
DOCUMENTOS DE TRABAJO

BILTOKI

Facultad de Ciencias Económicas.
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Abstract

We present an algorithmic approach for solving two-stage stochastic mixed 0-1 prob-
lems. The first stage constraints of the Deterministic Equivalent Model have 0–1 vari-
ables and continuous variables. The approach uses the Twin Node Family (TNF) concept
within the algorithmic framework so-called Branch-and-Fix Coordination for satisfying
the nonanticipativity constraints, jointly with a Benders Decomposition scheme for solv-
ing a given LP model at each TNF integer set. As an illustrative case, the structuring
of a portfolio of Mortgage-Backed Securities under uncertainty in the interest rate path
along a given time horizon is used. Some computational experience is reported.
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Introduction

Very frequently, mainly in problems with a given time horizon to exploit, some coefficients
in the objective function and the right–hand–side (rhs, for short) vector and in, a lesser
extend, the constraint matrix are not known with certainty when the decisions are to be
made, but some information is available. This circumstance allows to use Stochastic Integer
Programming (SIP) for solving (mixed) 0–1 programs under uncertainty. It has a broad
application field, mainly, in production planning (Mirhassani et al. (2000), Klein Haneveld
& van der Vlerk (2001), Ahmed et al. (2003), Alonso-Ayuso et al. (2003b,c, 2004, 2005)
and Lulli & Sen (2004)), energy generation planning (Takriti & Birge (2000), Gröwe-Kuska
et al. (2001), Hemmecke & Schultz (2001), Klein Haneveld & van der Vlerk (2001), Nowak
et al. (2002), Nürnberg & Römisch (2002) and Triki et al. (2005)) and finance (Cohen &
Thore (1970), Crane (1971), Mulvey & Vladimirou (1992), Zenios (1995a), Cariño & Ziemba
(1998), Ziemba & Mulvey (1998), Fleten et al. (2002), Kusy & Ziemba (2002)), among others
(Uryasev & Pardalos (2001), Laporte & Louveaux (2002), Maatan et al. (2002) and Wallace
& Ziemba (2005)) and, specially, see the books Jarrow et al. (1995), Zenios (1995b), Ziemba &
Mulvey (1998) and Scherer (2003) devoted to financial management. See also Schultz (2003).
The main focus and contribution of the paper is on the design and computational as-

sessment of a Branch-and-Fix Coordination (BFC) scheme for obtaining the optimal mixed
0–1 solution to the two-stage stochastic program, where the parameters’ uncertainty is rep-
resented by a set of scenarios. An important feature of our approach with respect to some
other approaches for two-stage SIP is that it addresses the problem where 0–1 variables and
continuous variables have nonzero elements in the first stage constraints. The difficulty in
the algorithmic approach is very much increased by having the continuous variables in the
first stage constraints. The special structure of the Deterministic Equivalent Model (DEM)
is exploited. The relaxation of the nonanticipativity constraints of the first stage variables
allows for the independent solution of the so–called scenario cluster-related problems. The
constraints related to the 0–1 variables are satisfied by using a scheme that is based on the
Twin Node Family (TNF) concept introduced in Alonso-Ayuso et al. (2003a,c). The scheme
is specifically designed for coordinating the node branching selection and pruning and the
0–1 variable branching selection and fixing at each Branch-and-Fix (BF) tree.
Additionally, the proposed approach considers the compact representation of the DEM at

each TNF integer set. By fixing those variables to the nodes’ values, the DEM has only con-
tinuous variables. By exploiting the remaining model’s structure, a Benders Decomposition
allows the nonanticipativity constraints on the first stage continuous variables to be satisfied
and, so, obtaining the LP optimal solution for the given TNF integer set. The conditions for
pruning a TNF are stated.
Given a time horizon, a set of available securities and an available budget for investment,

the Mortgage-Backed Securities Portfolio Structuring Problem (MBSPSP) is concerned with
determining the subset of securities that will be included in the portfolio as well as determining
the fraction of the face value to consider for each security, under uncertainty in the interest
rate path along the time horizon. The problem of concern can be viewed as the problem
considered in Escudero (1995), see also Zenios (1993), but forcing an upper bound on the
number of securities to include in the portfolio and requiring a conditional minimum on the
face value for each security, among other types of constraints for structuring the portfolio.
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The problem can be treated as a two-stage stochastic mixed 0–1 model. The first stage
constraints in the problem have the 0–1 variables for determining the securities to include
in the portfolio, and the continuous variables for determining the fraction of the related face
value to consider. The second stage constraints have only continuous variables under each
scenario, for determining the net available cash at the so-called dedicated time periods and
for representing certain types of mismatchings related to durations and present values. So,
the MBSPSP can be considered as an illustrative case for the computational assessment of
our approach for two-stage SIP problem solving. Some computational experience is reported
to compare the quality of the solution obtained by our approach and the optimization of the
average scenario problem. A comparison is also performed with solving the DEM by a plain
use of a state-of-the-art optimization engine.
The remainder of the paper is organized as follows. Section 1 states theMBSPSP. Section

2 presents the mixed 0-1 DEM. Section 3 presents the TNF based BFC algorithmic frame-
work for problem solving. Section 4 presents an illustrative case. Section 5 reports on the
computational results. Section 6 concludes.

1 Problem statement

Let a security be defined as an asset that entitles the holder to a return along a time
horizon. In our case, the asset is a financial right included by a principal and a yield backed
by a mortgage (so, it is called Mortgage-Backed Security, for shortMBS), whose principal can
be prepaid and even delayed. So, each security (e.g., a loan) to consider for being included
in the portfolio should have the following features: principal’s amortization structure up to
its maturity period; (usually adjustable) yield to be paid over time; partial or full potential
prepayment, such that the prepayment of a security will affect its duration and the cashflow
to generate; potential delay of the principal’s amortization; and type of risk measured by the
interest rate weighting factor, the so-called Option Adjusted Spread (OAS).
The OAS is used to weight the discount rate for obtaining the present value of a given

security. It can be interpreted as the implied risk penalty for a particular security, see Hayre
& Lauterbach (1991) and Ben-Dov et al. (1992), among others. Note: The value 0 (resp., 1)
means a neutral factor for an additive (resp., multiplicative) scheme, see below.
TheMBS securitization consists of structuring a portfolio from a set of available securities.

The problem of concern consists of the MBS securitization under the uncertainty in the
interest rate path along a given time horizon, which implies uncertainty in the securities’ yield,
prepayment and payment delay. As we said above, the uncertainty is represented by a set of
scenarios. One characteristic of our problem is the need to resort to an integer formulation
(rather than using only continuous variables). That need is motivated by the problem’s
requirements related to the maximum number of securities to include in the portfolio, the
MBS face value conditional minimum, the exclusivity and implicative constraints in the
portfolio, etc.
There are three important issues that have not been considered in the paper, namely, the

recursive contingent claim option (Dunn & McConnell (1981) and Schwartz & Torous (1989)),
the transaction costs on exercising the options, (Stanton (1995) and Longstaff (2004)) and
the heterogeneity among mortgage borrowers for determining the MBSs (Deng et al. (2000)).
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Although important issues, they are not crucial for assessing the performance of the proposed
algorithmic approach for optimizing two-stage SIP problems.
A feasible structuring of a portfolio requires two types of constraints to be satisfied,

namely: (a) first stage constraints that force some types of relationships among the securities,
e.g., upper bound on the number of securities to be included in the portfolio, investment
budget for the securities’ total face value, equilibrium in the total face value of the different
types of securities, exclusivity and implicative relationships among those types, etc.; and (b)
second stage constraints for basically analyzing the performance of the securities’ portfolio
along the time horizon over the scenarios. Typical constraints are the portfolio’s cashflow
balance equation including the cash inflow and outflow due to the liabilities’ satisfaction
for each dedicated time period under any scenario, the lower and upper bounds for the net
available cash in those periods under any scenario, the requirement that the present value of
the portfolio is not smaller than the present value of the liabilities under any scenario, the
requirement that the absolute mismatchings of the unit durations and the present values of
the MBS in the portfolio and the set of securities where it is taken from are not greater than
given thresholds, etc.
There are different types of goals. The scenario tracking through the minimization of the

expected difference between the MBS portfolio’s and liabilities’ duration mismatching and
the optimal related mismatching under any scenario is treated in Escudero (1995). However,
we consider the minimization of the expected absolute mismatching of the durations of the
MBS portfolio and the liabilities over the scenarios. It is another approach for hedging the
investment’s return against small changes in the interest rate along the time horizon, for
given portfolio management fees and others.
The notation to be used through the paper is as follows.

Sets:

I, set of available securities.
T , set of time periods.

Ω, set of scenarios to represent the uncertainty.

Deterministic parameters:

b1, maximum number of securities that are allowed in the MBS portfolio to structure.
�b2, right-hand-side vector for the subsystem of constraints for the 0-1 variables δi, i ∈ I.
A2, constraint matrix for the subsystem of constraints for the 0-1 variables δi, i ∈ I.
b3, available investment’s budget at time period 0 to create the MBS portfolio.

h, investment’s net unit return (including management fees) from the investment b3 as
a target to reach for each so-called dedicated time period.

αt, investment’s amortization considered for time period t, for t ∈ T , such that

b3 =
∑
t∈T

αt. (1)
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ϕt, liability to be satisfied at (the end of) dedicated time period t, for t ∈ T . It can be
expressed as

ϕt = αt + h
∑

τ∈T :τ≥t

ατ . (2)


, latest dedicated time period where the cash inflow from the portfolio is committed
to satisfy the liabilities, for 
 ∈ T .
σ, σ, unit lower and upper bounds of the investment’s face value that is allowed to be
kept in cash at any dedicated time period, respectively.

st, st, lower and upper bounds of available cash at dedicated time period t, respectively,
for t = 1, . . . , 
, such that

st = σ
∑

τ∈T :τ>t

ατ (3)

st = σ
∑

τ∈T :τ>t

ατ . (4)

fi, principal (face) value of security i, for i ∈ I.
xi, xi, conditional lower and upper bounds of the principal (face) value out of fi for
security i to be included in the MBS portfolio, respectively, for i ∈ I.
ti, maturity period for security i (i.e., last period where any payment has been planned).
Note: ti ∈ T , ∀i ∈ I.
ait, unit principal’s amortization of security i at (the end of) time period t, for t =
1, . . . , ti, i ∈ I.
Ait, cumulated unit principal’s amortization of security i at time period t, for t =
1, . . . , ti, i ∈ I, such that

Ait =
∑

τ=1,...,t

aiτ , (5)

so that Ait = 1 for t = ti.

cξ
i , extra interest rate to charge for each time period with payment delay in security i,
for i ∈ I.
oi, OAS assigned to security i, for 0 ≤ oi, i ∈ I.
τ , maximum number of time periods where a principal’s amortization payment can be
delayed for any security. Note: τ ≤ |T | − ti, i ∈ I.

Uncertain and scenario related parameters:

wω, weight factor assigned to scenario ω, for ω ∈ Ω, such that ∑ω∈Ω wω = 1.

rω
t , interest rate at time period t under scenario ω, for t ∈ T , ω ∈ Ω. The scenarios for
the interest rate path along the time horizon can be generated from the binomial lattice
approach given in Black et al. (1990) as it is done in Zenios (1993). See other schemes
in Frauendorfer & Schürle (1998) and Mulvey & Thorlacius (1998). An application of
the so-called contamination technique (Dupacova (1986)) is presented in Dupacova et
al. (1998) for the analysis of the influence of additional scenarios to a given sample in

5



bond portfolio management. The stochastic decomposition method for dealing with
two-stage stochastic programs via sampling is described in Higle & Sen (1996). See in
Kleywegt et al. (2001) and Ahmed & Shapiro (2002) some approaches for approximating
the underlying two-stage stochastic program with integer recourse via sampling, among
other approaches for dealing with the size of the scenario set. See in Dupacova et al.
(2003) an approach for scenario reduction.

cω
it, unit yield of security i at (the end of) time period t under scenario ω. It is a
function of the interest rate rω

t and the own security under scenario ω, for t = 1, . . . , ti,
i ∈ I, ω ∈ Ω. Notice that rω

1 = r1, where r1 is the interest rate at time t = 1.

βω
it, (partial or full) prepayment of the cumulated unit principal’s amortization of secu-
rity i at time period t under scenario ω, for t = 1, . . . , ti, i ∈ I, ω ∈ Ω. It is a function
of the security, the age of the security, the month of the year and the interest rate at
the given period. The function is usually obtained by statistical means. However, see
in Kang & Zenios (1992) some complete prepayment models.

κω
itτ , unit payment delay in τ time periods of the principal’s amortization of security

i that is due at time period t under scenario ω, for
∑

τ=1,...,τ κω
itτ ≤ ait, t = 1, . . . , ti,

τ = 1, . . . , τ , i ∈ I, ω ∈ Ω. It is a function of the security, the month of the year, the
number of delay periods and the interest rate at the given time period.

eω
it, net unit principal amortization of security i at time period t plus interest payments
due to principal delays. It can be expressed as

eω
it = ait[1−

t−1∑
j=1

βω
ij − (1 + cω

it)
τ∑

τ=1

κω
itτ ]

+
∑

τ :1≤t−τ≤τ

aiτ [1 + (t− τ)(cω
iτ + cξ

i )]κ
ω
iτ(t−τ)

(6)

γω
it, unit return from security i at time period t under scenario ω, for t = 1, . . . , ti + τ ,

i ∈ I, ω ∈ Ω. Under mild assumptions, it can be expressed as

γω
it = eω

it + βω
itAit+1 + cω

itAit

(
1−

t−1∑
j=1

βω
ij

)
. (7)

Γω
i , unit return’s present value of security i under scenario ω, for i ∈ I, ω ∈ Ω. It can
be expressed as

Γω
i =

∑
t=1,...,ti

γω
it

∏
τ=1,...,t

(1 + oi · rω
τ )

−1. (8)

Note that oi has been used as a multiplicative factor of rω
τ and, then, the zero-value

is not allowed. However, it is allowed when the OAS is used as an additive factor,
see Zenios (1991). Notice that the greater the risk penalty OAS oi is, the smaller the
present value Γi is, ∀i ∈ I.
dω

i , change in the unit present value of the return of security i due to a small change
in the interest rate along the time horizon under scenario ω, for i ∈ I, ω ∈ Ω. It can
be expressed as

dω
i = −(1/Γω

i )
∑

t=1,...,ti

t · γω
it · oi

∏
τ=1,...,t

(1 + oi · rω
τ )

−1. (9)
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Note: |dω
i | is the so-called modified Macaulay duration for a flat interest rate along a

time horizon.

Φω, present value of the liabilities under scenario ω, for ω ∈ Ω. It can be expressed as

Φω =
∑
t∈T

ϕt

∏
τ=1,...,t

(1 + rω
τ )

−1. (10)

d′ω, change in the unit present value of the liabilities due to a small change in the
interest rate along the time horizon under scenario ω, for ω ∈ Ω. It can be expressed
as

d′ω = −(1/Φω)
∑
t∈T

t · ϕt

∏
τ=1,...,t

(1 + rω
τ )

−1. (11)

Additional deterministic parameters:

z, upper bound on the absolute difference between the unit duration of the MBS port-
folio to structure and the unit duration of the available set of securities I.
v, upper bound on the absolute difference between the unit present value of the MBS
portfolio to structure and the unit present value of the available set of securities I.

Note. The parameters z and v allow some slackness in the representation of the MBS
portfolio with respect to the available set of securities.
Structuring variables. They are 0–1 variables, such that

δi =

{
1, if security i is selected for the MBS portfolio to structure
0, otherwise.

∀i ∈ I

Face value variables. They are continuous variables, such that

xi, principal (face) value out of fi for security i that is included in the MBS portfolio,
where xi ≤ xi ≤ xi for δi = 1 and, otherwise, it is zero, for i ∈ I.

Performance variables. They are continuous variables, such that

sω
t , cash availability at (the end of) dedicated time period t under scenario ω, for
t = 1, . . . , 
, ω ∈ Ω.
yω, free variable to take the (positive or negative) difference of the MBS portfolio’s
duration and the liabilities’ duration under scenario ω, for ω ∈ Ω.
zω, free variable to take the (positive or negative) difference of the unit durations of
the MBS portfolio and the set of available securities I under scenario ω, for ω ∈ Ω.
vω, free variable to take the (positive or negative) difference of the unit present values
of the MBS portfolio and the set of available securities I under scenario ω, for ω ∈ Ω.
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2 Mixed 0-1 Deterministic Equivalent Model (DEM)

The goal is to structure the MBS portfolio (i.e., obtaining xi, i ∈ I) to dedicate cash
availability to satisfy the liabilities for the given set of dedicated time periods, and to protect
the investment (liabilities) present value, such that a set of constraints should be satisfied by
the portfolio.
The following is a compact representation of the mixed 0–1 DEM for the two-stage stochas-

tic MBSPSP with complete recourse.

Objective: Minimizing the expected duration mismatching of the MBS portfolio and the
liabilities over the scenarios, subject to the constraints (13)–(25).

ZIP = min
∑
ω∈Ω

wω|yω| (12)

Constraints: ∑
i∈I

δi ≤ b1 (13)

A2
�δ = �b2 (14)

δi ∈ {0, 1} ∀i ∈ I (15)
xiδi ≤ xi ≤ xiδi ∀i ∈ I (16)∑

i∈I
xi = b3 (17)

∑
i∈I
Γω

i xi ≥ Φω ∀ω ∈ Ω (18)

(1 + rω
t )s

ω
t−1 +

∑
i∈I

γω
itxi = ϕt + sω

t ∀t = 1, . . . , 
, ω ∈ Ω (19)

st ≤ sω
t ≤ st ∀t = 1, . . . , 
, ω ∈ Ω (20)∑

i∈I
dω

i xi − d′ωΦω = yω ∀ω ∈ Ω (21)

(∑
i∈I

dω
i xi

)
/b3−

(∑
i∈I

dω
i fi

)
/
∑
i∈I

fi = zω ∀ω ∈ Ω (22)

|zω| ≤ z ∀ω ∈ Ω (23)(∑
i∈I
Γω

i xi

)
/b3−

(∑
i∈I
Γω

i fi

)
/
∑
i∈I

fi = vω ∀ω ∈ Ω (24)

|vω| ≤ v ∀ω ∈ Ω. (25)

The constraint system (13)-(25) has three different subsystems. The subsystem (13)-(17)
is included by the first stage constraints, for structuring the MBS portfolio by considering
all the scenarios via the other subsystems but without being subordinated to any of them
in particular. The subsystem (18)-(20) basically protects the investment and forces some
constraints for each dedicated time period under each scenario. The subsystem (22)-(25)
forces the representativeness of the portfolio under each scenario.
Constraint (13) bounds above the number of securities in the MBS portfolio to structure.

The system (14) imposes exclusivity and implicative constraints in the MBS portfolio for the
0–1 variables δi, for i ∈ I.
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Constraints (16) define the semi-continuous character of the x–variables, such that no
investment in any security can have a greater weight in the portfolio than a given value, and
no security can have a face value smaller than a given bound, if any.
Constraint (17) forces the total investment in the portfolio to a given budget.
Constraint (18) protects the investment in the sense that the present value of the MBS

portfolio cannot be smaller than the liabilities’ present value under any scenario.
Constraints (19)-(20) give the balance equations for the cashflow at the dedicated time

periods, such that the return of the investment’s amortization and yield as well as the man-
agement fees are guaranteed under any scenario. It is assumed that the available cash is
short-time invested in a risk free environment and, in any case, it is bounded below and
above by given values.
Constraint (21) gives the duration balance equations of the MBS portfolio and the liabil-

ities under each scenario. The goal is precisely the minimization of the expected difference
in the durations.
The constraint system (22)-(25) forces the representativeness of the MBS portfolio with

respect to the set of available securities I, as measured by the unit duration and the unit
present value under any scenario. It allows some upper bounds in the related differences.
Consider the compact representation of the mixed 0–1 DEM (12)-(25).

ZIP = min
∑
ω∈Ω

wω|yω|

s.t. �e �δ ≤ b1

A2
�δ = �b2

�δ ∈ {0, 1}n

−Ix
�δ +Ix�x ≤ �0

−Ix
�δ +Ix�x ≥ �0

�e �x = b3

�aω
4 �x ≥ bω

4 ∀ω ∈ Ω
A5

ω�x +Bω�sω = �b5 ∀ω ∈ Ω
�s ≤ Is �sω ≤ �s ∀ω ∈ Ω

�aω
6 �x +yω = bω

6 ∀ω ∈ Ω
�aω

7 �x +zω = bω
7 ∀ω ∈ Ω

|zω| ≤ z ∀ω ∈ Ω
�aω

8 �x +vω = bω
8 ∀ω ∈ Ω

|vω| ≤ v ∀ω ∈ Ω,

(26)

where the additional notation is as follows: n = |I|, bω
4 , b

ω
6 , b

ω
7 and bω

8 are the right-hand-side
(for short, rhs) parameters for the second stage constraints under scenario ω; �b5 is the rhs
vector of the parameters for the cashflow balance equations; �e is the unit row vector; Ix

and Ix are the diagonal matrices whose diagonal vectors are the conditional lower and upper
bounds of the x–variables, respectively; Ix and Is are the unit diagonal matrices for the x–
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and sω–variables, respectively, �aω
4 , �a

ω
6 , �a

ω
7 and �a

ω
8 are the constraint row vectors related to the

x–variables for the second stage constraints; Aω
5 and Bω are the constraint matrices related

to the x– and sω–variables for the second stage constraints under scenario ω, respectively, for
ω ∈ Ω; and the pair (�s,�s) gives the vectors of the lower and upper bounds for the sω–variables.
The compact representation (26) can be transformed in a splitting variable representation,

such that the variables δi and xi are replaced with δω
i and xω

i , respectively, ∀ω ∈ Ω, i ∈ I. So,
there is a model for each scenario ω ∈ Ω, but they are linked by the so-called nonanticipativity
constraints

δω
i − δω′

i = 0 (27)
xω

i − xω′
i = 0, (28)

∀i ∈ I, ω, ω′ ∈ Ω : ω �= ω′. Then, the splitting variable representation is as follows,

ZIP = min
∑
ω∈Ω

wω|yω|

s.t. �e �δω ≤ b1 ∀ω ∈ Ω
A2

�δω = �b2 ∀ω ∈ Ω
�δω ∈ {0, 1}n ∀ω ∈ Ω
−Ix

�δω +Ix�x
ω ≤ �0 ∀ω ∈ Ω

−Ix
�δω +Ix�x

ω ≥ �0 ∀ω ∈ Ω
�e �xω = b3 ∀ω ∈ Ω

�aω
4 �xω ≥ bω

4 ∀ω ∈ Ω
A5

ω�xω +Bω�sω = �b5 ∀ω ∈ Ω
�s ≤ Is �sω ≤ �s ∀ω ∈ Ω

�aω
6 �x

ω +yω = bω
6 ∀ω ∈ Ω

�aω
7 �x

ω +zω = bω
7 ∀ω ∈ Ω

|zω| ≤ z ∀ω ∈ Ω
�aω

8 �x
ω +vω = bω

8 ∀ω ∈ Ω
|vω| ≤ v ∀ω ∈ Ω

�δω − �δω′
= �0 ∀ω, ω′ ∈ Ω : ω �= ω′

�xω − �xω′
= �0 ∀ω, ω′ ∈ Ω : ω �= ω′.

(29)

Notice that the dualization (or, for the matter, the relaxation) of the constraints (27) and
(28) from the model (29) results in |Ω| independent mixed 0–1 models. For solving the original
model (29), we propose to execute a so-called Branch-and-Fix Coordination (BFC) scheme
for each of the scenario-related models to ensure the integrality condition on the δ–variables,
such that the nonanticipativity constraints (27) are satisfied while selecting the branching
nodes and the branching variables. For this purpose the so-called Twin Node Family (TNF)
concept introduced in Alonso-Ayuso et al. (2003a,c) is used. Additionally, the proposed
approach optimizes the LP model that results from the model (26) at each TNF integer set,
so that the nonanticipativity constraints (28) are also satisfied, see below.
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3 Branch-and-Fix Coordination algorithmic framework

3.1 BFC methodology

The scenario-related model for ω ∈ Ω that results from the relaxation of the nonantici-
pativity constraints (27) and (28) in model (29) can be expressed as follows,

Zω
IP = min |yω|

s.t. �e �δω ≤ b1

A2
�δω = �b2

�δω ∈ {0, 1}n

−Ix
�δω +Ix�x

ω ≤ �0
−Ix

�δω +Ix�x
ω ≥ �0

�e �xω = b3

�aω
4 �xω ≥ bω

4

A5
ω�xω +Bω�sω = �b5

�s ≤ Is �sω ≤ �s

�aω
6 �x

ω +yω = bω
6

�aω
7 �x

ω +zω = bω
7

|zω| ≤ z

�aω
8 �x

ω +vω = bω
8

|vω| ≤ v.

(30)

Instead of obtaining independently the optimal solution of the programs (30), we propose
a specialization of the BFC approach, see Alonso-Ayuso et al. (2003a,c). It is specially
designed to coordinate the selection of the branching node and branching variable for each
scenario-related Branch-and-Fix (BF) tree, such that the relaxed constraints (27) are satisfied
when fixing the appropriate variables to either one or zero. The approach also coordinates and
reinforces the scenario-related BF node pruning, the variable fixing and the objective function
bounding of the subproblems attached to the nodes. See similar decomposition approaches
in Carøe & Schultz (1999), Hemmecke & Schultz (2001), Klein Haneveld & van der Vlerk
(2001), Römisch & Schultz (2001), and Nowak et al. (2002), among others. However, those
approaches focus more on using a Lagrangian relaxation of the constraints (27) to obtain good
lower bounds, and less on branching and variable fixing. In any case, Lagrangian relaxation
schemes can be added on top. See also Schultz (2003).
For the specialization of the BFC approach to solving problem (29), let Rω denote the

BF tree associated with scenario ω, and Gω the set of active nodes in Rω, ω ∈ Ω. Any two
active nodes, say, g ∈ Gω and g′ ∈ Gω′

are said to be twin nodes if either they are the root
nodes or the paths from the root nodes to each of them in their own BF trees Rω and Rω′

,
respectively, have branched on or fixed to the same 0–1 values for the same variables δω

i and
δω′
i , for ω, ω′ ∈ Ω, i ∈ I. A Twin Node Family (TNF), say, Hf is a set of nodes, such that
any one is a twin node to all the other members of the family, for f ∈ F , where F is the set
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0− 1 variables δ1, δ2, δ3 a

b − → scen 1

c − → scen 2

d − → scen 3

1

δ3

BF tree R1

4

δ1

0

10

0

11

1
5

δ2

1

12

0

13

1

2

δ3

BF tree R2

6

δ1

0

14

0

15

1
7

δ2

1

16

0

17

1

3

δ3

BF tree R3

8

δ1

0

18

0

19

1
9

δ2

1

20

0

21

1

Twin Node Families (TNFs)
H1 = {1, 2, 3}, H2 = {4, 6, 8}, H3 = {5, 7, 9}, H4 = {10, 14, 18}

H5 = {11, 15, 19}, H6 = {12, 16, 20}, H7 = {13, 17, 21}
Figure 1. Branch-and-Fix Coordination scheme

of TNFs. Note that g, g′ ∈ Hf for any family f ∈ F implies that ω �= ω′ for g ∈ Gω and
g′ ∈ Gω′

, ω, ω′ ∈ Ω. A TNF integer set is a a set of integer BF nodes, one per each tree,
where the nonanticipativity constraints (27) of the 0–1 variables are satisfied.
Let us consider the scenario tree and the BF trees shown in Figure 1, where δi gives the

generic notation for the variables δω
i , ∀ω ∈ Ω. Notice that the first TNF to be used is H1.

Based on the LP optimal solution of the models (30) attached to the nodes in H1, let us
assume that the selected branching variable is δ3 and, so, the nodes 4 and 5, 6 and 7, and 8
and 9 are created. The new TNFs are H2 = (4, 6, 8) and H3 = (5, 7, 9), and so forth.
It is clear that the relaxation of the nonanticipativity constraints (27) is not required for

all pairs of scenarios in order to obtain computational efficiency. So, the number of scenarios
to consider in a given model basically depends on the dimensions of the scenario related
model (30) (i.e, the parameters |I| and ti, ∀i ∈ I). The criterion for scenario clustering in
the sets, say, Ω1, . . . ,Ωq, where q is the number of clusters to consider, could be alternatively
based on the smallest internal deviation of the uncertain parameter (i.e., the interest rate
rω
t , ∀t ∈ T ), the greatest deviation, etc. The determination of the most efficient criterion
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is instance dependent. In any case, notice that Ωp ∩ Ωp′ = ∅, p, p′ = 1, . . . , q : p �= p′ and
Ω = ∪q

p=1Ωp. The specific measure for quantifying the deviation of the interest rate path
for any two scenarios is also another instance dependent element. In any case, by slightly
abusing the previous notation, the problem to consider for the scenario cluster p = 1, . . . , q
can be expressed as follows,

Zp
IP = min

∑
ω∈Ωp

wω|yω|

s.t. �e �δp ≤ b1

A2
�δp = �b2

�δp ∈ {0, 1}n

−Ix
�δp +Ix�x

p ≤ �0
−Ix

�δp +Ix�x
p ≥ �0

�e �xp = b3

�aω
4 �xp ≥ bω

4 ∀ω ∈ Ωp

A5
ω�xp +Bω�sω = �bω

5 ∀ω ∈ Ωp

�s ≤ Is �sω ≤ �s ∀ω ∈ Ωp

�aω
6 �x

p +yω = bω
6 ∀ω ∈ Ωp

�aω
7 �x

p +zω = bω
7 ∀ω ∈ Ωp

|zω| ≤ z ∀ω ∈ Ωp

�aω
8 �x

p +vω = bω
8 ∀ω ∈ Ωp

|vω| ≤ v ∀ω ∈ Ωp.

(31)

The q problems (31) are linked by the nonanticipativity constraints

δp
i − δp′

i = 0 (32)

xp
i − xp′

i = 0, (33)

∀i ∈ I, p, p′ = 1, . . . , q : p �= p′.

3.2 All x–variables alone. Benders Decomposition scheme

By slightly abusing the notation, let the following represent the LP model after fixing in
model (26) the δ–variables to the 0–1 values related to a given TNF integer set. In the new
model, �x1 will denote the vector of the x–variables whose related δ–variables have taken the
value 1, and the pair (�x1, �x

1) gives the related lower and upper bounds.

ZTNF
LP = min

∑
ω∈Ω

wω|yω|

13



s.t. �e �x1 = b3

�aω
4 �x1 ≥ bω

4 ∀ω ∈ Ω
�x1 ≤ �x1 ≤ �x

1

A5
ω�x1 +Bω�sω = �b5 ∀ω ∈ Ω

�s ≤ Is �sω ≤ �s ∀ω ∈ Ω
�aω

6 �x
1 +yω = bω

6 ∀ω ∈ Ω
�aω

7 �x
1 +zω = bω

7 ∀ω ∈ Ω
|zω| ≤ z ∀ω ∈ Ω

�aω
8 �x

1 +vω = bω
8 ∀ω ∈ Ω

|vω| ≤ v ∀ω ∈ Ω.

(34)

By assuming that the x1–variables are the complicating ones and replacing the free vari-
ables yω, zω and vω with yω

1− yω
2 , zω

1− zω
2 and vω

1− vω
2 , respectively, for yω

1 , y
ω
2 , zω

1 , z
ω
2

vω
1 , v

ω
2 ≥ 0, the original program (34) can be expressed

min
x

Fx

s.t. �e �x1 = b3

�aω
4 �x

1 ≥ bω
4 ∀ω ∈ Ω

�x1 ≤ �x1 ≤ �x
1
,

(35)

where

Fx =
∑
ω∈Ω

wωFω
x (36)

and

Fω
x = min yω

1 + yω
2

s.t. Bω�sω = �b5 −Aω
5 �x

1

yω
1 − yω

2 = bω
6 − �aω

6 �x
1

zω
1 − zω

2 = bω
7 − �aω

7 �x
1

zω
1 + zω

2 ≤ z

vω
1 − vω

2 = bω
8 − �aω

8 �x
1

vω
1 + vω

2 ≤ v

�s ≤ Is�s
ω ≤ �s

yω
1 , y

ω
2 , zω

1 , z
ω
2 , vω

1 , v
ω
2 ≥ 0.

(37)
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The dual of the primal LP problem (37) can be expressed

Fω
x = max (�b5 −Aω

5 �x
1)T �µω

5 + (b
ω
6 − �aω

6 �x
1)µω

6 + (b
ω
7 − �aω

7 �x
1)µω

7 − zλω+
(bω

8 − �aω
8 �x

1)µω
8 − vβω +�sT �αω

1 −�s
T
�αω

2

s.t. BωT �µω
5 +Is�α

ω
1 −Is�α

ω
2 ≤ �0

−1 ≤ µω
6 ≤ 1

µω
7 −λω ≤ 0

µω
7 +λω ≥ 0

µω
8 −βω ≤ 0

µω
8 +βω ≥ 0

�αω
1 , �α

ω
2 , λ

ω, βω ≥ 0
�µω

5 , µ
ω
7 , µ

ω
8 unrestricted.

(38)

Given the structure of the constraint matrix that defines the feasible region in problem (38),
it can be decomposed into a series of independent subproblems, such that

Fω
x = Fω

x (�µ
ω
5 , �α

ω
1 , �α

ω
2 ) + Fω

x (µ
ω
6 ) + Fω

x (µ
ω
7 , λ

ω) + Fω
x (µ

ω
8 , β

ω) ∀ω ∈ Ω, (39)

where

Fω
x (�µω

5 , �α
ω
1 , �α

ω
2 ) = max (�b5 −Aω

5 �x
1)T �µω

5 +�sT �αω
1 −�s

T
�αω

2

s.t. BωT �µω
5 + Is�α

ω
1 − Is�α

ω
2 ≤ �0

�αω
1 , �α

ω
2 ≥ 0

�µω
5 unrestricted,

(40)

Fω
x (µω

6 ) = max (b
ω
6 − �aω

6 �x
1)µω

6

s.t. −1 ≤ µω
6 ≤ 1,

(41)

Fω
x (µω

7 , λ
ω) = max (bω

7 − �aω
7 �x

1)µω
7 − zλω

s.t µω
7 − λω ≤ 0

µω
7 + λω ≥ 0
λω ≥ 0

µω
7 unrestricted,

(42)

and

Fω
x (µ

ω
8 , β

ω) = max (bω
8 − �aω

8 �x
1)µω

8 − vβω

s.t µω
8 − βω ≤ 0

µω
8 + βω ≥ 0
βω ≥ 0

µω
8 unrestricted.

(43)
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The assumption of feasibility in the original model (34) requires the feasibility of the
primal problems (37) ∀ω ∈ Ω for all feasible values of the vector �x1 in the model (34). So, by
the Duality Theorem, Fω

x in the model (38) and, then, Fx (36) have also finite values.
Let J p and J r denote the sets of the extreme points and extreme rays of the feasible

region in each problem (38), respectively. And, let an extreme point from J p and an extreme
ray from J r be denoted as follows,

�νω
j ≡ (�µω

5 , µ
ω
6 , µ

ω
7 , µ

ω
8 , �α

ω
1 , �α

ω
2 , λ

ω, βω)j ω ∈ Ω, j ∈ J p ∪ J r. (44)

The problem (38) for ω ∈ Ω is finite if and only if

−�c ω
j �x1 + kω

j ≤ 0 j ∈ J r, (45)

where

kω
j = [�µω

5 ]
t
j
�b5 +�st[�αω

1 ]j −�s
t
[�αω

2 ]j + bω
6 [µ

ω
6 ]j + bω

7 [µ
ω
7 ]j − z[λω]j + bω

8 [µ
ω
8 ]j − v[βω]j

c ω
j = [�µω

5 ]
t
jA

ω
5 + [µ

ω
6 ]j�a

ω
6 + [µ

ω
7 ]j�a

ω
7 + [µ

ω
8 ]j�a

ω
8 .

(46)

We can outer linearize the infimal value function in (38), such that it can be expressed as

max
j∈J p

∑
ω∈Ω

wω(−�c ω
j �x1 + kω

j ). (47)

By expressing the infimal value function by the outer linearized dual functions (38) and
letting Z denote the smallest upper bound, the original problem (34) for the given Twin Node
Family (TNF) can be represented as follows,

ZTNF
LP = minZ (48)
s.t. �e �x1 = b3 (49)

�aω
4 �x

1 ≥ bω
4 ,∀ω ∈ Ω (50)

�x1 ≤ �x1 ≤ �x
1 (51)

Z ≥
∑
ω∈Ω

wω(−�c ω
j �x1 + kω

j ), ∀j ∈ J p (52)

−�c ω
j �x1 + kω

j ≤ 0 ∀ω ∈ Ω, j ∈ J r. (53)

The problem (48)-(53) is known as the Benders Master Program, see Benders (1962). It is
not efficient to compute all its extreme points and rays (if any) (44) and, on the other hand,
very few induced cuts (52)-(53) are frequently active at its optimal solution. A necessary
condition for the implementation of this procedure is that the feasible region defined by (49)-
(51) be finite. So, the solution can be iteratively obtained by identifying extreme points
and rays based–cuts from the optimization of the so-called Auxiliary Program (AP), and
appending them to the so-called Relaxed Master Program (RMP) for its optimization. The
RMP can be expressed as
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Z = minZ
s.t. �e �x1 = b3

�aω
4 �x

1 ≥ bω
4 ∀ω ∈ Ω

�x1 ≤ �x1 ≤ �x
1 (54)

Z ≥
∑
ω∈Ω

wω(−�c ω
j �x1 + kω

j ) ∀j ∈ J p

−�c ω
j �x1 + kω

j ≤ 0 ∀ω ∈ Ω, j ∈ J r
,

where J p ⊆ J p and J r ⊆ J r are the subsets of the extreme points and extreme rays already
identified, respectively.
At the first iteration, RMP is only included by the submodel (48)-(51). The AP is given

by the model (38), whose value (39) is obtained by solving independently the models (40)-(43)
for a given value, say, �̂x

1
of the vector of the �x1–variables. This value is the optimal solution

in the RMP that has been solved in the previous iteration, its solution value being Z.
Notice that the primal infeasibility (i.e., dual unboundness) of the model (37) is detected

for the vector �̂x
1
if there is a scenario whose model (40)-(43) is unbounded for that vector.

In this case, by the Farkas’ lemma, there exists an extreme ray �νω
j (44) such that �ν

ω
j W ≤ 0

and −�cω
j �x

1+ kω
j > 0, where W is the matrix of the feasible region for the dual problem (38).

Then, one feasible cut from the set (55) should be appended to the RMP, at least.

−�cω
j �x

1 + kω
j ≤ 0 ∀ω ∈ Ω0, (55)

where Ω0 gives the set of scenarios from Ω whose related models (40)-(43) are unbounded,
and (44) gives the corresponding extreme ray.

On the other hand, if all dual models (40)-(43), ∀ω ∈ Ω are bounded for the vector �̂x1
,

let Z = Fx̂ denote the optimal value of the objective function (39) and (56) be the optimality
cut to be appended to the RMP if Z (39) > Z (54).

Z ≥
∑
ω∈Ω

wω(−�cω
j �x

1 + kω
j ), (56)

where (44) gives the corresponding extreme point as the AP optimal solution for the point
�̂x

1
.

Notice that if Z = Z then �̂x
1
is the optimal solution of the model (34), being ZTNF

LP = Z.

3.3 All x–variables with fractional δ–variables. Benders Decomposition
scheme

By abusing again the notation let �δf denote the vector of the δ–variables to be allowed
to take fractional values, �δ1 the vector of the δ–variables that have been fixed to one, �x1f the
vector of the x–variables whose related δ–variables do not take the value zero in model (34),
and �ef and Af

2 (res., �e
1 and A1

2) the unit row vector and constraint matrix for the variables’
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vector �δf (res., �δ1). The model can be expressed as follows,

Zf
LP = min

∑
ω∈Ω

wω|yω|

s.t. �e �δf ≤ b1 − �e1�δ1

A2
�δf = �b2 −A1

2
�δ1

�δf ∈ [0, 1]n

−Ix
�δf +Ix�x

1f ≤ �0
−Ix

�δf +Ix�x
1f ≥ �0

�e �x1f = b3

�aω
4 �x1f ≥ bω

4 ∀ω ∈ Ω
A5

ω�x1f +Bω�sω = �b5 ∀ω ∈ Ω
�s ≤ Is �sω ≤ �s ∀ω ∈ Ω

�aω
6 �x

1f +yω = bω
6 ∀ω ∈ Ω

�aω
7 �x

1f +zω = bω
7 ∀ω ∈ Ω

|zω| ≤ z ∀ω ∈ Ω
�aω

8 �x
1f +vω = bω

8 ∀ω ∈ Ω
|vω| ≤ v ∀ω ∈ Ω.

(57)

By assuming that the δf– and x1f–variables are the complicating ones and replacing the
free variables yω, zω and vω with yω

1− yω
2 , z

ω
1− zω

2 and vω
1− vω

2 , respectively, for y
ω
1 , y

ω
2 , z

ω
1 , z

ω
2

vω
1 , v

ω
2 ≥ 0 as above, the program (57) can be expressed as

min
x

Fx

s.t. �e �δf ≤ b1 − �e1�δ1

A2
�δf = �b2 −A1

2
�δ1

�δf ∈ [0, 1]n

−Ix
�δf +Ix�x

1f ≤ �0
−Ix

�δf +Ix�x
1f ≥ �0

�e �x1f = b3

�aω
4 �x

1f ≥ bω
4 ∀ω ∈ Ω,

(58)

where

Fx =
∑
ω∈Ω

wωFω
x (59)

and Fω
x can be expressed following the same rationale as in (37)–(47), but replacing �x1 with

�x1f . From where it results that Zf
LP can be expressed as

Zf
LP = minZ
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s.t. �e �δf ≤ b1 − �e1�δ1

A2
�δf = �b2 −A1

2
�δ1

�δf ∈ [0, 1]n
−Ix

�δf +Ix�x
1f ≤ �0

−Ix
�δf +Ix�x

1f ≥ �0
�e �x1f = b3
�aω

4 �x
1f ≥ bω

4 ∀ω ∈ Ω
Z ≥ ∑

ω∈Ω wω(−�c ω
j �x1f + kω

j ) ∀j ∈ J p

−�c ω
j �x1f +kω

j ≤ 0 ∀ω ∈ Ω, j ∈ J r.

(60)

The problem (60) is the Benders Master Program. The Relaxed Master Program (RMP) can
be expressed as

Z = minZ

s.t. �e �δf ≤ b1 − �e1�δ1

A2
�δf = �b2 −A1

2
�δ1

�δf ∈ [0, 1]n
−Ix

�δf +Ix�x
1f ≤ �0

−Ix
�δf +Ix�x

1f ≥ �0
�e �x1f = b3
�aω

4 �x
1f ≥ bω

4 ∀ω ∈ Ω
Z ≥ ∑

ω∈Ω wω(−�c ω
j �x1f + kω

j ) ∀j ∈ J p

−�c ω
j �x1f +kω

j ≤ 0 ∀ω ∈ Ω, j ∈ J r
,

(61)

where J p ⊆ J p and J r ⊆ J r are the subsets of the extreme points and extreme rays,
respectively. Again, the feasible region of the initial relaxed master program must be finite.
The Auxiliary Problem (AP) is given by the model (38) whose value (39) is obtained by

solving independently the models (40)-(43) but, now, replacing the vector �̂x
1
with the vector

�̂x
1f
.
The feasibility and the optimality cuts from AP to be appended to RMP are given by the

constraints (55) and (56), respectively, where again �̂x
1
is replaced with �̂x

1f
.

3.4 BFC implementation

Different BFC implementations can be considered. We present the version that has been
implemented for performing the computational experimentation reported in Section 5.
Notice that the δ– and x–variables have zero coefficients in the objective function (12). In

fact the y–variables are the unique variables in the objective function. These variables give
the residual values of the duration balance equation (21) of the MBS portfolio and liabilities
under each scenario. So, there is not a clear criterion for assigning branching priorities to the
δ–variables. We have chosen the model’s input order (i.e., a random order) as the branching
priority.
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Based on the same reason, the objective function value could not be a good indication
for the node branching selection. So, we have chosen the depth first strategy for the TNF
branching selection, having first “branching on the zeros” and after “branching on the ones”
for the chosen δ–variable to satisfy the nonanticipativity constraints (32) for the selected TNF
to branch.
Notice that a TNF can be pruned due to any of the following reasons: (a) the LP relaxation

of the scenario-cluster model (31) attached to a given node member is infeasible, (b) there
is not a guarantee that a better solution than the incumbent one can be obtained from the
best descendant TNF integer set (in our current implementation, it is based on its objective
function value, also called solution value), (c) the LP model (34) attached to the TNF integer
set is infeasible or its solution value is not better than the solution value of the incumbent
solution, in case that all δ–variables have already been branched on or fixed for the family,
and (d) see below when there is some δ–variable in the TNF integer set that has not yet been
branched on, nor fixed.
Once a TNF has been pruned, the same branching criterion allows one to perform either a

“branching on the ones” (in case it has already been “branched on the zeros”) or a backtracking
to the previous branched TNF.
The solution to be obtained by solving the LP model (34) attached to a TNF integer

set could be the incumbent solution. However, it does not necessarily mean that it should
be pruned, except if all δ–variables have been branched on or fixed for the family, as it is
said above. Otherwise, a better solution can still be obtained by branching on the non-yet
branched on, nor fixed δ–variables. Let ZTNF

LP be the solution value in (34) that satisfies
the nonanticipativity constraints (28) by fixing the δ–variables to their 0–1 values (where the
constraints (27) are already satisfied). The family can be pruned if ZTNF

LP = Zf
LP , where

Zf
LP is the solution value of model (57), where both constraint types are satisfied, but the
non-yet branched on, nor fixed δ–variables are allowed to take fractional values. Notice that
the solution space defined by model (34) is included in the space defined by model (57). In
this case, there is no better solution than ZTNF

LP to be obtained from the descendant TNF
integer sets.
For presenting the BFC algorithm to solve model (29), let the following additional notation

be adopted:

Rp, BF tree for the scenario cluster p, for p = 1, . . . , q.

LP p, LP relaxation of the scenario cluster-related model (31) attached to a given node
member from the BF tree Rp in the given TNF, for p = 1, . . . , q.

Zp
LP , solution value of the LP model LP p, for p = 1, . . . , q. By convention, let Zp

LP =
+∞ in case of infeasibility. Note: Zp

LP is the expected duration mismatching of the
MBS portfolio and the liabilities over the scenarios in cluster p, for the LP relaxation
case.

ZIP , lower bound of the solution value of the original model (29) to be obtained from
the best descendant TNF integer set for a given family. It will be computed as ZIP =∑

p=1,...,q Z
p
LP for any family, but the one included by the root nodes of the BF trees.

For the latter family, ZIP is given by the LP relaxation of the original problem (26);
the value is reported as ZLP in the computational experience shown in section 5 when
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computed in Step 1 below, and it is obtained by solving the problem (57), via Benders
Decomposition, without fixing a priori any δ–variable.

By convention, ZTNF
LP = +∞, for the infeasible problem (34) related to a given TNF

integer set, and Zf
LP = +∞, for the infeasible problems (57).

BFC Algorithm

Step 0: Initialize ZIP := +∞.

Step 1: Solve the LP relaxation of the original problem (26) and compute ZIP . If there
is any δ–variable that takes a fractional value then goto Step 2. Otherwise, the optimal
solution to the original problem has been found and, so, ZIP := ZIP and stop.

Step 2: Initialize i := 1 and goto Step 4.

Step 3: Reset i := i+ 1. If i = |I|+ 1 then goto Step 8.

Step 4: Branch δp
i := 0 and, so, fix xp

i := 0, ∀p = 1, . . . , q.

Step 5: Solve the linear problems LP p, ∀p = 1, . . . , q and compute ZIP .

If ZIP ≥ ZIP then goto Step 7. If there is any δ–variable that either takes fractional
values or takes different values for some of the q scenario clusters then goto Step 3.

If all the x–variables take the same value for all scenario clusters p = 1, . . . , q then
update ZIP := ZIP and goto Step 7.

Step 6: Solve the LP model (34) to satisfy the constraints (33) for the x1–variables in
the given TNF integer set. Notice that the solution value is denoted by ZTNF

LP .

Update ZIP := min{ZTNF
LP , ZIP }. If i = |I| then goto Step 7.

Solve the LP model (57), where the fractional δ–variables are the non-yet branched on,
nor fixed in the current TNF. Notice that the solution value is denoted by Zf

LP . If
ZTNF

LP = Zf
LP then goto Step 7, otherwise goto Step 3.

Step 7: Prune the branch.

If δp
i = 0, ∀p = 1, . . . , q then goto Step 10.

Step 8: Reset i := i− 1.
If i = 0 then stop, since the optimal solution ZIP has been found.

Step 9: If δp
i = 1, ∀p = 1, . . . , q then goto Step 8.

Step 10: Branch δp
i := 1 and, so, xi ≤ xp

i ≤ xi, ∀p = 1, . . . , q.
Goto Step 5.
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4 Illustrative case

In this section we present an illustrative case, where we have |Ω| = 2 scenarios, |I| = 3
securities, |T | = 4 time periods, 
 = 3 dedicated time periods and a maximum of b1 = 2
securities in the portfolio. In spite of the small toy instance, the model (12)-(25) has 26
constraints, 24 variables (3 are 0–1 ones) and 90 nonzero elements in the constraint matrix.
The interest rate path along the time horizon is as follows, in percentage: r1

1 = r2
1 = 6.3,

r1
2 = 6.5, r

2
2 = 6.1, r

1
3 = 7.5, r

2
3 = 7.9, r

1
4 = 8.0, and r2

4 = 8.1.
Objective function:

ZIP = min 0.5 y+1 + 0.5 y−1 + 0.5 y+2 + 0.5 y−2

Constraints:

δ1 + δ2 + δ3 ≤ 2
700δ1 − x1 ≤ 0
400δ2 − x2 ≤ 0
1000δ3 − x3 ≤ 0

−1300 δ1 + x1 ≤ 0
−1700 δ2 + x2 ≤ 0
−2700 δ3 + x3 ≤ 0

x1 + x2 + x3 = 3000
0.936641 x1 + 0.938030 x2 + 0.937013 x3 ≥ 2788.769287
0.936293 x1 + 0.937609 x2 + 0.937256 x3 ≥ 2792.632813
−s1

1 + 0.252000 x1 + 0.158500 x2 + 0.336150 x3 = 894
−s2

1 + 0.248800 x1 + 0.154900 x2 + 0.333310 x3 = 894
1.065 s1

1 − s1
2 + 0.420750 x1 + 0.252500 x2 + 0.340000 x3 = 846

1.061 s2
1 − s2

2 + 0.422390 x1 + 0.255300 x2 + 0.341600 x3 = 846
1.075 s1

2 − s1
3 + 0.410000 x1 + 0.330800 x2 + 0.400000 x3 = 798

1.079 s2
2 − s2

3 + 0.410000 x1 + 0.330400 x2 + 0.400000 x3 = 798
2.102381 x1 + 2.767783 x2 + 2.009360 x3 − y+1 + y−1 = 6511.689941
2.105035 x1 + 2.771116 x2 + 2.011282 x3 − y+2 + y−2 = 6516.945800

2.102381 x1 + 2.767783 x2 + 2.009360 x3 − 3000 z+1 + 3000 z−1 = 6800.824707
2.105035 x1 + 2.771116 x2 + 2.011282 x3 − 3000 z+2 + 3000 z−2 = 6808.942871

z+1 + z−1 ≤ 0.566735
z+2 + z−2 ≤ 0.566735

0.936641 x1 + 0.938030 x2 + 0.937013 x3 − 3000 v+1 + 3000 v−1 = 2811.262939
0.936293 x1 + 0.937609 x2 + 0.937256 x3 − 3000 v+2 + 3000 v−2 = 2810.480957

v+1 + v−1 ≤ 0.234272
v+2 + v−2 ≤ 0.234272

δ1, δ2, δ3 ∈ {0, 1}
22.5 ≤ s1

1, s
2
1 ≤ 2250

15 ≤ s1
2, s

2
2 ≤ 1500

7.5 ≤ s1
3, s

2
3 ≤ 750

y+ω, y−ω, z+ω, z−ω, v+ω, v−ω ≥ 0,∀ω = 1, 2

(62)
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Stochastic Solution
Objective function: ZIP = 128.36, where ZLP = 128.36
Structuring variables: (δ1, δ2, δ3) = (0, 1, 1)
Face value variables: (x1, x2, x3) = (0.00, 467.63, 2532.37)
Performance variables:
Cash availability at the end of the time period 1, 2 and 3: (s1

1, s
2
1) = (31.38, 22.50),

(s1
2, s

2
2) = (166.50, 162.32) and (s

1
3, s

2
3) = (548.62, 544.59), respectively.

Difference of the MBS portfolio’s duration and the liabilities’ duration: (y1, y2) = (y+1 −
y−1, y+2 − y−2) = (0.00 − 128.95, 0.00 − 127.78) = (−128.95,−127.78)
Difference of the unit durations of the MBS portfolio and the set of available securities:

(z1, z2) = (z+1 − z−1, z+2 − z−2) = (0.0000 − 0.1394, 0.0000 − 0.1399) = (−0.1394,−0.1399)
Difference of the unit present values of theMBS portfolio and the set of available securities:

(v1, v2) = (v+1 − v−1, v+2 − v−2) = (0.0001 − 0.0000, 0.0005 − 0.0000) = (0.0001, 0.0005)

Value of Stochastic Solution
Objective function ZIP = 128.36, where ZLP = 128.36.
Z1

IP = 91.06, where (δ
1
1 , δ

1
2 , δ

1
3) = (0, 1, 1) and (x

1
1, x

1
2, x

1
3) = (0.00, 517.59, 2482.41) and

Z2
IP = 127.78, where (δ2

1 , δ
2
2 , δ

2
3) = (0, 1, 1) and (x2

1, x
2
2, x

2
3) = (0.00, 467.63, 2532.37). So,

WS = w1Z1
IP + w2Z2

IP = 45.53 + 63.89 = 109.42
EV = 109.44, where (δ1, δ2, δ3) = (0, 1, 1) and (x1, x2, x3) = (0.00, 492.56, 2507.44)
Z1 = 91.06, where (δ1

1 , δ
1
2 , δ

1
3) = (0, 1, 1) and (x

1
1, x

1
2, x

1
3) = (0.00, 492.56, 2507.44) and Z2

is infeasible. So, V SS = EEV − ZIP =∞.

BFC Algorithm for q=2 scenario clusters

Step 0: ZIP := +∞.

Step 1: ZLP = ZIP = 128.36, where (δ1, δ2, δ3) = (0, 0.28, 1). Since the variable δ2
takes a fractional value goto Step 2.

Step 2: Initialize i := 1.

Step 4: Branch δp
1 := 0 and, so, fix xp

1 := 0 ∀p = 1, 2.

Step 5: Z1
LP = 45.53 where (δ

1
1 , δ

1
2 , δ

1
3) = (0, 0.30, 1), and Z

2
LP = 63.89 where (δ

2
1 , δ

2
2 , δ

2
3) =

(0, 0.28, 0.94). ZIP = Z1
LP +Z2

LP = 109.42 < ZIP . Since some variables take fractional
values goto Step 3.

Step 3: Reset i := 2.

Step 4: Branch δp
2 := 0 and, so, fix xp

2 := 0 ∀p = 1, 2.

Step 5: Z1
LP and Z2

LP are from infeasible models. ZIP = ZIP = +∞.

Step 7: Prune the branch. Since δp
2 = 0 ∀p = 1, 2 goto Step 10.
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Step 10: Branch δp
2 := 1 and, so, 400 ≤ xp

2 ≤ 1700 ∀p = 1, 2.

Step 5: Z1
LP = 45.53 where (δ

1
1 , δ

1
2 , δ

1
3) = (0, 1, 1) and Z2

LP = 63.89 where (δ
2
1 , δ

2
2 , δ

2
3) =

(0, 1, 0.94). ZIP = 109.42 < ZIP . Since the variable δ3 takes a fractional value goto
Step 2.

Step 3: Reset i := 3.

Step 4: Branch δp
3 := 0 and, so, fix xp

3 := 0 ∀p = 1, 2.

Step 5: Z1
LP and Z2

LP are from infeasible models. ZIP = ZIP = +∞.

Step 7: Prune the branch. Since δp
3 = 0 ∀p = 1, 2 then goto Step 10.

Step 10: Branch δp
3 := 1 and, so, 1000 ≤ xp

3 ≤ 2700, ∀p = 1, 2.

Step 5: Z1
LP = 45.53 where (x1

1, x
1
2, x

1
3) = (0.00, 517.59, 2482.41) and Z2

LP = 63.89
where (x2

1, x
2
2, x

2
3) = (0.00, 467.63, 2532.37). ZIP = 109.42 < ZIP . All δ–variables are

0–1, but x–variables do not satisfy nonanticipativity constraints.

Step 6: ZTNF
LP = 128.36 and ZIP = min{ZTNF

LP , ZIP } = min{128.36,+∞} = 128.36.
Since i = 3 goto Step 7.

Step 7: Prune the branch. Since δp
3 �= 0 ∀p = 1, 2 goto Step 8.

Step 8: Reset i := 2.

Step 9: Since δp
2 = 1 ∀p = 1, 2 goto 8.

Step 8: Reset i := 1.

Step 9: Since δp
1 �= 1 ∀p = 1, 2 goto 10.

Step 10: Branch δp
1 := 1 and, so, 700 ≤ xp

1 ≤ 1300, ∀p = 1, 2.

Step 5: Z1
LP = 138.71 and Z2

LP = 157.05. Since ZIP = 295.76 ≥ ZIP goto Step 7.

Step 7: Prune the branch. Since δp
1 �= 0 ∀p = 1, 2 goto Step 8.

Step 8: Reset i := 0. Stop. The optimal solution ZIP := 128.36 has been found.

Figure 2 shows the results of the main steps of the algorithm.
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Figure 2. Illustrative case

5 Computational results

We report the results of the computational experiment obtained while optimizing the
model for structuring the MBS portfolio for a set of instances by using the BFC approach
presented in the previous section.
The scenario generation has been performed as follows:

1. The scenarios for the interest rate path rω
t ,∀t ∈ T , ω ∈ Ω have been generated by

using the binomial lattice approach given in Black et al. (1990).

2. The unit returns from the securities at the dedicated time periods for the scenarios
have been randomly generated as a function of the interest rate.

3. The Option Adjusted Spread oi has been obtained for each security i by solving the
nonlinear function

Γ0
i =

∑
ω∈Ω

wω

(
ti∑

t=1

γω
it

t∏
τ=1

(1 + oi · rω
τ )

−1

)
,

where Γ0
i is the current unit return’s value of security i, for i ∈ I.

Table 1 gives the dimensions of the cases. They can be split in three categories. The first
one includes the cases with a maximum of |Ω| = 50 scenarios, the second category includes
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cases with |Ω| = 1000 and 2000 scenarios and |I| ≤ 100 securities, and the third category
includes cases with |Ω| = 1000, 1500 and 2000 scenarios and 200 ≤ |I| ≤ 1000 securities.

Table 1. Test bed dimensions

Case |I| l |T | b1 |Ω|
P1 10 5 10 4 10
P2 20 8 12 7 20
P3 20 5 10 6 50
P4 20 5 10 4 50
P5 20 5 10 12 50
P6 20 5 10 4 1000
P7 20 5 10 8 1000
P8 40 10 12 20 1000
P9 100 5 10 30 1000
P10 100 5 10 50 2000
P11 200 5 10 50 2000
P12 300 5 10 200 2000
P13 500 5 10 300 1500
P14 700 5 10 400 1000
P15 1000 5 10 600 1000

Our algorithmic approach has been implemented in a FORTRAN 90 experimental code.
It uses the optimization engine IBM OSL v2.0 for solving the LP models and the mixed
0–1 models. The computational experiments were conducted in a WS Sun Park under the
operating system Solaris 2.5.
Table 2 gives the dimensions of the DEM (12)-(25), compact representation (26). It also

gives the dimensions of the scenario-related deterministic model (30). The new headings are
as follows: m, number of constraints; nδ, number of (0–1) δ–variables (and also number of x–
variables); n2, number of (continuous) second-stage variables; nc, total number of continuous
variables; nel, number of nonzero elements in the constraint matrix; dens, constraint matrix
density (in %).
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Table 2 . Model dimensions. Compact representation

Deterministic Equivalent Model Scenario Model
Case |Ω| m nδ n2 nc nel dens m nδ n2 nc nel dens
P1 10 142 10 110 120 1170 6.33 43 10 11 21 189 14.18
P2 20 342 20 280 300 5460 4.98 76 20 14 34 425 10.35
P3 50 612 20 550 570 10110 2.79 73 20 11 31 359 9.64
P4 50 612 20 550 570 10110 2.79 73 20 11 31 359 9.64
P5 50 612 20 550 570 10110 2.79 73 20 11 31 359 9.64
P6 1000 11062 20 11000 11020 199160 0.16 73 20 11 31 359 9.64
P7 1000 11062 20 11000 11020 199160 0.16 73 20 11 31 359 9.64
P8 1000 16122 40 16000 16040 589320 0.22 138 40 16 56 909 2.04
P9 1000 11302 100 11000 11100 919800 0.72 313 100 11 111 1719 5.86
P10 2000 22302 100 22000 22100 1838800 0.37 313 100 11 111 1719 3.07
P11 2000 22602 200 22000 22200 3639600 0.78 613 200 11 211 3419 7.19
P12 2000 22902 300 22000 22300 5440400 1.05 913 300 11 311 5119 4.12
P13 1500 18002 500 16500 17000 6782500 2.15 1513 500 11 511 8519 2.74
P14 1000 13102 700 11000 11700 6324600 3.84 2113 700 11 711 11919 1.19
P15 1000 14002 1000 11000 12000 9027000 4.96 3013 1000 11 1011 17019 0.84

Table 3. Stochastic solution

Case q ZLP ZIP GAP nn TLP T TB
LP TB TOSL

P1 10 2583.62 2583.62 0.00 16 0.04 0.53 0.47 0.70 0.13
P2 20 23693.57 23693.57 0.00 29 0.23 2.36 0.42 1.65 0.31
P3 50 1225.11 1225.11 0.00 34 0.78 5.48 0.71 5.16 0.94
P4 50 2853.19 4907.18 71.99 22 0.83 2.14 0.54 1.33 2.79
P5 50 1225.11 1225.11 0.00 28 0.74 4.95 0.69 5.13 0.97

Total time for the 1st category of cases 2.62 15.46 2.83 13.97 5.14
P6 10 2447.11 4825.39 97.19 22 159.22 173.38 2.93 13.58 437.61
P7 10 5163.87 5163.87 0.00 31 283.32 394.91 4.98 56.14 393.23
P8 10 57179.60 57179.60 0.00 73 1226.64 1982.61 13.88 160.63 2182.69
P9 10 13.74 13.74 0.00 108 803.60 1060.61 14.24 266.44 1188.78
P10 20 13341.88 13341.88 0.00 221 3696.32 5959.14 30.17 379.83 5713.93

Total time for the 2nd category of cases 6169.10 9570.65 66.20 876.62 9916.24
P11 20 26255.09 26255.09 0.00 256 7362.13 8927.12 60.81 850.58 12184.14
P12 200 38736.99 38736.99 0.00 422 10326.12 16951.55 100.02 2323.06 20257.54
P13 150 86086.38 87808.01 2.00 584 11951.17 17231.34 147.65 4267.04 -
P14 200 183384.04 183384.04 0.00 742 8586.08 16721.12 275.66 7995.64 -
P15 200 260870.26 260870.26 0.00 1030 12551.44 - 295.71 14123.76 -

Total time for the 3rd category of cases 50776.94 - 879.85 29560.08 -
-: More elapsed time than time limit (6 hours)

Table 3 shows the main results of our computational experimentation for given values
of the number of scenario clusters. The headings are as follows: ZLP , solution value of the
LP relaxation of the original problem (12)-(25); ZIP , solution value of the original problem;
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GAP , optimality gap defined as (ZIP − ZLP )/ZLP%; nn, number of TNF branches for the
set of BF trees; TLP and TB

LP , the elapsed time (secs.) for obtaining the LP solution without
using the Benders Decomposition (BD) and using it, respectively; T , TB and TOSL, the
total elapsed time (secs.) to obtain the optimal solution to the original problem by using
the BFC procedure without BD, by using BFC jointly with BD and by plain use of the
optimization engine for solving the DEM, respectively. Notice that the LP relaxation of the
original problem (12)-(25) is optimized in Step 1 of the BFC algorithm, the LP relaxation of
the scenario cluster model (31) is optimized in Step 5, and the linear programs (34) and (57)
are optimized in Step 6 by using Benders Decomposition for the TNF integer sets.
The first conclusion that can be drawn from the results shown in Table 3 is that our

approach obtains the optimal solution in all cases we have experimented with. Generally
speaking, it seems that the optimization engine requires smaller computational effort than
the proposed approach when the cases have small dimensions. Alternatively put, it seems
that the greater the cases’ dimensions (particularly, the number of scenarios and securities),
the better is the performance of the proposed approach, specially considering that our testing
has been done with an experimental code. Note that our algorithm when using the BD scheme
(besides the BFC approach) reduces in one order of magnitude the elapsed time required by
the plain use of the optimization engine for the second category of cases.
Additionally, we can observe in table 3 the good performance of the BD scheme by

comparing the elapsed times TLP and TB
LP for obtaining the LP solution value without using

BD and when using it, respectively. In any case, the time spent by our approach without
counting those times (e.g., Step 1 of the algorithm) is relatively small. Notice that Step 1
is only used for computing the lower bound of the solution and, in this case, declaring its
optimality.
The computational results for the third category of cases are also very interesting. Notice

in table 3 that the optimization engine cannot find any solution within the time limit that has
been allowed, 6 hours, but for the cases P11 and P12. On the other hand, the mixture BFC–
BD obtains the optimal solution in relatively small elapsed times, for a rather big number of
scenario clusters and securities in all cases. Moreover, the performance of the steps 2 to 10
of the algorithm is much better when using BD than when not using it, in all cases.
Another interesting observation in table 3 is that theGAP is zero in 12 of the 15 test cases.

This result is entirely different to the result that can be obtained when the LP relaxation
of the original problem is also included by the relaxation of the nonanticipativity constraints
(i.e., the solution value of the LP models LP p,∀p = 1, . . . , q). We have not reported the
related GAP that is obtained by using this other approach but, very frequently, its value is
greater than 100%.

Table 4a. Performance of the BFC approach. Case P6

q nn T − TLP TB − TB
LP

2 22 255.39 85.57
5 22 84.92 25.51
10 22 14.16 10.65
50 22 85.98 4.77
100 22 81.75 5.07
1000 22 94.99 16.71
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Table 4b. Performance of the BFC approach. Case P9

q nn T − TLP TB − TB
LP

2 106 712.85 703.33
5 108 415.45 371.98
10 108 257.01 252.20
50 107 385.12 184.12
100 106 397.25 172.69
1000 106 457.14 194.17

Tables 4a and 4b show the performance of the BFC approach for different sizes of the
scenario clusters and, then, different dimensions of model (31) for the cases P6 and P9. We
can observe how sensitive the elapsed time for the solution to the problem is relative to the
number of scenario clusters (all of which have the same dimensions for each q value).
Table 5 shows some parameters for analyzing the goodness of the stochastic approach,

see e.g. Birge & Louveaux (1997) for more details. The headings are as follows: WS (Wait-
and-See) that can be expressed as WS =

∑
ω∈Ω wωZω

IP , where Z
ω
IP is the solution value of

model (30) for scenario ω; EV is the solution value of model (30) for the average scenario
(i.e., the Expected Value of the interest rate along the time horizon); EEV is the Expected
result of the Expected Value that can be expressed as EEV =

∑
ω∈Ω wωZω, where Zω is the

solution value of model (30) for scenario ω, whose solution for the first stage variables has
been fixed to the optimal solution for the average scenario model; and V SS is the Value of
the Stochastic Solution that can be expressed as V SS = EEV − ZIP .

Table 5. The Value of the Stochastic Solution

Case EV WS ZIP EEV V SS

P1 0.00 964.19 2583.62 2731.96 148.34
P2 23696.07 23622.99 23693.57 *(76.18) *
P3 0.00 263.52 1225.11 2224.75 999.64
P4 3412.16 4749.08 4907.18 4907.18 0.00
P5 0.00 431.45 1225.11 2223.40 998.29
P6 2447.11 4754.12 4825.39 4825.39 0.00
P7 0.00 1115.81 5163.87 5476.30 312.43
P8 57023.95 56782.23 57179.60 *(50.01) *
P9 0.00 7.43 13.74 26.74 13.00
P10 11000.72 12691.41 13341.88 14893.33 1551.45
P11 21628.06 24973.57 26255.09 29306.11 3051.02
P12 31922.18 36845.90 38736.99 43238.46 4501.47
P13 76879.07 83518.02 87808.01 93177.51 5369.50
P14 168948.95 174405.56 183384.04 184490.58 1106.54
P15 240386.53 248095.70 260870.26 262444.67 1574.41

∗ : Infeasible solution. (.):Weighted percentage of infeasible scenarios

We can observe in table 5 that the VSS is strictly positive in 13 out of the 15 test cases.
There are two cases, namely, P2 and P8 where the EV solution is infeasible; they have 15
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and 500 infeasible scenario related models, respectively. The results demonstrate that the use
of stochastic programming is worthwhile, as opposed to using scenario average approaches,
even though there are two cases where VSS=0.

6 Conclusions

In this paper a new scheme to assess the performance of the standard Benders Decompo-
sition in two-stage stochastic integer programming is presented for cases where the first stage
includes 0–1 variables and continuous variables as well, and the second stage has only con-
tinuous variables. The approach is based on a mixture of Branch-and-Fix Coordination and
Benders Decomposition schemes. The first scheme coordinates the execution of the branch-
and-bound phases to satisfy the nonanticipativity constraints for the 0–1 variables among the
scenario cluster-related sub-problems. The second scheme is designed to satisfy the nonantic-
ipativity constraints for the first stage continuous variables at each TNF integer set. We have
used the Mortgage-Backed Securities (MBS) structuring portfolio problem as an illustrative
case for testing our approach. The goal is to minimize the expected absolute mismatching
of the durations of the MBS portfolio and the liabilities over the scenarios. The results have
been obtained using an experimental code. They are very interesting by comparing them with
the non-stochastic strategy based on the average scenario approach. They also show a re-
markable reduction in the elapsed time when comparing the new approach with the plain use
of a state-of-the-art optimization engine. In any case, it seems that further experimentation
with the hybrid decomposition approach that we have presented will be worthwhile.
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