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Abstract
For each odd prime p, we produce a 2-generated pro-p group G whose normal
Hausdorff spectra

hspec“;(G) = {hdimg(H) | H <, G}

with respect to five standard filtration series S, namely the lower p-series,
the dimension subgroup series, the p-power series, the iterated p-power series
and the Frattini series, are all equal to the full unit interval [0,1]. Here
hdimg : {X | X C G} — [0, 1] denotes the Hausdorff dimension function associ-
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1 | INTRODUCTION

The concept of Hausdorff dimension has led to interesting results in the theory of profinite groups; for instance, see [8]
and the references therein. Let G be an infinite countably based profinite group and let S be a filtration series of G, that
is, a chain G = Sy > S; > S, > ... of open normal subgroups S; <, G such that ﬂi S; = 1. These subgroups form a base
of neighbourhoods of 1 and induce a translation-invariant metric on G which, in turn, associates a Hausdorff dimension
hdimg(U) € [0,1] to any subset U C G with respect to the filtration series S.

Barnea and Shalev [2] established a group-theoretical interpretation of hdimé(H ) for closed subgroups H <. G; they
showed that

logp |HSl : Sll

hdim2(H) = lim —0—————
¢ —w log, |G : Si|

1—>00

can be regarded as a “logarithmic density” of H in G. The (ordinary) Hausdorff spectrum of G is
hspecS(G) = {hdimg(H) | H <. G}.

The normal Hausdorff spectrum of G, defined as
hspec;(G) = {hdimg(H) |H <. G }

provides a snapshot of the normal subgroup structure of G; its significance was highlighted by Shalev in [10, §4.7].
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Typically, the Hausdorff dimension function and the normal Hausdorff spectrum depend very much on the underlying
filtration S; compare [8]. For a finitely generated pro-p group G, there are natural choices for S that encapsulate group-
theoretic properties of G: the lower p-series £, the dimension subgroup series D, the p-power series P, the iterated
p-power series P*, and the Frattini series F; see Section 2. We refer to these filtration series loosely as the five standard
filtration series.

Several types of profinite groups with full ordinary Hausdorff spectra [0,1] have been identified. The first examples of
finitely generated pro-p groups G with hspecP(G) = [0, 1] were discovered by Levai (see [10, §4.2]) and Klopsch [6, VIII,
§7]; more complicated examples of profinite groups with full Hausdorff spectra can be found, for example, in [1, 3, 5]. But
until now no examples of finitely generated pro-p groups with full normal Hausdorff spectra were known.

Already twenty years ago, Shalev [10, §4.7] put up the challenge to construct finitely generated pro-p groups with infinite
normal Hausdorff spectra and he asked whether the normal Hausdorff spectra could even contain infinite real intervals.
Recently, Klopsch and Thillaisundaram [7] succeeded in constructing such examples, with respect to the five standard
filtration series. Even though the normal Hausdorff spectra of their groups each contain infinite intervals, none of the
spectra covers the full unit interval [0,1]. In this paper we modify the construction of Klopsch and Thillaisundaram to
produce the first example of a finitely generated pro-p group with full normal Hausdorff spectrum [0,1], with respect to
any of the five standard filtration series.

Our construction proceeds as follows. Throughout, let p denote an odd prime. For k € N, consider the finite wreath
product

Wi = By X (Xp) = (Pr) U{Xk)s

k U k
pr=1 /X \ AP
y :Cp .

with cyclic top group (%) = C,x and elementary abelian base group By, = i=0 A

Basic structural properties of the finite wreath products W), transfer naturally to the inverse limit W = l(iﬁk Wi, ie.,
the pro-p wreath product

W= (%)) =BX(X)=C,Z,
with procyclic top group (X) = Z,, and elementary abelian base group B = (y*' | j € Z) = C; 0,
Let F = F, = (X,7) be a free pro-p group on two generators, and let  : F — W, resp. 5, : F - Wy, for k € N,
denote the continuous epimorphisms induced by X — x and j — y, resp. X — X; and j — y;. Set R = ker(n) <. F and

Ry = ker(ny) <, FysetY = Bp~! < F and Y = B! <, F. We define

G=F/N, where N=[R,Y]YP L F,

Gy = F/Ny, where N = [Ry, Y, ]Y [ (x¥" )F.
Furthermore, we write
H=Y/N<4.G and Z =R/N <. G,
Hp =Y, /N, <G, and Z, = R /N < Gy.
We denote the images of %, y in G, resp. in G, by x, y, resp. Xy, Vi, so that G = m and Gy, = (xg, Yk )-
We observe that the finite groups Gy, k € N, naturally form an inverse system and that G = l(iﬁk Gy. Furthermore, we

have [H,Z] =1, and [Hy,Z,] = 1forall k € N.

Theorem 1.1. For p > 2, the 2-generated pro-p group G constructed above has full normal Hausdorff spectra with respect
to the five standard filtration series:

hspecé(G) = hspecg(G) = hspecZ(G) = hspecz*(G) = hspecg(G) =[0,1].



DE LAS HERAS AND KLOPSCH MATHEMATISCHE 91
NACHRICHTEN

This resolves Problems 1.2 (b),(c) in [7] and Problem 5 in [2] for all five standard series. The latter problem was
already solved previously for the series D, P, P* and F: in [6, VIIL, §7] it was seen that W = C), 1 Z p has hspecD(W) =
hspecp(W) = hspecr(W) = [0, 1], and by completely different means it was shown in [5] that a non-abelian finitely gen-
erated free pro-p group E has hspecD(E) = hspecp* (E) = hspecr(E) =[0,1].

Notation. Throughout, p denotes an odd prime. From now on, all subgroups of profinite groups are tacitly understood
to be closed subgroups to simplify the notation. All iterated commutators are left-normed, e.g., [x,y, z] = [[x, y], z].

Section 2 contains basic material and fairly general considerations that do not yet involve the notation used in the
construction of the particular groups G and Gy, k € N.

In Sections 3 and 4 we use the special notation from the introduction. In addition, we write ¢; = y and ¢; = [y, x, =1, x]
for i € N,; furthermore, we set ¢;; = [¢;,y] and ¢; ; = [¢;, ¥, x, I7L x]for j e N,. To keep the notation manageable, we
denote, for k € N, the corresponding elements in the finite group G, by the same symbols (suppressing the parameter k):
¢, = yeand ¢; = [y, X, =1 xi ] fori € Ns,,and similarly ¢;; = [¢;, yr]and¢; j = [ci Vie» Xk, 7L, xi [ for j € Ns,. From the
context it will be clear whether our considerations apply to G or one of the groups Gy.

2 | PRELIMINARIES

Let G be an arbitrary finitely generated pro-p group. We recall the definition of the five standard filtration series referred
to in the Introduction. The lower p-series L of G, the dimension subgroup series D of G, the p-power series P of G, the
iterated p-power series P* of G and the Frattini series F of G are defined recursively by

£ :P,(G)=G and P,G) =P, 1(G)?[P,_,(G),G] fori> 2,
D :Dy(G)=G and Dy(G) = Dy;;p(G)P HISM [D;(G),D;_;(G)] fori>2,
P : m(G) =GP = <g1’i |geG> fori >0,
P* 1 7w3(G) =G and 7/(G)=m; ,(G)Pfori>1,
F:®y(G)=G and @,(G)=®,_,(G)P[®;_(G),®;_1(G)] fori > 1.
Next we recall two standard commutator identities; compare [9, Prop. 1.1.32].
Lemma 2.1. Let G = (a, b) be a finite p-group, for p > 3, such that y,(G) has exponent p, and let r € N. For u,v € G, let

K(u,v) denote the normal closure in G of all commutators in {u, v} of weight at least p" that have weight at least 2 in v.
Then the following congruences hold:

(ab)?' =K(a.b) aP pP’ [b,a, pffl,a] and [aP",b] =K(a[a.b]) a,b,a,” 7\ al.

The main ingredient of the proof of Theorem 1.1 is Proposition 2.4. For the proof we first establish two lemmata. The
first lemma is a variation of [8, Prop. 5.2].

Lemma 2.2. Let G be a countably based pro-p group, and let Z <. G be infinite. Let S : Zy 2 Z; 2 ... be a filtration series
of Z consisting of G-invariant subgroups Z; <, Z. Let ) € [0, 1] be such that the normal closure in G of every finite collection
of elements z,, ..., z,, € Z satisfies hdim}, ((z1, s 2m)%) <.

Then there exists H <. Z with H < G such that hdim‘ZQ(H )=mn.

Proof. The claim can be verified in close analogy to the proof of [8, Prop. 5.2]. One constructs the subgroup H <. Z as
H=(HyUH; U...), where 1 = Hy C H; C ... is a suitable ascending sequence of subgroups H; <. Z each of which is
the normal closure in G of finitely many elements. To see that the argument in op. cit. can be used, it suffices to observe
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that, for each i € N, the pro-p group G/Z; acts nilpotently on the finite p-group Z/Z; (and its quotients by G-invariant
subgroups). Cl

Lemma 2.3. Let G be a countably based profinite group with an infinite abelian normal subgroup Z <. G and let x € G
such that G = (x)Cg(Z). Let S : Z = Zy > Z; > ... be a filtration series of Z consisting of G-invariant subgroups Z; <, Z;
fori € Ny, let p% be the exponent of Z / Z;. Suppose that, for every i € N, there exist n; € N and N; <. Z such that

éin;

Yn+1(G)NZ<Z;<N; and lim — L
" S oologplZ NI~

i—>

Then every finite collection of elements z1, ..., z,,, € Z satisfies
hdim}, ((z1, ., 2m)%) = 0.

Proof. Consider first a single element z € Z. From

(2)¢ = (z,]z,x],[z,x,x], ...,
and y, 1(G)NZ < Z;, fori € N, we deduce that

(2)°Z; = (z,]z,x], ..., [z, x, "1, x]) Z;;
in particular, since Z is abelian, this yields
log, [(2)°Z; : Z;| < em;.

Now consider finitely many elements z, ..., z,, € Z. Since Z is abelian, we have (z;, ..., z,,,)° = (z;)¢ - (z,,)°. From
this we deduce

Y log, [(2))¢Z; : Zy] i T
logp |Z : Z;]| bt logp |Z : N;| ) O

hdimy ((z1, ., 2,,)°) < lim
i—oo
For an infinite countably based pro-p group G, equipped with a filtration series S : G =S; 2 S; 2 ..., and a closed

subgroup H <. G we adopt the following terminology from [7]: we say that H has strong Hausdorff dimension in G with
respect to S if its Hausdorff dimension is given by a proper limit, i.e., if

log |HS; : S

hdlmG(H) = hm |G ST

Using the previous two lemmata, we follow the proof of [8, Thm. 5.4] to obtain our main tool.

Proposition 2.4. Let G be a countably based pro-p group with an infinite abelian normal subgroup Z <. G such
that G/Cg(Z) is procyclic. Let S : G =S, > S; > ... be a filtration series of G and consider the induced filtration series
Slz:Z=SyNZ>=85NZ>..0ofZ; fori e N, let p be the exponent of Z /(S; N Z). Suppose that, for every i € N, there
exist n; € Nand M; <. G such that

1 elnl
Soo logp |Z : M; nZl

Yn+1(G)NZ <S;NZ < M; and

If Z has strong Hausdorff dimension & = hdimg(Z) € [0, 1] then we have

[0,£] C hspec3(G).
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3 | THE STRUCTURE OF THE FINITE GROUPS G

In this section we collect some structural results for the finite p-groups G, defined in the introduction. We use the notation
set up there, in particular, in the last paragraph of that section: Wy, By, X, Yk, Gk, Hi, Zi, Xics Yics Cis Cijs e

Proposition 3.1 (Prop. 2.6 in [7]). For k € N, the wreath product Wy = Cj, 2 Ck is nilpotent of class p¥ and the lower central
series of W), satisfies

Wi = 71(Wi) = (i, 9i)72(Wi) with Wi /y2 (W) 2 Cpe X Cp,

7i(Wi) = (W X, = ) Yign (Wi ) with yi (W) /yis1 (Wi) = C for2 <i < p*.

In particular, the base group satisfies

B = 5072 (Wie) = Gios s Xicls o [0 %60 o ] )-

Proposition 3.2. Fork € N, we have G; = (x;.) X Hy, where (x;) = Cx and Hy is freely generated in the variety of class-2
j
nilpotent groups of exponent p by the conjugates y; k.0 < j < pX. In particular, the logarithmic order of Gy, is

k

log, |G| = k + pk+ <pz )

Proof. The proof is very similar to that of [7, Lem. 5.1]. From G, /Z;. = W we obtain
log, |Gy| = log,, |G/ Zy| +log, 1Zi| = k + p* +log 1 Z|.

By construction, Zj, is elementary abelian, and from [7, Eq. (3.1)] we get
X P k
Zk=<yk ’yk |OS"<]SP _1>

k
This yields log,, |G| < k + Pk + (p2 ).
Consider the finite p-group

M = (b,....by_y) = E/7(E)EP,

where E is the free group on p* generators. Then, the images of by, ..., b,k_, generate independently the elementary
abelian quotient M/M’, and the commutators [bl-, b j] with 0 <i < j < p¥ — 1 generate independently the elementary
abelian subgroup M’. The latter can be checked, for instance, by considering homomorphisms from M onto the group
Heis([Fp) of upper unitriangular 3 X 3 matrices over the prime field [F,. Next consider the faithful action of the cyclic
group A = (a) = Cpx on M induced by

by, ifo<i<pk—2,

b, ifi=prk-1.

~ k ~
We define G, = AX M and note that logp |Gi| <k + p* + (p2 ) = logp |Gy |. Furthermore, it is easy to see that

Gy /M’ = W Thus there is an epimorphism e : Gy - Gj with x; ¢ = a and y & = by, and from |G| < |G| we conclude
that Gy, = ék- O



9 %ﬁgﬁ{%ﬁéﬁ’glgﬁHE DE LAS HERAS AND KLOPSCH
[NACHRICHTEN |

Remark 3.3. The proof of Proposition 3.2 shows that [H),, H; | = Z; for k € N, and thus [H,H]| = Z.

Proposition 3.4. Fork € N, the nilpotency class of Gy, is 2p* — 1. The terms of the lower central series of G, are as follows:
71(Gk) = Gr = (X, ¥i)72(Gk)  with Gy /y2(Gy) = Cpe X C),
and, with the notation
I ={i|2<i<pfwithi=, 0}, L={il2<i<pfwithi=, 1},
Li={i|lpF+1<i<2p*—1withi=,0}, L={ilpF+1<i<2pf—1withi=, 1},

the series continues as

.
(Ci» €225 Caj—ty s Cim22)Vi41(Gk) foriel,
(Ci» €22 Cajar > Ci1,1)Vix1(Ck) fori €I,
Yi(Gk) =1
<Ci—pk+1,pk—1’ Cipk43,pk—3> =) Cpk—l,i—pk+1>7/i+1 (Gk) foriels,
k<Ci_pk’pk, ci—pk+2,pk—2’ ey cpk—l,i—pk+1 >J/i+l (Gk) fori (S I4,
with
( Li)2 )
C, foriel,
(i+1)/2 .
. . Cp foriel,
Yi(Gi)/Yix1(Gi) = pk—i)/2 '
C, foriels,
pF—i+1)/2 .
Cp foriel,.

Proof. The description of y; (Gk) modulo yz(Gk) is clear. Now consider i € I, thatis 2 < i < p¥ and i =, 0. Our first aim
is to show, by induction on i, that

¥i(Gr) = (ci, a2, Caiar s Ci22)Vir1(Gi),
(3.1)

Yis1(Gr) = (Cix1s €215 Caj—3s -2 Ci1)Vix2(Ck)-

The induction base, ie. the case i=2, is clear: ¥,(Gx) = ([xk. yk])73(Gk) = (c2)73(Gx) and y3(Gy) =
([e2, Xk ], [e2, i )74 (Gk) = (c3,¢2.1)74(Gy ). Next suppose that i > 4. The induction hypothesis yields

Yie2(Gk) = {Ci—zs C2i—4s Caigs s Cia2)i-1(Gk),
Yie1(Gk) = (Ci1s €2i-3, Cajiss -os Ci21)Vi(Gr)-
From ¢, ,, € [Hy, Hy]| = Z) we deduce [c,, ,, yx| = 1 for all m,n > 1. This gives
¥i(Gk) = (ci, cim11> Cai2s Cajimts s Cim22)Vi41(Gi)-
We put

M ={¢;, 22, Cajts s Cim22)Vit1(Gk)
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and aim to show that ¢;_; ; € M. This will establish the first equation in (3.1); the second equation then follows immedi-
ately, again from [c, ,,,, y] = 1 for m,n > 1.
Asc;_17 = [¢j—2, Xk, Yk ], the Hall-Witt identity yields

Cim1,1[%k Vi ci2 Ik, €2, X =1 (mod M).
Furthermore, [y, ¢;_s, Xi | = cl.:12’2 = 1 modulo M, and this gives
¢i—11 = [¢i2, ] (mod M).
Thus it suffices to prove that
[ehsc ] =1 (mod M) forallm,neNwithm>n>2andm+n=1.

We argue by induction on m —n. If m —n =0 then m = n and [c,,,c,] = 1. Now suppose that m — n > 1; because
m+n=ix=,0,thisgivesm —n > 2. As [¢;,, ¢, ] = [¢n—15 Xk» Cn ], the Hall-Witt identity yields

[ems enl[ Xk Cns e llen, Cmo1, Xk =1 (mod M),
where [xy, ¢, C—1] = [c—1,Cny1] =1 (mod M) by induction. This yields
[Cms Cnl = [y Cer, Xk 71 = [[Cns 7 xi]  (mod M).
From [¢,, cy—1]17" € 7i-1(Gk) we deduce that
[CnCm]™t = cirflczrj_3c:j_5 cir—i_zfl (mod Vi(Gk))
for suitable ry, 75, ..., ;_, € Z. It follows that
[Cms Cnl = [[Cny 17t xi] = cir"czr,zl._2c£:,‘lf_4 cl.r_izz =1 (mod M).

This finishes the proof of (3.1). Finally, we observe from (3.1) that

¥i(Gk) /7141 (Gr) = Cll;(i) and  ¥;41(Gk)/7i42(Gr) = Cll,(m),

where [(i) <i/2and I(i + 1) < i/2 + 1; below we will see that, in fact, all the generators appearing in (3.1) are necessary.
Now consider i € I, thatis p + 1 <i <2pX —2andi =, 0. Lemma 2.1 yields

k
Cplt1 = [yk,xlf ] =[ye11=1 (mody,k;2(Gk)),

thus ki1 € ¥ pks2(Gi) and cpeiy y € ¥ pkiniz (G ) for n > 1. For similar reasons, we have c,, ,k41 € ¥ pkin42(Gy) for all
n > 1. This yields, by induction on i,

yi(Gk) = <Ci—pk+1,pk—1’ Cipk43,pk—3> «» Cpk—l,i—pk+1>7i+1 (Gk)’
(3.2)

Vi+1(Gk) = (Cimpky1,pks Cimpka3,pk—2s - Cpk—l,i—pk+2>yi+2(Gk)~

Similarly as before, we observe that

i(G) /7 (G) 2 C”  and i1 (Gr)/risa(Gr) 2 )Y,
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where [(i),1(i + 1) < (Zpk - i) /2. Extending the argument one step further, we obtain y,,« (Gk) = 1: the group Gy has
nilpotency class at most 2p* — 1.

Finally, it suffices to check that the upper bounds that we derived from (3.1) and (3.2) for the logarithmic orders
log |y; (Gk) D Yin (Gk) [,1 <i<2p* —1,sum to the logarithmic order of G. Indeed, based on Proposition 3.2, we confirm
that

p* 2pf-1 k
; k_; _ ko (P =
e+ 0+ Y12+ ¥ [(2p = i)/2] =k+p*+ (%)) = log, Gl -
=2 i=pk+1
Corollary 3.5. Fori € N we have
(i-3)/2
2 Y j=(2—4i+3)/4 ifi=, 1,
. _ Jj=1
logp |Z . YL(G) N Zl - (i—4)/2 =2
2 ¥ j+5= (i?—4i+4) /4 ifi=0.
Jj=1
Proof. The claim follows from the standard identity
72(G) 1 7i(G)] = 172(G) = vi(GZIyi(G)Z = 7i(G)] = ly2(W) 1 yW)INZ = yi(G)n Z]
and Propositions 3.1 and 3.4. O

From the lower central series of Gy, it is easy to compute the lower p-series and the dimension subgroup series of Gy.

Proposition 3.6. For k&N, the p-central series of G, has length 2p* —1 and its terms satisfy, for
1<i<2pk-1,

i—1
Pi(Gk) = <le >)/1<Gk)
Proof. The description of P, (Gy) = y,(Gy) is correct. Now suppose that i > 2. By induction, we have
i—2
Pia(Gi) = (xF Yria(Ge).

Recall that P;(Gy) = [P;—; (G ), Gk|Pi—s (Gk)p and consider the two factors one after the other. The first factor satisfies

[Pis(G0).Gel = [{x Yria(Ge). 6] = [(5F7).Ger(G).

and Lemma 2.1 yields

i—2 i—2
[(x,f >,Gk] < [Glf ,Gk] < ¥pi-241 (Gr)-

From p"=% + 1 > i we deduce that [P;_; (Gy ), Gx] = 7:(G).
The second factor satisfies

We conclude that P;(Gy) = <xlfi_1 > 7i(Gg). O
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Proposition 3.7. For k € N, the dimension subgroup series of G has length 2p* —1 and its terms satisfy, for
1<i<2pF—1,

Dy(Gy) = <x£l(i)>yi(Gk), where I(i) = [log, (i)].

Proof. Leti € N. Since y, (Gk) has exponent p, Lazard’s formula (see [4, Thm. 11.2]) shows that

D;(Gy) = H yn(Gk)pm = kal(i)yi(Gk), where (i) = [log (i)].

np™m>i

1(i) 5 Hl(@)

Lemma 2.1 yields a? bP"” = (ab)?"” modulo ¥ (G) for all a, b € Gy and, as p'D > i, we deduce that

D,(Gi) = (x Wni(Ge). -

4 | NORMAL HAUSDORFF SPECTRA

In this section we establish Theorem 1.1; we split the proof into three parts and formulate three separate results, in depen-
dence on the filtration series. We use the notation set up in the introduction; in particular, G = Liﬂk Gy denotes the group
constructed there.

Theorem 4.1. The pro-p group G has full normal Hausdorff spectra
c D
hspec(G) = [0,1] and hspec(G) = [0, 1],
with respect to the lower p-series L and the dimension subgroup series D.

Proof. Let S be L, resp. D. Write S : G =Sy =8, > S, > ..., where S; = P;(G), resp. S; = D;(G), for i > 1, and observe
that Z < y,(G); compare Remark 3.3. Thus Proposition 3.6, resp. Proposition 3.7, yields

SlﬂZzyl(G)nZ fori >1.

From Corollary 3.5 we see that

i
lim =
i—o0 10gp |Z : yl(G) NnZ|

4.1

This allows us to pin down the Hausdorff dimension of Z <. G:

log, |G : S| ! log, |G : S;Z| +log, |S:Z : S| !
hdim, 2) = hm _ = lim
¢ log, IS;Z : S bt log, IS:Z : S

> oo

log, |G : 5,Z| - log, |G : SiZ| -
=lim | —m——— = lim +1 =1,
logp |Z . S; nZ| logp |1Z : vi(G)N Z|

i—o0 i—o0

where the last equality follows from (4.1) and the fact that logp |G : S;Z| < 2i, by [7, Prop. 2.6] and Proposition 3.7. In
particular, Z has strong Hausdorff dimension.
Thus Proposition 2.4, with e; = 1, n; = i and M; = y;(G), yields

[0,1] = [0, hdimg(Z)] C hspecz(G). O
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Theorem 4.2. The pro-p group G has full normal Hausdorff spectra

hspec;)(G) = [0,1] and hspecg* (G) =[0,1],
with respect to the p-power series P and the iterated p-power series P*.

Proof. Recall our notation 7;(G) = GP' and 7/ (G) for the terms of the series P and P*. Our first aim is to show that
¥2pi(G) < GP' < 7(G) < <xp">yp[ (G) forie N, (4.2)

k
Leti € Ny. From the construction of G and Gy, it is easily seen that G/ GP' Gy/ G]f for k € N. Hence Proposition 3.4

yields y,,i(G) < Gr'. Clearly, we have GP' < 7/ (G). It remains to justify the last inclusion in (4.2). We proceed by induction
on i. For i = 0 even equality holds, trivially. Now suppose that i > 1. The induction hypothesis yields

7,6 < (¥ Y7 G).

Let g€ n; (G), and write g = xmP™'h with m e Z, and h €y,-1(G)NH. Lemma 2.1 yields gP = xMP'z with
xmP e (xpi> andz €y, ((xPH, h)). Thus it suffices to show that yp((xPH, h)) <y, (G).

Suppose that c is an arbitrary commutator of weight n > 2 in {xPH, h}; we show by induction on n that ¢ € y,,,i-1(G).
For n = 2, it suffices to consider ¢ = [h, xl’i_l], and Lemma 2.1 shows that ¢ € yzpi_l(G). For n > 3, we see by induction
that it suffices to consider ¢ = [d, h] and [d, xPH] withd € y(,_1)pi-1(G); ifc = [d, k], the result follows immediately, and,
ifc = [d, xPH], the result follows again by Lemma 2.1. This concludes the proof of (4.2).

Let S = P, resp. S = P*, and write S; = m;(G) = Gpi, resp. S; = 77 (G), for i € Ny. Recall that Z < y,(G); compare
Remark 3.3. Thus (4.2) yields

1@ nZ<5inZ < ((x )ry(@)nZ=7y(G)nZ. (4.3)

From Corollary 3.5 we see that

2 i
lim P — 0. (4.4)
i=eo logp Z: y(G)nZ

As in the proof of Theorem 4.1 we want to apply Proposition 2.4, here with ¢; = 1, n; = 2p' and M; = 7,i(G), to conclude

that G has full normal Hausdorff spectrum.
It remains to check that hdimg(Z) = 1. We observe that, fori € N,

logp |G : S;Z] < logp ‘Gi : Gip‘zi' < logp |W;| =i+ p'<2pi,

and thus, by (4.3) and (4.4),

logp |G : S;Z] ) logp |G : S;Z]|

'imlo |Z'SnZ|S' -
1—>00 . i 1= . .
gp i log, |Z : yu(G)nZ

As in the proof of Theorem 4.1 we conclude that hdimg (Z2)=1. O
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A little extra work is required to determine the normal Hausdorff spectrum of G with respect to the Frattini series. We
define

[circj] € 7145(G) fori,j>1,
Zi,j =
1 otherwise.

Proposition 3.1 and Remark 3.3 show that
H=(q|i>1) and Z=(z;|1<j<i).
Moreover, from Corollary 3.5 it can be seen that, for k > 2,
(@NZ={(z;|1<j<iandi+j>k). (4.5)

Lemma 4.3. Fori, j € Nandr € N, the following identity holds:

r S
O
r — t

s=0 t=0

Proof. We argue by induction on r. For r = 0 both sides are equal to z; ;. Now suppose that r > 1. We observe that, for
m,n>1,

[Zm,na x] = Zr;,ln [CrJrcl’ Cr)lc] = Z_,ln [Cmcm+1’ Cncn+1] = Zm+1,n Zm,n+1 Zm+1,n+1- (4-6)

Thus the induction hypothesis yields

. - T CH0)
[2i,j> %, = X] = [z, x, "0 x] x] = [Zigr—1—t,jar—1—ss> X]* s 7,
§=0 t=0
and, in view of (4.6), the result follows from the identity
G2 +ECOCID D0
s—1 t s—1/\t—-1 s t
r—1\/s r—1\/s r\ /s
=)+ (50 =00)
s—1/\t s t s/ \t
for0<s<rand0<t<s. O

Lemma 2.1 and Lemma 4.3 lead directly to a useful corollary.
Corollary 4.4. Fori, j € Nand k € N, the following identity holds:
pk
[Zi,j,x ] = Zi+pk’jzi,j+pkzi+pk’j+pk.
Theorem 4.5. The pro-p group G has full normal Hausdorff spectrum
F
hspec(G) = [0,1],

with respect to the Frattini series F.
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Proof. For i € N, we write [i], = (p' —1)/(p — 1) and note, for i > 1, that [i — 1], + p'~! = [i] ,. We consider

€= (x" ) (e 1j 2 1+[il,) <. G
and claim, for i > 1, that
P77 (G) < 0(G) < ¥/ (G), (4.7)
where
¥:(6) = Ci(Visapionep (G0 Z) and  F(G) = Ci(yarap1,(G) N Z).

For i = 1 the assertion is that ®(G) = C1(y,(G) N Z) = (xP, ¢, c3, ... )(¥2(G) N Z), which follows from Proposition 3.1 and
the fact that Z < y,(G). Now suppose that i > 2. Lemma 2.1 and the observation that p'~! > 2p'—2 yield

i—1
[72+2[i—2]p(G) nZz,xp ] < V242(i-2],+p-1(G) N Z < ¥2490-11,(G) N Z;
by construction, we have [y2+2[i_2]p(G) NnZz, cn] =1 for all n > 1. Furthermore, Lemma 2.1 gives

[cn, xPH] = Cpypi-t (Mod Yy pi-1(G)NZ) foralln > 1, (4.8)
and hence
[Ci—1’ xpl—l] < Ci ()/2+2[i_1]p+pi—1 (G) n Z) .

By induction, ®;_,(G) < ¥ (G) = C;_1 (2420i-2],(G) N Z), and this implies
24(G) = ®(@,1(G) < (¥ ) [Ci-1,Cioa] (V24211-1,(G) 0 Z)

< Ci(72+2[i—1]p G)nZ) =¥/ (G).
It remains to check the first inclusion in (4.7); by induction, it suffices to show that
¥ (G) <K, whereK =®(¥_ (G)).

First we show that y1+2[i_1]p+p,-_1(G)nZ <K implies C; < K. Clearly, xP' e Cl.li L <K, and (4.8) shows that, for
J = 1+[i]p, there exists d; € y5(j—pi-1)1pi-1(G)NZ < y1+2[i_1]p+pz_1(G) N Z such that

-1

¢ = [Cj_pi—l,xpi ]dj S [Ci—l,ci—l] <K.

Thus it suffices to prove that Y1+2[i-1],+pi-1 (G)nZ <K.
From (4.5) we recall that

Vitalic],+p-1 (G)NZ = (zjxl1<k<jand j+k>1+2[i—1],+p"').
From [C;_;, C;_;] £ K we deduce that

Zmn €K form>n>1+[i—1],. 4.9
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Thus, it remains to see that z; ; € K for j, k € N satisfying
1<k<}, j+k=1+2[i—1],+p"! and  k<[i—1],.
Given such j, k € N, we observe that
k<l+4[i-1],<j—-p™ and  (j—p")+k>1+2[i—1],;
hence (4.5) implies
Zj—pi-1k € V142[i-11,(C) N Z < Y1120i-2),+p2(G) N Z < W (G).

We apply Corollary 4.4 to deduce that
i—1 _
ZjJ Zj—pi-1 j4pi-1 Zjk4pi-l = [Zj_pi—l,k,xp ] € [‘Pi_l(G), C,-_l] <K. (4.10)

Asj>k+pl>14[i— 1], we see from (4.9), form = jandn =k + p'~! that Zj k+pi-1 € K. Similarly, we deduce

that z;_pi-1 4 pi-t € K, if j — p'™' > k + p'™!, and, finally, z;_ -1 4 pi-1 = €K, if j—p~' <k+p~'and

-1

. Zk+pi—1’j_pi—1

thus j — p= ' > 1+[i—1] p- Feeding this information into (4.10), we obtain z;; € K which concludes the proof of (4.7).
From (4.7) we deduce that

Y1420i-1],+p-1(G)NZ S ®(GC) N Z < ¥242)i-11,(C) N Z,
and from Corollary 3.5 we see that

2[i—1], + p!
im0 log, |Z & y2420i-11,(G) N Z]

As in the proof of Theorem 4.1 we want to apply Proposition 2.4, here with ¢; =1, n; = 2[i — 1], + p'~tand M; =
Y2+2[i-1],, (G), to conclude that G has full normal Hausdorff spectrum.

It remains to check that hdimg(Z) = 1. From [7, Prop. 2.6] we see that logp |G : @(G)Z| =i+ [i],, and hence
Corollary 3.5 implies

logp |G : ®,(G)Z]
im =0
i—o0 Ing |1Z : ®;(G)Nn Z|

As in the proof of Theorem 4.1 we see that hdimg @) =1. O
Theorem 1.1 summarises the results in Theorems 4.1, 4.2 and 4.5.
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