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ABSTRACT
The advent of twisted moiré heterostructures as a playground for strongly correlated electron physics has led to a plethora of experimental and
theoretical efforts seeking to unravel the nature of the emergent superconducting and insulating states. Among these layered compositions of
two-dimensional materials, transition metal dichalcogenides are now appreciated as highly tunable platforms to simulate reinforced electronic
interactions in the presence of low-energy bands with almost negligible bandwidth. Here, we focus on the twisted homobilayer WSe2 and the
insulating phase at half-filling of the flat bands reported therein. More specifically, we explore the possibility of realizing quantum spin liquid
(QSL) physics on the basis of a strong coupling description, including up to second-nearest neighbor Heisenberg couplings J1 and J2 as well
as Dzyaloshinskii–Moriya (DM) interactions. Mapping out the global phase diagram as a function of an out-of-plane displacement field, we
indeed find evidence for putative QSL states, albeit only close to SU(2) symmetric points. In the presence of finite DM couplings and XXZ
anisotropy, long-range order is predominantly present with a mix of both commensurate and incommensurate magnetic phases.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077901

I. INTRODUCTION
Twisted moiré materials, such as the prominent magic-angle

twisted bilayer graphene (tBG), have recently been established as
a new platform to study many-body electron physics.1–27 The key
mechanism promoting strongly enhanced electronic correlations is
the formation of large moiré unit cells hosting low-energy bands
with an extremely narrow bandwidth.28–30 These flat bands have
been shown to give rise to exotic low temperature phase diagrams
featuring superconducting and insulating states while offering a
high degree of experimental control,5 e.g., over twist angle and
doping.

Recently, twisted bilayer transition metal dichalcogenides
(tTMDs) have moved to the center of experimental attention as a
tunable platform to simulate electronic many-body states.31–41 The
decisive difference between tBG and tTMDs is the reduction in
effective degrees of freedom in going from the former to the latter,
allowing for the construction of simplified microscopic Hamilto-
nians, such as generalized Hubbard models, more amenable to
(numerical) quantum many-body methods.35,36,42,43

Here, we consider a specific TMD bilayer, twisted WSe2
(tWSe2), for which a correlated insulating phase at half-filling of the
flat bands has recently been reported.31,32 These results have
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triggered corollary theoretical activity in deciphering the
ground state phase diagram of the effective strong coupling
Hamiltonian,44,45 where the full rotation symmetry of the underly-
ing triangular superlattice is broken down to C3 by an anisotropic
modulation of the spin couplings. The latter is parameterized
by a phase ϕ inherited from the respective Hubbard model and
can be tuned by an out-of-plane displacement field Vz . Notably,
there is evidence from microscopic considerations44 that large
values of ∣Vz ∣ > 50 meV support the emergence of second-nearest

neighbor, SU(2) symmetric Heisenberg exchange interactions. For
the pure triangular lattice Heisenberg model, these are believed
to undermine magnetic order in favor of a spin liquid ground
state,46–50 and as such, the intriguing possibility of realizing exotic
phases in the exceptionally tunable experimental setup provided
by twisted TMDs remains an interesting research direction. If
experimentally realized, this would add elusive spin liquid states
to the list of phases of matter accessible by controlled moiré
engineering.5

FIG. 1. Magnetic phase diagram for tWeS2 obtained from pf-FRG. We plot the characteristic RG scale Λc indicating the emergence of magnetic long-range order or the
absence thereof. In total, we identify a plethora of nine potential phases (SL: spin liquid, ICS: incommensurate spin spiral, and FM: ferromagnet), including a putative
quantum spin liquid for ϕ close to integer multiples of π/3 and finite second-nearest neighbor Heisenberg coupling J2/J1. The surrounding heat maps display the full elastic
component of the structure factor [i.e.,∑μ χΛc

μμ(k, iw = 0)], measurable, for example, by neutron scattering experiments. Further details about the different phases and how
they are identified in our numerical calculations can be found in Secs. III A, III B 1, and III C of the main text.
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In this article, we set out to study the effective spin model pro-
posed for tWSe2,44,45 augmented by an antiferromagnetic second-
nearest neighbor Heisenberg coupling J2 previously not considered,
using both classical and quantum many-body methods. In the classi-
cal limit, we first use the Luttinger–Tisza (LT) method to determine
the likely magnetic orders at zero temperature. We then investi-
gate their stability with respect to thermal fluctuations and a strictly
enforced constraint on the length of the classical O(3) spins by
performing classical Monte Carlo (MC) simulations. The quantum
phase diagram is mapped out utilizing state-of-the-art pseudo-
fermion functional renormalization group (pf-FRG) calculations
and (infinite) density matrix renormalization group51–53 techniques
(iDMRG).

Our key results are summarized in Fig. 1. In order to discuss
them in a concise manner, we first focus on the regime ϕ ∈ [0, π

6 ]

as the remainder of the phase diagram can be related via a simple
three-sublattice mapping (see Sec. II). The three main features of this
regime can then be phrased in the following way: (1) Both classically
and quantum mechanically, we find that the 120○ order, featuring,
for ϕ > 0, a finite vector chirality κ (discussed in the following),
becomes more stable with increasing ϕ. (2) At large J2, finite ϕ tends
to favor one of the two incommensurate spin spiral states over the
stripe order expected for the pure J1–J2 model. Classically, any finite
ϕ suffices to generate incommensurate correlations, whereas quan-
tum mechanically, the stripe order seems to remain stable for small
ϕ. (3) Close to the Heisenberg limit, a paramagnetic region is iden-
tified for finite values of J2, indicating a putative realm for quantum
spin liquid (QSL) physics. This regime, however, quickly diminishes
with increasing ϕ. These observations can straightforwardly be gen-
eralized to the parameter space beyond ϕ = π/6, albeit with new
labels for the different phases. For example, close to ϕ = π/3, one
finds a ferromagnetic (FM) ground state instead of the chiral 120○

orders found at ϕ = 0 and ϕ = 2π/3.
The remainder of this article is structured as follows: First,

following the arguments of previous microscopic considerations,44

the derivation of the effective tWSe2 spin model, starting from the
corresponding tight-binding Hamiltonian, is recapped. We then
summarize known results for the J2 = 0 limit and elaborate on sym-
metry properties of the strong coupling Hamiltonian. Second, the
results obtained within the Luttinger–Tisza method and classical
Monte Carlo simulations are discussed. Next, we introduce the pf-
FRG and iDMRG methods and present their implications for the
quantum phase diagram. We conclude by evaluating the relevance
of our results for future experimental studies of tWSe2 and pointing
out further possible research directions.

II. MODEL
We focus on homobilayers of tWSe2, which have recently

been studied both experimentally,31,54 using transport and scan-
ning tunneling microscopy (STM) measurements, as well as
theoretically,31,44,45 using mean-field approaches. The STM mea-
surements have demonstrated that the moiré valence bands origi-
nate from the ±K valleys of the two TMD layers, while the Γ valley is
energetically disfavored. Spin degrees of freedom are thereby locked
to one of the two valleys, giving rise to an effective spin–orbit
coupling in the corresponding tight-binding Hamiltonian on the
triangular superlattice,44,45

Ht = ∑
α∈{↑,↓}

∑
⟨ij⟩

tα
ijc

†
iαc†jα + h.c., (1)

which is a valid description of tWSe2 for small commensurate
twist angles θ ≳ 3○, where lattice relaxation effects and further
neighbor hoppings can be neglected.44 Note that because of the
aforementioned spin-valley locking, the sum over spin degrees of
freedom α should be a understood as a simultaneous sum over
valleys.

Due to time-reversal and point group symmetries, the hoppings
tα
ij have to obey tα

ij = t̄α
ji and tα

ij = t̄ᾱ
ij, while also being invariant under

only threefold lattice rotations.44 More specifically, the dispersion
for the tight-binding Hamiltonian in Eq. (1) reads

εα(k) = −2∣t∣∑
δnn

cos(kδnn + αϕ) (2)

with ∣t∣ = ∣tα
⟨ij⟩∣ ∼ 1 meV defining the energy scale of the model.44

Here, δnn sums over three out of six nearest neighbor displace-
ment vectors of the triangular lattice with an equal phase ϕ
(see Fig. 2). Density functional theory (DFT) calculations imply
that the latter can be varied between ±π/3 by an out-of-plane
displacement field ∣Vz ∣ ≲ 100 meV, which shifts the energies at
the K and K′ points of the mini-Brillouin zone in opposite
directions and thus breaks the approximate inversion symme-
try of the bilayer system.31,44,45 A spin–orbit coupled generalized
Hubbard model results by combining the tight-binding Hamil-
tonian (1) with an on–site interaction U. This on–site interac-
tion has been found to be about one order of magnitude larger
than the kinetic contribution,44 motivating a strong coupling
description.

FIG. 2. Three-sublattice rotation for the triangular lattice model. The anisotropic
phase ϕij changes sign between nearest neighbor bonds (as shown in the upper
right corner). The Hamiltonian (3) can be recast in terms of out-of-plane rotation
matrices Rz(−2ϕij) [see Eq. (4)]. By rotating the spins on the three sublattices
(see the lower right corner), each nearest neighbor term in Eq. (4) can be trans-
formed into an SU(2) symmetric Heisenberg interaction, except for terms coupling
the red and green sublattices. The remaining rotation, by −6ϕ, vanishes for
ϕ = n π

3
with n ∈ Z.
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In this work, we consider the U ≫ ∣t∣ limit at half-filling,
where one can derive an effective spin model44,45 with residual U(1)
symmetry about the z axis,

H = J1∑
⟨ij⟩
[cos(2ϕij)(Sx

i Sx
j + Sy

i Sy
j ) + Sz

i Sz
j ]

+ J1∑
⟨ij⟩

sin(2ϕij) ẑ ⋅ (Si × Sj) + J2 ∑
⟨⟨ij⟩⟩

Si ⋅ Sj, (3)

featuring XXZ, off-diagonal Dzyaloshinskii–Moriya (DM) and
SU(2) symmetric next-nearest neighbor Heisenberg interactions.
The phase ϕij varies sign between nearest neighbor bonds (see
Fig. 2), thus inheriting the reduction from sixfold to threefold lattice
rotational symmetry from the tight-binding model (1). As pointed
out in Ref. 44, the form of the underlying second-nearest neigh-
bor hopping motivates the inclusion of a fully SU(2) symmetric
Heisenberg interaction J2, which has previously not been consid-
ered. For large displacement fields ∣Vz ∣ > 50 meV, this J2 is the next
largest interaction beyond the nearest neighbor J1 terms (with J1 ∼ 1
meV).44

For J2 = 0, the ground state phase diagram of Eq. (3) has
previously been studied using classical Luttinger–Tisza and self-
consistent Hartree–Fock mean-field calculations.44,45 For ϕ ∈ [0, π],
both works find a ferromagnetic phase (π/3 < ϕ < 2π/3) sand-
wiched between two antiferromagnetic 120○ orders with opposite
vector chiralities κ± with κ = sgn(ẑ ⋅ (S1 × S2 + S2 × S3 + S3 × S2)),
where S1, S2, and S3 are spins on a triangular plaquette. For finite
J2, however, the situation has not yet been studied and quantum
fluctuations could stabilize more exotic phases especially since the
several numerical works46–48,50 suggest that the pure J1–J2 Heisen-
berg model on the triangular lattice hosts a quantum spin liquid
ground state.

For finite ϕ = n π
3 with n ∈ Z, the nearest neighbor terms can

be transformed into a fully SU(2) symmetric form by performing a
three-sublattice rotation (see Fig. 2), thus opening up the possibility
to experimentally tune the system close to the (effective) Heisenberg
limit by variation of the displacement field.44,45 This can be clearly
seen by rewriting the Hamiltonian as

H = J1∑
⟨ij⟩

ST
i Rz(−2ϕij)Sj + J2 ∑

⟨⟨ij⟩⟩
Si ⋅ Sj, (4)

where Rz(−2ϕij) is an out-of-plane rotation matrix with rota-
tion angle −2ϕij and then performing the transformation shown
in Fig. 2. Indeed, more generally, the energetics at ϕ, ϕ + nπ/3,
and nπ/3 − ϕ are identical although crucially the wavefunctions do
change.

With these observations in mind, we therefore focus our efforts
on the regime ϕ ∈ [0, π

6 ] and study the respective ground states by
classical Luttinger–Tisza and Monte Carlo simulations as well as
quantum pf-FRG and iDMRG calculations that go beyond mean-
field theory. The global phase diagram can then be straightforwardly
obtained using the sublattice rotation outlined above and adjusting
the labels of the phases accordingly.

III. RESULTS
A. Classical limit

First, we explore the classical S→∞ limit of the model. In
order to determine the likely classical magnetic orders, we turn to
the Luttinger–Tisza (LT) method.55 This method treats the spin
as an unconstrained vector, allowing for a straightforward Fourier
transform and subsequent diagonalization of any quadratic spin
Hamiltonian. For the model in Eq. (3), the corresponding energy
eigenvalues are

EH(k) = J1∑
δ1

cos(k ⋅ δ1) + J2∑
δ2

cos(k ⋅ δ2),

E±(k) = J1∑
δ1

cos(k ⋅ δ1 ± 2ϕij) + J2∑
δ2

cos(k ⋅ δ2),
(5)

where δ1 and δ2 are the set of nearest and next-nearest neigh-
bor lattice vectors. EH(k) is independent of ϕ and is identical to
the Heisenberg result (i.e., ϕ = 0) with the eigenvalue lying purely
along the z axis. On the other hand, E±(k) are explicitly ϕ depen-
dent with eigenvalues lying purely within the xy-plane. For a given
set of parameters, the absolute minimum eigenvalue provides a
strict lower bound to the classical energy, and the correspond-
ing momenta, which we denote by k⋆, provide candidate classical
ordering wavevectors. They also provide crucial clues as to what cor-
relations one might expect in the quantum case, where the spins are
not subject to a hard classical constraint.

For ϕ = 0, i.e., the J1–J2 Heisenberg model, there is a transition
from 120○ order with ordering wavevector k⋆ = K to stripe order
with k⋆ =M at a critical value of J2/J1 = 1/8. Turning on a small
finite ϕ ≠ 0 has three important consequences: (i) it forces the spins
to order within the xy-plane [E±(k) are always favored], (ii) it selects
a definite chirality and helps stabilize the 120○ order, increasing its
extent to a maximum of J2/J1 = 1/3 at ϕ = π/6, and (iii) it immedi-
ately turns the stripe order incommensurate, which we label ICS-I,
with ordering wavevectors k⋆ that lie along the high-symmetry
M − K line (and M − K′ line although from here on we will sim-
ply use K when no further distinction is necessary). It also generates
a new ordered phase, clustered close to ϕ = π/6, with incommensu-
rate magnetic order and associated ordering wavevectors that do not
lie on any high-symmetry line, which we label ICS-II. Note that due
to the low-symmetry when ϕ ≠ 0, the Luttinger–Tisza method does
not support classical coplanar spirals with just a single k⋆,56 meaning
that the ICS phases must be multi-k spirals (see the supplementary
material for further information).

As noted in Sec. II, the physics of the model for ϕ > π/6 can
be related to the region ϕ ∈ [0, π

6 ] discussed above via a simple
three-sublattice transformation. Indeed, this can also be seen from
the form of the LT eigenvalues with E±(k)→ E±(k ± nK) for ϕ
→ ϕ + nπ/3. Thus, the 120○ order gets mapped to FM order, and the
ICS-I phase with k⋆ along the M − K line gets mapped to a new ICS-
III phase with k⋆ along the K − Γ line. All phases remain ordered
within the xy-plane. The classical Luttinger–Tisza phase diagram is
summarized in Fig. 3(a).

Classical Monte Carlo (MC) simulations allow us to explore the
relative stability of the different phases as well as to confirm that the
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FIG. 3. Classical phase diagram with (a) the Luttinger–Tisza (LT) result. Six distinct phases are visible, a simple ferromagnetic order (FM), two 120○ orders with vector
chirality κ+ and κ−, and three incommensurate phases, ICS-I, ICS-II, and ICS-III. The background color indicates the norm of the ordering wavevector ∥k⋆∥. (b) Classical
Monte Carlo results on a 96 × 96 lattice for the peak temperature Tpeak from the specific heat across the phase diagram with the LT phase boundaries overlaid on top. (c)
Locations of the LT ordering wavevectors k⋆ for the four points marked in (b) with, for example, the green dots in (c) marking the LT ordering wavevectors for the green
parameter point in (b) (see Fig. 4 for the spin-1/2 pf-FRG structure factors at the same points). (d) Classical static spin structure factor at low temperature obtained by
Monte Carlo simulations at the point J2/J1 = 0.36 and ϕ = π/10 [orange point in (b) and (c)] within the ICS-I phase. The two sharp peaks lie at the same incommensurate
momenta as the LT minima shown in (c).

Luttinger–Tisza k⋆ are correct. As the model contains a continu-
ous U(1) rotational symmetry about the z axis, the Mermin–Wagner
theorem precludes a finite in-plane magnetization at finite tem-
perature. However, a peak in specific heat at Tpeak related to a
Berezinskii–Kosterlitz–Thouless (BKT) transition due to ordering
in the xy-plane is still possible,57,78 as seen, for example, in the
triangular lattice XXZ model [the first term in Eq. (3)].58 A map
of Tpeak is shown in Fig. 3(b) with, as expected, the highest Tpeak
∼ 1.5J1 occurring for J2/J1 = 0 and ϕ = π/6, a consequence of the
enhanced stability for the 120○ order that finite ϕ provides. On the
other hand, within the incommensurate phases, Tpeak shows little
variation, lying between 0.4 and 0.5J1 for the whole range shown.
Finally, Fig. 3(d) shows an example of the static spin structure
factor taken from the MC within the ICS-I phase. There are two
peaks at incommensurate wavevectors located along the M − K and
M − K′ high-symmetry lines whose location precisely matches two
of the ordering wavevectors k⋆ predicted by the Luttinger–Tisza
method [the orange dots in Fig. 3(c)]. This is accompanied by a
complex real space structure (see the supplementary material for
examples).

B. Pseudo-fermion functional renormalization group
1. Method

In the past decade, the pseudo-fermion functional renormal-
ization group (pf-FRG) developed by Reuther and Wölfle59 has
been widely employed to investigate ground state phase diagrams of
quantum spin models on two59,60 and three61 dimensional lattices.
The method utilizes the parton decomposition,

Sμ
i =

1
2∑α,β

f †
iασμ

αβ fiβ, (6)

to recast the original Hamiltonian in terms of fermionic creation and
annihilation operators. Here, σμ

αβ for μ ∈ {x, y, z} denote Pauli matri-
ces. Changing the representation space of the spin algebra, however,
comes with a caveat: The dimensions of the (local) Hilbert space of
pseudo-fermions (d = 4) and spin-1/2 operators (d = 2) are differ-
ent, and as such, the respective representations are not isomorphic.
Although unphysical states can be eliminated by an additional local
constraint ∑α f †

iα fiα = 1 on every lattice site, an exact treatment of
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this constraint is rather difficult, and in practice, the softened con-
dition ⟨∑α f †

iα f †
iα⟩ = 1 is employed. Fluctuations around the mean

have been found to leave observables computed within pf-FRG qual-
itatively unchanged,62,63 advocating an on-average treatment of the
fermionic number constraint at zero temperature.

Having rewritten the spin Hamiltonian in terms of fermions, a
regulator function, here chosen as

ΘΛ
(w) = 1 − e−w2

/Λ2

(7)

with flow parameter Λ, is implemented in the bare propagator as

G0(w)→ GΛ
0 (w) = ΘΛ

(w)G0(w). (8)

This procedure gives rise to Λ-dependent n-point correlation func-
tions whose flow from the ultraviolet GΛ→∞

0 (w) = 0 to the infrared
GΛ→0

0 (w) = G0(w) limit is governed by a hierarchy of ordinary
integro-differential flow equations. To be amenable to numerical
algorithms, the latter has to be truncated. Here, we utilize the
Katanin truncation,59,62,64 which cuts off the flow equations beyond
the two-particle vertex and has been demonstrated to efficiently
capture competing magnetic and non-magnetic phases.65

The main observable extracted from the pf-FRG is the flowing
spin–spin correlation function,

χμνΛ
ij (iw = 0) = ∫

β

0
dτ⟨TτSμ

i (τ)S
ν
j (0)⟩

Λ, (9)

which shows an instability (such as a cusp, kink, or divergence)
once the RG flow selects a ground state with broken symmetries.
The absence of such a breakdown is consequently associated with
paramagnetic phases such as spin liquids. Furthermore, for long-
range ordered states, the respective type of magnetic order can be
characterized by Fourier transforming χμνΛ

ij to momentum space

(F[χμνΛ
ij ](k) = χΛ

μν(k)) and determining the wavevectors kmax with
the largest spectral weight. Further information on the method
and its numerical implementation is provided in Sec. I of the
supplementary material.

Due to the symmetry properties of Eq. (3), we consider two dis-
tinct susceptibilities χΛ

XX(k) (= χΛ
YY(k)) and χΛ

ZZ(k) in momentum
space to distinguish possible in-plane and out-of-plane magnetic
orders. While finite, in general, for ϕij > 0, off-diagonal correlation
functions χΛ

XY(k) (= −χΛ
YX(k)) turn out to be rather small compared

to their diagonal counterparts in our pf-FRG calculations and are
therefore only considered as a benchmark to check for a switch in
vector chirality between the two 120○ orders.

2. Phase diagram
We now turn to the discussion of the ϕ ∈ [0, π

6 ] region of the
phase diagram of our model Hamiltonian Eq. (3), as obtained within
pf-FRG and summarized in Fig. 4.

For small ϕ ≲ π/48 and intermediate next-nearest neighbor
coupling, we find a small region of spin liquid behavior, where the
RG flow [see the blue curve in Fig. 4(c)] stays smooth and feature-
less down to the lowest simulated cutoff value Λ/∣J∣ = 0.05, where
∣J∣ =
√

J2
1 + J2

2 . For ϕ = 0, corresponding to the pure J1–J2 Heisen-
berg model, the estimated range of the spin liquid regime 0.12
≲ J2/J1 ≲ 0.32 is larger than the respective literature values 0.06–0.08

≲ J2/J1 ≲ 0.15–0.17, which we attribute to our softened treatment of
the fermionic number constraint and the exclusion of higher loop
corrections in the current framework. Since the FRG calculation is
nevertheless capable of reproducing the existence of a paramagnetic
regime between the adjacent 120○ and stripe ordered phases (con-
sistent with previous studies60), we are confident that its qualitative
predictions of the phase diagram are reliable. The structure factor
∑μ χΛ

μμ(k) within the SL phase is displayed in Fig. 4(d). It resem-
bles an interpolation between the 120○ and stripe orders [Figs. 4(e)
and 4(f)] in the sense that its peaks move on the high-symmetry line
between the K and M points of the first Brillouin zone as J2 and ϕ
are increased. In this regard, the spin liquid region appears similar
to a molten version of the neighboring incommensurate spin spiral
phase [ICS-I in Figs. 4(a) and 4(b)], albeit with a washed out distri-
bution of the subleading weight along the Brillouin zone edges. The
spectral weight for the ICS-I phase is, in contrast, much more local-
ized although, of course, the maxima still reside at incommensurate
positions between the K and M points [Fig. 4(g)].

For larger ϕ, we find the pf-FRG phase diagram to be roughly
consistent with the classical result (Fig. 3), predicting, for J2/J1
≳ 0.32, a transition from in-plane 120○ order to one of the two
incommensurate phases that can be distinctly identified by the posi-
tion of their ordering wavevector kmax within the first Brillouin zone
[Fig. 4(b)]. The phase boundary is, however, shifted upward in favor
of the 120○ order within the FRG. We generally find the dominant
contributions to the structure factor to stem from the in-plane cor-
relations, i.e., χΛ

XX + χΛ
YY, where flow breakdowns are most visible

although out-of-plane correlations become sizable with increasing
J2. This finding is in line with the Luttinger–Tisza result Eq. (5) as
the eigenvalues corresponding to in-plane and out-of-plane order
move closer together.

Notably, our pf-FRG approach also finds a stripe ordered
ground state for J2/J1 ≳ 0.32–0.36 and close to ϕ = 0. In contrast,
our classical calculations predict the stripe order to be unstable to
incommensurate ordering for any finite ϕ. This could be, on the one
hand, due to finite size effects in the pf-FRG calculations (although
for increased lattice truncation ranges, no changes are observed),
which would make it difficult to decipher the extremely weak clas-
sical incommensuration at small ϕ. On the other hand, quantum
fluctuations may also favor the commensurate stripe order over the
ICS-I phase especially since their classical energies for small ϕ and
large J2 are almost degenerate. We also note that the signatures for
magnetic ordering as characterized by a breakdown of the RG flow
[see Fig. 4(c)] are rather weak in the incommensurate phases (pro-
nounced shoulder vs sharp peak or divergence in the stripe and
120○ phase), hinting toward strongly competing magnetic and non-
magnetic channels within the FRG approach for this part of the
phase diagram.

For ϕ > π/6, as before, the structure of the model outlined
in Sec. II allows us to straightforwardly generalize our results (see
Fig. 1), while adjusting the labels for the different phases. For π/3
< ϕ < 2π/3, antiferromagnetic 120○ order is replaced by a ferromag-
netic ground state, which yet again becomes 120○ ordered although
with opposite vector chirality for 2π/3 < ϕ < π. At large J2 and π/6
< ϕ < 5π/6, the ICS-I order gets mapped to another incommensu-
rate spin spiral phase (ICS-III) with susceptibility maxima located
on the high-symmetry line between the Γ and K points. Finally, the
stripe order found close to the Heisenberg limit ϕ = 0 re-appears
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FIG. 4. Phase diagram for ϕ ∈ [0, π
6
] obtained from pf-FRG. In (a), the characteristic RG scale Λc is shown as a function of antiferromagnetic next-nearest neighbor

coupling J2/J1 and phase 0 ≤ ϕ ≤ π/6 with approximate phase boundaries drawn as a guide to the eye. We find a small region of quantum spin liquid (SL) behavior for
small ϕ < π/24 and intermediate values of 0.12 < J2/J1 < 0.32, where the RG flow [see the blue curve in panel (c)] stays smooth and featureless down to the lowest
accessible cutoff values. The rest of the phase diagram is occupied by four different magnetically ordered phases, which can be distinguished by their ordering wavevector
kmax and its respective norm, as displayed in (b). For the stripe and 120○ ordered phases (with definite vector chirality κ+), kmax resides at the M and K points, respectively,
whereas it continuously changes the position in the spin liquid and incommensurate spin spiral (ICS) phases, as apparent from the color gradient in (b). In (c), we show
representative flows of the magnetic susceptibility as a function of the RG scale Λ/∣J∣ with dashed lines highlighting the position of the characteristic scale Λc/∣J∣ (which is
most visible for the in-plane correlators). The latter can be distinctly identified for the stripe and 120○ phase, whereas the incommensurate phases only show a pronounced
shoulder, indicating strongly competing tendencies between magnetic and non-magnetic channels in the pf-FRG equations. The flows have been normalized by their
respective maximum for better comparability. Finally, (d)–(g) display the full, diagonal structure factors∑μχΛ

μμ(k) computed at the characteristic scale Λc for the four points
marked with colored dots in (a) and (b).

close to ϕ = π/3 and ϕ = 2π/3 in coexistence with the ICS-III order
(see Fig. 1 in the supplementary material for further details).

C. Density matrix renormalization group
To complement our numerical results, we now present our

iDMRG calculations of the model for two representative J2 cuts at
ϕ = π/48 and π/12 on an infinite cylinder geometry. We use the two-
site iDMRG algorithm51,52 to optimize infinite matrix product states
(iMPSs) as approximations to the ground state wavefunctions. We
chose the bond dimension such that the error is smaller than the
marker size in every plot.66 The two-site iDMRG truncation errors
are at most of the order of 10−7.

The cylinder geometry is illustrated in Fig. 5(a). We choose a
circumference Ly = 6, compatible with the possible 120○ and stripe
orders, with an example of the latter shown in the same inset.
The infinite cylinder geometry then allows us to probe possible
incommensurate correlations along the infinite direction.

Recall that finite ϕ explicitly breaks SU(2) symmetry
down to a residual in-plane U(1) symmetry. According to the
Mermin–Wagner theorem for quasi-one-dimensional systems
(such as our cylindrical iDMRG geometry), an in-plane 120○ order

that spontaneously breaks U(1) symmetry is forbidden. However,
the existence of a possible two-dimensional 120○ phase can be
inferred by studying spin–spin correlations. On the other hand,
long-range out-of-plane stripe order does not break any continuous
symmetry and can therefore be directly observed within our iDMRG
calculations.

We study the out-of-plane, ⟨Sz
0Sz

na2⟩, and in-plane, ⟨S+0 S−na2⟩,
spin–spin correlation functions, where a2 is the lattice vector along
the infinite direction [see Fig. 5(a)] and S±i = Sx

i ± iSy
i . Using the

iMPS data, it is known that static correlation functions of this form
can be written as ∑jCjeikjne−n/ξj ,53 where j sums over eigenvectors
of the iMPS transfer matrix. The largest ξj corresponds to the domi-
nant correlation length, while the respective kj then characterizes the
momentum of the lowest-lying excitation along the infinite direc-
tion. The correlation length spectrum has, for example, been used to
study the ϕ = 0 case in Ref. 47.

Within the correlation length spectrum, the 120○ order for the
SU(2) symmetric case corresponds to a dominant correlation length
at k = ±2π/3, equal in magnitude for both in- and out-of-plane
components. For finite ϕ, however, our classical and pf-FRG calcula-
tions indicate that 120○ order is not only locked to the xy-plane but
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FIG. 5. Correlation length spectrum on an infinite cylinder geometry. (a) shows the triangular lattice on an infinite cylinder geometry with an Ly = 6 site circumference.
A configuration of the possible out-of-plane stripe order is illustrated by the coloring of sites in orange (cyan), indicating an out-of-plane spin up (down). (b)–(f) show the
correlation length spectra (see the main text for definition) along the infinite direction for ϕ = π/48 and π/12. For each value of J2/J1, we plot the 20 largest correlation
lengths at their respective k values. For most cases, few points are visible as they share the same k. Finally, in (d), the out-of-plane staggered magnetization along the
cylinder direction, mz , is plotted. The evidence for the in-plane 120○ phase is the dominant in-plane correlation length at −2π/3. In-plane incommensurate correlations
are visible for relatively large J2 in both (b) and (c), where the momenta are not locked to high-symmetry points, but are instead distributed around −π/10 and −π/6,
respectively. The indication for out-of-plane stripe order is given by a non-vanishing mz in (d).

also locked to a certain chirality. Our DMRG data (see Fig. 5) are
consistent with these results as we observe that only in-plane
correlations display a peak at k = −2π/3.

For large J2 and ϕ ≠ 0, we find incommensurate corre-
lations characterized by a continuously varying momentum in
Figs. 5(b) and 5(c). Curiously, the incommensurate correlations
can exist either with or without an accompanying finite out-of-
plane staggered magnetization along the cylinder direction, mz

= ∑y∣⟨S
z
yeiπy
⟩∣/Ly.79 For the chosen cylinder geometry, an out-of-

plane stripe order with stripes parallel to the infinite a2 direction
[shown in Fig. 5(a)] has a finite mz . For ϕ = π/48, we observe a rela-
tively large region, 0.2 ≲ J2/J1 ≲ 0.3, with in-plane incommensurate
correlations and with negligible out-of-plane components, Sz

i ≈ 0.
This is consistent with the pf-FRG structure factor computed in the
putative spin liquid phase, Fig. 4(d), where residual but broadened
incommensurate peaks are visible. On the other hand, for larger J2,
we obtain a finite out-of-plane mz [see Fig. 5(d)], consistent with the
onset of out-of-plane stripe order. For ϕ = π/12, we observe, how-
ever, at least within our resolution, just a single direct transition from
in-plane 120○ order to out-of-plane stripe order, not inconsistent
with the absence of a spin liquid in the pf-FRG calculations.

Note, however, that at ϕ = π/12, the pf-FRG predicts that out-
of-plane stripe order is much weaker compared to the in-plane

incommensurate correlations [see Fig. 4(e), where peaks at the M
point, coming from the out-of-plane component of the structure fac-
tor, are overshadowed by the in-plane incommensurate peaks]. The
stripe order that we identify in iDMRG may be a finite size artifact
of the quasi-one-dimensional cylinder geometry with the possibility
that stripe order is molten in favor of the incommensurate in-plane
order when going to two dimensions. As the incommensurate cor-
relations are frustrated along the finite direction of the cylinder, the
finite size effects should, in fact, be rather large. Our iDMRG calcu-
lations may, in turn, be biased toward commensurate stripe order,
as opposed to an incommensurate phase. Further simulations with
larger Ly, beyond the scope of this work, are necessary to settle on a
final conclusion regarding this issue.

IV. DISCUSSION
Twisted TMDs have been predicted to provide an exciting

opportunity to realize the physics of the triangular lattice Hubbard
model and potentially access the magnetism of its strong coupling
limit. By focusing on the particular case of tWSe2 and including
both first- and second-nearest neighbor couplings as well as a finite
displacement field, we have mapped out the strong coupling phase
diagram. Perhaps the most intriguing phase, the QSL that appears
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in the pure J1–J2 limit, unfortunately only inhabits a small portion
of the larger phase diagram, which includes XXZ anisotropy and an
effective DM interaction. Accessing QSL physics thus requires tun-
ing the displacement field such that ϕ ∼ nπ/3 and the twist angle
such that J2/J1 is within the required range. It is an open question
whether further interactions, generated by taking into account fur-
ther hoppings tα

ij and interactions U ij of the underlying Hubbard
model, can lead to a wider, more stable QSL window.

A large part of the phase diagram, above a sufficiently large
J2/J1 ∼ 0.3, hosts incommensurate magnetic phases. Such phases can
be expected to host gapless phason modes due to the low-energy
cost of translating the incommensurate magnetic structure. This is
on top of the underlying moiré structure, which, at the atomic level,
is generically incommensurate. If it is possible to tune to such a
large J2/J1 ratio, it would allow to explore the interplay between the
moiré scale incommensurate magnetic structure and its gapless pha-
son modes with the atomic scale incommensurate lattice structure
and its gapless phonon modes.67,68

For smaller ratios of J2/J1 ≲ 0.3, the 120○ order is stabilized.
For ϕ = π/6, it is particularly stable and has a fixed chirality, which
leaves only a single BKT transition at finite temperature, with an
expected TBKT ≳ J1. It thus provides a particularly clean example of
BKT physics within potential experimental reach and the possibility
of exploring moiré scale magnetic vortices.

An important additional tuning parameter to consider in the
future is an external magnetic field. Its effects on the 120○ order
and J1–J2 QSL are already known,69,70 but how it will distort the
incommensurate phases found at finite ϕ is not immediately clear.
An interesting possibility would be the formation of multi-Q states.
Indeed, such a possibility is actually realized for incommensurate
phases found within the pure J1–J2 Heisenberg model.71 In that case,
it is even possible to stabilize a skyrmion lattice phase at finite tem-
perature. Realizing a similar scenario for the model at hand with
incommensurate phases ICS-I, II, and III would open up a path to
studying moiré scale skyrmion lattices within tWSe2.72

The phase diagram uncovered in this work expands our view
on the landscape of opportunities arising within tTMDs. In par-
ticular, the strong coupling physics of tWSe2 has the potential to
realize and tune between QSLs, incommensurate magnetic orders,
and extremely stable, chiral 120○ and ferromagnetic orders. Adding
QSL states and incommensurate magnetic orders to the cata-
log of moiré-controllable phases of matter is an exciting open
experimental question, which might be in reach using highly tun-
able TMDs. We note that the case of tWSe2 was taken here
as a prominent experimentally characterized homobilayer exam-
ple, but the available range of TMDs might help to fabricate
other twisted van der Waals materials. In those, e.g., the QSL
state could take a more prominent stage in the respective phase
diagram.

Note added in proof. During the completion of this article, we
became aware of the publication of related (but previously inacces-
sible) work by Zare and Mosadeq.73 In contrast to our study, they
focus on a honeycomb lattice model, rather than a triangular lattice
model, which is then analyzed using the Luttinger–Tisza method
(combined with a variational approach to optimize the classical
ground states) and DMRG simulations. They find similar conclu-
sions regarding the fate of the quantum spin liquid phases and the
stability of magnetic orders.

SUPPLEMENTARY MATERIAL

In addition to the results presented in the main text, fur-
ther analysis can be found in the supplementary material. This
includes a discussion of the real space spin configurations obtained
from the classical Monte Carlo simulations, the full trajectory of
Luttinger–Tisza wavevectors within the first Brillouin zone upon
variation of ϕ, and details on the pf-FRG implementation.

ACKNOWLEDGMENTS
We thank M. Claassen, M. M. Scherer, and Zhenyue Zhu for

useful discussions. D.K. thanks L. Gresista and T. Müller for related
work on the PFFRGSolver.jl package74 used for the FRG calcu-
lations. The DMRG calculations are based on the Tenpy package.75

D.K. and C.H. acknowledge support from the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation), Project No.
277146847, SFB 1238 (Project No. C03). Y.H. and D.M.K. acknowl-
edge funding by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Grant No. RTG 1995 within the
Priority Program SPP 2244 “2DMP” and within Germany’s Excel-
lence Strategy—Cluster of Excellence Matter and Light for Quan-
tum Computing (ML4Q) Grant No. EXC 2004/1-390534769. This
work was supported by the Max Planck-New York City Center
for Nonequilibrium Quantum Phenomena. The numerical simula-
tions were performed on the CHEOPS cluster at RRZK Cologne,
the JURECA Booster76 and JUWELS cluster77 at the Forschungszen-
trum Juelich, and the Raven cluster at MPCDF of the Max Planck
society.

AUTHOR DECLARATIONS
Conflict of Interest

We have no conflicts of interest.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-
Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras et al., “Correlated insulator
behaviour at half-filling in magic-angle graphene superlattices,” Nature 556,
80–84 (2018).
2Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and
P. Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene
superlattices,” Nature 556, 43–50 (2018).
3G. Chen, A. L. Sharpe, E. J. Fox, Y.-H. Zhang, S. Wang, L. Jiang, B. Lyu, H.
Li, K. Watanabe, T. Taniguchi et al., “Tunable correlated Chern insulator and
ferromagnetism in a moiré superlattice,” Nature 579, 56–61 (2020).
4X. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. Haei Najafabadi, K.
Watanabe, T. Taniguchi, A. Vishwanath et al., “Tunable spin-polarized correlated
states in twisted double bilayer graphene,” Nature 583, 221–225 (2020).
5D. M. Kennes, M. Claassen, L. Xian, A. Georges, A. J. Millis, J. Hone, C. R.
Dean, D. N. Basov, A. N. Pasupathy, and A. Rubio, “Moiré heterostructures as
a condensed-matter quantum simulator,” Nat. Phys. 17, 155–163 (2021).
6H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux, S. H. Sung, R. Hov-
den, A. W. Tsen, T. Taniguchi, K. Watanabe, G.-C. Yi, M. Kim, M. Luskin, E. B.
Tadmor, E. Kaxiras, and P. Kim, “Atomic and electronic reconstruction at the van
der Waals interface in twisted bilayer graphene,” Nat. Mater. 18, 448–453 (2019).

APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901 10, 031113-9

© Author(s) 2022

https://scitation.org/journal/apm
https://www.scitation.org/doi/suppl/10.1063/5.0077901
https://doi.org/10.1038/nature26154
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41586-020-2049-7
https://doi.org/10.1038/s41586-020-2458-7
https://doi.org/10.1038/s41567-020-01154-3
https://doi.org/10.1038/s41563-019-0346-z


APL Materials ARTICLE scitation.org/journal/apm

7L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, “Superconductivity and
strong correlations in moiré flat bands,” Nat. Phys. 16, 725–733 (2020).
8G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H.
Li, K. Watanabe, T. Taniguchi et al., “Signatures of tunable superconductivity in a
trilayer graphene moiré superlattice,” Nature 572, 215–219 (2019).
9G. Chen, L. Jiang, S. Wu, B. Lyu, H. Li, B. L. Chittari, K. Watanabe, T. Taniguchi,
Z. Shi, J. Jung et al., “Evidence of a gate-tunable Mott insulator in a trilayer
graphene moiré superlattice,” Nat. Phys. 15, 237–241 (2019).
10C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K.
Watanabe et al., “Correlated states in twisted double bilayer graphene,” Nat. Phys.
16, 520–525 (2020).
11Y. Cao, D. Rodan-Legrain, O. Rubies-Bigorda, J. M. Park, K. Watanabe, T.
Taniguchi, and P. Jarillo-Herrero, “Tunable correlated states and spin-polarized
phases in twisted bilayer–bilayer graphene,” Nature 583, 215–220 (2020).
12G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, and E. Tutuc,
“Correlated insulating states in twisted double bilayer graphene,” Phys. Rev. Lett.
123, 197702 (2019).
13M. He, Y. Li, J. Cai, Y. Liu, K. Watanabe, T. Taniguchi, X. Xu, and M. Yankowitz,
“Symmetry breaking in twisted double bilayer graphene,” Nat. Phys. 17, 26–30
(2021).
14M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D.
Graf, A. F. Young, and C. R. Dean, “Tuning superconductivity in twisted bilayer
graphene,” Science 363, 1059–1064 (2019).
15X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K.
Watanabe, T. Taniguchi, G. Zhang et al., “Superconductors, orbital magnets and
correlated states in magic-angle bilayer graphene,” Nature 574, 653–657 (2019).
16P. Stepanov, I. Das, X. Lu, A. Fahimniya, K. Watanabe, T. Taniguchi, F. H. L.
Koppens, J. Lischner, L. Levitov, and D. K. Efetov, “Untying the insulating and
superconducting orders in magic-angle graphene,” Nature 583, 375–378 (2020).
17A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M.
A. Kastner, and D. Goldhaber-Gordon, “Emergent ferromagnetism near three-
quarters filling in twisted bilayer graphene,” Science 365, 605–608 (2019).
18M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T.
Taniguchi, L. Balents, and A. F. Young, “Intrinsic quantized anomalous Hall effect
in a moiré heterostructure,” Science 367, 900–903 (2020).
19C. Xu and L. Balents, “Topological superconductivity in twisted multilayer
graphene,” Phys. Rev. Lett. 121, 087001 (2018).
20C.-C. Liu, L.-D. Zhang, W.-Q. Chen, and F. Yang, “Chiral spin density wave and
d + i d superconductivity in the magic-angle-twisted bilayer graphene,” Phys. Rev.
Lett. 121, 217001 (2018).
21M. Claassen, D. M. Kennes, M. Zingl, M. A. Sentef, and A. Rubio, “Universal
optical control of chiral superconductors and Majorana modes,” Nat. Phys. 15,
766–770 (2019).
22L. Xian, D. M. Kennes, N. Tancogne-Dejean, M. Altarelli, and A. Rubio,
“Multiflat bands and strong correlations in twisted bilayer boron nitride: Doping-
induced correlated insulator and superconductor,” Nano Lett. 19, 4934–4940
(2019).
23K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T. Taniguchi, K. Watan-
abe, B. J. LeRoy, A. H. MacDonald, and E. Tutuc, “Tunable moiré bands and
strong correlations in small-twist-angle bilayer graphene,” Proc. Natl. Acad. Sci.
U. S. A. 114, 3364–3369 (2017).
24A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen,
K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy,
“Maximized electron interactions at the magic angle in twisted bilayer graphene,”
Nature 572, 95–100 (2019).
25A. Kerelsky, C. Rubio-Verdú, L. Xian, D. M. Kennes, D. Halbertal, N. Finney,
L. Song, S. Turkel, L. Wang, K. Watanabe, T. Taniguchi, J. Hone, C. Dean,
D. N. Basov, A. Rubio, and A. N. Pasupathy, “Moiréless correlations in ABCA
graphene,” Proc. Natl. Acad. Sci. U. S. A. 118, e2017366118 (2021).
26D. Halbertal, N. R. Finney, S. S. Sunku, A. Kerelsky, C. Rubio-Verdú, S. Shabani,
L. Xian, S. Carr, S. Chen, C. Zhang, L. Wang, D. Gonzalez-Acevedo, A. S. McLeod,
D. Rhodes, K. Watanabe, T. Taniguchi, E. Kaxiras, C. R. Dean, J. C. Hone, A. N.
Pasupathy, D. M. Kennes, A. Rubio, and D. N. Basov, “Moiré metrology of energy
landscapes in van der Waals heterostructures,” Nat. Commun. 12, 242 (2021).
27C. Rubio-Verdú, S. Turkel, Y. Song, L. Klebl, R. Samajdar, M. S. Scheurer,
J. W. F. Venderbos, K. Watanabe, T. Taniguchi, H. Ochoa, L. Xian, D. Kennes,

R. M. Fernandes, A. Rubio, and A. N. Pasupathy, “Moiré nematic phase in twisted
double bilayer graphene,” Nature Phys. 18, 196–202 (2021).
28R. Bistritzer and A. H. MacDonald, “Moiré bands in twisted double-layer
graphene,” Proc. Natl. Acad. Sci. U. S. A. 108, 12233–12237 (2011).
29G. Trambly de Laissardière, D. Mayou, and L. Magaud, “Localization of Dirac
electrons in rotated graphene bilayers,” Nano Lett. 10, 804–808 (2010).
30J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, “Continuum
model of the twisted graphene bilayer,” Phys. Rev. B 86, 155449 (2012).
31L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C. Tan, M. Claassen,
D. M. Kennes, Y. Bai, B. Kim et al., “Correlated electronic phases in twisted bilayer
transition metal dichalcogenides,” Nat. Mater. 19, 861–866 (2020).
32L. An, X. Cai, D. Pei, M. Huang, Z. Wu, Z. Zhou, J. Lin, Z. Ying, Z. Ye, X. Feng,
R. Gao, C. Cacho, M. Watson, Y. Chen, and N. Wang, “Interaction effects and
superconductivity signatures in twisted double-bilayer WSe2,” Nanoscale Horiz.
5, 1309–1316 (2020).
33H. S. Arora, R. Polski, Y. Zhang, A. Thomson, Y. Choi, H. Kim, Z. Lin, I. Z.
Wilson, X. Xu, J.-H. Chu et al., “Superconductivity in metallic twisted bilayer
graphene stabilized by WSe2,” Nature 583, 379–384 (2020).
34L. Xian, M. Claassen, D. Kiese, M. M. Scherer, S. Trebst, D. M. Kennes, and A.
Rubio, “Realization of nearly dispersionless bands with strong orbital anisotropy
from destructive interference in twisted bilayer MoS2,” Nat. Commun. 12, 5644
(2021).
35F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, “Hubbard model physics in
transition metal dichalcogenide moiré bands,” Phys. Rev. Lett. 121, 026402 (2018).
36F. Wu, T. Lovorn, E. Tutuc, I. Martin, and A. H. MacDonald, “Topological insu-
lators in twisted transition metal dichalcogenide homobilayers,” Phys. Rev. Lett.
122, 086402 (2019).
37M. Angeli and A. H. MacDonald, “Γ valley transition metal dichalcogenide
moiré bands,” Proc. Natl. Acad. Sci. U. S. A. 118, e2021826118 (2021).
38M. H. Naik and M. Jain, “Ultraflatbands and shear solitons in moiré patterns
of twisted bilayer transition metal dichalcogenides,” Phys. Rev. Lett. 121, 266401
(2018).
39E. C. Regan, D. Wang, C. Jin, M. I. Bakti Utama, B. Gao, X. Wei, S. Zhao, W.
Zhao, Z. Zhang, K. Yumigeta, M. Blei, J. D. Carlström, K. Watanabe, T. Taniguchi,
S. Tongay, M. Crommie, A. Zettl, and F. Wang, “Mott and generalized Wigner
crystal states in WSe2/WS2 moiré superlattices,” Nature 579, 359–363 (2020).
40X. Qian, J. Liu, L. Fu, and J. Li, “Quantum spin Hall effect in two-dimensional
transition metal dichalcogenides,” Science 346, 1344–1347 (2014).
41M. M. Scherer, D. M. Kennes, and L. Classen, “𝒩 = 4 chiral superconductiv-
ity in moiré transition metal dichalcogenides,” arXiv:2108.11406 [cond-mat.str-el]
(2021).
42Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K. Watanabe, T. Taniguchi, A. H.
MacDonald, J. Shan et al., “Simulation of Hubbard model physics in WSe2/WS2

moiré superlattices,” Nature 579, 353–358 (2020).
43M. Koshino, N. F. Yuan, T. Koretsune, M. Ochi, K. Kuroki, and L. Fu,
“Maximally localized Wannier orbitals and the extended Hubbard model for
twisted bilayer graphene,” Phys. Rev. X 8, 031087 (2018).
44H. Pan, F. Wu, and S. Das Sarma, “Band topology, Hubbard model, Heisenberg
model, and Dzyaloshinskii-Moriya interaction in twisted bilayer WSe2,” Phys.
Rev. Res. 2, 033087 (2020).
45J. Zang, J. Wang, J. Cano, and A. J. Millis, “Hartree-Fock study of the moiré
Hubbard model for twisted bilayer transition metal dichalcogenides,” Phys.
Rev. B 104, 075150 (2021).
46Y. Iqbal, W.-J. Hu, R. Thomale, D. Poilblanc, and F. Becca, “Spin liquid nature
in the Heisenberg J1 − J2 triangular antiferromagnet,” Phys. Rev. B 93, 144411
(2016).
47S. Hu, W. Zhu, S. Eggert, and Y.-C. He, “Dirac spin liquid on the spin-1/2
triangular Heisenberg antiferromagnet,” Phys. Rev. Lett. 123, 207203 (2019).
48Z. Zhu and S. R. White, “Spin liquid phase of the S = 1

2 J1 − J2 Heisenberg
model on the triangular lattice,” Phys. Rev. B 92, 041105 (2015).
49Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, “Spin liquid
state in an organic Mott insulator with a triangular lattice,” Phys. Rev. Lett. 91,
107001 (2003).

APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901 10, 031113-10

© Author(s) 2022

https://scitation.org/journal/apm
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1038/s41586-019-1393-y
https://doi.org/10.1038/s41567-018-0387-2
https://doi.org/10.1038/s41567-020-0825-9
https://doi.org/10.1038/s41586-020-2260-6
https://doi.org/10.1103/physrevlett.123.197702
https://doi.org/10.1038/s41567-020-1030-6
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/physrevlett.121.217001
https://doi.org/10.1103/physrevlett.121.217001
https://doi.org/10.1038/s41567-019-0532-6
https://doi.org/10.1021/acs.nanolett.9b00986
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1073/pnas.1620140114
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1073/pnas.2017366118
https://doi.org/10.1038/s41467-020-20428-1
https://doi.org/10.1038/s41567-021-01438-2
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1021/nl902948m
https://doi.org/10.1103/physrevb.86.155449
https://doi.org/10.1038/s41563-020-0708-6
https://doi.org/10.1039/d0nh00248h
https://doi.org/10.1038/s41586-020-2473-8
https://doi.org/10.1038/s41467-021-25922-8
https://doi.org/10.1103/PhysRevLett.121.026402
https://doi.org/10.1103/PhysRevLett.122.086402
https://doi.org/10.1073/pnas.2021826118
https://doi.org/10.1103/physrevlett.121.266401
https://doi.org/10.1038/s41586-020-2092-4
https://doi.org/10.1126/science.1256815
http://arxiv.org/abs/2108.11406
https://doi.org/10.1038/s41586-020-2085-3
https://doi.org/10.1103/physrevx.8.031087
https://doi.org/10.1103/physrevresearch.2.033087
https://doi.org/10.1103/physrevresearch.2.033087
https://doi.org/10.1103/physrevb.104.075150
https://doi.org/10.1103/physrevb.104.075150
https://doi.org/10.1103/physrevb.93.144411
https://doi.org/10.1103/physrevlett.123.207203
https://doi.org/10.1103/physrevb.92.041105
https://doi.org/10.1103/physrevlett.91.107001


APL Materials ARTICLE scitation.org/journal/apm

50A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, “Chiral spin liquid phase
of the triangular lattice Hubbard model: A density matrix renormalization group
study,” Phys. Rev. X 10, 021042 (2020).
51S. R. White, “Density matrix formulation for quantum renormalization groups,”
Phys. Rev. Lett. 69, 2863–2866 (1992).
52I. P. McCulloch, “Infinite size density matrix renormalization group, revisited,”
arXiv:0804.2509 [cond-mat.str-el] (2008).
53V. Zauner, D. Draxler, L. Vanderstraeten, M. Degroote, J. Haegeman, M. M.
Rams, V. Stojevic, N. Schuch, and F. Verstraete, “Transfer matrices and excitations
with matrix product states,” New J. Phys. 17, 053002 (2015).
54Z. Zhang, Y. Wang, K. Watanabe, T. Taniguchi, K. Ueno, E. Tutuc, and B. J.
LeRoy, “Flat bands in twisted bilayer transition metal dichalcogenides,” Nat. Phys.
16, 1093–1096 (2020).
55J. M. Luttinger and L. Tisza, “Theory of dipole interaction in crystals,” Phys.
Rev. 70, 954–964 (1946).
56C. Liu, R. Yu, and X. Wang, “Semiclassical ground-state phase diagram and
multi-Q phase of a spin-orbit-coupled model on triangular lattice,” Phys. Rev. B
94, 174424 (2016).
57Note that for a BKT transition, the specific heat Tpeak does not mark the
location of the phase transition but instead slightly overestimates it, e.g., Tpeak

∼ 1.1 − 1.2TBKT for the triangular lattice XXZ model.58,78

58L. Capriotti, R. Vaia, A. Cuccoli, and V. Tognetti, “Phase transitions induced by
easy-plane anisotropy in the classical Heisenberg antiferromagnet on a triangular
lattice: A Monte Carlo simulation,” Phys. Rev. B 58, 273–281 (1998).
59J. Reuther and P. Wölfle, “J1 − J2 frustrated two-dimensional Heisenberg model:
Random phase approximation and functional renormalization group,” Phys.
Rev. B 81, 144410 (2010).
60J. Reuther and R. Thomale, “Functional renormalization group for the
anisotropic triangular antiferromagnet,” Phys. Rev. B 83, 024402 (2011).
61Y. Iqbal, R. Thomale, F. Parisen Toldin, S. Rachel, and J. Reuther, “Functional
renormalization group for three-dimensional quantum magnetism,” Phys. Rev. B
94, 140408 (2016).
62M. L. Baez and J. Reuther, “Numerical treatment of spin systems with unre-
stricted spin length S: A functional renormalization group study,” Phys. Rev. B 96,
045144 (2017).
63J. Thoenniss, M. K. Ritter, F. B. Kugler, J. von Delft, and M. Punk, “Multiloop
pseudofermion functional renormalization for quantum spin systems: Applica-
tion to the spin- 1

2 kagome Heisenberg model,” arXiv:2011.01268 [cond-mat.str-el]
(2020).
64F. L. Buessen, D. Roscher, S. Diehl, and S. Trebst, “Functional renormalization
group approach to SU(N) Heisenberg models: Real-space renormalization group
at arbitrary N,” Phys. Rev. B 97, 064415 (2018).

65Recently, an advanced “multi-loop” truncation scheme has been successfully
employed within the pf-FRG,63,74 improving on certain aspects of the Katanin
truncation. Since the respective one and higher loop ground state phase diagrams
were, however, qualitatively the same, we refrain from performing higher loop
calculations in this work to reduce the numerical effort involved in treating the
off-diagonal DM interaction in combination with breaking of C6 symmetry.
66We use bond dimension 3600 for Figs. 5(b), 5(c), 5(e), and 5(f) while using bond
dimensions 3600 and 5000 for extrapolating79 the non-vanishing mz in Fig. 5(d).
67M. Koshino and Y.-W. Son, “Moiré phonons in twisted bilayer graphene,” Phys.
Rev. B 100, 075416 (2019).
68I. Maity, M. H. Naik, P. K. Maiti, H. R. Krishnamurthy, and M. Jain, “Phonons
in twisted transition-metal dichalcogenide bilayers: Ultrasoft phasons and a
transition from a superlubric to a pinned phase,” Phys. Rev. Res. 2, 013335 (2020).
69M. Ye and A. V. Chubukov, “Quantum phase transitions in the Heisenberg J1
− J2 triangular antiferromagnet in a magnetic field,” Phys. Rev. B 95, 014425
(2017).
70H. Nakano and T. Sakai, “Magnetization process of the spin-1/2
triangular-lattice Heisenberg antiferromagnet with next-nearest-neighbor
interactions—Plateau or nonplateau,” J. Phys. Soc. Jpn. 86, 114705 (2017).
71T. Okubo, S. Chung, and H. Kawamura, “Multiple-q states and the skyrmion
lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields,”
Phys. Rev. Lett. 108, 017206 (2012).
72M. Akram, H. LaBollita, D. Dey, J. Kapeghian, O. Erten, and A. S. Botana,
“Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl)
bilayers,” Nano Lett. 21, 6633–6639 (2021).
73M.-H. Zare and H. Mosadeq, “Spin liquid in twisted homobilayers of group-VI
dichalcogenides,” Phys. Rev. B 104, 115154 (2021).
74D. Kiese, T. Mueller, Y. Iqbal, R. Thomale, and S. Trebst, “Multiloop functional
renormalization group approach to quantum spin systems,” arXiv:2011.01269
[cond-mat.str-el] (2021).
75J. Hauschild and F. Pollmann, “Efficient numerical simulations with tensor
networks: Tensor network Python (TeNPy),” SciPost Physics Lecture Notes 5,
2018.
76Jülich Supercomputing Centre, “JURECA: Modular supercomputer at Jülich
Supercomputing Centre,” J. Large-Scale Res. Facil. 4, A132 (2018).
77Jülich Supercomputing Centre, “JUWELS: Modular tier-0/1 supercomputer at
the Jülich Supercomputing Centre,” J. Large-Scale Res. Facil. 5, A171 (2019).
78R. Gupta and C. F. Baillie, “Critical behavior of the two-dimensional XY model,”
Phys. Rev. B 45, 2883–2898 (1992).
79S. R. White and A. L. Chernyshev, “Neél order in square and triangular lattice
Heisenberg models,” Phys. Rev. Lett. 99, 127004 (2007).

APL Mater. 10, 031113 (2022); doi: 10.1063/5.0077901 10, 031113-11

© Author(s) 2022

https://scitation.org/journal/apm
https://doi.org/10.1103/physrevx.10.021042
https://doi.org/10.1103/physrevlett.69.2863
http://arxiv.org/abs/0804.2509
https://doi.org/10.1088/1367-2630/17/5/053002
https://doi.org/10.1038/s41567-020-0958-x
https://doi.org/10.1103/physrev.70.954
https://doi.org/10.1103/physrev.70.954
https://doi.org/10.1103/physrevb.94.174424
https://doi.org/10.1103/physrevb.58.273
https://doi.org/10.1103/physrevb.81.144410
https://doi.org/10.1103/physrevb.81.144410
https://doi.org/10.1103/physrevb.83.024402
https://doi.org/10.1103/physrevb.94.140408
https://doi.org/10.1103/physrevb.96.045144
http://arxiv.org/abs/2011.01268
https://doi.org/10.1103/physrevb.97.064415
https://doi.org/10.1103/physrevb.100.075416
https://doi.org/10.1103/physrevb.100.075416
https://doi.org/10.1103/physrevresearch.2.013335
https://doi.org/10.1103/physrevb.95.014425
https://doi.org/10.7566/jpsj.86.114705
https://doi.org/10.1103/PhysRevLett.108.017206
https://doi.org/10.1021/acs.nanolett.1c02096
https://doi.org/10.1103/physrevb.104.115154
http://arxiv.org/abs/2011.01269
https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.17815/jlsrf-5-171
https://doi.org/10.1103/physrevb.45.2883
https://doi.org/10.1103/physrevlett.99.127004

