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Multiple imputation of time series: an

application to the construction of historical

price indexes

Fernando TUSELL∗

Abstract

Time series in many areas of application, and notably in the so-

cial sciences, are frequently incomplete. This is particularly annoying

when we need to have complete data, for instance to compute indexes

as a weighted average of values from a number of time series; when-

ever a single datum is absent, the index cannot be computed. This

paper proposes to deal with such situations by creating multiple com-

pleted trajectories, drawing on state space modelling of time series,

the simulation smoother and multiple imputation ideas.

Keywords: Multiple imputation; Time series; Missing data;
Kalman filter; Index computation

1 Introduction

Missing data is a pervasive problem, afflicting not only the social sciences
but also the physical and medical sciences.

Missing data in cross-sectional data is handled in a variety of ways, many
admittedly ad hoc and making sense only in particular cases: cold deck and
hot deck imputation, using only complete records, replacing the mean for
missing data, using all available (possible incomplete) records, etc.

It has long been recognized that a sounder, more principled approach is
desirable, and considerable effort has been expended in this direction. Much
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of it stems from the seminal work in [11] (enlarged second edition [12]). The
monograph [16] describes in considerable detail a methodology to deal with
missing data in the cross sectional data, and [15] provides a useful overview
of the ideas on multiple imputation and its impact on statistical practice.

The literature dealing with missing data in (multiple) time series is nonethe-
less sparse. Missing data in time series is considered in [12]; conceptually, the
problem can be handled in the same way as in cross sectional data. However,
the problem is both harder and more pressing. Harder, because an addi-
tional level of complexity exists when dealing with multivariate time series:
both contemporaneous and lagged relationships between components need to
be considered when imputing a missing data point. More pressing, because
strategies like using only complete data records are no longer feasible. With
cross sectional data, discarding records with data missing completely at ran-
dom (MCAR) has no other effect than reducing the available sample. In a
time series, each record is unique: dropping it would leave us with a series
with holes, unusable for many purposes.

In the last fifteen years, state space modelling of time series has seen wider
acceptance and is now a well established tool in the kit of the applied statis-
tician. A number of theoretical breakthroughs like the simulation smoother
(cf. [8], [3], [4]) and Markov Chain Monte Carlo (see for instance [6]), along
with ever increasing computing power at the desktop, have improved our
chances of dealing with missing data in multivariate time series. We describe
in this paper a possible approach.

The rest of the paper is organized as follows. Section 2 reviews some of the
basic theory on state space models and Kalman filtering and smoothing that
we will be using. Section 3 discusses some of the models we have found useful
for the purposes of this paper. Section 4 shows an example and discusses some
further applications and the issues that they raise.

2 State space models

Let {yt} be a p-variate time series, observed (perhaps partially) at times
t = 1, . . . , n. We are concerned with the imputation of the missing values.

We will assume {yt} generated by an state space model (see, for instance,
[1] or [5]):

yt = Ztαt + εt (1)

αt+1 = Ttαt + ηt (2)

where εt ∼ N(0,Ht) and ηt ∼ N(0,Qt). Matrices Zt,Tt,Qt and Ht are
in general time-varying, and may depend on parameters that need to be
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estimated.
Let Ys

def
= {y1, . . . ,ys}, i.e. the section of the time series up to and

including time s. Given Zt,Tt,Qt, Ht and Yt, the Kalman filter (see for
instance [1], [5]) gives the conditional mean value and covariance matrix of
state vector αt at each point in time, at|t−1 = E[αt|Yt−1] and Pt|t−1 =
Cov(αt|Yt−1). Defining,

Ft =
(

ZtPt|t−1Zt
T + Ht

)

(3)

Kt = TtPt|t−1Zt
TFt

−1 (4)

Lt = Tt −KtZt (5)

vt = yt −Ztat|t−1 (6)

Mt = Pt|t−1Zt
T (7)

the formulae for one-step-ahead updating are:

at|t−1 = Tt−1at−1|t−2 + Kt−1vt−1 (8)

Pt|t−1 = Tt−1Pt−1|t−2Lt−1
T + Qt−1. (9)

In order to start the iteration, either it is assumed that α0 ∼ N(a0|−1,P0|−1)
or a diffuse prior is used (see [5], § 5.2).

Similar algorithms, collectively known as smoothers, give α̂t
def
= E[αt|Yn]

and Vt
def
= Cov(αt|Yn), i.e. conditional on the full length of time series. For

instance, defining

rt−1
def
= Zt−1

TFt−1
−1vt + Lt−1

Trt (10)

Nt−1
def
= Zt

TFt
−1Zt + Lt

TNtLt, (11)

we have

α̂t = at|t−1 + Pt|t−1rt−1 (12)

Vt = Pt|t−1 − Pt|t−1Nt−1Pt|t−1. (13)

The iteration is initialized with Nn = 0 and rn = 0 (see [5], § 4.3.3).
Assume that the system matrices Zt,Tt,Qt and Ht, possibly depend-

ing on a parameter vector θ, are known. Algorithms referred to as simula-

tion smoothers afford easy generation of trajectories of αt, εt and ηt con-
ditional on both Yn and θ, by drawing from the distributions p(αt|Yn,θ),
p(εt|Yn,θ), p(ηt|Yn,θ) (see [3] and a simpler algorithm in [4]).

In practice, Zt,Tt,Qt and Ht are seldom known and need to be esti-
mated, at least in part. If this is the case, the uncertainty introduced by
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the use of estimated parameters in place of θ has to be accounted for. Very
little work seems to have dealt with this issue: [17] gives some asymptotic
results and [7] describes a technique to account for the influence of estimated
parameters on the variance of α̂t.

3 Models and strategy for imputation

There are no limitations in the choice of imputation models, other than the
requirement to keep the number of estimated parameters down to a man-
ageable size. Although, in principle, any model that fits reasonably well the
data can be used, we have found simple structural models (see [9],[8] and [5]
for instance) well suited for the task of imputation.

Local level full dimension multivariate model. Taking Tt = Zt = Ip

in equations (1)-(2) we have what may be the simplest multivariate model
for yt: each component yit (1 ≤ i ≤ p) fluctuates about a component αit of
αt.

The choice of the covariance matrix Qt governs the degree of correlation
among components αit, αjt, i 6= j. We can choose to have independent
random walks (diagonal Qt), non-independent random walks (Qt with non
null off-diagonal terms) or even a reduced rank model (Qt rank deficient;
except for the possible influence of the prior distribution on α1 this would
be equivalent to a reduced dimension state vector).

Regarding Ht, we can choose independent of correlated observation dis-
turbances. We can also take Ht = 0, effectively saying that the the com-
ponents αit of the state can be observed without error, whenever the cor-
responding yit is observed. In either case, interest normally centers in the
generation of simulated trajectories α̃t of the state vector.

Local level reduced rank multivariate model. An alternative to the
full rank model consists in keeping the random walk dynamics for th vector
state αt while taking p = dim(yt) > dim(αt) = s. In that case, the observed
time series {yt} evolve as linear combinations of a small number s of unob-
served component. In this case, matrix Zt will typically contain regression
coefficients of the yt on the αt. The model can be seen as a dynamic factor
analysis.

Generation of imputed trajectories. A random sample of m trajecto-
ries from (αt|Yn) can then be obtained as sketched in Algorithm 1.
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The loop in steps 2 to 5 in the Algorithm 1 generates each time it is
run a random θ̂ from the posterior distribution of the parameters by using
rejection sampling (see for instance [6], p. 85).

Algorithm 1 – Simulation of the state with prior information on θ

Require: θ̂MLE, p(θ), m
1: for i = 1 to m do

2: repeat

3: Draw θ̂ from the prior distribution p(θ).
4: Draw U from the uniform distribution on [0, 1]
5: until `(θ̂)/`(θ̂MLE) > U
6: θ̂(i) ← θ̂

7: Draw the i-th random trajectory α̃t
(i) from p(αt|Yn, θ̂(i)).

8: end for

The likelihood for each θ̂ needed at step 5 can be computed by running
the Kalman filter, generating the set of innovations vt and their covariance
matrices Ft from (6) and (3) above and setting

log `(θ̂) = −
n

2
log(2π)−

1

2

∑

t

(

log |Ft|+ vt
T Ft

−1vt

)

;

the inversion of Ft at each step may be avoided altogether by treating the
time series yt as univariate ([5], § 6.4, [1], § 6.4), so the computation of the
likelihood is reasonably fast.

Step 7 is handled with the simulation smoother (see [5], § 5.3).
There are particular cases that can be handled faster. For certain a priori

distributions p(θ) we may be able to exploit conjugacy and sample directly
from the posterior.

On the other hand, if we have no prior information whatsoever, we may
choose to sample θ̂(i) from the asymptotic distribution N(θ̂MLE, I(θ̂MLE)−1),
where I(θ̂MLE) is the information matrix. (A similar approach in another
context has been proposed by [7].) Thus, steps 2 to 7 in Algorithm 1 are
replaced by a single draw from the asymptotic distribution of the estimates.

4 An ilustration

Figure 1 shows four cost of living indexes, computed by four historians. They
refer to the period 1876–1936 and different regions or the whole of Spain.
(For a description of the indexes, see [13] and references therein.) As could
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Figure 1: Cost of living indexes computed for the whole or part of Spain by
four historians
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be expected, the four indexes show a similar pattern: no long term trend
before World War I, a phenomenal inflation during the war, then a drop of
prices which nonetheless failed to return to the pre-war levels.

Not all four indexes are available for the whole period, the one computed
by Sardá being the shortest.

Given the similar patterns displayed by the indexes over the period where
all four are observed, we can attempt to impute the missing years of an index
using the past and future observations of itself and the others. To do so, we
have set up the full dimension local level model described in Section 3 above.
Thus, we consider:

αt+1 = αt + ηt (14)

yt = Ztαt + εt (15)

where {yt} is the four dimensional time series and Zt is a matrix whose rows
are a subset of the rows of the unit I4 matrix: those rows are taken that
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Figure 2: Observed index and confidences bands for imputation. Grey
band is the envelope of 100 trajectories from the conditional distribution
p(αt|Yn, θ̂MLE). The outer band is the envelope of 100 trajectories from
p(αt|Yn, θ̂(i)) with θ̂(i) varying.
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correspond to observed components of yt.
The covariance matrices are assumed time invariant; Ht = H is chosen

diagonal while Qt = Q is a full general covariance matrix, with no other
restriction than being symmetric non-negative definite. Thus, we are assum-
ing that what is observed are the “true” underlying indexes plus observation
error, and the observation errors are unrelated for each of the four historians.
On the other hand, the disturbances driving the state vector are correlated,
as seems natural in this case.

With the model thus specified, two sets of one hundred trajectories of the
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state αt have been generated with the simulation smoother. In one case, the
parameters were kept fixed at the values estimated by maximum likelihood,
while in the other each trajectory was generated with a vector of parameters
θ̂(i) sample from N(θ̂MLE, I(θ̂MLE)−1). The envelopes for each set of tra-
jectories are represented in Figure 2 and can be interpreted as approximate
(simultaneous) confidence bands for the state. It can be noticed that tak-
ing into account the variability of the parameters increases substantially the
width of the band, which nearly doubles in the regions were no observations
were available and the Sardá index had to be imputed with information from
the other three.

All computations were programmed in R (see [14]). Software is available
from the author.

5 Conclusion

An approach has been proposed for the imputation of multivariate time series,
and its use illustrated imputing a price index with unavailable information.
The approach is general enough and able to cope, in particular, with the gen-
eral situation in which several, partially overlapping sources of information
are available and we need to construct an index.

We also may notice that the Kalman filter and smoother can deal with
series with disparate observation periods, i.e., some series could be observed
monthly and other quarterly. The use of the Kalman filter in such situations
is demonstrated in [10], were the emphasis is in prediction or benchmarking
while in our case is imputation.

Finally, we would like to point out that the purpose of multiple imputation
in the example shown is to account for the uncertainty in the estimation of
parameters, an hence be able to produce “honest” confidence intervals or
bands for the estimands of interest. This issue is all too often neglected
in time series analysis: [2] is one of the rare monographs to discuss this
issue in his Chapter 8. Perhaps in many applications the uncertainty due to
imprecise estimation of the parameters is likely to be negligible, given large
enough sample sizes. That this is not always so is well epitomized by the
example above.

Our approach still leaves unaccounted the uncertainty due to the choice of
the model: we are assuming the model known, which will rarely be the case.
A further step would be to consider a set of models and perform Bayesian
model averaging.
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