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Abstract: Nowadays, biopolymers are playing a fundamental role in our society because of the en-
vironmental issues and concerns associated with synthetic polymers. The aim of this Special Issue
entitled ‘Women in Polymer Science and Technology: Biopolymers’ is highlighting the work designed
and developed by women on biopolymer science and technology. In this context, this short review
aims to provide an introduction to this Special Issue by highlighting some recent contributions of
women around the world on the particular topic of biopolymer science and technology during the last
20 years. In the first place, it highlights a selection of important works performed on a number of
well-studied natural polymers, namely, agar, chitin, chitosan, cellulose, and collagen. Secondly,
it gives an insight into the discovery of new polysaccharides and enzymes that have a role in their
synthesis and in their degradation. These contributions will be paving the way for the next generation
of female and male scientists on this topic.

Keywords: natural polymers; agar; chitin; chitosan; cellulose; collagen; marine polysaccharides;
marine CAZymes

1. Introduction

Natural polymers, also known as biopolymers, are naturally occurring materials,
formed during the life cycles of living organisms. They can be derived from plants (e.g., cel-
lulose), algae (e.g., agar), animals (e.g., chitin and collagen), bacteria (e.g., bacterial cel-
lulose), and fungi (e.g., chitosan) (Figure 1). Biopolymers present unique properties and
advantages, namely, high biocompatibility, lack of toxicity, biodegradability, stability, avail-
able functional groups, and often are low cost. These properties make natural polymers
interesting sustainable alternatives to replace synthetic polymers in materials develop-
ment. Thus, in the last decades, there has been a prompt development and breakthrough
in biopolymer science and technology to better understand their fundamental and applied
biological, physicochemical, morphological, and mechanical properties [1–7]. Moreover,
the challenging prospection for novel natural polymers has led to fundamental discoveries;
in particular, within the rich fount of marine polysaccharides, and their related enzymes
(carbohydrate-active enzymes or CAZymes) that represent marine microscopic life [8–10].
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Figure 1. Chemical structure of (A) agarose, (B) cellulose, (C) chitin, (D) chitosan, and (E) collagen.

Henri Braconnot or Anselme Payen are names that are very well known in the biopoly-
mer field for their outstanding discovery of chitin and cellulose. Maybe the names An-
gelina Fanny Hesse and Wanda Kirkbride Farr are not as widely recognized as others
are in the field, however, the outstanding idea of Hesse to use agar as culture media for
growing microorganisms in 1882 revolutionized microbiology [11]. In 1940, Farr discovered
the mechanism of cellulose formation in the plant cell walls, answering a question that had
puzzled scientists for a long time [12]. Since the discovery of these polymers, a number
of great works have highlighted their importance and greatly implemented the work of
the pioneers of biopolymer science. During the last 20 years, many research teams have
dedicated their time to biopolymer sciences and have led to several advances, discoveries,
and innovations (Figure 2), building upon the general knowledge of natural polymers [13].
In this paper, we wanted to showcase some of these recent devoted efforts by highlighting
the work of women investigators worldwide (both well-recognized leaders and rising
stars) in the biopolymer community. The aim of this paper is not to list all the numerous
accomplishments of women in the biopolymer science as it would be an impossible task.
Herein, we rather want to highlight some examples of scientific advances of some well-
known natural polymers that have been made possible by the dedication of researchers
in women-led teams.
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Figure 2. Applications of biopolymers. Reprinted from ref. [14].

2. Advances in Biopolymer Research: Examples from Well-Known Biopolymers
2.1. Agar

The use of agar as a gelling agent is very ancient, and in particular, in several Southeast
Asian cuisines. It is said that it was discovered in the 17th century in Japan by an innkeeper
named Mino Tarōzaemon who noticed the jellification of a seaweed soup after a night
at cold temperatures. It was only in 1859 that the chemist Anselme Payen subjected
agar, extracted from the red seaweed Gelidium corneum, to chemical analysis [15]. One of
the major breakthroughs concerning the use of agar was its utilization as a solid medium for
the culture of microorganisms. Although agar was first described for use in microbiology
in 1882 by the German microbiologist Walther Hesse, an assistant working in Robert
Koch’s laboratory [16], it was Fanny Hesse’s idea, Walther Hesse’s wife, to use agar as
an alternative to gelatin. Since then, the knowledge on agar, its extraction processes, and its
properties have widely extended.

Agar is a collective term used to describe a mixture of gelling polysaccharides made
up of D- and L-galactose. It has a linear sugar skeleton consisting of alternating units of
1-4 linked 3-6-anhydro-α-L-galactose and 1-3-linked β-D-galactopyranose [17]. Agar can
be fractionated principally into two components, agarose and agaropectin. Agarose is
the gelling fraction, and it is a neutral linear molecule with low levels of sulphation, while
agaropectin is the non-gelling fraction characterized as a heterogeneous mixture of smaller
molecules including substituted galactose residues and methylated or sulphated sugar
units. The relative proportions of agarose and agaropectin are known to vary between
species, locality, and environmental conditions. Thus, the selection of raw material can be
used to source specific agar functionality [18]. Agar is mainly found in the cell-matrix of red
seaweeds of the order Gelidiales (Gelidium and Pterocladia) and Gracilariales (Gracilaria
and Hydropuntia), which have become the major worldwide sources [19]. The prop-
erties of agar make it suitable for applications in diverse fields with high-added value.
For instance, the most common applications include food, feed, cosmetics, pharmaceutical,
and biotechnology (mainly microbiology as growth media for culturing bacteria), but po-
tentially emerging applications may also include biomedical, agriculture, biomaterials,
and bioplastics.

The industrial production of agar is performed by traditional hot water extraction
during several hours under conventional heating [20]. However, this conventional method
involves a large volume of water and high-energy requirements; thus, novel strategies
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using eco-friendly techniques are needed. In this sense, Amparo López-Rubio and her
group have made an important contribution, not only for the successful extraction of
agar from the red algae Gelidium sesquipedale but also for the use of eco-friendly methods
following the principles of ‘Green Chemistry’. For instance, Martinez-Sanz et al. reported
the production of agar-based extracts by applying ultrasound- and microwave-assisted
methods, highlighting the potential of these alternative methods to produce more sustain-
able agar-based extracts for food-related applications [21,22]. Additionally, a further step
in the sustainable use of natural sources by eco-friendly approaches was performed by
Sagrario Beltrán’s and Rodrigo Melgosa’s group from the University of Burgos, Spain. They
have been working on the valorization of the solid residue generated after agar extraction
from the red algae G. sesquipedale [23].

In recent years, the use of agar-based biomaterials in emerging areas, such as tissue
engineering or ‘smart materials’, has gained great interest. In this sense, the group of
Gonçalves and colleagues has made a significant contribution. For instance, Sousa et al.
studied the structural and physicochemical properties of agar extracted from Gracilaria
vermiculophylla under microwave heating [24–26]. In a further study, the same research
group investigated the formation of agar gels in aqueous media focusing on the different
molecular assemblies to understand how these associations can be modified to meet the spe-
cific needs of a given application [27]. After a deep characterization of agar and agar gels,
they successfully reported the first study of the production of agar-based nanofibers by
electrospinning, opening new opportunities for the fabrication of agar-based biomaterials
in the form of nanofibers [28].

Another important application for agar-based materials is the production of films for
food packaging. Koro De la Caba and her team (University of Basque Country, Spain)
have been actively working on the production of food packaging from marine by-products.
For instance, they reported the preparation of agar-based films from G. sesquipedale using
a thermo-molding method to produce renewable and biodegradable films [29–31]. Fol-
lowing a similar approach, the group of Gonçalves and colleagues developed different
strategies to improve the mechanical strength and water resistance of agar films [32,33] and
proposed alternative plasticizers for the production of thermo-compressed agar films [34].
Moreover, the group of Amparo López-Rubio from the Spanish National Research Coun-
cil presently works on the production of agar-based hydrogels and bioactive aerogels as
matrices for the controlled release of bioactive compounds in food systems [35,36]. An orig-
inal idea from the same group was to use agarose to encapsulate probiotic bacteria and
improve their viability during storage, which is a promising approach for the preparation
of probiotic functional foods [37].

2.2. Chitin and Chitosan

Chitin has a scientific research story of over 200 years. It began in 1811 with the French
chemist Henri Braconnot, with chitin isolation and characterization from some fungal
species. It was not until 1859 that Rougeut discovered that chitin could be manipulated
through chemical and temperature treatments, with heated potassium hydroxide, resulting
in a soluble substance. This compound was named “chitosan” in the late 19th century
by the German scientist and physiologist Felix Hoppe-Seyler [38]. Since then, researchers
efforts have led to the discovery of various sources of chitin, its structural characteriza-
tion [38,39], and more recently the isolation of nanochitin [40]. In the last two decades,
research has focused on improving the properties of chitin- and chitosan-based materials,
either through their combination or with other materials or obtaining derivatives by func-
tionalization [41]. Extraction techniques have also been improved, which have evolved
from classical chemical extraction of chitin to green chemistry strategies.

Chitin is a semi-crystalline, high-molecular-weight linear polysaccharide made up of
β-(1,4)-linked N-acetyl-2-amido-2-deoxy-D-glucose units [42]. There are two principal types
of crystalline isoforms, α- and β-chitin. Those two isoforms differ on their chain alignment,
which determines the final physicochemical properties of the chitin. α-chitin has a compact
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and highly crystalline structure that results from antiparallel chain arrangement that
favors strong hydrogen bonds, whereas the less abundant β-isoform is more reactive and
has a high affinity for solvents due to its parallel chain arrangement that provides weaker
hydrogen bonds [43]. This biopolymer is present in the cell wall of fungi and is the main
compound in the exoskeleton of crustaceans and arthropods and is also present in mollusks,
thus making it the second most abundant polysaccharide on earth after cellulose. The major
source of chitin is the marine crustacean shells waste from the fisheries industry, such as
shrimp, lobster, and crab shells [44].

Rinaudo and colleagues made significant advances on the extraction and characteriza-
tion of chitin from different marine sources such as α-chitin from shrimp waste and crab
shells and β-chitin from cuttlefish bones [43,45–47]. They made also a great contribution
to the optimization of the deproteination and demineralization processes from shrimp
shells. They found that an enzymatic deproteination by crude microbial proteases led
to an 88 ± 5% decrease of the protein content, which is similar to the alkali deproteina-
tion [48–50].

Although chitin presents interesting properties for applications in the biomedical field,
such as good biocompatibility, biodegradability, low immunogenicity, and antimicrobial
and wound healing activities, its natural insolubility limits its use [51]. Therefore, chitosan,
the most important derivative of chitin resulting from its deacetylation [44], has gained great
interest [52] because of its higher solubility, the fact that it is positively charged in acidic con-
ditions, presents the unique biological properties of chitin, and has excellent film-forming
properties [42,53,54]. Chitosan and its derivatives have great potential in cosmetics, phar-
maceutical, and biomedical applications such as delivery systems or bioactive materials
for tissue engineering [55,56]. The group of Lina Zhang has developed a large variety of
chitin and chitosan-based biomaterials with promising biomedical applications [57,58],
particularly hydrogels. Hydrogels that could serve as 3D cell culture platforms [59], cell
encapsulation and drug delivery systems [60], and tissue engineering scaffolds [61] were
developed by combining the advantageous bioactive properties of chitin and chitosan with
other materials. The new techniques developed by this group led to the conception of
electroneutral and on-demand dissolvable self-healing hydrogel systems [62,63]. Another
important contribution of Zhang et al. was the creation of chitin microspheres based on
a chitin solution in a NaOH/urea aqueous system and the use of chitosan microspheres
as a sacrificial template [64,65]. This technology has been successfully used in the biomedi-
cal field for blood purification therapy [66] and in tissue engineering [67]. Another example
of chitosan valorization comes from Eleonora Marsich and colleagues, specialized in carbo-
hydrate polymers. The team focused on the use of lactose-modified chitosan, commercially
known as CTL, to mimic biological matrices [68–71].

In recent years, the use of nanochitin has also gained attention because of its inter-
esting properties at the nano scale, such as high surface area and aspect ratio, mechanical
properties, and high antibacterial and anti-inflammatory activities, among others [72].
For instance, the team of Yimin Fan from the Nanjing Forestry University, China, developed
new methods to isolate individualized water-dispersed chitin nanofibers and nanocrystals
from both α- and β-chitin [73,74]. One of the most promising methodologies was based
on the 2,2,6,6-tetramethylpiperidine-1-oxyl radical-mediated oxidation (TEMPO) of chitin
followed by mechanical disintegration in water [75]. In a further study, Fan et al. developed
a simple pretreatment strategy that improved the oxidation efficiency of TEMPO-mediated
isolation and reduced the consumption of the oxidants, resulting in a novel green method-
ology [76]. Nanochitin can also be employed as nanofiller to obtain reinforced composites
of superior mechanical and biological properties [77]. For this purpose, Coltelli and col-
leagues worked on the use of chitin nanofibrils from fishery biomass to develop bio- and
eco-compatible nanocomposites. The incorporation of chitin nanofibrils as a reinforcing
agent in extruded composites based on biodegradable polylactic acid (PLA) improved
the mechanical properties and provided indirect antimicrobial activity, resulting in potential
bioplastics for food packaging and for skin tissue regeneration [78]. Recently, the same
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effect was performed with cellulose-based bioplastics for food packaging [79]. Another
biomedical application of chitin nanofibrils in combination with electronegative nanolignin
in microcapsule-like complexes was used to entrap and later deliver both hydrophobic and
lipophilic molecules [72].

These are just a few examples of women researchers working on chitin and chitosan.
Fortunately, many other women around the world are doing excellent work on this topic
and innovating, as is the case of Insiya Jafferjee, who is the co-founder and CEO at Shell-
works (https://www.theshellworks.com, accessed on 2 November 2021), a London-based
start-up that is developing a method to transform chitin into a novel bioplastic.

2.3. Cellulose
2.3.1. Cellulose and Nanocellulose

We have been widely using cellulose as a source of energy and as a material for thou-
sands of years. Nonetheless, its first isolation from plant matter and chemical structure
identification was undertaken by the French chemist Anselme Payen in 1838. Since then,
multitudinous scientific and technological studies have been made by several scientists
around the world on its extraction from different sources, establishment of its chemical
and physical structure and morphology, development of different materials from pulp
and paper, composites and packaging, to medical materials and high-tech applications,
chemoenzymatic modification, cellulose derivatives, new instrumentation, and more re-
cently, isolation of nanocrystals and nanofibers [80–83]. Herein, we will highlight some
works developed by female scientists on (nano)cellulose-based materials from plants and
bacteria (Figure 3a–c).

Cellulose is a polysaccharide that is the main constituent of plant cell walls (Figure 3a–c)
and the most abundant naturally occurring biopolymer in the biosphere. This linear homo-
polysaccharide is composed of repeating β-D-glucopyranose molecules that are covalently
linked through acetal functions between the equatorial -OH group of the C4 and of the C1
carbon atom [84]. Cellulose is insoluble in water and in most common solvents due to its
strong inter- and intramolecular H-bonding between its individual chain units. Despite its
poor solubility, it is used for a wide variety of applications in papermaking, coating, pack-
aging, construction materials, composites, food additives, and in the biomedical fields [80].
Owing to their properties, namely, biocompatibility, biodegradability, nontoxicity and
recyclability, and excellent mechanical properties, cellulose and its derivatives such as
carboxymethyl cellulose (CMC), cellulose acetate (CA), methyl cellulose (MC), hydrox-
yethyl cellulose (HEC), and (hydroxypropyl) methyl cellulose (HPMC) have gained a lot of
attention [81,82].

In nature, it presents a semicrystalline fibrillar structure of cellulose chains assembled
together to form microfibrils, nanofibers, and fibers involved strongly with hemicellulose,
lignin, and residual inorganic elements. Using chemical and physical treatments and/or
enzymatic-assisted extraction, it is possible to extract cellulose fibers for use in the many
application sectors mentioned before [85]. The work developed by Elvira Fortunato and her
research group at the New University of Lisbon, Portugal, is an example of one important
application of cellulose fibers. They have been working on the development of paper-
based transistors as an alternative to silicon-based components. These paper transistors
could be used in different applications in daily life such as ‘smart’ packaging, biosensors,
animated billboards, and networked shipping labels (Patent: EP2235741, EP2059810) [86,87].
Moreover, these materials are produced at room temperature and are biodegradable, which
reduces the negative impact on the environment.

Using top-down approaches, from cellulose fibers, it is possible to isolate nanocel-
lulose, i.e., less than 100 nm in one dimension: cellulose nanofibers (CNF) and cellulose
nanocrystals (CNC) [81,82,88]. These nanocellulose forms, aside from the cellulose fiber
properties, also exhibit high surface area and aspect ratio, making these cellulose nanoforms
very interesting for the development of nanomaterials.

https://www.theshellworks.com
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Among the numerous women working on this topic, Kristiina Oksman (Luleå Univer-
sity of Technology, Sweden), Aji Mathew (Stockholm University, Sweden), and Arantxa
Eceiza (University of Basque Country, Spain) have achieved significant progresses on
nanocellulose. These include: (i) the isolation of nanocellulose (nanofibers, nanocrys-
tals, or whiskers) from different origins and sources such as microcrystalline cellulose
from Norway spruce, kenaf fibers, beech pulp, and unbleached rice straw among others
by using different isolation approaches, namely, chemical hydrolysis or physical or me-
chanical isolation methods such as refining, high-pressure homogenization and ultrafine
grinder and their characterization [88–91]; (ii) the processing of functional materials such
as nanocomposites with interesting mechanical properties [92–94], hydrogels, aerogels [95],
and membranes for several applications [96,97]; and (iii) the cellulose-based material
development for biomedical applications; for example, as scaffolds [83,98,99].

Particular attention has been focused on cellulose-based nanocomposites presenting
interesting mechanical properties prepared using different approaches. For instance, nanocom-
posites made from cellulose nanofiber with starch powder were investigated by Oksman
team. These composites were made using a twin-screw extrusion process. They found that
the mechanical properties, as well as the moisture sensitivity of the thermoplastic starch,
were improved by preparing the nanocomposites with the cellulose nanofibers [100,101].
Furthermore, polylactic acid-cellulose whisker nanocomposites were synthesized by com-
pounding extrusion. The cellulose whiskers were developed from microcrystalline cellulose
and the whiskers were aggregated by strong H-bonds [93]. These whiskers were able to
improve the storage modulus of polylactic acid in the plastic region.

Much more work on cellulose-based materials has been and will be carried out by
both female and male scientists working together or individually [102–105].

2.3.2. Bacterial Cellulose

On the other hand, bacterial cellulose (BC, Figure 3a), also known as microbial cellulose,
is a naturally occurring 3D network-based material produced as an exopolysaccharide by
some aerobic bacteria, such as those from the genus Komagataeibacter. This 3D network
is composed of nano- and microfibrils which are 70–80 nm wide and 3–4 nm thick, being
100 times thinner than typical vegetal cellulose fibers [106].

The difference between plant-based cellulose and BC is purity, physicochemical and
mechanical properties, and structure. BC is of high purity (free of hemicelluloses and lignin
that are usually associated with plant cellulose), crystallinity, and degree of polymeriza-
tion. Moreover, BC possesses extremely higher water-binding capacity, tensile strength,
and surface area, as compared to the widespread plant-based counterparts [107–109].

The genus Komagataeibacter is Gram-negative aerobic and non-photosynthetic bac-
teria capable of converting glucose, glycerol, and other organic substrates into cellulose
within a period of a few days in the presence of oxygen. BC can be produced using different
bacterial culture media including static, agitated, and bioreactors. Generally, BC production
involves expensive culture media. Thus, the use of agroforestry industrial residues could
overcome this limitation by serving carbon substrates for the BC production as demon-
strated by Carmen S R Freire and collaborators at the University of Aveiro, Portugal [110],
or by Arantxa Eceiza and collaborators using pineapple agroindustrial residues [111]. An-
other study reported on the possibility of using residues from the olive oil production
industry as a carbon source for the production of BC by Gluconacetobacter sacchari [112].
Furthermore, the by-products of cider, when the apple pomace is mixed with sugar cane,
was found to be a potential carbon source for Gluconacetobacter medellinensis [113].

When combined with other materials such as alginate, silk fibroin, chitosan, xy-
lans, and starch to form biocomposites, the mechanical and biological properties of bac-
terial cellulose-based functional materials can be enhanced [7,114–117]. Cellulose-based
functional materials are gaining increasing interest in several industrial fields such as
biomedicine, cosmetics, and bioelectronics [109,118].
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Carmen S R Freire and collaborators have greatly contributed to the research related to
BC-based materials, namely, nanocomposites, membranes, films, etc., by using different ap-
proaches such as physical and chemical modification, and polymerization. These materials
prepared using mainly BC produced by Acetobacter xylinum showed several encouraging
properties such as a high mechanical strength and controlled drug loading, making it a
promising biopolymer for the production of biomaterials such as optically transparent
nanocomposites for different kinds of applications [7,114–117,119–123]. As mentioned
above, they chemically modified the structure of BC to improve its properties. For example,
Tome et al. studied BC membranes with tailored surfaces as well as barrier properties for
gases using controlled heterogeneous esterification with hexanoyl chloride [124]. Moreover,
Fernandes et al. were bio-inspired by the antimicrobial properties of chitosan, and chemi-
cally grafted aminoalkyl groups on the BC surface, with the ensuing nanofibrillar network
revealing interesting antimicrobial activity and good mechanical properties [116].

Figueiredo et al. from CICECO Laboratory at the University of Aveiro, Portugal,
prepared BC-poly(2-hydroxyethyl methacrylate) nanocomposite films by in situ radical
polymerization of 2-hydroxyethyl methacrylate, using poly (ethylene glycol) diacrylate
as crosslinker. The films thus formed were diaphanous compared to BC and showed
improved mechanical performances as well as thermal stability when compared to poly
(2-hydroxyethyl methacrylate). As this nanocomposite has proven non-toxicity to hu-
man adipose-derived mesenchymal stem cells, it could be used for dry dressing applica-
tions [123]. BC-polycaprolactone nanocomposite films were successfully synthesized by
incorporating variable amounts of polycaprolactone powder into a BC culture medium.
The nanocomposites thus formed could be used for food packaging applications [125].

Figure 3. (a) Extrusion of a network of bacterial cellulose nanofibrils with associated (nano)fibril cross-
sectional morphology. (b) Mechanical disintegration of plant matter to produce NFC with associated
cross-sectional morphology that corresponds to a bundle of individual cellulose microfibrils. Cellulose
microfibrils are present in the cell wall of wood, along with hemicelluloses, protein, and lignin.
(c) Biomechanical hotspots occur at junctions between two or more microfibrils, or upon close
cellulose–cellulose contact, mediated by matrix polysaccharides, such as coiled xyloglucan. Reprinted
from ref. [126].
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2.4. Collagen

From the first use of degraded collagen as a glue more than a hundred years ago to
today’s cell therapy, twenty-eight collagen types have been identified and characterized
at molecular level [127]. Structural characterization of collagen started in the 1930s and
was greatly implemented by researchers such as Ramachandran, the Nobel laureate Crick,
Pauling, Rich, and Yonath, and others including Brodsky and Berman [128]. In 1985,
Mieczysław Skrodzki, Antoni Michniewicz, and Henryk Kujawa were the first to develop
a method to isolate collagen directly from fish skins. In the last 40 years, the research on
collagen has greatly increased and has led to today’s collagen therapeutic applications.
Collagen is the most abundant fibrous protein found in the connective tissues of a wide
range of vertebrates and invertebrate species. It is responsible for providing stability
as well as strength to the tissues and thereby gives them their structure [129]. Collagen
is a heteropolymer composed of three polypeptide chains in a triple-helical structure.
Two of the three chains are identical chains and the remaining one differs in its chemical
composition [130]. Collagen has widespread applications in numerous fields, such as
pharmaceutical, medical, biomedical, food industry, cosmetics, etc. Majorly, collagen has
been used for the cosmetic industry, primarily to increase skin hydration and prevent aging
of skin [131].

Collagen has been extracted from various sources, mainly bovine, porcine, and murine
animals. Nonetheless, marine organisms are now considered as an interesting alterna-
tive source for collagen as they are safer and easier to extract in comparison to terrestrial
sources [132]. The traditional extraction method to obtain collagen from terrestrial animal
sources is a multi-step process involving the removal of proteins and pigments, a deminer-
alization with HCl or acetic acid, as well as a final digestion using acid or an enzyme [130].
In the eighties, Sylvie Ricard-Blum and her team started working on the biochemical and
physicochemical characterization of collagen extracted from fetal calf cartilage. The minor
disulfide-bonded collagen was isolated using pepsin treatment [133]. Claire Lethias’s
research group from the French National Centre for Scientific Research (CNRS) has been
actively working on the isolation of marine collagen from jellyfish such as Aurelia aurita,
Cotylorhiza tuberculata, Pelagia noctiluca, and Rhizostoma pulmo from the Mediterranean sea
coast. The best collagen yield was obtained from Rhizostoma pulmo, and this material was
found to have applications in the biomedical field, such as for cell adhesion, proliferation,
etc. [134–138].

Recently, Sionkowska et al. studied the influence of UV light on the rheological proper-
ties of collagen extracted from the skin of the silver carp fish. They found that all the acetic
acid collagen solutions they prepared were showing a shear-thinning flow behavior after
UV irradiation. They concluded that, depending on the duration of the UV treatment,
the collagen could be subjected to photo-degradation or crosslinking. These results were
interesting as physically crosslinked collagen can be used for applications in the biomedical,
cosmetic, as well as in the food industries [131,139,140].

Table 1 summarizes the origin, extraction methods, and applications of the described
biopolymers.

Table 1. Biopolymers’ origin, extraction methods, and applications.

Biopolymers Origin and Extraction Methods References

Agar

From red seaweeds of the order Gelidiales and Gracilariales
Extraction methods:
- hot water extraction for several hours [20]
- ultrasound assisted methods [21,22]
- microwave-assisted methods [24–26]
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Table 1. Cont.

Biopolymers Origin and Extraction Methods References

(Nano)Chitin

From the exoskeleton of crustaceans and arthropods, and from
mollusks
Chitin extraction methods:
- conventional methods with acid and alkaline solutions [43,45–47]
- enzymatic extraction [48–50]

Nanochitin extraction methods:
- nanocrystals by TEMPO-mediated isolation + mechanical

disintegration in water [74–76]

(Nano)Cellulose

From plants and wood
Cellulose extraction methods:
- chemical and physical treatments and/or

enzymatic-assisted extraction of cellulose [85]

Nanocellulose extraction methods:
- chemical hydrolysis, high-pressure homogenization,

ultrafine grinder isolation methods for nanoforms [88–91,94]

Bacterial Cellulose
From aerobic bacteria—genus Komagataeibacter
- production by static, agitated and bioreactors culture media [110–113]

Collagen

From animal cartilage, fish skin, jellyfish
Extraction methods:
- traditional multi-step process with acetic acid or HCl and

enzymes [130,132,133]

Biopolymers Applications References

Agar

- agar-based nanofibers by electrospinning [28]

- agar-based films for food packaging [29–33]
- agar-based hydrogels and bioactive aerogels [35,36]

(Nano)Chitin

- carboxymethyl chitin hydrogel [59]

- chitin hydrogels with self-healing property [60]
- chitin/carbon nanotubes composite hydrogels [61]
- chitosan-chitin nanofiber composites [77]
- chitin nanofibrils in materials for packaging [78]

(Nano)Cellulose

- paper-based transistors [86,87]

- (nano)composites [90–94,100]
- cellulose nanofiber aerogel [95]
- 3D printed porous cellulose hydrogel scaffolds [95]

Bacterial Cellulose

- BC-based biocomposites [114–117]

- transparent nanocomposites [119–123]
- nanocomposite films by in situ radical polymerization [123,125]

Collagen
- collagen-based materials for cosmetic applications [131]

- collagen gels [136]
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3. Discovery of Novel Marine Biopolymers and Carbohydrate-Active Enzymes
3.1. Unraveling the Extensive Potential of Polysaccharides from (Marine) Microscopic Life

For the past 20 years, women scientists in natural product research have discovered
and characterized several biopolymers from a large diversity of organisms, originating
from various ecosystems, and with promising structures and bioactivities. In particular,
a large diversity of marine polysaccharides has been described from a plethora of ma-
rine organisms (covering all taxonomic domains), enhancing our knowledge of natural
polymers from the ocean, and opening up new possibilities of applications in a variety of
fields [141]. Moreover, essential work is presently being conducted to increase the visibility
of the microscopic life from the ocean since many promising discoveries were attributed to
marine bacteria, archaea, and microalgae [142,143]. Whereas numerous and very complete
reviewing works were published on the topic of marine polysaccharides [144], we can cite
inexhaustively some of the most influential women-led research projects, which enabled
important advances in the field of biopolymer discovery.

The microscopic life of the abysses, for instance, has been a great source of inspiration
and of novel compound discoveries for the IFREMER team of Sylvia Colliec-Jouault and
colleagues [145,146]. Indeed, their research on deep-sea extremophilic microorganisms
have led to several discoveries of novel exopolysaccharides (EPS) with interesting structural
features and bioactivities. Their significant work on Alteromonas strains isolated from deep-
sea hydrothermal vents allowed the elucidation and/or chemical modifications of novel
promising EPS such as GY785 (Figure 4) [147,148]. These studies pushed them forward
to further explore EPS with particular glycosaminoglycan (GAG) features, or GAG-like
EPS. Since GAGs are fundamental constituents of both cell surface and extracellular matrix,
playing a key role in cell–cell and cell–matrix interactions, they are of particular interest for
tissue engineering and repair, as well as for the design and preparation of therapeutic drugs
to treat major diseases such as stroke, cancers, and degenerative diseases [149]. In particular,
HE800 EPS secreted by Vibrio diabolicus (Figure 4), a deep-sea hydrothermal bacterium, was
shown to possess a particular hyaluronic acid-like chemical structure and both hexosamines
and uronic acids alternating in the repeating unit sequence [150]. It was identified as an ef-
fective enhancer for in vivo bone regeneration and to support osteoblastic cell metabolism
in culture [151]. Other extreme environments such as hypersaline habitats were explored
and led to the description of a novel EPS produced by a halophilic bacterium, Halomonas
stenophila [152]. The team of Inmaculada Llamas (University of Granada, Spain) behind
its discovery named it haloglycan and demonstrated its high viscosity and pseudoplastic
behavior, with interesting flocculating, emulsifying, and film-forming activities.

Figure 4. Cont.
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Figure 4. Chemical structure of marine exopolysaccharides: (A) GY785, and (B) HE800 EPS (adapted
from refs. [147,148,150]).

Less extreme but still very promising, cyanoflan, a sulfated carbohydrate, was isolated
from a marine cyanobacterium Cyanothece sp. and characterized by the team of Paula
Tamagnini from i3S, Portugal. They notably demonstrated its high intrinsic viscosity and
emulsifying activity in aqueous solutions, making it a promising emulsifying/thickening
agent for industrial applications [153]. Its potential application in skin wound healing was
also studied and it was shown that it perfectly adapted to the wound bed without inducing
systemic or local oxidative or inflammatory reaction [154].

Carol A. M. Nichols from the Commonwealth Scientific and Industrial Research
Organisation (CSIRO, Australia) studied EPS-producing bacteria from various ecosystems
with a special focus on Antarctic sea ice and the Southern Ocean [155,156]. She also worked
on the screening of nearly 800 cultures from the CSIRO Collection of Living Microalgae
(CCLM) in search of EPS with potential as adhesives [157].

Recently, a team from the CNRS, based in Roscoff (France), actively participated
in the development of strategies for the high-throughput discovery of novel polysaccha-
rides and corresponding carbohydrate-active enzymes (CAZymes) from marine seaweed
and bacterial communities, using double-blind techniques such as the Comprehensive
Microarray Polymer Profiling (CoMPP) method [158].

3.2. Increasing Importance of Marine Carbohydrate-Active Enzymes

Facing the polysaccharide abundance, the seaweeds surrounding microbiomes have
adapted themselves to take advantage of this important energy and structural resource.
Many bacteria, such as the Zobellia genus, have specialized in marine polysaccharide
degradation [9,158] using CAZymes. The CAZymes are currently divided into six large
categories: the glycoside hydrolases (GHs) with 172 families, the glycoside transferases
(GTs) with 114 families, the polysaccharide lyases (PLs) with 42 families, the carbohydrate
esterases (CEs) with 19 families, and 17 families in the auxiliary activities (AA), which are
redox enzymes that act in conjunction with CAZymes. The last category is the carbohy-
drate binding modules (CBMs), non-catalytic proteins that display binding properties to
carbohydrates, with 88 inventoried families. CAZymes are listed in the well-maintained
CAZy database (http://www.cazy.org, accessed on 5 January 2022). As the targeted ma-
rine polysaccharides, marine CAZymes represent huge diversity, with an extremely high
potential for biotechnological applications and are mostly under-exploited at the industrial
scale until now.

The discovery of CAZymes from a variety of organisms has recently increased with
the development of metagenomics and the analysis of large genomic banks. For instance,
Marina Isaeva and colleagues from the Russian Academy of Sciences studied the CA-
Zomes (carbohydrate-active enzymes encoded by the genome of an organism) of Zobellia
amurskyensis KMM 3526T and Zobellia laminariae KMM 3676T by de novo sequencing
and comparative genomics with other strains of the genus. They observed a specialization
of this genus for the algal polysaccharides depolymerization in interesting oligosaccha-
rides and monomers with 5.93%, 6.49%, and 6.74% of CAZymes in the predicted coding
sequences in Z. laminariae KMM 3676T, Z. amurskyensis KMM 3526T, and Z. galactanivo-

http://www.cazy.org
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rans DsiJT, respectively, against 1–5% in most other free living organisms (CAZy database
http://www.cazy.org/Genomes.html, accessed on 5 January 2022) [159].

These last few years, genome mining was associated with functional analysis to dis-
cover new relevant enzymes, sometimes on complex polysaccharides. Mirjam Czjzek’s
team from the CNRS (Roscoff, France) has published very interesting studies of the struc-
tural factors governing the catalytic mechanism and substrate specificity of CAZymes,
and especially of glycoside hydrolases. For example, they identified several enzymatic
activities for the degradation of red algal polysaccharides from Paraglaciecola hydrolytica
S66T, and novel enzymes degrading the furcellaran, a hybrid carrageenan having both
β-carrageenan and κ/β-carrageenan patterns [10]. However, even if the breakthroughs
in genome sequencing associated with powerful bioinformatic tools allowed a giant leap
in the CAZymes libraries, there is still crucial work to undertake for the functional charac-
terization of the CAZymes. Silvia Vidal-Melgosa and colleagues have been working on this
deficit of information, developing a new microarray-based and semiquantitative method to
detect whether a polysaccharide was modified or degraded by an enzyme of lysate [160].

Oligosaccharide production is one application of these enzymes that is particularly
studied today. As described by Maria Filomena de Jesus Raposo and colleagues in the re-
view about emergent marine prebiotics, oligosaccharides (OS) are part of dietary fibers,
which are, according to the Institute of Medicine, a “non-digestible carbohydrate naturally
found intact in vegetables/plants” [143,161]. These compounds are not digested by human
enzymes and can be metabolized by the intestinal microbiota, with physiological benefits
such as modulating the immune system, improving the transit, and regulating the choles-
terol level, etc. For example, research led by Yaxuan Sun and colleagues highlighted that
chitosan oligosaccharides (COS) have beneficial effects on a model of Alzheimer’s dis-
ease [162]. COS are also known for their antimicrobial, anti-inflammatory, and anti-tumor
effects. OS are mainly obtained by chemical but also by biochemical (enzymes-assisted)
processes. The advantage of the enzymatic method is the production of size-controlled prod-
ucts via an eco-friendly process thanks to the mild conditions of enzymatic reactions and
the catalytic specificity of each enzyme. For instance, Ji Young Song and colleagues devel-
oped a chitosan digestion process using chitosanases coated on silica gel via glutaraldehyde
reticulation to produce COS [163]. The average MW of COS obtained was a function of
time, allowing a size control for further applications.

To decipher the degradation mechanism of sulphated polysaccharides, Maria Matard-
Mann and colleagues focused one two κ-carrageenases from distant bacteria phylum,
both belonging to the GH16 family. By comparing structural and biochemical features,
they found some key determinants that would be useful for future applications, such as
the synthesis of oligosaccharides [164]. The same research group, led by Mirjam Czjzek,
worked on many other marine polysaccharides; for example, an agar-specific hydrolase
from the algal-associated bacterium Z. galactanivorans, able to degrade natural agar, which
presents complex patterns (as complex as carrageenans) [165]. The team also succeeded
in purifying and characterizing different oligosaccharides released by the action of the re-
combinant ZgAgaC on Osmundea pinnatifida agar. Colliec Jouault’s team also worked
on the depolymerization of the EPS secreted by Alteromonas infernus (GY785), by setting
a screening of 26 commercial enzymes as well as a lysate of the cell producing the GY785.
While the commercial enzymes could not depolymerize the EPS, the lysate could, showing
that the bacteria contained the enzymes capable of degrading its EPS [8,9], in biologically
interesting oligosaccharides. This work showed the great potential of microorganisms to
develop biotechnological applications for carbohydrate modifications. Numerous other
teams around the world work on marine CAZymes to develop polysaccharide degrada-
tion processes.

To sum up, the growing interest for marine polysaccharide processing via enzymatic
ways is driven by many reasons, including the increasing interest for marine oligosac-
charide benefits, and the need for green and eco-friendly processes. The development of
enzymatic processes for marine polysaccharide degradation, the understanding of the cat-

http://www.cazy.org/Genomes.html
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alytic mechanism of the associated CAZymes, and the discovery of original CAZymes have
a bright future, of which women are an integral part.

4. Conclusions and Perspectives

The dedication of women scientists around the world during the last 20 years has led to
several discoveries and innovations within the field of biopolymer science and technology.
These important advances settle the premises of a promising future in biopolymer-related
research and development.

As an alternative to synthetic polymers, biopolymers are playing a key role in the frame
for the circular bioeconomy. Thus, there are other important subjects in the field of biopoly-
mers that must be taken into account in future studies such as the sustainable use of natural
resources, influence on biodiversity, new green extraction approaches, and the end use of
the new bio-based materials, i.e., biodegradation, recyclability, or reuse.

To finalize, the present contributions will be paving the way for the next generation of
female and male scientists on this topic.
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