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Abstract: Consumer-to-shop clothes retrieval refers to the problem of matching photos taken by
customers with their counterparts in the shop. Due to some problems, such as a large number
of clothing categories, different appearances of clothing items due to different camera angles and
shooting conditions, different background environments, and different body postures, the retrieval
accuracy of traditional consumer-to-shop models is always low. With advances in convolutional
neural networks (CNNs), the accuracy of garment retrieval has been significantly improved. Most
approaches addressing this problem use single CNNs in conjunction with a softmax loss function to
extract discriminative features. In the fashion domain, negative pairs can have small or large visual
differences that make it difficult to minimize intraclass variance and maximize interclass variance
with softmax. Margin-based softmax losses such as Additive Margin-Softmax (aka CosFace) improve
the discriminative power of the original softmax loss, but since they consider the same margin for the
positive and negative pairs, they are not suitable for cross-domain fashion search. In this work, we
introduce the cross-domain discriminative margin loss (DML) to deal with the large variability of
negative pairs in fashion. DML learns two different margins for positive and negative pairs such that
the negative margin is larger than the positive margin, which provides stronger intraclass reduction
for negative pairs. The experiments conducted on publicly available fashion datasets DARN and two
benchmarks of the DeepFashion dataset—(1) Consumer-to-Shop Clothes Retrieval and (2) InShop
Clothes Retrieval—confirm that the proposed loss function not only outperforms the existing loss
functions but also achieves the best performance.

Keywords: cross-domain fashion retrieval; margin-based loss function; adaptive margin; deep
learning; discriminative analysis

1. Introduction

Finding fashion images is one of the most sought-after applications in E-commerce.
This application allows customers to discover their favorite clothes in online stores, and
it can be considered as an important step for future applications in the fashion industry,
such as outfit recommendations, i.e., customers search for an outfit after retrieving their
desired clothes.

Finding items in online stores using customer photos based solely on their visual
appearance has proven to be a major challenge for the computer vision community. Since
customer and store images come from different heterogeneous domains, this problem is
referred to as a cross-domain problem in apparel search. The quality of shooting equipment,
lighting conditions, human body posture, and viewing angle are the main factors that
explain the large visual differences between photos of customers and fashion images
taken by professional photographers. The same clothes can look different under different
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circumstances such as light, different situations, or poses. In contrast, different clothes can
appear visually similar.

Over the past decade, there has been considerable progress in garment search between
consumers and stores using convolutional neural networks (CNNs) [1–17]. Using complex
neural networks with a high number of layers, previous methods attempted to extract
powerful features and improve retrieval performance. However, as the number of layers in
the neural network increases, the intuitive low-level texture information of the clothing
images is lost, while the abstract high-level semantic information is preserved, which is
only suitable for image classification tasks, but not for cross-domain clothing searches [15].
Moreover, most of the existing methods use Triplet Loss to converge neural networks.
Triplet Loss is specifically defined for the face-recognition problem. Human face images
are always well-structured, have fixed image sizes, and differ only slightly from each other.
Compared to face images, the cross-domain clothing images always have a large variety
of different categories and clothing styles (significant intraclass differences), so the Triplet
Loss is not suitable for cross-domain clothing retrieval [15].

Another challenge that has not been explicitly addressed is the small visual differences
between certain garments (e.g., jeans and pants) that lead to unexpected garments being
found and and customers being dissatisfied. Small visual differences lead to hard examples
being found that have small visual differences from the query image, but do not match (see
Figure 1).

query image  right match hard examples different from the query

retrieved items

Figure 1. Example of consumer-to-shop clothes retrieval, which includes a query image (with a blue
frame) and the 10 closest gallery images. The green frame represents the correct match, while the
yellow examples represent hard examples, and the red frames represent items that differ from the
query. As can be seen, the hard examples have many similarities with the query image. The slight
superficial difference causes the images to be retrieved in the wrong way, which leads to system
performance degradation.

In this work, we approach this problem by introducing a novel loss function that
enforces a small intraclass distance and increases the distance between input pairs that are
classified as dissimilar. Margin-based loss functions are typically motivated as approxima-
tions to upper bounds on misclassification loss. Contrastive loss and Triplet Loss are used
by Siamese networks to extract discriminative features. These losses are based on metric
distances and require a large number of utility pairs or triplet samples to obtain an optimal
solution. Therefore, they are time-consuming and have poor performance on data from
different domains with unbalanced features. Recently, much attention has been paid to
softmax-based loss functions. Some researchers have optimized softmax and introduced
margin-based softmax loss functions for discriminative analysis. Margin-based softmax
losses such as Additive Margin-Softmax (aka CosFace) [18] normalized the feature and
weight vectors by l2-normalization to transform the angular margin of Softmax to the cosine
margin, to improve the discriminative power of the original softmax loss. They varied the
decision margin in the cosine space to modify intraclass and interclass variances, but since
they consider the same margin for the positive and negative pairs, they are not suitable
for cross-domain fashion search. We prefer a larger margin for negative pairs to strongly
squeeze the intraclass variations of negative classes.

To achieve this goal, we propose a novel loss function for cross-domain search for
clothes between consumers and stores, which we call Cross-Domain Discriminative Margin
Loss (DML). DML learns two different cosine margins for positive and negative pairs to
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maximize the decision boundary and compact the negative decision margin in cosine space.
Specifically, we make the margin m specific and learnable for each class and train the CNN
directly. Formally, we define the positive margin mp and the negative margin mn, such that
the decision boundary is given by cos(θ1)−mp = cos(θ2) and cos(θ1)−mn = cos(θ2) for
positive and negative classes, respectively, where θi is the angle between the feature and
the weight of class i. In the experiments, we show that DML is superior to the Margin-
based Softmax baseline methods. The Siamese networks are trained with DML to learn
discriminative deep features for finding similar images. After training, the fashion-retrieval
problem between consumers and stores is formulated as an asymmetric (single-to-multiple)
matching problem. These features are input to the similarity distance metric to perform
pairwise matching between customer and store images. Then, the top-ranked results are
displayed to the customer.

The main contributions of the proposed work can be summarized as follows:

• A cross-domain discriminative loss function, called DML, is proposed to learn deep
discriminative features for customer-to-shop fashion search.

• DML learns a larger margin for the negative class compared to the positive class to
increase the variation between classes and reduce the negative class.

• The proposed approach achieves the best performance on consumer-to-shop fashion
retrieval datasets, including DeepFashion [16] and DARN [17].

The rest of the paper is organized as follows. Section 2 introduces the related work.
Section 3 describes our proposed method. Section 4 presents the experimental results
obtained on two real fashion datasets. Finally, the discussion and conclusions are presented
in Sections 5 and 6, respectively.

2. Related Work
2.1. Fashion Retrieval

Over the past decade, consumer-to-shop image searches in stores have been widely
studied [1–17]. Ref. [3] proposed the concept of cross-domain clothing search. Using
human posture estimation, they estimated the human body area, extracted 30 regions of
human body, and obtained the local features of clothing images, which can reduce the
image differences due to cross-domain clothing images. They used a local feature-matching
method and implemented cross-domain garment search through a two-stage sparse coding
method. Although using the human posture estimation technique to extract local features is
an intelligent solution to the cross-domain problem, this technique sometimes fails to detect
regions of the human body based on different clothing postures. Therefore, the extracted
irrelevant features may reduce the retrieval performance. Another study, ref. [5], proposed
a novel region representation method to reduce the influence of complex and cluttered
background environments. A binary spatial appearance mask was used to constrain the
human body regions obtained by the pose-estimation algorithm. The methods based on
the pose-estimation algorithm have the limitation that the same points must be visible
in the whole image. Otherwise, the local features of different parts of the human body
would be compared in cross-domain clothing images, which would lead to poor results.
With the rapid development of convolutional neural networks (CNNs) in recent years,
traditional methods of clothing analysis have been replaced by neural network models.
In [1], the concept of precise cross-scene search to cope with this shift was proposed,
with the goal of finding the exact same item on the shopping website when shopping
online. They reduced the domain difference by removing the background of consumer
images, which is one of the most critical sources of appearance variation, and using object
proposals to select foreground items. Using pairwise mixed images from both domains,
they trained deep similarity learning methods for the task of accurate street-to-store search.
However, the object detectors do not work for complex gestures and the performance
of deep similarity learning is sensitive to the introduction of pairwise images, which is
a very time-consuming process according to the limited data. Dual attribute perceptual
ranking network based on two fully independent branches (DARN) [17] has used feature
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learning for different scene domains integrating attribute and visual similarity constraints
simultaneously. DARN uses two CNN-based branches for each of two domains and projects
them into a common embedding space. Then, the output features of each subnetwork
are concatenated and fed into the triplet ranking loss of the two subnetworks. Since the
cross-domain clothing images have a large variety of different categories and clothing styles,
the differences between the image pairs are very large and the Triplet Loss does not work
well. FashionNet, proposed by [16], learns clothes retrieval by jointly predicting clothing
attributes and landmark features, and applies the network to cross-scenario services for
the DeepFashion dataset. FashionNet focuses on image keypoint localization by using the
registered keypoints and image attribute information, which requires a lot of labor and
also a lot of time to mark the keypoints of clothing images. Another study, [4], proposed a
deep Siamese network with a modified contrastive loss and multitask fine-tuning method
that trains a common model for all categories simultaneously. The Siamese network is
directly trained for object detection/classification and then used for similarity estimation.
On the other hand, contrastive loss attempts to make binary decisions about whether two
images are similar, but cannot capture fine-grained similarity. Moreover, the common
branch at the bottom of the network has learned features without considering higher-
level semantic information. The authors of [6] used attribute labels to pay more attention
to local discriminative regions. They employed attention mechanisms in global feature
aggregation to focus network training on the clothes themselves, effectively neglecting
the influence of background noise. However, their method relies heavily on defining
label and clothing parsing categories that may not be available in real-world scenarios.
Alternatively, the authors of [14] proposed a Grid Search Network (GSN) to generate
visual embeddings for fashion retrieval. They also used a reinforcement learning based
strategy to improve performance and learn a special transformation function over the
GSN feature embedding. They generated a target grid by randomly selecting positive and
negative patterns with respect to the query image, and then optimized a distance-based
grid search loss to enable simultaneous comparison of multiple feature embeddings. The
performance of GSN depends heavily on the effective selection of positive and negative
samples. In [11], the Siamese-based networks called Graph Reasoning Network (GRNet)
were recommended for similarity learning between a query and a gallery clothing by
using both global and local representations in different local clothing regions and scales
based on a graph convolutional neural network. Another study, [10], employed two neural
networks with different parameters to detect the differences between consumer and shop
clothing images. However, using two different sets of parameters leads to an increase in
the number of parameters, which is not conducive to neural network optimization [15]. In
contrast, we perform the cross-domain consumer-to-shop clothes retrieval via the Siamese
networks, which have the same weights for both subnetworks. To overcome the limitations
of the data problem and avoid the complexity of the network structure to extract stronger
features, a novel Discriminative Margin Loss (DML) suitable for apparel search is proposed.
The network is optimized with DML to learn discriminative features and achieve more
accurate matching.

2.2. Loss Functions

Deep Embedding Learning is undoubtedly considered as one of the interesting and
significant aspects of the research fields in deep convolutional neural networks, and re-
cently researchers have shown an increasing interest in this area. Loss functions play an
important role in deep embedding learning. Deep embedding learning methods increase
discriminative power by improving loss functions. Contrastive loss [19,20] and discrimina-
tive loss [21] optimize the Euclidean distance of input pairwise samples within a margin for
interclass in a feature space. Triplet Loss [22] constructs input triplet samples to separate
the positive pair from the negative pair by a Euclidean distance margin for better interclass
feature embedding. Therefore, both contrastive loss and Triplet Loss enforce a Euclidean
margin for learned features. These methods depend on the number of positive and negative
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input pairs or triplet images. Therefore, the performance of these loss functions is sensitive
to the introduction of pair or triplet mining procedures, which are time consuming [23].

To exploit the supervision property and improve the discriminative power of the
deep-learned features, most recent approaches combine Euclidean margin-based losses
with softmax losses. For example, Ref. [24] proposed a center loss to learn centers for
deep features such that each class minimizes the within-class variations and the given
centers are combined with softmax loss. The deep features learned with softmax loss have
an intrinsic angular distribution, and Euclidean margin-based losses are not compatible
with softmax losses. To address this issue, the researchers decided to optimize the softmax
loss for within-class variation. One study, ref. [25], proposed a large margin softmax
(i.e., L-Softmax) by adding angle constraints to each identity to improve feature discrimina-
tion. Moreover, ref. [23] improved L-Softmax by normalizing the weights and proposed
Angular Softmax (A-Softmax). Due to the difficulty of optimizing angle constraints, Refs
[18,26,27] moved the angle range to a cosine space and proposed CosFace and ArcFace,
respectively. CosFace and ArcFace assign the same decision space to the negative class
and the positive class, respectively. In consumer-to-shop fashion retrieval, negative pairs
with small visual differences could be considered as positive pairs and affect the retrieval
performance. Thus, assigning an equal decision margin to positive and negative classes
causes the system to perform poorly on negative pairs with small visual differences. These
pairs require a larger decision margin to distinguish them as well as possible from the
positive pairs. In contrast to existing loss functions, we propose a novel cross-domain loss
that introduces two different margins into the negative and positive interclasses to extract
discriminative deep features.

3. The Proposed Approach

In this section, we describe the proposed method in detail. First, we discuss the
drawbacks of the existing loss functions for the cross-domain problem and explain our
motivation for introducing a novel loss function (Section 3.1). The proposed Cross-Domain
Discriminative Loss (DML) is presented in Section 3.2. Finally, to better understand the
difference between DML and the other loss functions, a visual comparison is made in
Section 3.3.

3.1. Motivation

Margin-based softmax losses have achieved significant improvements by setting m
for all the classes to squeeze the intraclass variations. They assumed that the feature
distributions of all the classes are identical, so that setting the same margin is enough to
constrain all the classes. Since they consider the same margin for the positive and negative
pairs, they are not suitable for cross-domain fashion search. For the negative class with
large visual differences, the extracted features are placed in the feature distribution of
negative samples, but for those negative classes with small visual differences, extracted
features may be placed in the feature distribution of the positive class.

If a uniform margin m is set for the positive and negative classes, the feature distribu-
tions of the negative class may not be as compact as those of the positive class. The goal is
to achieve a small intraclass for the negative pairs in addition to increasing the variation
between classes. If the same margin is considered for the positive and negative classes, the
negative pairs that are very similar can be considered as positive, which reduces the func-
tionality of the system in the discrimination process. We further visualize the phenomenon
through the process of distinguishing the positive pairs from the negative pairs as shown in
Figure 2. Suppose that the normalized feature vectors x and y are given for the positive and
negative pairs, respectively. In our work, feature fusion of a pair of images is achieved by
adding the deep feature vectors of the two images. The blue region represents the region of
positive pairs, while the red region represents the region of negative pairs. In addition, the
white region represents the variation between classes. Let θ1 (θ2) denote the angle between
the learned feature vector (representing a given pair of images) and the normalized weight
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vector w1 (w2). w1 and w2 are the centers of the positive and negative classes, denoted
by C1 and C2, respectively. The CosFace forces cos(θ1)−m = cos(θ2) for C1, and similarly
for C2, so that features from the positive and negative classes are equally compacted. In
a desirable discrimination process, we not only want to maximize the variation between
the classes, but also want to minimize the intraclass variation of the negative class. To
address this problem, we introduce a novel discriminative margin loss for cross-domain
fashion retrieval. By learning a larger margin mn to the negative class compared to the
positive class margin mp, we simultaneously increase the interclass variation and decrease
the intraclass variation of the negative class, ensuring that no very similar negative pairs
(hard examples) occur in the positive decision margin.

x
W1 W2

��� − ��1 ����2

margin

CosFace

x

W1
W2

��� −�1 �� ��� −�2 ��

DML

discriminative	
margin

y

hard example

�1 �2
�1 �2

Figure 2. Geometrical interpretation of DML is illustrated from feature perspective. Blue and red
areas represent the feature space of the positive and negative classes, respectively. The extracted
feature vectors of the positive or negative image pairs are merged into a single vector at the feature
level. CosFace [18] sets the same margin m for positive and negative classes, so the discrimination
process cannot be strong enough. Compared to positive class margin mp, DML learns a larger margin
mn for the negative class, consequently expands the variations between classes and condenses the
variations within classes, implicitly optimizing the discrimination space. Negative pairs with small
visual differences move closer to negative pairs with large visual differences, pushing hard examples
into the feature space of the negative class.

3.2. Cross-Domain Discriminative Margin Loss (Dml)

In Siamese networks, two input images are simultaneously fed into two subnetworks
(with the same architecture and weights) and the similarity of the two images is evaluated
by the contrastive loss. The contrastive loss is used to train the network to distinguish
between similar and dissimilar pairs of examples.

The Siamese network problem is sensitive to calibration because it requires a context
for the notion of similarity or dissimilarity [28]. To obtain a robust discriminative model,
positive and negative pairs must be introduced with a high number, which is a time-
consuming process. Moreover, negative pairs in the loss function cooperate only when
their distance is at the decision boundary. On the other hand, the choice of an appropriate
value for the decision margin depends on the number and influence of the positive and
negative pairs.

To overcome these problems, we merge the embedded features of the two subnetworks
and use the softmax function instead of the Euclidean distance, and propose a novel Cross-
Domain Discriminative Margin Loss (DML) for cross-domain fashion retrieval. Softmax
separates features from different classes by maximizing the posterior probability of the
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corresponding class. Given the feature vector xi and the corresponding label yi, the softmax
loss is defined as follows:

Ls =
1
N

N

∑
i=1
− log pi =

1
N

N

∑
i=1
− log

ewT
yi

xi+byi

∑C
j=1 ewT

j xi+bj
, (1)

where pi denotes the posterior probability that the feature vector xi (a single vector formed
by fusing the extracted feature vectors of the positive or negative image pairs at the feature
level) is correctly classified into the corresponding class yi, wj denotes the j-th column of
the weight matrix W, b is the bias term, N is the number of training samples, and C is the
number of classes. Normalizing xi and wj using L2 normalization, rescaling xi to s, and
fixing the bias term b = 0, the feature distance is projected onto the feature angle measure
for simplicity as follows:

Ls =
1
N

N

∑
i=1
− log pi =

1
N

N

∑
i=1
− log

ewT
yi

xi+byi

∑C
j=1 ewT

j xi+bj
, (2)

where pi indicates the posterior probability of feature vector xi (one single vector which
is formed by the fusion of the extracted feature vectors of the positive or negative image
pairs at the feature level) being correctly classified into related class yi, wj denotes the j-th
column of the weight matrix W, b is the bias term, N is the number of training samples and
C is the number of classes. By normalizing xi and wj using L2 normalization, rescaling xi
to s and fixing the bias b = 0 for simplicity [18], the feature distance is projected to feature
angular as follows:

wT
j xi =

∥∥wj
∥∥‖xi‖ cos θji = s cos θji, (3)

where θji is the angle between wj and xi. Thus, both the norm and the angle of the vectors
contribute to the posterior probability. Based on this formulation, some methods have been
proposed to optimize and extend the interclass margin [18,26]. Since optimization in cosine
space is much easier compared to angle space, we further focus on the analysis of cosine
margin. By importing the margin m into the cosine space of Softmax, the Large Margin
Cosine Loss (LMCL) [18] attempts to further distinguish it as follows:

Llmc =
1
N

N

∑
i=1
− log

es
(

cos
(

θyi ,i

)
−m

)
es
(

cos
(

θyi ,i

)
−m

)
+ ∑C

j 6=yi
es cos(θj,i)

, (4)

subject to
cos

(
θj,i

)
= wT

j xi, (5)

where N is the number of training samples, xi is the i-th feature vector corresponding to
the ground truth class of yi, wj is the weight vector of the j-th class, and θj,i is the angle
between wj and xi.

Since cross-domain fashion retrieval is a discriminative binary problem, we have only
two classes (similar and dissimilar classes). Therefore, θ1 and θ2 denote the angles between
the embedding feature vectors and the weight vectors of class C1 and C2, respectively. In
the LMCL method, the value of the margin m is considered as a constant value for positive
and negative classes, resulting in pairs with small visual differences (hard examples)
being identified as positive pairs. This problem is particularly prevalent in cross-domain
fashion retrieval, where there is a high degree of similarity in design and appearance
between different types of clothing. Our goal is to expand the variation between classes to
distinguish negative pairs from positive pairs and condense the negative feature space to
gather negative pairs with small and large visual differences. This prevents hard examples
from entering the feature space of positive pairs and increases the discriminative power. To
this end, we do not assign the same margin m to the negative class and the positive class,
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but assign a larger m to the negative class to reduce the intraclass variation of the negative
class. For clarity, we represent the angles below with only one subscript corresponding to
the class. In other words, θj,i is denoted by θj. For the positive class, and similarly for the
negative class, the cross-domain loss is formulated as follows:

LCross−Domain =
1
N

N

∑
i=1
− log

es(cos(θyi )−myi )

es(cos(θyi )−myi ) + es(cos(θj))
, (6)

where N is the number of training samples, myi is the margin assigned to the ground truth
class yi in{p, n} of the i-th pair (where for the positive class is mp and for the negative class
is mn), and j 6= yi. mn should be larger than mp. Setting mn > mp aims to compact the
negative decision boundary and expand the interclass and reduce the negative intraclass,
which also ensures the absence of the hard examples in the positive feature space.

To ensure the discriminative power of cross-domain loss and provide a decisive
solution, we introduce the discriminative part as follows:

Ldiscriminative = −(λ1 ×mp + λ2 ×mn)/2, (7)

where λ1 and λ2 (λ1 < λ2) are balancing factors to control the size of the positive and
negative margins. By combining (5) and (6), the cross-domain discriminative margin loss
(DML) is proposed as follows:

LDML = LCross−Domain + Ldiscriminative =

1
N

N

∑
i=1
− log

es(cos(θyi )−myi )

es(cos(θyi )−myi ) + es(cos(θj))
− (λ1 ×mp + λ2 ×mn)/2, (8)

where mp, mn are the margins for positive and negative classes, θyi is the angle between
xi (the fused feature vector of the positive or negative pair) and the vector wyi . The
hyperparameters λ1 and λ2 control the discriminative power of DML.

3.3. Comparison to Other Loss Functions

To better understand the advantages of DML over existing losses, the decision bound-
ary for the discrimination problem is shown in Figure 3. Softmax considers margin = 0
between the positive class C1 and the negative class C2. CosFace and ArcFace specify a
constant value for the margin between positive and negative classes. We argue that these
strategies are not suitable for clothing analysis because the distribution of the negative class
is not uniform, i.e., negative pairs can have both small and large visual differences.

To overcome this challenge in cross-domain fashion search, the proposed loss assigns a
learnable margin to each class, while a larger margin is enforced for the negative class. The
larger margin mn compacts scattered negative pairs with small and large visual differences
and shifts the decision boundary of the negative class C2 away from the positive class C1.

Since the number of negative pairs is higher than the number of positive pairs (due to
the limited amount of data), consumer-to-shop fashion retrieval could be considered as a
class imbalanced problem, where the training can be dominated by the most frequent class
(negative pairs). FCdDN [29] proposed a loss function to reassign the probability value of
the dominant class to a smaller value to overcome this problem. Specifically, FCdDN maps
the probability values of the dominant class (negative pairs) to a smaller value and the
probability values of the poor class (positive class) to a larger value. By focusing attention
on the dominant class and giving it more weight, FCdDN attempts to solve the imbalance
problem. Compared to FCdDN, DML not only tries to solve the imbalance problem by
assigning a larger margin to the negative class, but also tries to prevent the positive margin
from becoming equal to the negative margin due to the discriminative part, which leads to
distinguish between hard examples and positive pairs.
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Figure 3. The decision margin of different loss functions for discriminative analysis is visualized. C1

is a positive class and C2 is a negative class. Blue, red, and white areas represent positive decision
margin, negative decision margin, and decision limit, respectively. As can be seen, unlike other losses
that consider constant margins m for the positive and negative decision margins, DML learns margins
mp, mn for the positive and negative decision margins, where mn > mp.

4. Experiments
4.1. Datasets

We evaluated our proposed method with the dataset DARN and with two bench-
marks of the DeepFashion dataset: (1) InShop Clothes Retrieval and (2) Consumer-to-Shop
Clothes Retrieval.

The DARN dataset was collected specifically for street-to-shop retrieval and contained
approximately 327,000 in-shop images and 91,000 user images. Since the collectors of
the DARN dataset did not provide a standard protocol and the files provided by the
authors contain broken links, we use the cleaned version provided by [6,10] and follow
their evaluation protocol for a fair comparison. First, they removed corrupted images to
obtain a subset of 62,812 street images and 238,499 shop images of 13,598 distinct products
distributed over 20 fashion categories where each street image has a matched shop image.
Then, they partitioned the dataset into three subsets for training, validation, and test, with
no overlap of products (see Table 1).

The DeepFashion dataset [16] is one of the largest datasets for clothing image analysis
and contains more than 800k images. Each image in this dataset is annotated with labels
of categories, attributes, bounding boxes, and landmarks. The presence of occlusions,
deformations, lighting variations, and large variations in pose and scale have made this
dataset challenging. The Consumer-to-Shop Clothes Retrieval benchmark contains 239,557
consumer-to-shop images with 33,881 clothing items. The InShop Clothes Retrieval bench-
mark contains 52,712 images with 7982 garments. Their partitions are shown in Table 1.
Note that in the InShop benchmark, the gallery set images are used as training shop photos
and the query set images are used as the test shop photos. To ensure a fair comparison, the
split between training and testing is given. Consistent with the state of the art, we used this
split in all of our experiments. In addition, each image was cropped using the bounding
boxes provided.
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Table 1. The data splitting of DARN, Consumer-to-Shop, and InShop datasets.

Dataset

DARN DeepFashion: Consumer-to-Shop DeepFashion: InShop

Distinct Training Products 10,979 15,898 3997

Training Street Photos 50,528 98,768 -

Training Shop Photos 32,194 98,768 25,882

Number of positive pairs 50,528 98,768 13,528

Number of negative pairs 252,640 493,840 67,640

Distinct Validation Products 9635 8076 -

Validation Street Photos 6318 48,917 -

Validation Shop Photos 23,828 48,917 -

Distinct Test Products 9636 8077 3985

Test Street Photos 5966 47,734 -

Test Shop Photos 23,773 47,734 26,830

4.2. Implementation Details

The propsoed Siamese network is shown in Figure 4. A Siamese network contains
two identical CNNs, one for shop images and one for customer images. We considered a
VGG-16 architecture for each subnetwork trained on the ImageNet dataset. The architecture
of this model is shown in Figure 5. A 128-dimensional feature vector was extracted from
each network and normalized with l2 norm, then these two features extracted from the two
subnetworks were combined by Add Fusion Layer. Stochastic gradient descent (SGD) was
used to optimize the network. We used the initial learning rate 1× 10−4 and the weight
decay as 5× 10−4. We followed [18] to set the feature scale s to 64 and the momentum to
0.9. We chose the initial angular margins mn and mp to be 0.4 and 0.35, respectively. We
empirically found that when (λ1, λ2) = (70, 75), the system reached its highest performance
(see Section 4.5). The model and loss layer were implemented in Python 3.6 using the deep
learning library Keras 2.2.4 and trained with a batch size of 128 on an NVIDIA GeForce
RTX 2080 Ti GPU. In the testing phase, the model was used to extract the feature vector
from the customer and shop images, and its similarity is calculated by the cosine distance.
The retrieval performance of the proposed method is evaluated by the top-k accuracy as
in [16], i.e., the ratio of correct matches (in the set of queries) within the top-k results.
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Figure 4. The overview of our proposed cross-domain consumer-to-shop clothes retrieval system. The
Siamese network consists of two subnetworks with the same architecture and weights. The extracted
features of the two subnetworks are normalized by L2 normalization. The two 128-dimensional
embedding instances for customer and shop images are merged by Add fusion layer. The DML
loss drives the training of the network to learn features where the discriminative decision boundary
increases and the negative margin becomes more compact. Then, the trained deep network is used to
extract features from the image database and create a feature database. In the retrieval phase, features
of the query image are extracted by the trained deep network and compared with the features of
the feature database by the cosine similarity distance. Finally, top ranked results are displayed to
the customer.

Figure 5. The proposed CNN architecture is based on the VGG16 network. The weights of this net
are pre-trained on ImageNet dataset. The fully connected layers are changed in our architecture. The
weights of the first three groups are frozen and the weights of the last two groups are trained using
the datasets.

4.3. Experimental Results

In this section, we compare our proposed method with the state of the art in three
public benchmarks for fashion product retrieval. Note that the contributions of the baseline
solutions and our method are orthogonal. Compared to baselines, we focus on discrim-
inative analysis by proposing a new loss function DML and evaluating the contribution
of DML with pretrained VGG16. We can use attention module based architectures to
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further improve our model. DeepFashion has introduced a standard protocol with training,
validation, and testing sets. We followed the standard protocol and evaluated our approach
on two benchmarks from DeepFashion: InShop Clothes Retrieval and Consumer-to- Shop
Clothes Retrieval. Table 2 compares the proposed DML with state-of-the-art methods,
including FashionNet [16], Siamese-Triplet [8], VAM+ImgDrop [8], DREML [30], KPM [31],
AHBN [32], and GRNet [11] on Consumer-to- Shop Clothes Retrieval. GRNet performed
best among the state-of-the-art methods for Top-1 and Top-20. Note that GRNet’s contribu-
tion is to use both global and local representations at multiple scales, which is orthogonal
to our method. Clearly, we can use GRNet to further improve our model. As for the com-
parison of the proposed method with the other approaches, DML improves the retrieval
performances for Top-1, Top-20, and Top-50 by 2.3, 8.3, and 10.7%, respectively.

Table 2. Comparison of top-k accuracy rates on Consumer-to-Shop Clothes Retrieval benchmark of
the DeepFashion dataset. Bold shows the the best rate.

Accuracy

Method Top 1 Top 20 Top 50

FashionNet [16] 0.073 0.188 0.228

Triplet [8] 0.109 0.378 0.499

VAM+ImgDrop [8] 0.137 0.439 0.569

DREML [30] 0.186 0.510 0.591

KPM [31] 0.213 0.541 0.652

AHBN [32] - 0.603 -

GRNet [11] 0.257 0.644 0.750

DML 0.236 0.624 0.759

To evaluate and demonstrate the effectiveness of the proposed method for images
from the same domains, we evaluated InShop Clothes Retrieval. As can be seen in Table 3,
our approach achieves the best top-1 accuracy of 0.712. For top-20 and top-50, our approach
achieves an accuracy slightly lower than the performance of VAM. It is worth noting
that VAM uses an attention subnetwork that requires a clothing segmentation dataset for
training, while DML is trained using only image pairs from queries and galleries, which
is more practical. We also evaluate our method using the DARN dataset. The results are
shown in Figure 6. Due to a different task and dataset, the pretrained NIN performs the
worst. DARN and FashionNet models perform better than NIN because they consider
tag information during training. Unlike DARN and FashionNet, CtxYNIN uses tags such
as product category and semantic attributes not only in training but also in the query
phase, which helps to draw attention to the shop images when the background is noisy. As
shown in Figure 6, Siamese-Triplet has the best performance among the previous methods,
indicating that the Siamese architecture significantly improves the retrieval performance
compared to a single model. Since the Siamese-triplet method is coupled with a triplet loss
function to optimize the network, it requires a large number of input pairs for learning. As
mentioned earlier, collecting and annotating sufficient data is a major challenge in fashion
analysis. DML outperformed state-of-the-art methods and improved fashion retrieval
performance by giving the negative class a relatively larger margin than the positive class.
It can be seen that DML and Siamese-Triplet retrieval performances are close to each other
from Top-1 to Top-10. After Top-10, the retrieval performance of Siamese-Triplet increases
with a relatively constant slope, indicating the limited ability of Triplet Loss to distinguish
fashion positive pairs from negative ones. In contrast, DML retrieval performance increases
nonlinearly and shows considerable improvements in Top-30 and Top-50.
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Table 3. Comparison of top-k accuracy rates on the InShop Clothes Retrieval benchmark of the
DeepFashion dataset. Bold shows the the best rate.

Accuracy

Method Top 1 Top 20 Top 50

FashionNet [16] 0.529 0.764 0.796

VAM [8] 0.669 0.892 0.945

DARN [6] 0.382 0.675 0.717

Diversity Fashion [33] - 0.784 -

Studio2Shop [34] - 0.818 -

GoogleNet [8] 0.554 0.823 0.877

DML 0.712 0.875 0.921

Due to the larger scale, variety and quantity of image clothing of the DeepFashion
dataset compared to the DARN dataset, it can be seen that the retrieval results of the
different methods on the DeepFashion dataset are better than those on the DARN dataset
(see Table 2 and Figure 6).

Figure 6. Top-k accuracy rates for different methods under comparison on DARN Consumer-to-shop
retrieval dataset. The last four methods are reported by [6] and Siamese-Triplet is reported by [10].

4.4. Comparison with Other Loss Functions

To show the main contribution of our approach in cross-domain problems, we com-
pare the performance of the proposed DML with state-of-the-art margin-based Softmax
losses such as Norm-Softmax, SphereFace, ArcFace, and CosFace. According to the imple-
mentation details in Section 4.2, we train our Siamese networks on the DeepFashion and
DARN datasets with the same CNN architecture and different loss functions. Since the
backbone CNN of the two subnetworks is fixed, the difference in performance is due to the
losses used. According to the literature, the best performances of the SphereFace, ArcFAce,
and CosFace methods are obtained with margin values of 1.35, 0.50, and 0.35, respectively.
Table 4 shows the retrieval performance (top-20) of different loss functions on DeepFashion
and DARN. Norm-Softmax was obtained by normalizing features and weights which con-
sequently has less discriminative power due to the lack of margin. SphereFace improves
angular discrimination by using a multiplicative angular margin, but it requires a series of
approximations to be computed, resulting in an unstable training of the network. ArcFace
and CosFace directly add an angular margin and a cosine margin penalties to the target
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logit, respectively, resulting in better performance compared to SphereFace, but they set
the same decision margin for the negative and positive classes, causing the system to
perform poorly on negative pairs with small visual differences. As shown, DML achieves
competitive results compared to the other margin-based Softmax losses on both datasets.
In particular, our loss function significantly outperforms margin loss functions such as
CosFace and ArcAFce, which attempt to extend the decision boundary and distinguish
positive and negative pairs. Due to the larger margin set for the negative class compared to
the positive class, the decision boundary between positive and negative decision margins
expands more and the negative pairs with small and large visual differences move as
close as possible. The training and validation losses for various margin-based softmax
loss functions using the VGG16 network discussed in Section 4.2 are shown in Figure 7
for the consumer-to-shop clothes retrieval benchmark of DeepFashion dataset. The results
in Figure 7 show that DML significantly outperforms the other loss functions in reducing
training and validation losses.

Table 4. Comparison of the proposed DML with state-of-the-art margin-based loss functions in
Consumer-to-Shop Clothes Retrieval (top-20). All methods in this table used the same training data
and the same Siamese network architecture. Bold shows the the best rate.

Accuracy
XXXXXXXXXLoss

Dataset DeepFashion DARN

Norm-Softmax 0.32 0.46

SphereFace (m = 1.35) 0.55 0.59

ArcFace (m = 0.50) 0.57 0.61

CosFace (m = 0.35) 0.58 0.64

DML 0.62 0.73

Figure 7. Training and validation losses for various margin-based Softmax loss functions using
VGG16 network discussed in Section 4.2 for the consumer-to-shop clothes retrieval benchmark of the
DeepFashion dataset. These results indicate that using DML for training leads to lower training loss
than all other margin-based Softmax losses for consumer-to-shop clothes retrieval.

4.5. Effects of λ1 and λ2 on Discriminative Margin Loss

Discriminative Margin Loss consists of two parts, the cross-domain loss, and the
discriminative margin average loss. The discriminative part of DML plays an important
role in preventing the positive margin mp from becoming equal to the negative margin mn
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during the training process. In this part, we conduct an experiment to investigate the effects
of the different combinations of λ1 and λ2. By varying the value of λ1 from 0 to 100 and λ2
from 5 to 105, we obtain different combinations of λ1 and λ2. Then, we train our model
on DeepFashion and DARN training subsets and validate it on the test subsets. Since our
ultimate goal is to make mn larger than mp, we set the value of λ2 above λ1. As shown in
Figure 8, the retrieval performances on Consumer-to-Shop Clothes Retrieval benchmark
of DeepFshion and DARN improves with the increase of λ1 and λ2 from 0 to 70 and from
5 to 75, respectively. When (λ1, λ2) = (70, 75), the system appears to reach its highest
performance and enters saturation, after which system performance begins to decline. It is
evident that DML can learn the decision boundaries of the positive and negative classes to
deal with the small visual differences of the negative pairs.

Figure 8. The retrieval performance of Discriminative Loss Margin with different discrimination
parameters λ1 and λ2 in Consumer-to-Shop Clothes Retrieval (top-20).

5. Discussion

In this work, we addressed the important role of discriminative analysis in cross-
domain consumer-to-shop clothes retrieval. Previous methods proposed complex archi-
tectures that are highly computationally intensive, resulting in uncertain real-time per-
formance. Unlike previous methods that attempted to improve retrieval performance
by optimizing CNN structures to extract local and global features, we aimed to improve
loss-function performance. To this end, we proposed a novel loss function called Discrimi-
native Margin Loss (DML) to enforce a small intraclass distance and increase the distance
between input pairs labeled as dissimilar. Evaluation of the retrieval performance of DML
in three public fashion product retrieval benchmarks showed that DML performed best.
Nevertheless, better performance can also be achieved by using a previous complex feature-
extraction architecture. Compared to previous methods, DML has two advantages. First, it
provides high retrieval performance when trained only on image pairs of query and gallery,
which is more practical. Second, it is insensitive to the constraints of the data problem.
The proposed loss function has several strengths that are not found in other margin-based
softmax loss functions. These are as follows. First, DML does not assume the same margin
for positive and negative pairs, resulting in more negative pairs being compressed than
positive pairs. Second, if xi deviates too much from the center Wyi , assigning different
margins for positive and negative regions results in part of the overlap region not being
recognized as positive class and negative class. The proposed loss function is generic in the
sense that it can be easily extended to the verification and binary classification problems.
Similar to the existing margin-based loss functions, the major limitation of the DML is
that its performance depends on the process of tuning the hyperparameters. We should
explore different sets of numbers to find the best margins and λ1 and λ2 depending on
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the problem. This means that the best parameters for the cross-domain consumer-to-shop
retrieval problem would not suitable for another problem such as face verification.

6. Conclusions

In this work, a loss function called DML is proposed to improve the performance
of CNNs in consumer-to-shop clothes retrieval. Unlike existing margin-based softmax
losses, DML learns two different margins for negative and positive classes to increase
compactness within classes and separability between classes. The margin for negative
classes is larger than the margin for positive classes. Accordingly, DML attempts to increase
cross-class separability and focuses on negative intraclass compactness. For this reason,
negative pairs with small visual differences are not considered as positive pairs, resulting
in improved retrieval performance. Extensive experimental results on three public fashion
datasets show significant advantages over state-of-the-art methods and all compared
margin-based softmax functions. According to the results, DML was the most successful to
retrieve clothes and achieved Top-50 retrieval performances of 0.759, 0.921, and 0.87 on the
Consumer-to-Shop Clothes Retrieval benchmark, the InShop Clothes Retrieval benchmark,
and DARN dataset, respectively. Future research directions include: (1) improving the
performance of the CNN used or replacing it with other Deep Learning architectures
such as GRNet to leverage both global and local representations at multiple scales; (2)
generalizing DML to the multiple-class scenario to strengthen the discrimination of learned
features by promoting a specific additional margin for each class in cosine space.
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