter configurations, ~hf ¼ ~h0; ~w0 , s0, and specific settings of Ne, and m
For t in 1; . . . ; tmaxf g
1: Observe current state st , if st is a final state then exit.

2: The Actor computes the next action at ¼ pt st ;~ht
� �

þ O tð Þ
3: Applying action at the system trasfers to state stþ1 and receives reward rtþ1
4: Include e ¼ st ; at; rtþ1; stþ1h iin the set of experience E with probability pe
(a) if card Eð Þ > Ne then remove older et from E until card Eð Þ ¼ Ne

5: Compute the temporal difference error dt ¼ rtþ1 þ c � Vpt stþ1; ~wtð Þ � Vpt st; ~wtð Þ
6: Update Critic weights ~wtþ1  ~wt þ ac � dt � /a stð Þ,
7: Update Actor policy ~htþ1  ~ht þ aa � at � arg max

V st2Eð Þ
a 2 E a ¼ p st ;~hf

� ����n o �
� /a stð Þ if dt > 0,

8: if mod t;mð Þ ¼ 0 then ~hf ¼~ht
4. Actor-critic VSWT controller optimization

In this section, we formulate our proposed architecture to learn simultaneously the parameters of the blade pitch b, and
the generator torque Tg controllers. A single reward signal combines the response of both subsystems, looking for the opti-
mal performance of the whole VSWT. The overall control scheme is depicted in Fig. 1: the Actor learns the parameters of a
baseline controller that maximize the expected future rewards estimated by the Critic. This architecture differs from previ-
ous published approaches by using different state subspaces for the Actor-Critic learner (sl 2 Sl), and the baseline controller
(sc 2 Sc), therefore the complete observable state space is composed of both input subspaces S ¼ Sl [ Sc . The rationale sup-
porting this approach is that the baseline controller may have different optimal parameter values in different operational
state subspaces corresponding to different working conditions. In the experiments, variables v and Tg characterize the work-
ing condition.

4.1. Parameter space and state space

The Actor-Critic learns both the weight vector~hc corresponding to linear functional approximation of the current policy

V
~h slð Þ, and different parameter vectors corresponding to each baseline controller. For clarity, in Fig. 1 we have grouped these

parameter vectors into two sets of weights:
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Fig. 1. Diagram of the proposed baseline controller parameter optimization architecture based on Actor-Critic RL.
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� ~hb denotes the vector of parameters for the linear functional approximation of the blade pitch b controller, and

� ~hTg denotes the vector of parameters for the linear functional approximation of the generator torque Tg controller.

Therefore, the Actor generates two vector valued policies corresponding to the parameters of each subsystem controller:
~pb slð Þ and ~pTg slð Þ. The dimension of each of these policies is equal to the number of parameters of the target controller. For
each subsystem policy generated, the Actor uses a different perturbation signal, which must be calibrated independently
with an appropriate amplitude factor. This perturbation amplitude depends on the value range of the baseline controller
parameter. Using continuous VFA, the parameters of each baseline controller will change smoothly over time while it will
be keeping its topology. The output of the overall controller system is the aggregation of the outputs of the baseline con-
trollers, namely the blade pitch b and the generator torque rate _Tg , which are a function of the state variables in sc and sl.

That means that we effectively extend the baseline controller b; _Tg : Sc ! R to a controller with augmented input space

b; _Tg : S! R.

4.2. ACRL initialization

For a successful and time efficient ACRL training convergence, it is very important to initialize the Actor policies appro-
priately. Starting from random initialization produces huge waste of computation time, compromising convergence [45–48].

The proposed architecture allows to use heuristic parameter values k̂bi ; i ¼ 1 . . .n and k̂Tgi ; i ¼ 1 . . .m to initialize the Actor

policy weights (~hb and ~hTg , respectively). Assuming a Linear VFA f sð Þ ¼P~h �~/ sð Þ with normalized activation factors, i.e.P
/ sð Þ ¼ 1, each baseline policy weights is initialized as follows:
~hb0 ¼ k̂b1 . . . k̂
b
1; . . . ; k̂

b
n . . . k̂

b
n

h i
; ð18Þ

~hTg0 ¼ k̂Tg1 . . . k̂Tg1 ; . . . ; k̂Tgm . . . k̂Tgm
h i

: ð19Þ
This procedure sets the best parametrization of the baseline controller as the starting point of the learning process. After
the initialization procedure, the following will hold for any state sl 2 Sl:
~pb
0 slð Þ ¼ k̂b1 . . . k̂

b
n

h i
; ð20Þ

~pTg
0 slð Þ ¼ k̂Tg1 . . . k̂Tgm

h i
; ð21Þ
which means that, initially:
b sc; ~pb
0 slð Þ

� � ¼ b sc; k̂
b
1 . . . k̂

b
n

� �
; ð22Þ

_Tg sc; ~p
Tg
0 slð Þ

� �
¼ b sc; k̂

Tg
1 . . . k̂Tgn

� �
: ð23Þ
5. Experiments

To validate our approach, we have conducted a series of simulation experiments to compare the two state of the art base-
line controllers, denoted Vidal and Boukhezzar, against their ACRL optimized versions, denoted Vidal� and Boukhezzar�,
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respectively. In this section, we report the settings used in our experiments and the results we obtained in the simulations.
Following the standard in VSWT literature, we measure controller performance by the absolute power error (in Watts):
1 The
EP ¼
Z
t
Pe � Pnj j: ð24Þ
Following the RL standard scheduling, the interaction between the controllers/agents and the simulated VSWT was struc-
tured in episodes, each episode consisting of 300 s simulated time.

5.1. Experimental design

The experimental work was divided into two phases:

� Heuristic parameter tuning of the baseline controllers: consisting in a grid search in parameter space looking for the
minimum Ep for each controller.For every different combination of parameter values, we ran a simulation episode using a
constant wind profile of 17m=s. These parameter values provide the reference performance as well as the initial condition
for the ACRL optimization.
� ACRL controller optimization. This second battery of experiments used a training/evaluation methodology [30]. The
agent was allowed to learn the control of the system for a total of 100 training episodes, using a randomly selected wind
profile with a mean wind speed in range 14;17½ �m=s. Every 10 training episodes, the controller was evaluated using a
wind profile with mean wind speed of 17m=s . The agent wasn’t allowed to do any exploration during evaluation
episodes.

5.2. Dynamic model

We used OpenFAST [8]1 in all our experiments, so that we have highly accurate reproduction of the complex dynamics of the
actual physical system. OpenFAST is a state-of-the-art simulation suite certified by the Germanischer Lloyd Windenergie GmbH
and mantained by the National Renewable Energy Laboratory (NREL) with support from the US Department of Energy’s Wind
Energy Technology Office. The specific model we used is the 5 MW reference VSWT presented in [13]. The OpenFAST parameter
values used accross all the experiments are reported in Table 2. The wind profiles were generated with TurbSim, an stochastic,
full-field, turbulent-wind simulator included in the OpenFAST simulation suite. Our simulations used a control time-step of
Dt ¼ 0:00125, as recommended by NREL developers. Using that setting, it took us approximately 6 s to compute 1 s of simulated
time on a standard desktop computer.

5.3. Grid search tuning of the baseline controllers

To find the best parameters for each baseline controller, we carried out a grid search over the values shown in Table 3,
testing all the possible combinations for every controller. This amounts to 9� 7� 9� 4ð Þ ¼ 2268 evaluation runs of Open-
FAST for the Vidal controller and 9� 9� 4ð Þ ¼ 324 evaluation runs for Boukhezzar. This difference is due to the different
number of parameters of the baseline models: Vidal controller has 4 parameters, whereas Boukhezzar has only 3. The best

performance found for Vidal was Ep ¼ 99:160 �474:139ð ÞkW , setting parameter values as bA ¼ 10�1; bK a ¼ 5 � 104,bKp ¼ 10�2 and bK i ¼ 0. On the other hand, Boukhezzar best performance found is Ep ¼ 21:764 �220:198ð ÞkW , setting param-

eter values as bC0 ¼ 1; bKp ¼ 10�2 and bK i ¼ 0.

5.4. ACRL optimization and grid search settings

The aim of the second experimental phase was to improve over the best parameterizations of the baseline controllers. We
denote the ACRL optimized versions as Vidal� and Boukhezzar�. The wind speed v and the electrical generator torque Tg char-
acterize the operating region of the VSWT, denoted as Sl ¼ v ; Tg

� �
. This definition allows the RL agent to tune the controller

parameters for each operating region. Regarding VFA, Gaussian RBFs have consistently shown better results than linear VFA
approaches (i.e., tile-coding), hence the experiments in this paper use a Gaussian RBF with 400 features: 20 uniformly dis-
tributed points along the range of values for each input variable in Sl. The Actor applies CACLA to search for the optimal pol-
icy whilst the Critic applies a TD learner to estimate the valuation function. The parameters of the Ornstein-Ühlenbeck
process O tð Þ (cf. Section 3.2) are set to q ¼ 0:1 and r ¼ 1. We annealed some of the learning hyperparameters, specifically:
the perturbation signal amplitude added to each of the Actor’s output policies (wA;wKa ;wKp ; . . .), the Critic’s learning rate ac

and the Actor’s learning rate aa. We set these parameters initially to some initial value linearly decaying them down to 0 at
the end of the experiment. We set the Actor’s initial learning rate aa

0 ¼ 10�6 and performed a grid search over the decaying
hyperparameters. For each node in the grid, corresponding to a combination of hyperparameter values, a complete realiza-
repository is hosted in: https://github.com/OpenFAST/openfast.
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Table 2
OpenFAST Parameter settings used in the experiments.

Nominal electrical power Pnom 5MW

Nominal rotor speed xrnom 1:26711 rad=s
Nominal generator speed xgnom 122:91 rad=s

Gear-box ratio ng 97
Hub height h 90m

Rotor diameter d 128m
Air density q 1:225kg=m3

Blade pitch b 0;p=2½ �
Blade pitch rate _b �0:1396;0:1396½ �
Generator torque Tg 0;47402:91½ �

Generator torque rate _Tg �15000;15000½ �

Table 3
Values used in the grid search of the baseline controllers before the RL optimization phase of the experiment. Last column (*) shows the optimal setting found
by grid search.

Controller Parameter Grid Values *

A 0:01;0:025;0:05;0:075;0:1;0:25;0:5;0:75, 1 10�1

Vidal Ka 5 � 103;104;5 � 104;105;5 � 105, 106;5 � 106 5 � 104

Kp 0:01;0:25;0:05;0:075;0:1;0:25;0:5;0:75, 1 10�2

Ki 0;0:01;0:025;0:05 0

C0 0:01;0:025;0:05;0:075;0:1;0:25;0:5;0:75, 1 1
Boukhezzar Kp 0:01;0:025;0:05;0:075;0:1;0:25;0:5;0:75, 1 10�2

Ki 0;0:01;0:025;0:05 0
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tion of the RL optimization process was performed. The specific values used for the ACRL hyperparameters grid search are
shown in Table 4.

Actor weights are set initially to the best parameter values found parameter grid search experiments for each baseline
controller (cf. Section 5.3) as stated in Eq. 19. When starting from the Vidal controller, initial values are as reported in Sec-

tion 5.3: ~hA0 ¼ 10�1, ~hKa0 ¼ 5 � 104 and ~hKp
0 ¼ 10�2. When starting from the Boukhezzar model, it is simplified setting constant

Ki ¼ 0, other initial values were~hC0
0 ¼ 1,~hKp

0 ¼ 10�2 and~hKi
0 ¼ 0. In both cases, the weights of the Critic were initialized with

null values (~hc0 ¼ 0).
In order to align the reward signal with the control goal (i.e. minimize the absolute mean power error Ep), the reward

function is defined as:
2 http
r ¼max 1� Pe � Pn

l

���� ����;�1 �
; ð25Þ
where l is the tolerance parameter (l ¼ 5 � 105 in our experiments). This reward function returns a real value bound in the
range �1;1½ � that is proportional to the absolute power error. It is positive when the error is within the tolerance region and
negative outside it. Fig. 2 shows the shape of the reward function.

5.5. Computation time requirements for ACRL simulations.

Each instance of the ACRL learning experiment consisted of 100 training episodes and 11 evaluation episodes. Each epi-
sode duration is 300 s in simulated time. OpenFASTratio of real time computation to simulated time is ’ 6. It does not allow
any kind parallelization. In a rough calculation, the total CPU time required for the OpenFAST simulation of the VSWT
dynamics on a single CPU core to run a single ACRL experiment instance is approximately 111 � 300 � 6 	 2 � 105 s, equivalent
2:31 days of execution. Therefore, the time requirements of the ACRL computations are negligible compared to OpenFAST
simulation. The complete set of hyperparameter grid search experiments evaluates all the possible combinations of the 4
different values given to the 4 ACRL hyperparameters for each of the baseline controllers. This makes a total of
2 � 44 ¼ 512 instances of the ACRL optimization experiment. Thus, a rough estimation of the total amount of CPU time
required for OpenFAST simulations is 2:31 � 512 ¼ 1;184 days. An inhouse developed tool SimionZoo2 [49], allows to dis-
tribute the experimental instances over a farm of heterogenous computers. Exploiting SimionZoo, we were able to run as many
instances simultaneously as available CPU cores, making the most possible efficient use of the resources. The available computer
farm has 330 CPU cores, reducing the required total real computation time to less than 5 days if all the computers are com-
s://github.com/simionsoft/SimionZoo
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Table 4
Hyperparameter values used in grid search for the optimal learning of Vidal� and Boukhezzar� . Last column (*) shows the optimal setting found by grid search.

Experiment Hyperparameter Grid Values *

Vidal� wA
0 10�2;2:5 � 10�2;5 � 10�2 2:5 � 10�2

wKa
0 102;103;104;105 104

wKp

0 2:5 � 10�2;5 � 10�2;10�2;5 � 10�3 5 � 10�3
ac
0 10�2;5 � 10�3;10�3;5 � 10�4 10�5

Boukhezzar� wC0
0 10�2;5 � 10�3;10�3;5 � 10�4 10�2

wKp

0 10�3;5 � 10�4;10�4;5 � 10�5 5 � 10�5

wKi
0 10�3;5 � 10�4;10�4;5 � 10�5 5 � 10�4,
ac
0 10�2;5 � 10�3;10�3;5 � 10�4 10�2

Fig. 2. The reward function used in our experiments. The output is a function of the absolute power error Ep .
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pletely devoted to the project, which is not very often. For reproducibility purposes, we have published the project file needed to
reproduce the experiments at the Computational Intelligence Group’s web page.3
5.6. ACRL grid search results

The best results achieved by the ACRL improved controller Vidal� were obtained with the following settings of the hyper-

parameters: wA
0 ¼ 2:5 � 10�2;wKa

0 ¼ 104, wKp
0 ¼ 5 � 10�3, and ac

0 ¼ 10�5. The best performing hyperparameter settings for

Boukhezzar� were: wC0
0 ¼ 10�2;wKp

0 ¼ 5 � 10�5, wKi
0 ¼ 5 � 10�4, and ac

0 ¼ 10�2. In Table 5 we compare the average reward and
the average power error of the baseline controllers with the corresponding optimal controller found by ACRL. In both cases,
the ACRL improved controller outperforms the baseline controller significantly. Regarding the average power error, Vidal�

and Boukhezzar� are, respectively, 4:15% and 19:12% more efficient than the best the baseline controllers Vidal and Boukhez-
zar. The standard deviation of the power error also decreases by 4:58% and 24:30%, respectively, which means that the ACRL
optimized controllers are more stable than the baseline controllers. This significant performance improvement suggests that
adding a RL learner to the control loop of a VSWT may be worth the cost.

For a visual qualitative assessment of the different learning evolution of the Vidal* and Boukhezzar* model settings,
Figs. 3a, 3b, 4a, and 4b show the three best performing learning instances of each model. Figs. 3b and 3a show, respectively,
the average reward and absolute generated power error of the three best performing Vidal� controllers computed in the eval-
uations episodes during the learning process. The dark green solid line represents the average values of the three averaged
value series, and the light green area shows their min;max½ � bounds. The performance measure values of the first evaluation
episode correspond precisely to those of the baseline controllers (cf. Table 5). As the ACRL process progresses, the perfor-
mance of the optimized controller Vidal� improves, decreasing the average absolute power error and increasing the average
reward. The plot shows that the performance variance of the three best Vidal� controllers is rather low.
3 The project file and the SimionZoo binaries for Windows/Linux can be downloaded fromhttp://ehu.eus/ccwintco/index.php?title=SimionZooProjects.
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Table 5
Average (� standard deviation) rewards and absolute power error of the best ACRL trained model instances Vidal� and Boukhezzar� , compared with the baseline
models Vidal and Boukhezzar.

Controller Average reward Average power error (kW)

Vidal 0:898 �0:416ð Þ 99:160 �21:77ð Þ
Vidal� 0:900 �0:412ð Þ 95:041 �21:27ð Þ

Boukhezzar 0:975 �0:201ð Þ 21:764 �14:83ð Þ
Boukhezzar� 0:976 �0:193ð Þ 17:602 �12:91ð Þ

Fig. 3. Average values of the performance indicators of the three best Vidal� controllers learned during the evaluation episodes. The solid lines represent the
mean value and the soft band around it represents the min;max½ � bounds of the three series.
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Fig. 4. Average values of the performance indicators of the three best Boukhezzar� controllers learned during the evaluation episodes. The solid lines
represent the mean value and the soft band around it represents the min;max½ � bounds of the three series.
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Figs. 4a and 4b plot the performance of the three best ARL optimized Boukhezzar� controllers which is so similar that the
light green showing the min;max½ � bounds of the three series is barely distinguishable. Learning process for Boukhezzar� con-
troller model appears to be much more stable than for Vidal� controller model.We have examined the results and concluded

that two of the hyperparameters (wKi
0 and ac

0) had little influence on the overall performance for any combination with

wC0
0 ¼ 10�2 and wKp

0 ¼ 5 � 10�5.
Figs. 5 and 6 show 10 snapshots of each function approximation learned while carrying out the ACRL optimization of

Vidal� and Boukhezzar�, respectively. We represent the response of the function approximation of each parameter as a
heat-map where bright red and blue correspond to the maximum and minimum value, respectively. All other values are
376



Fig. 5. Snapshots of the four functions learned during the learning of Vidal� (the three policies and the value function) represented as heat-maps where red
represents the highest value and blue represents the lowest value. Snapshots are ordered by time from left to right and from top to bottom.
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Fig. 6. Snapshots of the four functions learned during the learning of Boukhezzar� (the three policies and the value function) represented as heat-maps
where red represents the highest value and blue represents the lowest value. Snapshots are ordered by time from left to right and from top to bottom.
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assigned a color using linear interpolation over the red-blue color map. The maximum and minimum values are calculated
using the whole set of snapshots for a more coherent visualization of the functions. The axes of these plot representations are
the range of values of the blade pitch and the generator torque. For each controller, we image the three Actor policies cor-
responding to the three baseline controller parameters and the value function learned by the Critic. The most interesting
aspect of these heat-maps is that all policies show peaks and valleys, which means that the Actor performed an independent
tuning of the parameters with respect to the input state variables. This shows that the proposed control architecture is not
decreasing or increasing the rate uniformly, but tuning them depending on the working conditions characterized by the
input variables in Sl (v and Tg).
6. Conclusions

This paper presents an Actor-Critic RL architecture to optimize the parameters of two baseline VSWT controllers (Vidal
and Boukhezzar) using different sets of input variables for the RL agent and for the baseline controller. Additional state vari-
ables, which are independent of the baseline controller parameters, characterize the working condition of the system, allow-
ing the ACRL agent to fine-tune the controller parameters differently for each working condition. The proposed architecture
optimizes the parameters of each subsystem controller in order to minimize the overall electrical power error. This is in con-
trast with conventional approaches to VSWT control that decompose the control problem into two separate control subtasks,
each relying on the other to collaborate toward the common control goal.

The approach has been validated using the state-of-the-art VSWT simulation suite OpenFAST. This is, up to the best of our
knowledge, the first time a RL-based approach to VSWT control has been validated in such a realistic simulation environ-
ment. Computational experiments have shown that our architecture is able to improve over the baseline controllers, learning
the parameters that maximize the global performance of the VSWT as a function of input variables not considered by the
original baseline controllers. The improvement suggests that RL-enhanced controllers may be worth the cost of the required
investment.

The computational experiments have used linear VFAs because they can be evaluated and updated faster than non-linear
VFAs, making them more suitable for real-time control. Nevertheless, as graphical processing units (GPU) are evolving fast,
the technology may allow soon the use of Deep RL methods in real-time control problems with very fast control time step
requirements (i.e, VSWT control). This is a very interesting line of research we plan to follow in the future.
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