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Abstract
For each odd prime 𝑝, we produce a 2-generated pro-𝑝 group 𝐺 whose normal
Hausdorff spectra

hspec


⊴(𝐺) =
{
hdim



𝐺(𝐻) ∣ 𝐻 ⊴c 𝐺
}

with respect to five standard filtration series  , namely the lower 𝑝-series,
the dimension subgroup series, the 𝑝-power series, the iterated 𝑝-power series
and the Frattini series, are all equal to the full unit interval [0,1]. Here
hdim



𝐺 ∶ {𝑋 ∣ 𝑋 ⊆ 𝐺} → [0, 1] denotes the Hausdorff dimension function associ-
ated to the natural translation-invariant metric induced by the filtration series  .
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1 INTRODUCTION

The concept of Hausdorff dimension has led to interesting results in the theory of profinite groups; for instance, see [8]
and the references therein. Let 𝐺 be an infinite countably based profinite group and let  be a filtration series of 𝐺, that
is, a chain 𝐺 = 𝑆0 ≥ 𝑆1 ≥ 𝑆2 ≥ … of open normal subgroups 𝑆𝑖 ⊴o 𝐺 such that

⋂
𝑖
𝑆𝑖 = 1. These subgroups form a base

of neighbourhoods of 1 and induce a translation-invariant metric on 𝐺 which, in turn, associates a Hausdorff dimension
hdim



𝐺(𝑈) ∈ [0, 1] to any subset 𝑈 ⊆ 𝐺 with respect to the filtration series  .
Barnea and Shalev [2] established a group-theoretical interpretation of hdim

𝐺(𝐻) for closed subgroups 𝐻 ≤c 𝐺; they
showed that

hdim


𝐺(𝐻) = lim
𝑖→∞

log𝑝 |𝐻𝑆𝑖 ∶ 𝑆𝑖|
log𝑝 |𝐺 ∶ 𝑆𝑖|

can be regarded as a “logarithmic density” of 𝐻 in 𝐺. The (ordinary) Hausdorff spectrum of 𝐺 is

hspec

(𝐺) =

{
hdim



𝐺(𝐻) ∣ 𝐻 ≤c 𝐺
}
.

The normal Hausdorff spectrum of 𝐺, defined as

hspec


⊴(𝐺) =
{
hdim



𝐺(𝐻) ∣ 𝐻 ⊴c 𝐺
}
,

provides a snapshot of the normal subgroup structure of 𝐺; its significance was highlighted by Shalev in [10, §4.7].
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Typically, the Hausdorff dimension function and the normal Hausdorff spectrum depend very much on the underlying
filtration  ; compare [8]. For a finitely generated pro-𝑝 group 𝐺, there are natural choices for  that encapsulate group-
theoretic properties of 𝐺: the lower 𝑝-series , the dimension subgroup series , the 𝑝-power series  , the iterated
𝑝-power series ∗, and the Frattini series  ; see Section 2. We refer to these filtration series loosely as the five standard
filtration series.
Several types of profinite groups with full ordinary Hausdorff spectra [0,1] have been identified. The first examples of

finitely generated pro-𝑝 groups 𝐺 with hspec (𝐺) = [0, 1] were discovered by Levai (see [10, §4.2]) and Klopsch [6, VIII,
§7]; more complicated examples of profinite groups with full Hausdorff spectra can be found, for example, in [1, 3, 5]. But
until now no examples of finitely generated pro-𝑝 groups with full normal Hausdorff spectra were known.
Already twenty years ago, Shalev [10, §4.7] put up the challenge to construct finitely generated pro-𝑝 groupswith infinite

normal Hausdorff spectra and he asked whether the normal Hausdorff spectra could even contain infinite real intervals.
Recently, Klopsch and Thillaisundaram [7] succeeded in constructing such examples, with respect to the five standard
filtration series. Even though the normal Hausdorff spectra of their groups each contain infinite intervals, none of the
spectra covers the full unit interval [0,1]. In this paper we modify the construction of Klopsch and Thillaisundaram to
produce the first example of a finitely generated pro-𝑝 group with full normal Hausdorff spectrum [0,1], with respect to
any of the five standard filtration series.
Our construction proceeds as follows. Throughout, let 𝑝 denote an odd prime. For 𝑘 ∈ ℕ, consider the finite wreath

product

𝑊𝑘 = 𝐵𝑘 ⋊ ⟨�̇�𝑘⟩ ≅ ⟨�̇�𝑘⟩ ≀ ⟨�̇�𝑘⟩,
with cyclic top group ⟨�̇�𝑘⟩ ≅ 𝐶𝑝𝑘 and elementary abelian base group 𝐵𝑘 =

∏𝑝𝑘−1

𝑗=0

⟨
�̇�
�̇�
𝑗

𝑘

𝑘

⟩
≅ 𝐶

𝑝𝑘

𝑝 .

Basic structural properties of the finite wreath products𝑊𝑘 transfer naturally to the inverse limit 𝑊 ≅ lim
←  𝑘

𝑊𝑘, i.e.,
the pro-𝑝 wreath product

𝑊 = ⟨�̇�, �̇�⟩ = 𝐵 ⋊ ⟨�̇�⟩ ≅ 𝐶𝑝 ≀̂ ℤ𝑝

with procyclic top group ⟨�̇�⟩ ≅ ℤ𝑝 and elementary abelian base group 𝐵 =
⟨
�̇��̇�𝑗 ∣ 𝑗 ∈ ℤ

⟩
≅ 𝐶

ℵ0
𝑝 .

Let 𝐹 = 𝐹2 = ⟨�̃�, �̃�⟩ be a free pro-𝑝 group on two generators, and let 𝜂 ∶ 𝐹 → 𝑊, resp. 𝜂𝑘 ∶ 𝐹 → 𝑊𝑘, for 𝑘 ∈ ℕ,
denote the continuous epimorphisms induced by �̃� ↦ �̇� and �̃� ↦ �̇�, resp. �̃� ↦ �̇�𝑘 and �̃� ↦ �̇�𝑘. Set 𝑅 = ker(𝜂) ⊴c 𝐹 and
𝑅𝑘 = ker(𝜂𝑘) ⊴o 𝐹; set 𝑌 = 𝐵𝜂−1 ⊴c 𝐹 and 𝑌𝑘 = 𝐵𝑘𝜂

−1
𝑘

⊴o 𝐹. We define

𝐺 = 𝐹∕𝑁, where 𝑁 = [𝑅, 𝑌]𝑌𝑝 ⊴c 𝐹,

𝐺𝑘 = 𝐹∕𝑁𝑘, where 𝑁𝑘 = [𝑅𝑘, 𝑌𝑘]𝑌
𝑝

𝑘

⟨
�̃�𝑝

𝑘⟩𝐹 .
Furthermore, we write

𝐻 = 𝑌∕𝑁 ⊴c 𝐺 and 𝑍 = 𝑅∕𝑁 ⊴c 𝐺,

𝐻𝑘 = 𝑌𝑘∕𝑁𝑘 ⊴ 𝐺𝑘 and 𝑍𝑘 = 𝑅𝑘∕𝑁𝑘 ⊴ 𝐺𝑘.

We denote the images of �̃�, �̃� in 𝐺, resp. in 𝐺𝑘, by 𝑥, 𝑦, resp. 𝑥𝑘, 𝑦𝑘, so that 𝐺 = ⟨𝑥, 𝑦⟩ and 𝐺𝑘 = ⟨𝑥𝑘, 𝑦𝑘⟩.
We observe that the finite groups 𝐺𝑘, 𝑘 ∈ ℕ, naturally form an inverse system and that 𝐺 ≅ lim

←  𝑘
𝐺𝑘. Furthermore, we

have [𝐻, 𝑍] = 1, and [𝐻𝑘, 𝑍𝑘] = 1 for all 𝑘 ∈ ℕ.

Theorem 1.1. For 𝑝 > 2, the 2-generated pro-𝑝 group 𝐺 constructed above has full normal Hausdorff spectra with respect
to the five standard filtration series:

hspec


⊴(𝐺) = hspec


⊴(𝐺) = hspec


⊴(𝐺) = hspec
∗

⊴ (𝐺) = hspec


⊴(𝐺) = [0, 1].
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This resolves Problems 1.2 (b),(c) in [7] and Problem 5 in [2] for all five standard series. The latter problem was
already solved previously for the series ,  , ∗ and  : in [6, VIII, §7] it was seen that𝑊 ≅ 𝐶𝑝 ≀̂ ℤ𝑝 has hspec


(𝑊) =

hspec

(𝑊) = hspec


(𝑊) = [0, 1], and by completely different means it was shown in [5] that a non-abelian finitely gen-

erated free pro-𝑝 group 𝐸 has hspec(𝐸) = hspec
∗

(𝐸) = hspec

(𝐸) = [0, 1].

Notation. Throughout, 𝑝 denotes an odd prime. From now on, all subgroups of profinite groups are tacitly understood
to be closed subgroups to simplify the notation. All iterated commutators are left-normed, e.g., [𝑥, 𝑦, 𝑧] = [[𝑥, 𝑦], 𝑧].
Section 2 contains basic material and fairly general considerations that do not yet involve the notation used in the

construction of the particular groups 𝐺 and 𝐺𝑘, 𝑘 ∈ ℕ.
In Sections 3 and 4 we use the special notation from the introduction. In addition, we write 𝑐1 = 𝑦 and 𝑐𝑖 = [𝑦, 𝑥, 𝑖−1… , 𝑥]

for 𝑖 ∈ ℕ≥2; furthermore, we set 𝑐𝑖,1 = [𝑐𝑖, 𝑦] and 𝑐𝑖,𝑗 = [𝑐𝑖, 𝑦, 𝑥,
𝑗−1… , 𝑥] for 𝑗 ∈ ℕ≥2. To keep the notation manageable, we

denote, for 𝑘 ∈ ℕ, the corresponding elements in the finite group 𝐺𝑘 by the same symbols (suppressing the parameter 𝑘):
𝑐1 = 𝑦𝑘 and 𝑐𝑖 = [𝑦𝑘, 𝑥𝑘,

𝑖−1… , 𝑥𝑘] for 𝑖 ∈ ℕ≥2, and similarly 𝑐𝑖,1 = [𝑐𝑖, 𝑦𝑘] and 𝑐𝑖,𝑗 = [𝑐𝑖, 𝑦𝑘, 𝑥𝑘,
𝑗−1… , 𝑥𝑘] for 𝑗 ∈ ℕ≥2. From the

context it will be clear whether our considerations apply to 𝐺 or one of the groups 𝐺𝑘.

2 PRELIMINARIES

Let 𝐺 be an arbitrary finitely generated pro-𝑝 group. We recall the definition of the five standard filtration series referred
to in the Introduction. The lower 𝑝-series  of 𝐺, the dimension subgroup series  of 𝐺, the 𝑝-power series  of 𝐺, the
iterated𝑝-power series ∗ of 𝐺 and the Frattini series  of 𝐺 are defined recursively by

 ∶ 𝑃1(𝐺) = 𝐺 and 𝑃𝑖(𝐺) = 𝑃𝑖−1(𝐺)
𝑝[𝑃𝑖−1(𝐺), 𝐺] for 𝑖 ≥ 2,

 ∶ 𝐷1(𝐺) = 𝐺 and 𝐷𝑖(𝐺) = 𝐷⌈𝑖∕𝑝⌉(𝐺)𝑝∏
1≤𝑗<𝑖

[
𝐷𝑗(𝐺), 𝐷𝑖−𝑗(𝐺)

]
for 𝑖 ≥ 2,

 ∶ 𝜋𝑖(𝐺) = 𝐺𝑝𝑖 =
⟨
𝑔𝑝

𝑖
∣ 𝑔 ∈ 𝐺

⟩
for 𝑖 ≥ 0,

∗ ∶ 𝜋∗0(𝐺) = 𝐺 and 𝜋∗
𝑖
(𝐺) = 𝜋∗

𝑖−1
(𝐺)𝑝 for 𝑖 ≥ 1,

 ∶ Φ0(𝐺) = 𝐺 and Φ𝑖(𝐺) = Φ𝑖−1(𝐺)
𝑝[Φ𝑖−1(𝐺), Φ𝑖−1(𝐺)] for 𝑖 ≥ 1.

Next we recall two standard commutator identities; compare [9, Prop. 1.1.32].

Lemma 2.1. Let 𝐺 = ⟨𝑎, 𝑏⟩ be a finite 𝑝-group, for 𝑝 ≥ 3, such that 𝛾2(𝐺) has exponent 𝑝, and let 𝑟 ∈ ℕ. For 𝑢, 𝑣 ∈ 𝐺, let
𝐾(𝑢, 𝑣) denote the normal closure in 𝐺 of all commutators in {𝑢, 𝑣} of weight at least 𝑝𝑟 that have weight at least 2 in 𝑣.
Then the following congruences hold:

(𝑎𝑏)𝑝
𝑟
≡𝐾(𝑎,𝑏) 𝑎

𝑝𝑟𝑏𝑝
𝑟
[
𝑏, 𝑎, 𝑝

𝑟−1… , 𝑎
]

and [𝑎𝑝
𝑟
, 𝑏] ≡𝐾(𝑎,[𝑎,𝑏])

[
𝑎, 𝑏, 𝑎, 𝑝

𝑟−1… , 𝑎
]
.

The main ingredient of the proof of Theorem 1.1 is Proposition 2.4. For the proof we first establish two lemmata. The
first lemma is a variation of [8, Prop. 5.2].

Lemma 2.2. Let 𝐺 be a countably based pro-𝑝 group, and let 𝑍 ⊴c 𝐺 be infinite. Let  ∶ 𝑍0 ⊇ 𝑍1 ⊇ … be a filtration series
of 𝑍 consisting of 𝐺-invariant subgroups 𝑍𝑖 ⊴o 𝑍. Let 𝜂 ∈ [0, 1] be such that the normal closure in 𝐺 of every finite collection
of elements 𝑧1, … , 𝑧𝑚 ∈ 𝑍 satisfies hdim

𝑍

(⟨𝑧1, … , 𝑧𝑚⟩𝐺) ≤ 𝜂.
Then there exists𝐻 ≤c 𝑍 with𝐻 ⊴ 𝐺 such that hdim

𝑍(𝐻) = 𝜂.

Proof. The claim can be verified in close analogy to the proof of [8, Prop. 5.2]. One constructs the subgroup 𝐻 ≤c 𝑍 as
𝐻 = ⟨𝐻0 ∪ 𝐻1 ∪ … ⟩, where 1 = 𝐻0 ⊆ 𝐻1 ⊆ … is a suitable ascending sequence of subgroups 𝐻𝑖 ≤c 𝑍 each of which is
the normal closure in 𝐺 of finitely many elements. To see that the argument in op. cit. can be used, it suffices to observe



92 de las HERAS and KLOPSCH

that, for each 𝑖 ∈ ℕ, the pro-𝑝 group 𝐺∕𝑍𝑖 acts nilpotently on the finite 𝑝-group 𝑍∕𝑍𝑖 (and its quotients by 𝐺-invariant
subgroups). □

Lemma 2.3. Let 𝐺 be a countably based profinite group with an infinite abelian normal subgroup 𝑍 ⊴c 𝐺 and let 𝑥 ∈ 𝐺

such that 𝐺 = ⟨𝑥⟩𝐶𝐺(𝑍). Let  ∶ 𝑍 = 𝑍0 ≥ 𝑍1 ≥ … be a filtration series of 𝑍 consisting of 𝐺-invariant subgroups 𝑍𝑖 ⊴o 𝑍;
for 𝑖 ∈ ℕ0, let 𝑝𝑒𝑖 be the exponent of 𝑍∕𝑍𝑖 . Suppose that, for every 𝑖 ∈ ℕ0, there exist 𝑛𝑖 ∈ ℕ and𝑁𝑖 ≤c 𝑍 such that

𝛾𝑛𝑖+1(𝐺) ∩ 𝑍 ≤ 𝑍𝑖 ≤ 𝑁𝑖 and lim
𝑖→∞

𝑒𝑖𝑛𝑖
log𝑝 |𝑍 ∶ 𝑁𝑖| = 0.

Then every finite collection of elements 𝑧1, … , 𝑧𝑚 ∈ 𝑍 satisfies

hdim


𝑍

(⟨𝑧1, … , 𝑧𝑚⟩𝐺) = 0.

Proof. Consider first a single element 𝑧 ∈ 𝑍. From

⟨𝑧⟩𝐺 = ⟨𝑧, [𝑧, 𝑥], [𝑧, 𝑥, 𝑥], … ⟩,
and 𝛾𝑛𝑖+1(𝐺) ∩ 𝑍 ≤ 𝑍𝑖 , for 𝑖 ∈ ℕ, we deduce that

⟨𝑧⟩𝐺𝑍𝑖 = ⟨𝑧, [𝑧, 𝑥], … , [𝑧, 𝑥, 𝑛𝑖−1… , 𝑥]⟩𝑍𝑖;
in particular, since 𝑍 is abelian, this yields

log𝑝
||⟨𝑧⟩𝐺𝑍𝑖 ∶ 𝑍𝑖|| ≤ 𝑒𝑖𝑛𝑖.

Now consider finitely many elements 𝑧1, … , 𝑧𝑚 ∈ 𝑍. Since 𝑍 is abelian, we have ⟨𝑧1, … , 𝑧𝑚⟩𝐺 = ⟨𝑧1⟩𝐺 ⋯ ⟨𝑧𝑚⟩𝐺 . From
this we deduce

hdim


𝑍

(⟨𝑧1, … , 𝑧𝑚⟩𝐺) ≤ lim
𝑖→∞

∑𝑚

𝑗=1
log𝑝 |⟨𝑧𝑗⟩𝐺𝑍𝑖 ∶ 𝑍𝑖|
log𝑝 |𝑍 ∶ 𝑍𝑖| ≤ lim

𝑖→∞

𝑚𝑒𝑖𝑛𝑖
log𝑝 |𝑍 ∶ 𝑁𝑖| = 0. □

For an infinite countably based pro-𝑝 group 𝐺, equipped with a filtration series  ∶ 𝐺 = 𝑆0 ⊇ 𝑆1 ⊇ … , and a closed
subgroup 𝐻 ≤c 𝐺 we adopt the following terminology from [7]: we say that 𝐻 has strong Hausdorff dimension in 𝐺 with
respect to  if its Hausdorff dimension is given by a proper limit, i.e., if

hdim


𝐺(𝐻) = lim
𝑖→∞

log𝑝 |𝐻𝑆𝑖 ∶ 𝑆𝑖|
log𝑝 |𝐺 ∶ 𝑆𝑖| .

Using the previous two lemmata, we follow the proof of [8, Thm. 5.4] to obtain our main tool.

Proposition 2.4. Let 𝐺 be a countably based pro-𝑝 group with an infinite abelian normal subgroup 𝑍 ⊴c 𝐺 such
that 𝐺∕𝐶𝐺(𝑍) is procyclic. Let  ∶ 𝐺 = 𝑆0 ≥ 𝑆1 ≥ … be a filtration series of 𝐺 and consider the induced filtration series
|𝑍 ∶ 𝑍 = 𝑆0 ∩ 𝑍 ≥ 𝑆1 ∩ 𝑍 ≥ … of 𝑍; for 𝑖 ∈ ℕ0, let 𝑝𝑒𝑖 be the exponent of 𝑍∕(𝑆𝑖 ∩ 𝑍). Suppose that, for every 𝑖 ∈ ℕ0, there
exist 𝑛𝑖 ∈ ℕ and𝑀𝑖 ≤c 𝐺 such that

𝛾𝑛𝑖+1(𝐺) ∩ 𝑍 ≤ 𝑆𝑖 ∩ 𝑍 ≤ 𝑀𝑖 and lim
𝑖→∞

𝑒𝑖𝑛𝑖
log𝑝 |𝑍 ∶ 𝑀𝑖 ∩ 𝑍| = 0.

If 𝑍 has strong Hausdorff dimension 𝜉 = hdim


𝐺(𝑍) ∈ [0, 1] then we have

[0, 𝜉] ⊆ hspec


⊴(𝐺).
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3 THE STRUCTURE OF THE FINITE GROUPS 𝑮𝒌

In this sectionwe collect some structural results for the finite𝑝-groups𝐺𝑘 defined in the introduction.We use the notation
set up there, in particular, in the last paragraph of that section:𝑊𝑘, 𝐵𝑘, �̇�𝑘, �̇�𝑘, 𝐺𝑘,𝐻𝑘, 𝑍𝑘, 𝑥𝑘, 𝑦𝑘, 𝑐𝑖 , 𝑐𝑖,𝑗 , ....

Proposition 3.1 (Prop. 2.6 in [7]). For 𝑘 ∈ ℕ, the wreath product𝑊𝑘 ≅ 𝐶𝑝 ≀ 𝐶𝑝𝑘 is nilpotent of class 𝑝𝑘 and the lower central
series of𝑊𝑘 satisfies

𝑊𝑘 = 𝛾1
(
𝑊𝑘

)
= ⟨�̇�𝑘, �̇�𝑘⟩𝛾2(𝑊𝑘

)
with𝑊𝑘∕𝛾2

(
𝑊𝑘

)
≅ 𝐶𝑝𝑘 × 𝐶𝑝,

𝛾𝑖
(
𝑊𝑘

)
= ⟨[�̇�𝑘, �̇�𝑘, 𝑖−1… , �̇�𝑘]⟩𝛾𝑖+1(𝑊𝑘

)
with 𝛾𝑖

(
𝑊𝑘

)
∕𝛾𝑖+1

(
𝑊𝑘

)
≅ 𝐶𝑝 for 2 ≤ 𝑖 ≤ 𝑝𝑘.

In particular, the base group satisfies

𝐵𝑘 = ⟨�̇�𝑘⟩𝛾2(𝑊𝑘

)
=
⟨
�̇�𝑘, [�̇�𝑘, �̇�𝑘], … ,

[
�̇�𝑘, �̇�𝑘,

𝑝𝑘−1… , �̇�𝑘
]⟩
.

Proposition 3.2. For 𝑘 ∈ ℕ, we have 𝐺𝑘 = ⟨𝑥𝑘⟩⋉𝐻𝑘 , where ⟨𝑥𝑘⟩ ≅ 𝐶𝑝𝑘 and𝐻𝑘 is freely generated in the variety of class-2

nilpotent groups of exponent 𝑝 by the conjugates 𝑦
𝑥
𝑗

𝑘

𝑘
, 0 ≤ 𝑗 < 𝑝𝑘 . In particular, the logarithmic order of 𝐺𝑘 is

log𝑝 |𝐺𝑘| = 𝑘 + 𝑝𝑘 +
(𝑝𝑘
2

)
.

Proof. The proof is very similar to that of [7, Lem. 5.1]. From 𝐺𝑘∕𝑍𝑘 ≅ 𝑊𝑘 we obtain

log𝑝 |𝐺𝑘| = log𝑝 |𝐺𝑘∕𝑍𝑘| + log𝑝 |𝑍𝑘| = 𝑘 + 𝑝𝑘 + log𝑝 |𝑍𝑘|.
By construction, 𝑍𝑘 is elementary abelian, and from [7, Eq. (3.1)] we get

𝑍𝑘 =
⟨[
𝑦
𝑥 𝑖
𝑘

𝑘
, 𝑦

𝑥
𝑗

𝑘

𝑘

]
∣ 0 ≤ 𝑖 < 𝑗 ≤ 𝑝𝑘 − 1

⟩
.

This yields log𝑝 |𝐺𝑘| ≤ 𝑘 + 𝑝𝑘 +
(𝑝𝑘
2

)
.

Consider the finite 𝑝-group

𝑀 =
⟨
𝑏0, … , 𝑏𝑝𝑘−1

⟩
= 𝐸∕𝛾3(𝐸)𝐸

𝑝,

where 𝐸 is the free group on 𝑝𝑘 generators. Then, the images of 𝑏0, … , 𝑏𝑝𝑘−1 generate independently the elementary
abelian quotient 𝑀∕𝑀′, and the commutators

[
𝑏𝑖, 𝑏𝑗

]
with 0 ≤ 𝑖 < 𝑗 ≤ 𝑝𝑘 − 1 generate independently the elementary

abelian subgroup 𝑀′. The latter can be checked, for instance, by considering homomorphisms from 𝑀 onto the group
Heis

(
𝔽𝑝
)
of upper unitriangular 3 × 3 matrices over the prime field 𝔽𝑝. Next consider the faithful action of the cyclic

group 𝐴 ≅ ⟨𝑎⟩ ≅ 𝐶𝑝𝑘 on𝑀 induced by

𝑏 𝑎
𝑖
=

⎧⎪⎨⎪⎩
𝑏𝑖+1 if 0 ≤ 𝑖 ≤ 𝑝𝑘 − 2,

𝑏0 if 𝑖 = 𝑝𝑘 − 1.

We define 𝐺𝑘 = 𝐴 ⋉𝑀 and note that log𝑝 |𝐺𝑘| ≤ 𝑘 + 𝑝𝑘 +
(𝑝𝑘
2

)
= log𝑝

||𝐺𝑘||. Furthermore, it is easy to see that
𝐺𝑘∕𝑀

′ ≅ 𝑊𝑘. Thus there is an epimorphism 𝜀 ∶ 𝐺𝑘 → 𝐺𝑘 with 𝑥𝑘 𝜀 = 𝑎 and 𝑦𝑘 𝜀 = 𝑏0, and from |𝐺𝑘| ≤ ||𝐺𝑘||we conclude
that 𝐺𝑘 ≅ 𝐺𝑘. □
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Remark 3.3. The proof of Proposition 3.2 shows that [𝐻𝑘,𝐻𝑘] = 𝑍𝑘 for 𝑘 ∈ ℕ, and thus [𝐻,𝐻] = 𝑍.

Proposition 3.4. For 𝑘 ∈ ℕ, the nilpotency class of 𝐺𝑘 is 2𝑝𝑘 − 1. The terms of the lower central series of 𝐺𝑘 are as follows:

𝛾1
(
𝐺𝑘
)
= 𝐺𝑘 = ⟨𝑥𝑘, 𝑦𝑘⟩𝛾2(𝐺𝑘) with 𝐺𝑘∕𝛾2(𝐺𝑘) ≅ 𝐶𝑝𝑘 × 𝐶𝑝

and, with the notation

𝐼1 =
{
𝑖 ∣ 2 ≤ 𝑖 ≤ 𝑝𝑘 with 𝑖 ≡2 0

}
, 𝐼2 =

{
𝑖 ∣ 2 ≤ 𝑖 ≤ 𝑝𝑘 with 𝑖 ≡2 1

}
,

𝐼3 =
{
𝑖 ∣ 𝑝𝑘 + 1 ≤ 𝑖 ≤ 2𝑝𝑘 − 1 with 𝑖 ≡2 0

}
, 𝐼4 =

{
𝑖 ∣ 𝑝𝑘 + 1 ≤ 𝑖 ≤ 2𝑝𝑘 − 1 with 𝑖 ≡2 1

}
,

the series continues as

𝛾𝑖(𝐺𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨𝑐𝑖, 𝑐2,𝑖−2, 𝑐4,𝑖−4, … , 𝑐𝑖−2,2⟩𝛾𝑖+1(𝐺𝑘) for 𝑖 ∈ 𝐼1,⟨𝑐𝑖, 𝑐2,𝑖−2, 𝑐4,𝑖−4, … , 𝑐𝑖−1,1⟩𝛾𝑖+1(𝐺𝑘) for 𝑖 ∈ 𝐼2,⟨
𝑐𝑖−𝑝𝑘+1,𝑝𝑘−1, 𝑐𝑖−𝑝𝑘+3,𝑝𝑘−3, … , 𝑐𝑝𝑘−1,𝑖−𝑝𝑘+1

⟩
𝛾𝑖+1

(
𝐺𝑘
)

for 𝑖 ∈ 𝐼3,⟨
𝑐𝑖−𝑝𝑘,𝑝𝑘 , 𝑐𝑖−𝑝𝑘+2,𝑝𝑘−2, … , 𝑐𝑝𝑘−1,𝑖−𝑝𝑘+1

⟩
𝛾𝑖+1

(
𝐺𝑘
)

for 𝑖 ∈ 𝐼4,

with

𝛾𝑖(𝐺𝑘)∕𝛾𝑖+1(𝐺𝑘) ≅

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐶
𝑖∕2
𝑝 for 𝑖 ∈ 𝐼1,

𝐶
(𝑖+1)∕2
𝑝 for 𝑖 ∈ 𝐼2,

𝐶
(2𝑝𝑘−𝑖)∕2
𝑝 for 𝑖 ∈ 𝐼3,

𝐶
(2𝑝𝑘−𝑖+1)∕2
𝑝 for 𝑖 ∈ 𝐼4.

Proof. The description of 𝛾1
(
𝐺𝑘
)
modulo 𝛾2

(
𝐺𝑘
)
is clear. Now consider 𝑖 ∈ 𝐼1, that is 2 ≤ 𝑖 ≤ 𝑝𝑘 and 𝑖 ≡2 0. Our first aim

is to show, by induction on 𝑖, that

𝛾𝑖
(
𝐺𝑘
)
= ⟨𝑐𝑖, 𝑐2,𝑖−2, 𝑐4,𝑖−4, … , 𝑐𝑖−2,2⟩𝛾𝑖+1(𝐺𝑘),

𝛾𝑖+1
(
𝐺𝑘
)
= ⟨𝑐𝑖+1, 𝑐2,𝑖−1, 𝑐4,𝑖−3, … , 𝑐𝑖,1⟩𝛾𝑖+2(𝐺𝑘). (3.1)

The induction base, i.e., the case 𝑖 = 2, is clear: 𝛾2
(
𝐺𝑘
)
= ⟨[𝑥𝑘, 𝑦𝑘]⟩𝛾3(𝐺𝑘) = ⟨𝑐2⟩𝛾3(𝐺𝑘) and 𝛾3

(
𝐺𝑘
)
=⟨[𝑐2, 𝑥𝑘], [𝑐2, 𝑦𝑘]⟩𝛾4(𝐺𝑘) = ⟨𝑐3, 𝑐2,1⟩𝛾4(𝐺𝑘). Next suppose that 𝑖 ≥ 4. The induction hypothesis yields

𝛾𝑖−2
(
𝐺𝑘
)
= ⟨𝑐𝑖−2, 𝑐2,𝑖−4, 𝑐4,𝑖−6, … , 𝑐𝑖−4,2⟩𝛾𝑖−1(𝐺𝑘),

𝛾𝑖−1
(
𝐺𝑘
)
= ⟨𝑐𝑖−1, 𝑐2,𝑖−3, 𝑐4,𝑖−5, … , 𝑐𝑖−2,1⟩𝛾𝑖(𝐺𝑘).

From 𝑐𝑚,𝑛 ∈ [𝐻𝑘,𝐻𝑘] = 𝑍𝑘 we deduce [𝑐𝑚,𝑛, 𝑦𝑘] = 1 for all𝑚, 𝑛 ≥ 1. This gives

𝛾𝑖
(
𝐺𝑘
)
= ⟨𝑐𝑖, 𝑐𝑖−1,1, 𝑐2,𝑖−2, 𝑐4,𝑖−4, … , 𝑐𝑖−2,2⟩𝛾𝑖+1(𝐺𝑘).

We put

𝑀 = ⟨𝑐𝑖, 𝑐2,𝑖−2, 𝑐4,𝑖−4, … , 𝑐𝑖−2,2⟩𝛾𝑖+1(𝐺𝑘)
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and aim to show that 𝑐𝑖−1,1 ∈ 𝑀. This will establish the first equation in (3.1); the second equation then follows immedi-
ately, again from [𝑐𝑛,𝑚, 𝑦𝑘] = 1 for𝑚, 𝑛 ≥ 1.
As 𝑐𝑖−1,1 = [𝑐𝑖−2, 𝑥𝑘, 𝑦𝑘], the Hall–Witt identity yields

𝑐𝑖−1,1[𝑥𝑘, 𝑦𝑘, 𝑐𝑖−2][𝑦𝑘, 𝑐𝑖−2, 𝑥𝑘] ≡ 1 (mod 𝑀).

Furthermore, [𝑦𝑘, 𝑐𝑖−2, 𝑥𝑘] ≡ 𝑐 −1
𝑖−2,2

≡ 1modulo𝑀, and this gives

𝑐𝑖−1,1 ≡ [𝑐𝑖−2, 𝑐2]
−1 (mod 𝑀).

Thus it suffices to prove that

[𝑐𝑚, 𝑐𝑛] ≡ 1 (mod 𝑀) for all𝑚, 𝑛 ∈ ℕ with𝑚 ≥ 𝑛 ≥ 2 and𝑚 + 𝑛 = 𝑖.

We argue by induction on 𝑚 − 𝑛. If 𝑚 − 𝑛 = 0 then 𝑚 = 𝑛 and [𝑐𝑚, 𝑐𝑛] = 1. Now suppose that 𝑚 − 𝑛 ≥ 1; because
𝑚 + 𝑛 = 𝑖 ≡2 0, this gives𝑚 − 𝑛 ≥ 2. As [𝑐𝑚, 𝑐𝑛] = [𝑐𝑚−1, 𝑥𝑘, 𝑐𝑛], the Hall–Witt identity yields

[𝑐𝑚, 𝑐𝑛][𝑥𝑘, 𝑐𝑛, 𝑐𝑚−1][𝑐𝑛, 𝑐𝑚−1, 𝑥𝑘] ≡ 1 (mod 𝑀),

where [𝑥𝑘, 𝑐𝑛, 𝑐𝑚−1] ≡ [𝑐𝑚−1, 𝑐𝑛+1] ≡ 1 (mod 𝑀) by induction. This yields

[𝑐𝑚, 𝑐𝑛] ≡ [𝑐𝑛, 𝑐𝑚−1, 𝑥𝑘]
−1 ≡

[
[𝑐𝑛, 𝑐𝑚−1]

−1, 𝑥𝑘
]

(mod 𝑀).

From [𝑐𝑛, 𝑐𝑚−1]
−1 ∈ 𝛾𝑖−1

(
𝐺𝑘
)
we deduce that

[𝑐𝑛, 𝑐𝑚−1]
−1 ≡ 𝑐

𝑟0
𝑖−1

𝑐
𝑟2
2,𝑖−3

𝑐
𝑟4
4,𝑖−5

⋯ 𝑐
𝑟𝑖−2
𝑖−2,1

(
mod𝛾𝑖

(
𝐺𝑘
))

for suitable 𝑟0, 𝑟2, … , 𝑟𝑖−2 ∈ ℤ. It follows that

[𝑐𝑚, 𝑐𝑛] ≡
[
[𝑐𝑛, 𝑐𝑚−1]

−1, 𝑥𝑘
]
≡ 𝑐

𝑟0
𝑖
𝑐
𝑟2
2,𝑖−2

𝑐
𝑟4
4,𝑖−4

⋯ 𝑐
𝑟𝑖−2
𝑖−2,2

≡ 1 (mod 𝑀).

This finishes the proof of (3.1). Finally, we observe from (3.1) that

𝛾𝑖
(
𝐺𝑘
)
∕𝛾𝑖+1

(
𝐺𝑘
)
≅ 𝐶

𝑙(𝑖)
𝑝 and 𝛾𝑖+1

(
𝐺𝑘
)
∕𝛾𝑖+2

(
𝐺𝑘
)
≅ 𝐶

𝑙(𝑖+1)
𝑝 ,

where 𝑙(𝑖) ≤ 𝑖∕2 and 𝑙(𝑖 + 1) ≤ 𝑖∕2 + 1; below we will see that, in fact, all the generators appearing in (3.1) are necessary.
Now consider 𝑖 ∈ 𝐼3, that is 𝑝𝑘 + 1 ≤ 𝑖 ≤ 2𝑝𝑘 − 2 and 𝑖 ≡2 0. Lemma 2.1 yields

𝑐𝑝𝑘+1 ≡
[
𝑦𝑘, 𝑥

𝑝𝑘

𝑘

]
= [𝑦𝑘, 1] = 1

(
mod 𝛾𝑝𝑘+2

(
𝐺𝑘
))
,

thus 𝑐𝑝𝑘+1 ∈ 𝛾𝑝𝑘+2
(
𝐺𝑘
)
and 𝑐𝑝𝑘+1,𝑛 ∈ 𝛾𝑝𝑘+𝑛+2

(
𝐺𝑘
)
for 𝑛 ≥ 1. For similar reasons, we have 𝑐𝑛,𝑝𝑘+1 ∈ 𝛾𝑝𝑘+𝑛+2

(
𝐺𝑘
)
for all

𝑛 ≥ 1. This yields, by induction on 𝑖,

𝛾𝑖
(
𝐺𝑘
)
= ⟨𝑐𝑖−𝑝𝑘+1,𝑝𝑘−1, 𝑐𝑖−𝑝𝑘+3,𝑝𝑘−3, … , 𝑐𝑝𝑘−1,𝑖−𝑝𝑘+1⟩𝛾𝑖+1(𝐺𝑘),

𝛾𝑖+1
(
𝐺𝑘
)
= ⟨𝑐𝑖−𝑝𝑘+1,𝑝𝑘 , 𝑐𝑖−𝑝𝑘+3,𝑝𝑘−2, … , 𝑐𝑝𝑘−1,𝑖−𝑝𝑘+2⟩𝛾𝑖+2(𝐺𝑘). (3.2)

Similarly as before, we observe that

𝛾𝑖
(
𝐺𝑘
)
∕𝛾𝑖+1

(
𝐺𝑘
)
≅ 𝐶

𝑙(𝑖)
𝑝 and 𝛾𝑖+1

(
𝐺𝑘
)
∕𝛾𝑖+2

(
𝐺𝑘
)
≅ 𝐶

𝑙(𝑖+1)
𝑝 ,
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where 𝑙(𝑖), 𝑙(𝑖 + 1) ≤
(
2𝑝𝑘 − 𝑖

)
∕2. Extending the argument one step further, we obtain 𝛾2𝑝𝑘

(
𝐺𝑘
)
= 1: the group 𝐺𝑘 has

nilpotency class at most 2𝑝𝑘 − 1.
Finally, it suffices to check that the upper bounds that we derived from (3.1) and (3.2) for the logarithmic orders

log |𝛾𝑖(𝐺𝑘) ∶ 𝛾𝑖+1(𝐺𝑘)|, 1 ≤ 𝑖 ≤ 2𝑝𝑘 − 1, sum to the logarithmic order of𝐺𝑘. Indeed, based on Proposition 3.2, we confirm
that

(𝑘 + 1) +

𝑝𝑘∑
𝑖=2

⌈𝑖∕2⌉ + 2𝑝𝑘−1∑
𝑖=𝑝𝑘+1

⌈(
2𝑝𝑘 − 𝑖

)
∕2
⌉
= 𝑘 + 𝑝𝑘 +

(𝑝𝑘
2

)
= log𝑝 |𝐺𝑘|. □

Corollary 3.5. For 𝑖 ∈ ℕ we have

log𝑝 |𝑍 ∶ 𝛾𝑖(𝐺) ∩ 𝑍| =
⎧⎪⎪⎨⎪⎪⎩
2
(𝑖−3)∕2∑
𝑗=1

𝑗 =
(
𝑖2 − 4𝑖 + 3

)
∕4 if 𝑖 ≡2 1,

2
(𝑖−4)∕2∑
𝑗=1

𝑗 +
𝑖−2

2
=
(
𝑖2 − 4𝑖 + 4

)
∕4 if 𝑖 ≡2 0.

Proof. The claim follows from the standard identity

|𝛾2(𝐺) ∶ 𝛾𝑖(𝐺)| = |𝛾2(𝐺) ∶ 𝛾𝑖(𝐺)𝑍||𝛾𝑖(𝐺)𝑍 ∶ 𝛾𝑖(𝐺)| = |𝛾2(𝑊) ∶ 𝛾𝑖(𝑊)||𝑍 ∶ 𝛾𝑖(𝐺) ∩ 𝑍|
and Propositions 3.1 and 3.4. □

From the lower central series of 𝐺𝑘, it is easy to compute the lower 𝑝-series and the dimension subgroup series of 𝐺𝑘.

Proposition 3.6. For 𝑘 ∈ ℕ, the 𝑝-central series of 𝐺𝑘 has length 2𝑝𝑘 − 1 and its terms satisfy, for
1 ≤ 𝑖 ≤ 2𝑝𝑘 − 1,

𝑃𝑖
(
𝐺𝑘
)
=
⟨
𝑥
𝑝𝑖−1

𝑘

⟩
𝛾𝑖
(
𝐺𝑘
)
.

Proof. The description of 𝑃1
(
𝐺𝑘
)
= 𝛾1

(
𝐺𝑘
)
is correct. Now suppose that 𝑖 ≥ 2. By induction, we have

𝑃𝑖−1
(
𝐺𝑘
)
=
⟨
𝑥
𝑝𝑖−2

𝑘

⟩
𝛾𝑖−1

(
𝐺𝑘
)
.

Recall that 𝑃𝑖
(
𝐺𝑘
)
=
[
𝑃𝑖−1

(
𝐺𝑘
)
, 𝐺𝑘

]
𝑃𝑖−1

(
𝐺𝑘
)𝑝

and consider the two factors one after the other. The first factor satisfies

[
𝑃𝑖−1

(
𝐺𝑘
)
, 𝐺𝑘

]
=
[⟨
𝑥
𝑝𝑖−2

𝑘

⟩
𝛾𝑖−1

(
𝐺𝑘
)
, 𝐺𝑘

]
=
[⟨
𝑥
𝑝𝑖−2

𝑘

⟩
, 𝐺𝑘

]
𝛾𝑖
(
𝐺𝑘
)
,

and Lemma 2.1 yields [⟨
𝑥
𝑝𝑖−2

𝑘

⟩
, 𝐺𝑘

]
≤

[
𝐺
𝑝𝑖−2

𝑘
, 𝐺𝑘

]
≤ 𝛾𝑝𝑖−2+1

(
𝐺𝑘
)
.

From 𝑝𝑖−2 + 1 ≥ 𝑖 we deduce that
[
𝑃𝑖−1

(
𝐺𝑘
)
, 𝐺𝑘

]
= 𝛾𝑖

(
𝐺𝑘
)
.

The second factor satisfies

𝑃𝑖−1
(
𝐺𝑘
)𝑝

≡

⟨
𝑥
𝑝𝑖−2

𝑘

⟩𝑝
𝛾𝑖−1

(
𝐺𝑘
)𝑝

≡

⟨
𝑥
𝑝𝑖−1

𝑘

⟩ (
mod𝛾𝑖

(
𝐺𝑘
))
.

We conclude that 𝑃𝑖
(
𝐺𝑘
)
=
⟨
𝑥
𝑝𝑖−1

𝑘

⟩
𝛾𝑖
(
𝐺𝑘
)
. □
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Proposition 3.7. For 𝑘 ∈ ℕ, the dimension subgroup series of 𝐺𝑘 has length 2𝑝𝑘 − 1 and its terms satisfy, for
1 ≤ 𝑖 ≤ 2𝑝𝑘 − 1,

𝐷𝑖
(
𝐺𝑘
)
=
⟨
𝑥
𝑝𝑙(𝑖)

𝑘

⟩
𝛾𝑖
(
𝐺𝑘
)
, where 𝑙(𝑖) = ⌈log𝑝(𝑖)⌉.

Proof. Let 𝑖 ∈ ℕ. Since 𝛾2
(
𝐺𝑘
)
has exponent 𝑝, Lazard’s formula (see [4, Thm. 11.2]) shows that

𝐷𝑖
(
𝐺𝑘
)
=

∏
𝑛𝑝𝑚≥𝑖

𝛾𝑛
(
𝐺𝑘
)𝑝𝑚

= 𝐺
𝑝𝑙(𝑖)

𝑘
𝛾𝑖
(
𝐺𝑘
)
, where 𝑙(𝑖) = ⌈log𝑝(𝑖)⌉.

Lemma 2.1 yields 𝑎𝑝𝑙(𝑖)𝑏𝑝𝑙(𝑖) ≡ (𝑎𝑏)𝑝
𝑙(𝑖) modulo 𝛾𝑝𝑙(𝑖) (𝐺) for all 𝑎, 𝑏 ∈ 𝐺𝑘 and, as 𝑝𝑙(𝑖) ≥ 𝑖, we deduce that

𝐷𝑖
(
𝐺𝑘
)
=
⟨
𝑥
𝑝𝑙(𝑖)

𝑘

⟩
𝛾𝑖
(
𝐺𝑘
)
. □

4 NORMALHAUSDORFF SPECTRA

In this section we establish Theorem 1.1; we split the proof into three parts and formulate three separate results, in depen-
dence on the filtration series. We use the notation set up in the introduction; in particular, 𝐺 ≅ lim

←  𝑘
𝐺𝑘 denotes the group

constructed there.

Theorem 4.1. The pro-𝑝 group 𝐺 has full normal Hausdorff spectra

hspec


⊴(𝐺) = [0, 1] and hspec


⊴(𝐺) = [0, 1],

with respect to the lower 𝑝-series  and the dimension subgroup series.

Proof. Let  be , resp. . Write  ∶ 𝐺 = 𝑆0 = 𝑆1 ≥ 𝑆2 ≥ … , where 𝑆𝑖 = 𝑃𝑖(𝐺), resp. 𝑆𝑖 = 𝐷𝑖(𝐺), for 𝑖 ≥ 1, and observe
that 𝑍 ≤ 𝛾2(𝐺); compare Remark 3.3. Thus Proposition 3.6, resp. Proposition 3.7, yields

𝑆𝑖 ∩ 𝑍 = 𝛾𝑖(𝐺) ∩ 𝑍 for 𝑖 ≥ 1.

From Corollary 3.5 we see that

lim
𝑖→∞

𝑖

log𝑝 |𝑍 ∶ 𝛾𝑖(𝐺) ∩ 𝑍| = 0. (4.1)

This allows us to pin down the Hausdorff dimension of 𝑍 ≤c 𝐺:

hdim


𝐺(𝑍) = lim
𝑖→∞

(
log𝑝 |𝐺 ∶ 𝑆𝑖|
log𝑝 |𝑆𝑖𝑍 ∶ 𝑆𝑖|

)−1

= lim
𝑖→∞

(
log𝑝 |𝐺 ∶ 𝑆𝑖𝑍| + log𝑝 |𝑆𝑖𝑍 ∶ 𝑆𝑖|

log𝑝 |𝑆𝑖𝑍 ∶ 𝑆𝑖|
)−1

= lim
𝑖→∞

(
log𝑝 |𝐺 ∶ 𝑆𝑖𝑍|
log𝑝 |𝑍 ∶ 𝑆𝑖 ∩ 𝑍| + 1

)−1

= lim
𝑖→∞

(
log𝑝 |𝐺 ∶ 𝑆𝑖𝑍|

log𝑝 |𝑍 ∶ 𝛾𝑖(𝐺) ∩ 𝑍| + 1

)−1

= 1,

where the last equality follows from (4.1) and the fact that log𝑝 |𝐺 ∶ 𝑆𝑖𝑍| ≤ 2𝑖, by [7, Prop. 2.6] and Proposition 3.7. In
particular, 𝑍 has strong Hausdorff dimension.
Thus Proposition 2.4, with 𝑒𝑖 = 1, 𝑛𝑖 = 𝑖 and𝑀𝑖 = 𝛾𝑖(𝐺), yields

[0, 1] =
[
0, hdim



𝐺(𝑍)
]
⊆ hspec



⊴(𝐺). □
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Theorem 4.2. The pro-𝑝 group 𝐺 has full normal Hausdorff spectra

hspec


⊴(𝐺) = [0, 1] and hspec
∗

⊴ (𝐺) = [0, 1],

with respect to the 𝑝-power series  and the iterated 𝑝-power series ∗.

Proof. Recall our notation 𝜋𝑖(𝐺) = 𝐺𝑝𝑖 and 𝜋∗
𝑖
(𝐺) for the terms of the series  and ∗. Our first aim is to show that

𝛾2𝑝𝑖 (𝐺) ≤ 𝐺𝑝𝑖 ≤ 𝜋∗
𝑖
(𝐺) ≤

⟨
𝑥𝑝

𝑖
⟩
𝛾𝑝𝑖 (𝐺) for 𝑖 ∈ ℕ0. (4.2)

Let 𝑖 ∈ ℕ0. From the construction of 𝐺 and 𝐺𝑘, it is easily seen that 𝐺∕𝐺𝑝𝑘 ≅ 𝐺𝑘∕𝐺
𝑝𝑘

𝑘
for 𝑘 ∈ ℕ. Hence Proposition 3.4

yields 𝛾2𝑝𝑖 (𝐺) ≤ 𝐺𝑝𝑖 . Clearly, we have𝐺𝑝𝑖 ≤ 𝜋∗
𝑖
(𝐺). It remains to justify the last inclusion in (4.2).We proceed by induction

on 𝑖. For 𝑖 = 0 even equality holds, trivially. Now suppose that 𝑖 ≥ 1. The induction hypothesis yields

𝜋∗
𝑖−1

(𝐺) ≤
⟨
𝑥𝑝

𝑖−1
⟩
𝛾𝑝𝑖−1(𝐺).

Let 𝑔 ∈ 𝜋∗
𝑖−1

(𝐺), and write 𝑔 = 𝑥𝑚𝑝
𝑖−1
ℎ with 𝑚 ∈ ℤ𝑝 and ℎ ∈ 𝛾𝑝𝑖−1(𝐺) ∩ 𝐻. Lemma 2.1 yields 𝑔𝑝 = 𝑥𝑚𝑝

𝑖
𝑧 with

𝑥𝑚𝑝
𝑖
∈
⟨
𝑥𝑝

𝑖⟩ and 𝑧 ∈ 𝛾𝑝
(⟨
𝑥𝑝

𝑖−1
, ℎ
⟩)
. Thus it suffices to show that 𝛾𝑝

(⟨
𝑥𝑝

𝑖−1
, ℎ
⟩)

≤ 𝛾𝑝𝑖 (𝐺).

Suppose that 𝑐 is an arbitrary commutator of weight 𝑛 ≥ 2 in
{
𝑥𝑝

𝑖−1
, ℎ
}
; we show by induction on 𝑛 that 𝑐 ∈ 𝛾𝑛𝑝𝑖−1(𝐺).

For 𝑛 = 2, it suffices to consider 𝑐 =
[
ℎ, 𝑥𝑝

𝑖−1], and Lemma 2.1 shows that 𝑐 ∈ 𝛾2𝑝𝑖−1(𝐺). For 𝑛 ≥ 3, we see by induction

that it suffices to consider 𝑐 = [𝑑, ℎ] and
[
𝑑, 𝑥𝑝

𝑖−1]with 𝑑 ∈ 𝛾(𝑛−1)𝑝𝑖−1(𝐺); if 𝑐 = [𝑑, ℎ], the result follows immediately, and,
if 𝑐 =

[
𝑑, 𝑥𝑝

𝑖−1], the result follows again by Lemma 2.1. This concludes the proof of (4.2).
Let  =  , resp.  = ∗, and write 𝑆𝑖 = 𝜋𝑖(𝐺) = 𝐺𝑝𝑖 , resp. 𝑆𝑖 = 𝜋∗

𝑖
(𝐺), for 𝑖 ∈ ℕ0. Recall that 𝑍 ≤ 𝛾2(𝐺); compare

Remark 3.3. Thus (4.2) yields

𝛾2𝑝𝑖 (𝐺) ∩ 𝑍 ≤ 𝑆𝑖 ∩ 𝑍 ≤

(⟨
𝑥𝑝

𝑖
⟩
𝛾𝑝𝑖 (𝐺)

)
∩ 𝑍 = 𝛾𝑝𝑖 (𝐺) ∩ 𝑍. (4.3)

From Corollary 3.5 we see that

lim
𝑖→∞

2𝑝𝑖

log𝑝
|||𝑍 ∶ 𝛾𝑝𝑖 (𝐺) ∩ 𝑍

||| = 0. (4.4)

As in the proof of Theorem 4.1 we want to apply Proposition 2.4, here with 𝑒𝑖 = 1, 𝑛𝑖 = 2𝑝𝑖 and𝑀𝑖 = 𝛾𝑝𝑖 (𝐺), to conclude
that 𝐺 has full normal Hausdorff spectrum.
It remains to check that hdim

𝐺(𝑍) = 1. We observe that, for 𝑖 ∈ ℕ0,

log𝑝 |𝐺 ∶ 𝑆𝑖𝑍| ≤ log𝑝
||||𝐺𝑖 ∶ 𝐺 𝑝𝑖

𝑖
𝑍𝑖
|||| ≤ log𝑝 |𝑊𝑖| = 𝑖 + 𝑝𝑖 ≤ 2𝑝𝑖,

and thus, by (4.3) and (4.4),

lim
𝑖→∞

log𝑝 |𝐺 ∶ 𝑆𝑖𝑍|
log𝑝 |𝑍 ∶ 𝑆𝑖 ∩ 𝑍| ≤ lim

𝑖→∞

log𝑝 |𝐺 ∶ 𝑆𝑖𝑍|
log𝑝

|||𝑍 ∶ 𝛾𝑝𝑖 (𝐺) ∩ 𝑍
||| = 0.

As in the proof of Theorem 4.1 we conclude that hdim

𝐺(𝑍) = 1. □
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A little extra work is required to determine the normal Hausdorff spectrum of 𝐺 with respect to the Frattini series. We
define

𝑧𝑖,𝑗 =

⎧⎪⎨⎪⎩
[
𝑐𝑖, 𝑐𝑗

]
∈ 𝛾𝑖+𝑗(𝐺) for 𝑖, 𝑗 ≥ 1,

1 otherwise.

Proposition 3.1 and Remark 3.3 show that

𝐻 = ⟨𝑐𝑖 ∣ 𝑖 ≥ 1⟩ and 𝑍 =
⟨
𝑧𝑖,𝑗 ∣ 1 ≤ 𝑗 < 𝑖

⟩
.

Moreover, from Corollary 3.5 it can be seen that, for 𝑘 ≥ 2,

𝛾𝑘(𝐺) ∩ 𝑍 =
⟨
𝑧𝑖,𝑗 ∣ 1 ≤ 𝑗 < 𝑖 and 𝑖 + 𝑗 ≥ 𝑘

⟩
. (4.5)

Lemma 4.3. For 𝑖, 𝑗 ∈ ℕ and 𝑟 ∈ ℕ0, the following identity holds:

[𝑧𝑖,𝑗, 𝑥,
𝑟…, 𝑥] =

𝑟∏
𝑠=0

𝑠∏
𝑡=0

𝑧
(𝑟
𝑠
)(𝑠

𝑡
)

𝑖+𝑟−𝑡,𝑗+𝑟−𝑠+𝑡
.

Proof. We argue by induction on 𝑟. For 𝑟 = 0 both sides are equal to 𝑧𝑖,𝑗 . Now suppose that 𝑟 ≥ 1. We observe that, for
𝑚, 𝑛 ≥ 1,

[𝑧𝑚,𝑛, 𝑥] = 𝑧−1𝑚,𝑛

[
𝑐 𝑥𝑚, 𝑐

𝑥
𝑛

]
= 𝑧−1𝑚,𝑛[𝑐𝑚𝑐𝑚+1, 𝑐𝑛𝑐𝑛+1] = 𝑧𝑚+1,𝑛 𝑧𝑚,𝑛+1 𝑧𝑚+1,𝑛+1. (4.6)

Thus the induction hypothesis yields

[𝑧𝑖,𝑗, 𝑥,
𝑟…, 𝑥] = [[𝑧𝑖,𝑗, 𝑥,

𝑟−1… , 𝑥], 𝑥] =

𝑟∏
𝑠=0

𝑠∏
𝑡=0

[𝑧𝑖+𝑟−1−𝑡,𝑗+𝑟−1−𝑠+𝑡, 𝑥]
(𝑟−1

𝑠
)(𝑠

𝑡
),

and, in view of (4.6), the result follows from the identity(𝑟 − 1

𝑠 − 1

)(𝑠 − 1

𝑡

)
+
(𝑟 − 1

𝑠 − 1

)(𝑠 − 1

𝑡 − 1

)
+
(𝑟 − 1

𝑠

)(𝑠
𝑡

)
=
(𝑟 − 1

𝑠 − 1

)(𝑠
𝑡

)
+
(𝑟 − 1

𝑠

)(𝑠
𝑡

)
=
(𝑟
𝑠

)(𝑠
𝑡

)
for 0 ≤ 𝑠 ≤ 𝑟 and 0 ≤ 𝑡 ≤ 𝑠. □

Lemma 2.1 and Lemma 4.3 lead directly to a useful corollary.

Corollary 4.4. For 𝑖, 𝑗 ∈ ℕ and 𝑘 ∈ ℕ0, the following identity holds:[
𝑧𝑖,𝑗, 𝑥

𝑝𝑘
]
= 𝑧𝑖+𝑝𝑘,𝑗𝑧𝑖,𝑗+𝑝𝑘𝑧𝑖+𝑝𝑘,𝑗+𝑝𝑘 .

Theorem 4.5. The pro-𝑝 group 𝐺 has full normal Hausdorff spectrum

hspec


⊴(𝐺) = [0, 1],

with respect to the Frattini series  .
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Proof. For 𝑖 ∈ ℕ0, we write [𝑖]𝑝 = (𝑝𝑖 − 1)∕(𝑝 − 1) and note, for 𝑖 ≥ 1, that [𝑖 − 1]𝑝 + 𝑝𝑖−1 = [𝑖]𝑝. We consider

𝐶𝑖 =
⟨
𝑥𝑝

𝑖
⟩
⋉
⟨
𝑐𝑗 ∣ 𝑗 ≥ 1 + [𝑖]𝑝

⟩
≤c 𝐺

and claim, for 𝑖 ≥ 1, that

Ψ−
𝑖
(𝐺) ≤ Φ𝑖(𝐺) ≤ Ψ+

𝑖
(𝐺), (4.7)

where

Ψ−
𝑖
(𝐺) = 𝐶𝑖

(
𝛾1+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍

)
and Ψ+

𝑖
(𝐺) = 𝐶𝑖

(
𝛾2+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍

)
.

For 𝑖 = 1 the assertion is that Φ(𝐺) = 𝐶1(𝛾2(𝐺) ∩ 𝑍) = ⟨𝑥𝑝, 𝑐2, 𝑐3, … ⟩(𝛾2(𝐺) ∩ 𝑍), which follows from Proposition 3.1 and
the fact that 𝑍 ≤ 𝛾2(𝐺). Now suppose that 𝑖 ≥ 2. Lemma 2.1 and the observation that 𝑝𝑖−1 ≥ 2𝑝𝑖−2 yield[

𝛾2+2[𝑖−2]𝑝 (𝐺) ∩ 𝑍, 𝑥
𝑝𝑖−1

]
≤ 𝛾2+2[𝑖−2]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍 ≤ 𝛾2+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍;

by construction, we have
[
𝛾2+2[𝑖−2]𝑝 (𝐺) ∩ 𝑍, 𝑐𝑛

]
= 1 for all 𝑛 ≥ 1. Furthermore, Lemma 2.1 gives

[
𝑐𝑛, 𝑥

𝑝𝑖−1
]
≡ 𝑐𝑛+𝑝𝑖−1

(
mod𝛾2𝑛+𝑝𝑖−1(𝐺) ∩ 𝑍

)
for all 𝑛 ≥ 1, (4.8)

and hence [
𝐶𝑖−1, 𝑥

𝑝𝑖−1
]
≤ 𝐶𝑖

(
𝛾2+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍

)
.

By induction, Φ𝑖−1(𝐺) ≤ Ψ+
𝑖−1

(𝐺) = 𝐶𝑖−1
(
𝛾2+2[𝑖−2]𝑝 (𝐺) ∩ 𝑍

)
, and this implies

Φ𝑖(𝐺) = Φ(Φ𝑖−1(𝐺)) ≤
⟨
𝑥𝑝

𝑖
⟩
[𝐶𝑖−1, 𝐶𝑖−1]

(
𝛾2+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍

)
≤ 𝐶𝑖

(
𝛾2+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍

)
= Ψ+

𝑖
(𝐺).

It remains to check the first inclusion in (4.7); by induction, it suffices to show that

Ψ−
𝑖
(𝐺) ≤ 𝐾, where 𝐾 = Φ

(
Ψ−
𝑖−1

(𝐺)
)
.

First we show that 𝛾1+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍 ≤ 𝐾 implies 𝐶𝑖 ≤ 𝐾. Clearly, 𝑥𝑝𝑖 ∈ 𝐶
𝑝
𝑖−1

≤ 𝐾, and (4.8) shows that, for
𝑗 ≥ 1 + [𝑖]𝑝, there exists 𝑑𝑗 ∈ 𝛾2(𝑗−𝑝𝑖−1)+𝑝𝑖−1(𝐺) ∩ 𝑍 ≤ 𝛾1+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍 such that

𝑐𝑗 =
[
𝑐𝑗−𝑝𝑖−1 , 𝑥

𝑝𝑖−1
]
𝑑𝑗 ∈ [𝐶𝑖−1, 𝐶𝑖−1] ≤ 𝐾.

Thus it suffices to prove that 𝛾1+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍 ≤ 𝐾.
From (4.5) we recall that

𝛾1+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍 =
⟨
𝑧𝑗,𝑘 ∣ 1 ≤ 𝑘 < 𝑗 and 𝑗 + 𝑘 ≥ 1 + 2[𝑖 − 1]𝑝 + 𝑝𝑖−1

⟩
.

From [𝐶𝑖−1, 𝐶𝑖−1] ≤ 𝐾 we deduce that

𝑧𝑚,𝑛 ∈ 𝐾 for𝑚 > 𝑛 ≥ 1 + [𝑖 − 1]𝑝. (4.9)
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Thus, it remains to see that 𝑧𝑗,𝑘 ∈ 𝐾 for 𝑗, 𝑘 ∈ ℕ satisfying

1 ≤ 𝑘 < 𝑗, 𝑗 + 𝑘 ≥ 1 + 2[𝑖 − 1]𝑝 + 𝑝𝑖−1 and 𝑘 ≤ [𝑖 − 1]𝑝.

Given such 𝑗, 𝑘 ∈ ℕ, we observe that

𝑘 < 1 + [𝑖 − 1]𝑝 ≤ 𝑗 − 𝑝𝑖−1 and
(
𝑗 − 𝑝𝑖−1

)
+ 𝑘 ≥ 1 + 2[𝑖 − 1]𝑝;

hence (4.5) implies

𝑧𝑗−𝑝𝑖−1,𝑘 ∈ 𝛾1+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍 ≤ 𝛾1+2[𝑖−2]𝑝+𝑝𝑖−2(𝐺) ∩ 𝑍 ≤ Ψ−
𝑖−1

(𝐺).

We apply Corollary 4.4 to deduce that

𝑧𝑗,𝑘 𝑧𝑗−𝑝𝑖−1,𝑘+𝑝𝑖−1 𝑧𝑗,𝑘+𝑝𝑖−1 =
[
𝑧𝑗−𝑝𝑖−1,𝑘, 𝑥

𝑝𝑖−1
]
∈
[
Ψ−
𝑖−1

(𝐺), 𝐶𝑖−1
]
≤ 𝐾. (4.10)

As 𝑗 > 𝑘 + 𝑝𝑖−1 ≥ 1 + [𝑖 − 1]𝑝, we see from (4.9), for 𝑚 = 𝑗 and 𝑛 = 𝑘 + 𝑝𝑖−1 that 𝑧𝑗,𝑘+𝑝𝑖−1 ∈ 𝐾. Similarly, we deduce
that 𝑧𝑗−𝑝𝑖−1,𝑘+𝑝𝑖−1 ∈ 𝐾, if 𝑗 − 𝑝𝑖−1 > 𝑘 + 𝑝𝑖−1, and, finally, 𝑧𝑗−𝑝𝑖−1,𝑘+𝑝𝑖−1 = 𝑧−1

𝑘+𝑝𝑖−1,𝑗−𝑝𝑖−1
∈ 𝐾, if 𝑗 − 𝑝𝑖−1 ≤ 𝑘 + 𝑝𝑖−1 and

thus 𝑗 − 𝑝𝑖−1 ≥ 1 + [𝑖 − 1]𝑝. Feeding this information into (4.10), we obtain 𝑧𝑗,𝑘 ∈ 𝐾 which concludes the proof of (4.7).
From (4.7) we deduce that

𝛾1+2[𝑖−1]𝑝+𝑝𝑖−1(𝐺) ∩ 𝑍 ≤ Φ𝑖(𝐺) ∩ 𝑍 ≤ 𝛾2+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍,

and from Corollary 3.5 we see that

lim
𝑖→∞

2[𝑖 − 1]𝑝 + 𝑝𝑖−1

log𝑝 |𝑍 ∶ 𝛾2+2[𝑖−1]𝑝 (𝐺) ∩ 𝑍| = 0.

As in the proof of Theorem 4.1 we want to apply Proposition 2.4, here with 𝑒𝑖 = 1, 𝑛𝑖 = 2[𝑖 − 1]𝑝 + 𝑝𝑖−1 and 𝑀𝑖 =

𝛾2+2[𝑖−1]𝑝 (𝐺), to conclude that 𝐺 has full normal Hausdorff spectrum.
It remains to check that hdim

𝐺(𝑍) = 1. From [7, Prop. 2.6] we see that log𝑝 |𝐺 ∶ Φ𝑖(𝐺)𝑍| = 𝑖 + [𝑖]𝑝, and hence
Corollary 3.5 implies

lim
𝑖→∞

log𝑝 |𝐺 ∶ Φ𝑖(𝐺)𝑍|
log𝑝 |𝑍 ∶ Φ𝑖(𝐺) ∩ 𝑍| = 0.

As in the proof of Theorem 4.1 we see that hdim

𝐺(𝑍) = 1. □

Theorem 1.1 summarises the results in Theorems 4.1, 4.2 and 4.5.
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