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Abstract Analogue gravity systems offer many insights
into gravitational phenomena, both at the classical and at
the semiclassical level. The existence of an underlying
Minkowskian structure (or Galilean in the non-relativistic
limit) in the laboratory has been argued to directly forbid
the simulation of geometries with Closed Timelike Curves
(CTCs) within analogue systems. We will show that this is not
strictly the case. In principle, it is possible to simulate space-
times with CTCs whenever this does not entail the presence of
a chronological horizon separating regions with CTCs from
regions that do not have CTCs. We find an Analogue-gravity
Chronology protection mechanism very similar in spirit to
Hawking’s Chronology Protection hypothesis. We identify
the universal behaviour of analogue systems near the forma-
tion of such horizons and discuss the further implications that
this analysis has from an emergent gravity perspective. Fur-
thermore, we build explicit geometries containing CTCs, for
instance spacetimes constructed from two warp-drive config-
urations, that might be useful for future analysis, both from
a theoretical and an experimental point of view.
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1 Introduction

It is by now well known that many systems akin to condensed
matter systems, in the sense of being composed by a large
amount of elementary building blocks (atoms or abstract par-
ticles), exhibit a behaviour in certain regimes which can be
characterized by the presence of some effective fields, classi-
cal or quantum, moving in an effectively curved Lorentzian
geometry. These behaviours are collectively called “analogue
gravity” [1,2]. In its broadest description, the analogue grav-
ity program intends to obtain new insights into gravitational
behaviours by analyzing their equivalent counterparts within
these analogue frameworks. The reverse direction: acquiring
new ideas about laboratory systems by importing gravita-
tional notions and techniques, is also part of the analogue
gravity realm.

The most paradigmatic analysis within this program has
been the theoretical and experimental verification of Hawk-
ing radiation within black hole configurations even when
these take place in the context of an effective and collec-
tive phenomenon. The appearance of spontaneous Hawking
radiation in Bose-Einstein condensates has been observed
in [3] as originally suggested in [4]. Apart from black holes,
since the late 90s, many other types of geometries have also
been proposed in different laboratory settings [1], such as
rotating geometries [5–7], cosmological solutions [8] with a
very recent experimental realization with fluids of light [9],
anti-de Sitter spacetime [10], and even warp-drive geome-
tries [11,12]. For a more exhaustive list, see [1] and refer-
ences therein.
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In this paper we are interested precisely in some puzzles
that appear when playing with these warp drive geometries.
It is well known that one can in principle use warp drives to
build time machines [13]. This raises the question whether
one could simulate a geometry with Closed Timelike Curves
(CTCs) within an analogue system inspired by warp drives.
The laboratory systems used to build analogue gravity con-
figurations are always embedded in our locally Minkowskian
world. However, the Minkowski structure of our current fun-
damental description of Nature typically does not even play
a role in the analogue geometries: these geometries can be
obtained directly within a Galilean description of the lab-
oratory. In both cases, it seems that the causal structure of
the background (Minkowski or Galilean) prohibits the sim-
ulation of causally pathological spacetimes in the embedded
analogue gravity system [14]. However, by analyzing differ-
ent situations, we will show that this is in fact not strictly
the case. The simulation of spacetimes with CTCs per se
does not present insurmountable obstacles. The real problem
appears when the relevant spacetimes posses a chronological
horizon [15], that is, a surface separating a region with CTCs
from another with a standard causality. For external or labo-
ratory observers, the inability to generate a region with CTCs
manifests itself in the form of divergences in certain prop-
erties of the local physics that they experience. On the other
hand, for an internal observer without direct access to the
underlying causal structure, the inability to produce CTCs
manifests itself through some effective protection mecha-
nism. As we will discuss, these mechanisms are reminiscent
of Hawking’s Chronology Protection Conjecture.

Throughout our discussion, we will revise several sim-
ple configurations of spacetimes with CTCs, such as warp
drive spacetimes, Gödel spacetime and Misner spacetime.
We present versions of these geometries that are amenable to
further analysis both in the context of analogue gravity but
also from a purely geometrical perspective. In order to main-
tain an explicit connection with potential laboratory realiza-
tions of such CTC spacetimes, we will focus on a concrete
substratum, namely a generalized Bose-Einstein condensate
with anisotropic masses [1,16]. The inverse acoustic metric
for linear perturbations on this quantum fluid can be written

gμν = μ

ρ0c

⎛
⎝

−1 −vi

−v j c2hi j − viv j

⎞
⎠ . (1)

Here ρ0 is the background fluid density, c the local speed
of sound and vi (x) the velocity of the fluid, which is simply
the gradient of the phase of the macroscopic BEC wave func-
tion. The matrix hi j (or its inverse hi j ) takes into account any
anisotropy acquired by the effective masses of the bosons in
the condensate: mi j = μhi j , where μ is an arbitrary confor-
mal constant. In simple (isotropic) BECs, hi j is just a multiple

of the identity matrix. For a weakly interacting BEC there is
also the following relation between c, μ and the effective
coupling constant of the condensate λ: c2 = λρ/μ.

The metric (1) automatically inherits the stable causality
property [15,17] from the background structure [14]. In par-
ticular, it contains a globally defined time function t since

gμν∂μt∂ν t = − μ

ρ0c
≤ 0. (2)

This appears to automatically rule out the possibility of
simulating metrics containing CTCs. As stated above, we
will see that without further qualification this is in fact not
strictly true. Moreover, in the cases in which we really find
an obstruction, it is interesting to analyze when and how
these effective-metric descriptions break down, and how
these breakdowns are related to mechanisms of Chronology
protection.

A brief outline of the remainder of this work is the follow-
ing. We begin in Sect. 2 with the warm-up exercise of trying
to simulate a Gödel spacetime and mild deformations thereof
in the system described above. We will find that, although it
is possible to simulate CTCs, they are trivial in a sense that
we will specify concretely. Furthermore, we will find that it
is impossible to simulate a modification of Gödel’s space-
time such that a chronologically well-behaved region with
no CTCs evolves into a region with CTCs, due to the diver-
gence of the speeds of the fluid required. Motivated by this
exercise, we try to analyze whether this is a generic feature of
spacetimes containing CTCs. For that purpose, we introduce
in Sect. 3 a catalogue of geometries amenable to simulation
in analogue gravity. Some of them do not have a General
Relativistic counterpart. In Sect. 3.1 we describe spacetimes
containing CTCs engineered from two warp-drive bubbles.
We discuss the impossibility of doing it in 1 + 1 spacetime
dimensions, with special emphasis on the point that CTCs
in such dimensionality require non-trivial topologies. Based
on these warp drive tube geometries, we introduce a fam-
ily of simpler geometries which are qualitatively similar to
them but much easier to handle in Sect. 3.2. We conclude
Sect. 3 with a discussion of 1 + 1-dimensional spacetimes in
Sect. 3.3. We introduce the archetypal example of a spacetime
containing a chronological horizon, Misner’s spacetime, and
then discuss how an eternal cylinder with a flat metric can be
understood as having “trivial” CTCs by a simple interchange
of the time and space coordinates. A reader interested just
in the Chronology Protection mechanism in Analogue grav-
ity can safely skip these first sections and jump directly to
Sect. 4, which contains a detailed description of the possibil-
ity of simulating trivial CTCs in our analogue model, and the
impossibility of simulating chronological horizons. Further-
more, we identify the insurmountable difficulty that every

123



Eur. Phys. J. C           (2022) 82:299 Page 3 of 17   299 

standard analogue gravity model would face when trying to
simulate a chronological horizons. In Sect. 5 we discuss the
interplay of our analysis and Hawking’s Chronology Pro-
tection conjecture, its implications for the emergent gravity
program and we also connect with recent related discussions
in the literature. Finally, we finish in Sect. 6 by summarizing
the content of the article and describing potential directions
for future work.

Notation and conventions. We will use the signature
(−,+, . . . ,+) for the spacetime metric and follow the
Misner–Thorne–Wheeler conventions for the curvature ten-
sors [18]. Greek indices (μ, ν, . . .) will run from 0 to D, rep-
resenting spacetime indices, whereas Latin indices (i, j . . .)

will run from 1 to D and represent spatial indices. Einstein’s
summation convention is used throughout the work unless
otherwise stated.

2 Attempts to simulate Gödel spacetime

As a warm-up exercise we will describe Gödel’s metric
as the archetypal example of a geometry which contains
CTCs [15,19]. The purpose of this section is twofold. First,
we will describe the geometric properties of Gödel’s space-
time. Many of these properties will be shared by any space-
time containing CTCs, thus allowing us to focus the dis-
cussion on the essential features for any successful simu-
lation of CTCs in an analogue model. Second, we will dig
into the problems that appear when one attempts to sim-
ulate such chronologically pathological spacetimes. A more
general discussion concerning generic spacetimes displaying
CTCs will be provided later. The starting point of this section
has a substantial overlap with the unpublished work [20]. An
analysis similar to the one presented here for the simulation
of Gödel geometry in an optic system was presented in [21].
The identification of the metric components with the physical
parameters of the analogue system do not seem to be done in
the correct way, and hence the divergences that we observe
in the horizons here are absent.

Gödel’s spacetime is a solution of the Einstein equations
with suitable sources, namely a negative cosmological con-
stant � and the energy momentum tensor of a pressureless
perfect fluid with a density: ρ ∝ −�. In appropriate coordi-
nates (t, r, φ, z), it can be written as follows [22]:

ds2 = −dt2 + dr2

1 + r2

4ω2

+ r2
(

1 − r2

4ω2

)
dφ2

+dz2 −
√

2

ω
r2dtdφ (3)

where ω is a parameter characterizing the solution and related
to the density and hence also trivially related to the cosmo-
logical constant as ω2 = −�. That this geometry contains

CTCs can be seen as follows: for r ≥ rC = 2ω, the (Killing)
vector field ∂φ becomes timelike. Since such a vector needs
to be periodically identified to avoid a conical singularity at
r = 0, we have that φ ∼ φ + 2π . Hence, this vector field
has closed orbits. Since it becomes timelike at r ≥ rC , it is
trivial to conclude that the orbits of φ for r > rC are CTCs.

It seems that no CTCs pass through the region r < rC .
However, we must take into account that this geometry is
completely homogeneous, in fact it contains a group of five
Killing vector fields acting transitively on the manifold [15].
This means that every point of the manifold can be mapped
by a symmetry transformation to any other point on the man-
ifold. Hence, CTCs pass through every single point in this
spacetime. However, there are no CTCs confined to the region
r < rC , in fact every CTC passing through the region r < rC
crosses the cylinder r = rC an even number of times.

From the point of view of an acoustic metric, we can real-
ize that this precise system of coordinates allows for a direct
realization of Gödel’s metric with suitable fluid parameters.
The non-vanishing components of the inverse Gödel metric
in these coordinates are

gtt = −F(r),

gtφ = − 1√
2ω

1(
1 − r2

4ω2

) F(r),

gφφ = 1

r2

1(
1 − r2

4ω2

) F(r),

grr =
(

1 + r2

4ω2

)2

(
1 − r2

4ω2

) F(r),

gzz =
(

1 + r2

4ω2

)
(

1 − r2

4ω2

) F(r). (4)

with F(r) defined as

F =
(

1 − r2

4ω2

)
(

1 + r2

4ω2

) . (5)

Comparing Eq. (4) with Eq. (1) we realize that we simply
need a motion of the fluid in the φ-direction vi = vφδiφ . Tak-
ing into account the change of coordinates to a cylindrical-
like coordinate system we have that the azimuthal velocity
must be

vφ = 1√
2ω

r

1 − r2

4ω2

. (6)
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On the other hand the three principal directions of the
anisotropy matrix hi j need to obey

c2hrr =
(

1 + r2

4ω2

)2

(
1 − r2

4ω2

) ,

c2hφφ =
(

1 + r2

4ω2

)

(
1 − r2

4ω2

)2 ,

c2hzz =
(

1 + r2

4ω2

)
(

1 − r2

4ω2

) . (7)

These quantities can be interpreted as three anisotropic sound
speeds c2

r , c
2
φ and c2

z , respectively. In addition, we notice that

for the weakly interacting BEC we have λ/c3 = F , or equiv-
alently

c2 = λ2/3

(
1 + r2

4ω2

)2/3

(
1 − r2

4ω2

)2/3 , (8)

we finally obtain

hrr = λ−2/3

(
1 + r2

4ω2

)4/3

(
1 − r2

4ω2

)1/3 ,

hφφ = λ−2/3

(
1 + r2

4ω2

)1/3

(
1 − r2

4ω2

)4/3 ,

hzz = λ−2/3

(
1 + r2

4ω2

)1/3

(
1 − r2

4ω2

)1/3 . (9)

Let us analyze the properties of this fluid required to simu-
late the geometry. The first thing we notice is that the velocity
of the fluid becomes infinite at r = rC , where it also changes
its sign. Hence the fluid system is singular; the r < rC and
r > rC parts of the system are disconnected. However, the
CTCs are living entirely in the exterior region of the metric
so it may still appear that the analogue system can locally
simulate CTCs. However, looking at the speeds of sound we
identify an additional issue. The speeds of sound also diverge
at r = rC , but moreover c2

r = c2hrr and c2
z = c2hzz become

negative for r > rC , so cr and cz become purely imaginary.
This means that we no longer have wave-like behaviours, or
in other words causal signalling, in those directions within
the analogue systems. The whole acoustic picture appears to
break down. In that sense, the r = rC cylinder can be under-
stood as a sort of “domain wall”: it separates the interior

region in which we have causal signalling from the region in
which we have abnormal (exponentially amplified or atten-
uated) behaviour of the putative sound-like excitations.

To design a realistic situation, imagine that we start with
a fluid at rest and incite a rotation around the z-axis with the
intention of evolving towards the Gödel geometry. In order
to do so, we need to obtain a configuration in which there
is a separation between a clockwise and an anticlockwise
rotating part of the fluid, separated by a surface at r = rC
where the velocity needs to approach infinity and moreover
the speed of sound also blows up. These requirements essen-
tially imply that the hydrodynamic description of the BEC
breaks down. Furthermore, because of the infinite fluid veloc-
ity at the r = rC surface, no signal could cross this sur-
face. However, the physical parameters of the BEC are well
defined for r > rC , where one finds CTCs for the BEC
excitations. On the one hand, one would need an imaginary
sound speed in that region. This can be attained in BECs
with attractive interactions [23,24]. On the other hand, two
of the effective anisotropic masses of the BEC must be nega-
tive. The peculiarity of a particle with a negative mass is that
it accelerates backwards when pushed forward.1 However,
it has been shown experimentally that it is indeed possible
to achieve such strange behaviour and create particles with
negative effective masses [25].

Therefore, we have a surprising situation. The excitations
of a quite strange BEC, with attractive interactions (which in
principle would appear to forbid wave phenomena) combined
with some negative anisotropic masses, end up behaving as
if these excitations live in a perfectly Lorentzian world dis-
playing CTCs. The situation would be equivalent in any other
anisotropic fluid, not necessarily quantum.2 One would just
need that c2

r and c2
z become negative in some region while

c2
φ stays positive. Roughly speaking, this ensures that the r

and z coordinates acquire the same signature as the t coor-
dinate, leaving the angular coordinate φ as the coordinate of
different signature, i.e. the time coordinate, and CTCs will
develop. From the perspective of the internal observers inside
the fluid, “time” would be what for an external (laboratory)
observer is simply the angular coordinate.

Going back to Gödel’s metric, one could be tempted to
modify the parameters of the analogue model and regularize
the divergences. A simple example would be the following
profiles where a suitable regulating parameter ε � 1 is intro-
duced (for simplicity we restrict our fluid to be effectively
two-dimensional):

1 Notice that such negative masses are not fundamental, and thus need
not result in tachyonic instabilities.
2 It is true, however, that engineering a classical fluid to display “nega-
tive mass” excitations might be much more complicated, perhaps even
impossible in practice.
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Fig. 1 The left panel represents the anisotropic speeds of sound and
the azimuthal velocity of the fluid required to perform an analogue
simulation of Gödel’s geometry for ω = 1. All of them display a ver-
tical asymptote at r = rC . The right panel displays the corresponding
anisotropic speeds of sound and the azimuthal velocity of the fluid for

the regularized Gödel geometry introduced in the text, also for ω = 1
and for the regularization parameter ε = 0.01. Whereas the graphics
on the left panels all blow up at r = rC , the ones in the right panels are
smooth everywhere. All functions are normalized to a maximum value
of 1 in the plot

vφ = r√
2ω

1 − r2

4ω2(
1 − r2

4ω2

)2 + ε2
, (10)

c2
r =

(
1 + r2

4ω2

)2 1 − r2

4ω2(
1 − r2

4ω2

)2 + ε2
, (11)

c2
φ = 1 + r2

4ω2(
1 − r2

4ω2

)2 + ε2
. (12)

However, it is straightforward to see that the associated
acoustic metric (a cousin of Gödel’s metric) is not a regu-
lar Lorentzian metric now, it is degenerate at r = rC . Still,
strange as it may seem, this acoustic system does approach
Gödel metric for r � rC . These speeds of sound and velocity
of the fluid as well as the corresponding ones for pure Gödel
are plotted in Fig. 1.

A note of caution might be in order at this point. Although
this analysis suggests that it is possible to simulate CTCs in
an analogue system (a fluid in this case), these CTCs are,
in a sense, trivial. From the point of view of the external
observer, the creation of these CTCs corresponds simply to

declaring that the internal observer is using in the internal
system an angular coordinate as time coordinate. From now
on, we will refer to this kind of CTCs as trivial, to distinguish
them from CTCs that appear in the causal future of a causally
well-behaved region, which are the most interesting ones
from a physical point of view. Hawking characterized this
type of spacetimes geometrically as those with a compactly
generated Cauchy horizon [26].3

Spacetimes with non-trivial CTCs can thus be understood
as those with a smooth transition from a region without CTCs
to one with CTCs. From an analogue point of view, it seems
that the simulation of such non-trivial cases is not possible.
Indeed, they would require either a non-regular Lorentzian
metric, which could be reproduced within an analogue model,
or a well-defined Lorentzian metric but requiring some diver-
gences in the analogue model. The former case would not
really constitute a clear proof of principle of the possibility
of simulating spacetimes with CTCs, since the CTCs could
be understood to be an artifact of the non-smoothness of the

3 A compactly generated Cauchy horizon is a Cauchy horizon such that
the past extension of its generators enters and remains within a compact
subset of the manifold.
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metric and thus, in a sense, spurious or at least not directly
related to a (non-analogue) relativistic equivalent. On the
other hand, the latter case has already been discussed and,
based on the example of Gödel’s metric, seems to corre-
spond to trivial CTCs at best, since the two regions need to
be causally disconnected.

To finish this section let us consider the possibility of sim-
ulating a geometry which approaches Gödel’s metric only in
a finite range of the laboratory time t . To our knowledge, this
geometry does not have a General Relativistic counterpart,
in the sense that it is not a solution to the Einstein equations
with the energy-momentum tensor of a known matter con-
tent. Such behaviour could be achieved with the help of a
modulating function f (t), such that we can write a metric

ds2 = −dt2 + dr2

1 + f (t) r2

4ω2

+ r2
(

1 − f (t)
r2

4ω2

)
dφ2

+dz2 − f (t)

√
2

ω
r2dtdφ, (13)

where we can choose f (t) to be a function with compact
support, for instance

f (t) = exp

[ −σ

(tB − t)(t − tA)

]
, (14)

which is non-vanishing for t ∈ (tA, tB). Hence, the metric
represents a flat spacetime outside this interval, and devel-
ops CTCs within the region (tA, tB). In order to confine the
CTCs to a compact region of space also, one could force the
metric component gφφ to take negative values only within a
finite interval of the r -component, for example through the
following replacement

gφφ = r2
(

1 − f (t)
r2

4ω2

)
−→ r2

(
1 − f (t)e− r2

σ2
r2

4ω2

)
,

(15)

where σ must to be sufficiently large in order for the function

1−e− r2

σ2 r2

4ω2 to display two zeros. This new geometry exhibits
CTCs that are confined within a finite region of spacetime.
However, for the same arguments explained above, it is not
possible to simulate them as acoustic metrics since the fluid
would be required to develop a singular velocity. This again
illustrates our more general point that it seems impossible to
generate metrics with non-trivial CTCs through an analogue
metric.

3 A survey of some spacetimes displaying CTCs
amenable to analogue gravity simulation

In this section we are going to present some geometries con-
taining CTCs which we think are conceptually simpler than
Gödel spacetime. Most of these geometries can be found
somehow in the literature. However, we think that it is wor-
thy to revise them and present them in a unified way, so
that they are amenable to be analyzed from the analogue
gravity perspective. First, we will start describing the geom-
etry that results from combining two warp drives and dis-
plays CTCs. Motivated by the properties of this geometry, we
will introduce a family of spacetimes which are simpler but
encapsulate their main geometric features. Finally, we will
discuss probably the most paradigmatic example of space-
time containing CTCs: the so-called Misner spacetime. This
spacetime is used as a proxy to more convoluted analysis,
since its chronological horizon is usually considered to have
the general properties a chronological horizon has. Although
for most practical purposes this is true, we will put special
emphasis here on the fact that Misner spacetime is topologi-
cally non-trivial as a manifold (otherwise it could not contain
CTCs as we will explain). In higher dimensions, (like 3 + 1
spacetime dimensions) it is possible to have spacetimes with
CTCs exhibiting a trivial topology. From an analogue gravity
perspective, this makes life much easier for their simulation.

3.1 CTCs engineering through warp-drive bubbles

Warp drives were originally introduced by Alcubierre [27].
They are based on disturbing a given spacetime within a
compact region in such a way that for observers outside that
region, observers inside of it move with superluminal speeds.
They can be thought as “tachyonic” bubbles that propagate
faster than light for external observers. The simplest metrics
representing warp drives can be written using the Nátario’s
line element:

ds2 = −dt2 + δi j c
−2

(
dxi − vi dt

) (
dx j − v j dt

)
. (16)

There are some warp drives with non-zero lapse function or
with a non-Euclidean metric, although we will not focus on
them.

In this way, the metric of a warp drive is nicely adapted to
be simulated with the acoustic metric of a BEC, as described
above, or acoustic metrics showing up in other fluids. This
idea has already been suggested in the literature, see for
instance [11,12]. Essentially, we need to identify the velocity
of the fluid with the shift functions entering the warp drive
element. For concreteness, we can think of a warp-drive bub-
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ble whose profile acquires the following form

vi (t, xi ) = δix u(t) f

(√
(x − x(t))2 + y2 + z2

)
(17)

where f (x) is a compact support function, describing the
profile of the bubble which is peaked around the points of
the trajectory

x(t) = x(0) +
∫ t

0
dt ′u(t ′), y = z = 0. (18)

As we just say, the simulation of a single warp drive in a
acoustic analogue system is direct [1]. One just need to gen-
erate a spacetime region at which the velocity of the flow
exceeds the speed of sound. From the internal perspective
this allows to travel from one point to another at velocities
higher than that of sound (which remember takes the role of
the speed of light). It is convenient to rewrite the warp drive
metric in Eq. (16) as a perturbation of the flat spacetime met-
ric ημν as

gμν = ημν + bμν, (19)

with bμν having the following non-vanishing components:

b00 = u2(t) f 2
(√

(x − x(t))2 + y2 + z2

)
,

b01 = b10 = −u(t) f

(√
(x − x(t))2 + y2 + z2

)
. (20)

Now, although a single bubble warp drive by itself does not
result in any chronology or causality violations, as already
noticed in [13] it is relatively easy to engineer a spacetime
that contains CTCs by taking advantage of having two warp-
drive bubbles in dimensions higher than 1 + 1. The idea is
similar to the way in which one can send information to the
past with a pair of tachyon particles in flat spacetime [28].
What is it then the clash, if any, between warp drive metrics
and their analogue simulations?

We want to construct regular spacetime geometries based
on a combination of two warp drives, in such a way that
they contain CTCs. After finding such geometries we will
analyze whether it is possible to reproduce them within an
analogue model in Sect. 4. The simplest such construction
that one can think of a priori involves two warp-drive bub-
bles in a 1 + 1 dimensional setting with trivial R2 topology.
In the remain of this subsection, we are going to discuss
for a moment this 1 + 1 potential construction. First, we will
naively present it. Then, we will illustrate the obstruction that
one finds when one tries to formalize this construction. After
that, we will show that this problem cannot be circumvented
by presenting some theorems showing that this construction

Fig. 2 The figure represents a warp drive tube that starts in a location
A and ends in location B. The underlying spacetime can be considered
D + 1 dimensional with the warp-drive bubble moving in a straight
line (along the x-coordinate, in the picture). In 1 + 1 dimensions the
causal cone would become just two crossing lines but we keep the cone
symbol for clarity. This is the simplest construction of a warp drive and
as described in the text, it can be simulated in an analogue gravity model
without further problems

is actually not possible. Finally, we will conclude this sub-
section by explaining how this construction can be extended
to D+1 spacetime dimensions with trivial topology without
problems.

Let us begin with the most naive way in which one might
try to make this configuration. Let us consider a 1+1 dimen-
sional Minkowski background. Let us choose an inertial ref-
erence frame S with Cartesian coordinates (t, x). Further-
more, let us choose two events A and B such that they are
spacelike separated, with coordinates (tA, xA) and (tB, xB),
respectively. Without loss of generality, let us assume that
tB > tA. This setup is represented pictorially in Fig. 2. We can
engineer a warp drive tube connecting the two events. Notice
that the lightcones inside the tube are modified with respect
to the Minkowskian reference. Furthermore, we emphasize
that the tube has some thick walls at which the light cones
experience a tilting effect. It is precisely on those walls where
the stress energy tensor supporting these configurations nec-
essarily develops some energy conditions violations [27]. We
emphasize that the trajectory as seen from outside the tube
appears to be spacelike. Of course, observers going from A
to B within the bubble would be following strictly timelike
trajectories.

If one can construct this warp drive, from a purely gen-
eral relativistic perspective it is also possible to construct
an equivalent warp drive configuration in which the coordi-
nate time goes to the past instead of the future [13]. Let us
write down such a metric explicitly. Let us start construct-
ing a warp drive metric as the one just described but using
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another inertial reference frame S′ moving with velocity v

in the x direction. Let us denote with a prime the cartesian
coordinates of the reference frame S′, i.e. (t ′, x ′). In these
coordinates, the metric of the bubble takes the simple form
g′
μν of Eq. (16). To find the metric in the coordinates (t, x)

adapted to the inertial frame S, we simply need to perform a
boost of velocity −v in the x-axis, with v the relative velocity
between S and S′. In this way, the resulting metric reads

gμν = ημν + cμν, (21)

where cμν is transformed from the prime coordinates to the
unprimed ones by an ordinary Lorentz transformation. We
highlight that its functional form differs from the bμν tensor
introduced in Eq. (19). Actually, we can find its functional
form by performing a Lorentz boost in the x-direction of
velocity −v, where v is the relative velocity between both
frames S and S′. Explicitly, it is described by the following
linear transformation in:

(�)μν =
(

cosh φ sinh φ

sinh φ cosh φ

)
, with tanh φ = v, (22)

Writing down the transformation we obtain the following cμν

tensor

c00 = u2(t ′(t, x), x ′(t, x), y − y0, z) cosh2 φ

− 2u(t ′(t, x), x ′(t, x), y − y0, z) cosh φ sinh φ, (23)

c01 = c10 = u2(t ′(t, x), x ′(t, x), y − y0, z) cosh φ sinh φ

− u(t ′(t, x), x ′(t, x), y − y0, z) cosh2 φ

− u(t ′(t, x), x ′(t, x), y − y0, z) sinh2 φ, (24)

c11 = u2(t ′(t, x), x ′(t, x), y − y0, z) sinh2 φ

− 2u2(t ′(t, x), x ′(t, x), y − y0, z) sinh φ cosh φ. (25)

Notice that the functions t ′ and x ′ depend on the coordinates
t, x in a non trivial manner, and we need to rewrite them in
terms of such coordinates. In fact, the coordinates {xμ} are
related to the coordinates {x ′μ} through a Lorentz transfor-
mation from S to S′ in which the Lorentz matrix is precisely
�

μ
ν . Explicitly, the change of coordinates reads

t ′ = t cosh φ − x sinh φ, (26)

x ′ = t sinh φ + x cosh φ. (27)

Writing everything explicitly without fixing a particular tra-
jectory and shape for the bubbles would not be very illus-
trative, hence we simply keep everything indicated as done
above. We emphasize that one just needs to choose a profile
for the bubble and the velocities in order to be able to write
down explicitly the metric in global coordinates by substi-
tuting in the expressions above. In generic terms we have

Fig. 3 The figure represents a warp drive tube that starts in a location
A′ and ends in location B′. The underlying spacetime can be considered
D+1 dimensional with the warp-drive bubble moving in a straight line
(along the x-coordinate, in the picture). In 1 + 1 dimensions the causal
cone would become just two crossing lines but we keep the cone symbol
for clarity

build a warp drive travelling backwards in coordinate time t ,
pictorially represented in Fig. 3. Note however that one can
easily check that the Lorentz transformation we have applied
make the new warp drive metric to take a different form from
Natario’s line element. For the arguments that follow the pre-
cise form of the tubes will not be relevant.

Now setting up a combination of a “forward” and a “back-
ward” warp-drive bubbles one can attempt to build a time
machine. Let us explicitly illustrate this. We can first set up a
“forward” warp drive allowing a faster-than-light travel from
A to B. Once the traveller has exit the bubble at B he could
immediately enter in a new warp drive, now of a “backward”
type, and travel from A′ to B ′. Using another spacelike tra-
jectory, as seen from the external Minkowski spacetime, this
second warp drive can take the time-traveller to an event B ′
in pass of the initial event A. In this way a CTC is completed.
This setup is pictorially represented in Fig. 4.

However, there is a problem concerning this construction.
There is a region, the crossing region C , at which one would
need to have two different metrics. Actually, this translates
into a singular point where the metric is not defined. It is
natural then to pose the following question: is it possible to
disentangle the crossing point moving around the starting and
ending points of the bubbles or/and playing with their shapes
and the specific forms of their velocities v1(t), v2(t), in such
a way that we find a completely regular Lorentzian metric
containing CTCs? The answer to this question is negative.
To understand why, it is useful to consider a toy geometry
which nicely illustrates the obstruction. Imagine that we write
down a geometry which is that of flat spacetime at every
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Fig. 4 We represent here two warp drives in 1 + 1 dimensions and
in such a configuration that they appear to allow for the formation of
CTCs. The purple curve represents a generic CTC on this background.
The problem with this 1+1 configuration is that the metric in the region
where the two warp-drive bubbles cross is ill-defined. As described in
the text the simplest geometry with CTCs is either one with a S1 × R

topology or with topology R
D+1 in D + 1 dimensions, with D > 1. In

this latter case, we just need to engineer the two warp drives bubbles in
different parallel planes to avoid the crossing

point except for a circle of radius one around the origin in a
given set of Cartesian coordinates (t, x). At such circle, we
make the lightcones to make an angle of 45 degrees with the
circle at every point. Clearly such geometry is singular since
there is a jump in the metric. Even if we try to smooth such
geometry by giving the circle a finite size and converting it
into a disk, we can find a curve along which the lightcones
make a rotation of 360 degrees and, hence, it is impossible
to have a smooth metric in the region enclosed by such curve
or regularize it in some way. This is depicted schematically
in Fig. 5.

Now we are in position of stating the following theorem:

Theorem Let (M, g) be a two dimensional simply con-
nected spacetime (being M the smooth manifold and g its
metric). Then, the causality condition automatically holds.

Recall [15] that a spacetime is said to satisfy the chrono-
logical condition if it does not contain any closed timelike
curves, and it is said to obey the causality condition if there
are no closed non-spacelike curves. The idea of the proof
is already contained in the observation that we have made
above: having the structure of lightcones enclosing a com-
pact region, it is impossible to push them inwards or outwards
that region without making them zero or singular. The for-
malization of this statement can be found in [29].

It is possible to even prove a stronger result. In Lorentzian
geometry there exist a hierarchy of causality conditions

Fig. 5 We represent here the setup described in the text that already
shows the difficulty present when trying to build CTCs in a spacetime
with a trivial topology. The shaded region represents the region of abnor-
mal behaviour of the lightcones. It seems impossible to regularize the
lightcones without removing points from the spacetime, otherwise the
metric would need to vanish at some point and hence it would not be a
regular spacetime

where each of them is stronger than the previous ones.
Although the chronology condition is the weakest of such
conditions, followed by the causality condition, and they are
enough to rule out closed non-spacelike curves, one can still
think of spacetimes that are “arbitrarily” close to containing
closed causal curves. Hence, these set of stronger conditions
attempts to formalize these notion of “almost having closed
curves” [15,17].

The strong causality condition [17], which is obeyed
by a spacetime if for every point p and every neighbour-
hood N of p, there exists a neighbourhood O contained
in N such that no causal curve intersects O more than
once. By essentially the same arguments exhibited in our
proof, one can strengthen the result and prove that every two
dimensional time-orientable simply connected spacetime is
strongly causal (see Lemma 14.34 of [29]).

Actually, it is even possible to strengthen this result under
the same hypothesis. A spacetime is said to be stably causal
if there exists a timelike vector field tμ such that the Lorentz
metric defined as g̃μν = gμν − tμtν (which has larger light-
cones than gμν at every point) contains no closed causal
curves. It can be proved that a spacetime is stably causal
if and only if it admits a globally defined time-function,
i.e. a function that is strictly increasing along each future
directed causal curve [15]. It is also possible to prove that
stable causality implies strong causality, i.e. it is a stronger
condition. Hence, stable causality is a stronger condition and
one might wonder whether it is possible to prove that every
two dimensional simply connected spacetime obeys it with-
out further assumptions. In [30] the affirmative answer is
provided in the form of Theorem 3.43, where it is shown that
every simply connected two dimensional spacetime (M, g)
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is indeed stably causal. Two dimensional spacetimes display
further special properties, see for instance footnote 5 of [31].

This concludes our discussion of 1+1 dimensional space-
times and warp drives, where we have shown that it is impos-
sible to build CTCs while preserving the R

2 topology. The
statement that no two-dimensional topologically trivial time-
machine can be built is in agreement with the literature. All
the spacetimes that are pathological from a causal point of
view in 1+1 spacetime dimensions have a non-trivial topol-
ogy. For instance, Misner’s spacetime [32] (see Sect. 3.3),
which is used as a proxy to generic spacetimes containing a
chronological horizons, has the topology of a cylinderR×S

1.
In D + 1 dimensions the previous obstruction does not

longer apply. We can perfectly avoid the warp drive crossing
by translating one of the tubes in an orthogonal direction: i.e.
the forward and backward warp drives can be set up to live in
different parallel planes. A complete metric containing CTCs
based on warp drives can be designed by just translating in a
transverse direction one of the two warp drives.

3.2 Generalized warp-drive regions

The metric just described is somewhat convoluted. We con-
struct now a family of geometries encoding the main proper-
ties of these spacetimes in a much simpler way. These geome-
tries are not built to be a solution to the Einstein equations
with a given energy-momentum tensor. However, apart from
being useful for our discussion, they are suitable for fur-
ther analysis concerning aspects like semiclassical effects
on chronologically ill-behaved spacetimes. Let us detail this
construction.

The idea is to consider the manifold R
3 × N , with N a

given manifold that we can think of as either being compact
or non-compact. Let us choose polar coordinates (t, r, φ) for
R

3 and another suitable set of coordinates {xn} parametrizing
N . For the sake of simplicity, we will choose the metric to
factorize into the Lorentzian geometric structure of R3 and
a given Riemannian metric gmn on N . Although realistic
analogue gravity constructions will reproduce only 2 + 1 or
3 + 1 configurations, we will keep the discussion as general
as possible. Let us write down the following metric

ds2 = −dt2 + dr2 − 2r2 f (r)g(t)dtdφ

+r2 (1 − f (r)g(t)) dφ2 + gmndx
mdxn, (28)

with f (r) and g(t) functions with the properties that we now
discuss. The function f (r) needs to be such that f (0) =
f (∞) = 0. However, we need it to change the given com-
pact region r ∈ (ra, rb). This resembles the discussion on
Gödel’s spacetime but now with CTCs strictly confined to a
finite range of the radial coordinate. There are many differ-
ent choices of f (r) that do the job. For instance, a relatively

simple choice is that of a bump function

f (r) =
{

0 r /∈ (ra, rb)

exp
[ −σ 2

(rb−r)(r−ra)

]
r ∈ (ra, rb).

(29)

For any σ the function is identically 0 outside the interval
(ra, rb), and becomes positive inside it. Actually, we can relax
the compact support condition and choose a broader class of
functions that allow an analytical treatment. For example, we
can think of a Pöschl–Teller like function

f (r) = σ 2 sech2 (
r∗ − r0

)
, with r∗ = r + r0 ln(r/r0).

(30)

Now we have come to the point of discussing the func-
tion g(t). Depending on whether we want to confine CTCs
to a given finite range of the t-coordinate, have a flat non-
compact region free of such CTCs and then glue it to another
region containing CTCs or have a whole cylinder in space-
time in which the φ coordinate acts as a time, we must choose
different profiles for g(t). Let us sketch here the three cases.

1. CTCs through every t = constant surface: In this case,
we can simply choose to have g(t) = 1 with any of the
f (r) choices mentioned above and we will have that φ is
timelike for a whole cylinder of spacetime I ×R× S1. A
pictorial representation of these geometries can be found
in Fig. 6.

2. Gluing a flat region to a semi-infinite cylinder contain-
ing CTCs: In this case, we are interesting in choosing a
function g(t) that vanishes at t < tc and grows up to one
for t → ∞. Again, we can relax the condition of van-
ishing for t < tc by a condition of taking an almost zero
value. A suitable choice of such functions is the follow-
ing. For a function such that it exactly vanishes for t < tc
we can simply choose a bump function as the ones we
have chosen before

g(t) =
{

0 t < tc
exp

[−σ 2

t−tc

]
t ∈ (tc,∞).

(31)

If we do not insist on having an identically vanishing
function we can replace the bump function by a hyper-
bolic tangent or an inverse tangent, i.e.

g(t) = 1

2

(
1 + tanh

(
t

σ

))
, (32)

g(t) = 1

π

(
π

2
+ tan−1

(
t

σ

))
, (33)

where σ modulates how fast do this function reach 1, i.e.,
how fast the region where φ becomes timelike is reached
by growing in the t coordinate.
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Fig. 6 We represent here the geometries described in the text. The
different cases, corresponding essentially to the finite, the semi-infinite
and the infinite cylinder display this same structure, with the difference
relying on whether the cylinder is confined to lie within a compact
interval [ta, tb], a semi-infinite interval [tC ,∞) or the whole real line
(−∞,∞). The grey-shaded region lying within the inner and outer
surfaces of the cylinder is the region where the angular coordinate φ

becomes timelike, since the lightcones tilt enough for orbits of φ to
be timelike curves. Outside the shaded region this abnormal behaviour
of the ligthcones disappears and they are simply (or approximately as
we have discussed in the text) flat spacetime lightcones. It must be
noticed the difference between this higher dimensional case and the
two-dimensional case discussed above: the existence of an additional
dimension (the vertical t-axis in the figure) allows to regularize the
lightcones within the core of the cylinder without needing to change
the topology

3. CTCs within a compact region: In this case, we want to
choose the function g(t) that is 0 outside a compact inter-
val [ta, tb] and approaches 1 in a compact region. Again,
we might choose it to be not exactly zero for the purpose
of having analytic expression. This choice of functions
is completely parallel to the discussion of g(r) functions
above and hence we just write down again the functions
for the sake of completeness. On the one hand, if we
insist on having zero outside the compact time interval
we might choose a bump function of the form

g(t) =
{

0 t /∈ (ta, tb)

exp
[
− σ 2

(tb−t)(t−ta)

]
t ∈ (ta, tb).

(34)

On the other hand, if we allow to have an almost zero
function outside (ta, tb) instead of an exact zero (which
we again emphasize that is enough for the geometry to
have the qualitative properties that we have discussed)
then we can simply use a Gaussian or a Pöschl–Teller

like function:

g(t) = exp

[
− (t − t0)2

2σ 2

]
, (35)

g(t) = σ 2 sech2 (t − t0) , (36)

where we have introduced the center of the region at
which φ becomes timelike defined as t0 = (tb−ta)/2+ta .

This concludes our catalogue of toy-geometries contain-
ing CTCs which are inspired on those generated by the warp-
drive tubes described in Sect. 3.1.

3.3 Misner and Misner-like spacetimes

The obstruction to build spacetimes with CTCs in a 1 + 1-
dimensional spacetime that we found in Sect. 3.1 was topo-
logical in nature. If we relax the condition of having a triv-
ial R2-topology, we can build CTCs in spacetimes of such
dimensionality. Actually, the archetypal example of space-
time with a chronological horizon (compactly generated
Cauchy horizon) is precisely the so-called Misner space-
time [15,32]. It has a R × S

1 topology. This spacetime is
taken generically as a proxy to study chronological horizons.
Given coordinates (t, φ) on the cylinder, the metric of this
spacetime can be written as

ds2 = −2dtdφ − tdφ2. (37)

Misner spacetime can be regarded as a simpler lower dimen-
sional version of the Taub–NUT spacetime [15]. This space-
time is such that for t < 0 it displays a normal causal
behaviour. However, at t = 0 we find a compactly gener-
ated Cauchy horizon separating this chronologically “safe”
region from the chronologically “sick” region t ≥ 0 display-
ing closed causal curves. A pictorial representation of this
spacetime can be found in Fig. 7.

Imagine now that instead of endowing the cylinder with
the Misner metric we endow it with the flat metric. A well-
posed problem in this spacetime could be given by simply
considering data on a constant t = t0 slice which are 2π

periodic in φ. After evolving forward and backwards such
data, we would end up with a global solution. However, we
should now recall that what we call “time” and what we
call “space” in a 1 + 1 dimensional spacetime is a choice.
Pictorially, it corresponds to declaring which is the direction
of time flow.

In this second perspective, in which φ plays the role of
time, a Cauchy data given on a constant φ-line would require
to fulfill additional “self-consistency” constraints to have a
well-defined evolution [33–35]. However, we know that such
data exist in this metric because we know that global solu-
tions exist and we have simply interchanged our choice of
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Fig. 7 We represent here a cylinder R × S
1 endowed with the light

cone structure of Misner spacetime. At t = −∞, the lightcones seem
to have a “normal” causality in the sense of not allowing closed causal
curves. They get tilted as we move from t = −∞ to t = 0, where
one of the generators of the light cones is perpendicular to t . Hence, at
t = 0, we got the first closed causal curve: a light ray that is confined
to such circle. This t = 0 slice corresponds to the circle in the middle
of the three drawn. For t ≥ 0, we enter into the regime of abnormal
causal behaviour containing closed causal curves. Notice that, although
we are still using conic symbols for the light cones, we are again in
1 + 1 spacetime dimensions and they are not strictly “cones”

time and space! All this discussion serves for the purpose of
illustrating that this configuration can be interpreted either
as a spacelike ring evolving in time or as a line configuration
evolving in a cyclic time. This is depicted in Fig. 8

This example serves us to illustrate that, among the poten-
tial geometries displaying CTCs that one might consider,
there are some of them which are mild in a sense. Whereas
Misner spacetime is undoubtedly pathological since it devel-
ops CTCs from a chronologically well-behaved region, the
second example of a cylinder with flat metric and CTCs all
along is trivial since, as we have explained, they correspond
to a “weird” choice of time direction. These CTCs are trivial
in the sense we have described above. As we will explain,
whereas these ones are amenable to simulation, the Misner-
like CTCs are not.

4 Analogue gravity simulations: attempts to simulate
CTCs

Now that we have presented different Lorentzian geome-
tries with CTCs based on Gödel’s spacetime, connecting

Fig. 8 The cylinder endowed with a flat metric allows two alternative
perspectives regarding the causal description of the spacetime: a space-
like ring evolving in time or as a line configuration evolving in time
periodically. The two alternatives are differentiated just by the choice
of what we call time and what we call space. We have marked on dot-
ted pink line the putative surfaces on which we would put initial data
according to our choice of time and space directions

warp-drive bubbles and generalizations of them, and Misner
and Misner-like spacetimes, we can directly discuss whether
these geometries are amenable to be simulated in BECs and
other acoustic systems.

First of all, it is interesting to realize that the flat cylinder
with time φ periodically identified φ ∼ φ +2π can perfectly
be simulated in an analogue system, for example with a fluid
inside an effectively 1-dimensional ring and declaring that
the physical angular coordinate is a time coordinate. This
very simple configuration serves to illustrate that, contrary
to the standard lore, one can actually simulate spacetimes
with CTCs in analogue systems. The same trick could be
done in principle in 2 + 1 and 3 + 1 configurations although
it would be slightly more complicated. The choice of time
as an angular coordinate φ requires that the standard time
and the additional spatial coordinates must acquire the same
signature in the analogue model. In this way, the effective
causality in the analogue system can have CTCs.

However, as emphasized above, this kind of “eternal”
CTCs as seen from an external observer is trivial in a sense.
They correspond to declaring that an angular coordinate
for the external observer is being used as a time coordi-
nate for the internal observer. The price to pay is needing
to impose extra “self-consistency” conditions to obtain a
well-posed problem. However, in the cases of eternal CTCs,
those self-consistency constraints can be satisfied trivially by
some global solutions. This can be easily seen by noticing
that, if we choose the non-periodic time coordinate t , global
solutions exist as the Cauchy development of some well-
posed initial value problem on surfaces of constant t . Those
global solutions automatically verify this self-consistency
constraint after a trivial relabelling of the time coordinate.
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Thus, the most interesting case consists in simulating
geometries with a chronological horizon: those exhibiting
a causally well-behaved region separated from a causally
pathological region by a compactly generated Cauchy hori-
zon. Here we point out that an acoustic realization of those
configurations always involves the divergence of the veloc-
ity of the fluid. All the types of geometries described in
Sect. 3 involve tilting the sound cones until one is able to
move infinitely rapidly with respect to the laboratory ref-
erence frame (and actually, even more). But this is forbid-
den by the presence of the actual speed of light limit. Fur-
thermore, to travel backwards in laboratory time would be
forbidden even in a Galilean world (formally the c → ∞
limit of a Lorentzian world). This means that, although for
an internal observer the configurations illustrated in Figs. 2
and 3 are on equal footing, they are actually not due to the
background structure that an external observer has access to.
Hence, whereas the metric structure in Fig. 2 can be simu-
lated, the metric structure from Fig. 3 cannot.

This situation seems to be generic in configurations in
which a region with CTCs is separated from a region that does
not have CTCs: the generation of CTCs is always accompa-
nied by a divergence in the fluid velocity. In addition there
will be changes of sign in several anisotropic speeds c2’s.
As the Gödel example from Sect. 2 illustrates nicely, these
changes can be achieved through a divergence in the ana-
logue system parameters or passing through a zero value.
Exactly the same happens for the geometries explored in
Sect. 4: it is a generic feature of the attempts to simulate this
kind of geometries. In the regular case, in which the sounds
of speed pass through zero, the analogue system can be per-
fectly defined but it is the acoustic metric that becomes a
non-regular Lorentzian metric and thus, from a relativistic
point of view, describes a completely different situation.

We argue that the obstacle that we have identified in sim-
ulating spacetimes with chronological horizons applies to
generic analogue systems and not only to the concrete acous-
tic systems that we have been analyzing. The argument is
based on the following property which holds, to the best
of our knowledge, for all analogue systems explored in the
literature so far. Independently of the specific form of the
analogue physical metric4 in a particular analogue system,
one can always take an eikonal approximation. The eikonal
dispersion relation can always be written using a normalized
inverse metric (one that obeys gtt(E) = −1), resulting in

gμν
(E) pμ pν = E2 − 2gti pi + gi j pi p j , (38)

4 Here by “physical” we mean the analogue metric controlling the rele-
vant fields, as opposed to an eikonal metric controlling just geometrical
optics behaviour.

where pμ = (E, p) and p = pi . Now, the central point is
that the remaining components of the eikonal inverse metric
are always identified with some properties of the substratum
system [1]: in the fluid we have considered, they can be iden-
tified with the velocities of sound and the fluid; in dielectric
media they are identified with the permittivity tensor εi j , etc.

We expect something similar also to hold for Weyl-
semimetals which seem to be good analogues [36]. In such
case, the identification of the divergent quantities with phys-
ical parameters is subtle, since one identifies the metric-
components with some vectors characterizing the structure of
the interacting Weyl-point [37]. We leave the detailed anal-
ysis on the divergences that appear in Weyl-fermions ana-
logues of chronological horizons to future work. This sub-
tle point in the identification of physical properties is what
leads to the impossibility of simulating geometries contain-
ing CTCs in the eikonal approximation, such as the Gödel
geometry studied in [21]. The analysis in [38,39] seem to
deal with what we have called trivial CTCs. As such, their
conclusions that these spacetimes can be simulated seem to
be consistent with our results here.

We assume that such identification is always true for the
analogues of interest. We can now finish the proof under this
assumption. The spacetimes with chronological horizons that
we have been analyzing are such that one can always intro-
duce a chart of coordinates in which an angular coordinate
φ, in the causally well-behaved region, becomes a time coor-
dinate in the causally pathological region. On the boundary,
which constitutes the chronological horizon, it becomes null.
In order to analyze what this implies for the eikonal metric
components in these coordinates, let us write the metric and
its inverse in matrix form. For the argument that follows it is
sufficient to restrict ourselves to the (t, φ) coordinate sector
(with t the time coordinate of the well-behaved region). Then
we have:

g =
(
gtt gtφ
gtφ gφφ

)
,

(g)−1 = 1

gtt gφφ − (
gtφ

)2

(
gφφ −gtφ
−gtφ gtt

)
. (39)

The fact that φ becomes null at the chronological horizon
means that gφφ vanishes there. But this in turn implies that
gtt becomes zero. To obtain the normalized eikonal metric
with gtt(E) = −1 from the inverse physical metric, one needs to
divide the inverse metric by a conformal factor � which must
also tend to zero in order to keep the division normalized.
But then, being divided by this same zero, the other compo-
nents of the eikonal metric will blow up at the chronological
horizon : gti(E) = gti/�, gii(E) = gii/� → ∞. As these com-
ponents are directly identified with physical properties of the
system, the presence of this type of horizons would neces-
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sarily require a singular configuration from the substratum
perspective. Even though the general relativistic metric com-
ponents, and so the hypothetical physical analogue metric
components, can be well defined, divergences in the compo-
nents of the inverse eikonal metric forbid the construction of
a proper analogue model, i.e. one with a non-singular sub-
stratum. The detailed physical properties that might diverge
depend on the specific characteristics of the analogue system.
In fact, it would be interesting to perform detailed analyses
of how concrete analogue systems break down when trying
to engineer them until they are “on the verge” of forming a
chronological horizon.

This impossibility of constructing analogue models of a
chronological horizon is resonant with Hawking’s Chronol-
ogy Protection proposal [26]. In the next section, we will
discuss the interplay of this conjecture with our analysis.

5 Chronology protection: lessons from analogue gravity

In General Relativity, all available evidence suggests that
the construction of geometries with superluminal behaviour5

requires violations of energy conditions [40–44]. For instance,
the construction of warp drives such as the ones described
above requires exotic matter [27]. Now, let us assume for
a moment that exotic matter exists or could be created and
manipulated at will for this purpose. The arguments that fol-
low will be kinematic in character and not depend on dynam-
ical considerations. Under the previous hypothesis we could
in principle engineer a geometry containing a warp drive.
The standard perspective provided by classical General Rel-
ativity is that travelling faster than light entails the possibility
of travelling to the past. For instance, the construction of a
forward-in-coordinate-time warp drive is equivalent to the
construction of a backward-in-coordinate-time warp drive
due to the diffeomorphism invariance of General Relativity.
Under all these assumptions and tricks, it would be almost
trivially possible to build a time machine.

Although this reasoning is of course logically correct, our
analogue gravity analysis shows that even under the assump-
tion of freely available and manipulable exotic matter, inter-
nal observers could face obstructions when trying to engineer
CTCs in the presence of a fundamental background struc-
ture non-observable to them in standard non-extremal situa-
tions. From their perspective, the inability to engineer such
time machines could manifest itself differently depending on
the specific “high-energy” theory, for example as instabili-
ties, singular behaviours or phase transitions. In all cases,
this would constitute a dramatic breakdown of their internal

5 Defining superluminality in curved backgrounds is not straightfor-
ward. We will simply mean signals that propagate faster than the speed
of light in flat spacetime.

description of physics in terms of low-energy effective fields,
such as the metric description itself, which would become
useless in these regimes. For instance, the construction of
the forward and backward warp drives would seem equiva-
lent to these internal engineers. However, from the laboratory
perspective, they are not equivalent at all, and in fact it is easy
to see that the backward warp drive would be impossible to
design. To sum up, travelling at speeds greater than the speed
of sound is perfectly possible, but one cannot send signals
backwards in time.

Interestingly, one can also reverse the logic of the previous
paragraph. When internal observers try to construct superlu-
minal configurations, at the same time they implicitly probe
whether different inertial observers are indeed equivalent, or
said in other words: whether there is a more fundamental
causality underneath the General Relativity description. It
might happen that some inertial observers can construct a
superluminal warp drive while others encounter a mysteri-
ous effect obstructing an equivalent construction. This non-
equivalence would point at a breakdown of basic relativis-
tic principles at this level of description. Our analysis also
illustrates that beating the speed of light would not necessar-
ily imply the possibility of travelling backwards in time and
constructing a time machine. One might find insurmountable
troubles in the way, caused by some fundamental substratum.
We will come back to this point below.

From this perspective, it is interesting to note that hints
of causality protection already exist in General Relativity
at the classical level, and even stronger hints at the semi-
classical level. These hints led Hawking to conjecture his
famous Chronology Protection Conjecture [26]. Essentially,
Hawking conjectured that the fundamental laws of physics
would forbid time travel, even though from the point of view
of General Relativity it is an open possibility. After some
counter-analysis by Kim and Thorne [45], it appears that
the consensus reached by the community is that, within the
framework of classical and semiclassical gravity, one cannot
settle the question of whether the formation of a region of
spacetime developing CTCs from a non-pathological initial-
data region is forbidden or not. In that sense, although the
majority of the community seems to expect that these space-
times are forbidden, they believe that the ultimate reason for
it lies deep in the quantum gravity regime. See [46] for a
comprehensive review.

All in all, it appears that the consensus reached by the com-
munity is that, within the framework of classical and semi-
classical gravity, one cannot settle the question of whether the
formation of a region of spacetime developing CTCs from
a non-pathological initial-data region is forbidden or not. In
that sense, although the majority of the community seems to
expect that these spacetimes are forbidden, they believe that
the ultimate reason for it lies deep in the quantum gravity
regime (see [46] for a comprehensive review).
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Let us now discuss a specific contribution of this paper to
the Chronology Protection notion that goes beyond the ana-
logue systems examined explicitly above. Although these
analogue systems obey dynamics by no means similar to the
dynamics of general relativity, one can conceive a system that
does have a general-relativistic-like dynamics. This is what
we would call Emergent Gravity: gravity emerging as a col-
lective excitation of microscopic degrees of freedom living
in a deeper layer of reality with a Galilean or Minkowskian
structure [47]. Because of this underlying structure, these the-
ories would contain a direct mechanism forbidding the for-
mation of a chronological horizon. This would arguably pro-
vide the simplest Chronology Protection mechanism beyond
classical or semiclassical General Relativity. Actually, let us
stress that this idea does not rely on a “quantum gravity”
argument.

We recall two observations: (i) Following Rosen [48,49],
General Relativity itself can be formulated alternatively as a
non-linear theory of gravitons over a flat Minkowski back-
ground; (ii) Weyl-Transverse (WT) gravity [50] is a theory
indistinguishable from General Relativity, at least classically,
which needs the existence of an externally fixed volume-
form. In both theories, the Minkowski metric or the volume-
form do not acquire any operational role. At the present
moment, there are no observational arguments to prefer stan-
dard General Relativity over the less conventional Rosen
or WT-gravity perspectives. However, the non-evidence of
exotic matter and causally strange behaviours could be taken
as evidences of a high-energy Chronology Protection mecha-
nism. From this point of view, the existence of a background
structure in Rosen and WT-gravity offer frameworks which
incorporate a Chronology Protection mechanism in a rather
natural way.

It is also worth emphasizing the parallel between our con-
clusions and the ones found in [51] on how the AdS/CFT
correspondence seems to enforce chronology protection. One
can understand the AdS/CFT model as an emergent gravity
theory, in which the microscopic theory is a CFT living in a
causally well-behaved spacetime, and leads to the emergence
of gravity in the bulk. The effective geometric description
when attempting to engineer CTCs consists of two causally
disconnected regions in the bulk, thus making any such CTCs
harmless for the causally-well behaved region. This is com-
pletely parallel to what we have found in our analogue gravity
discussion of Gödel’s spacetime, for instance.

Hence, it seems that the mechanism by which Chronology
Protection is implemented in emergent approaches to grav-
ity has some degree of universality or independence from the
microscopic details of the models, at least, as long as such
models display a well-behaved causal structure, correspond-
ing to the broad type I category of Carlip’s classification of
emergent models of gravity [52].

One final lesson that can be learnt from the examples
presented here, as already briefly mentioned earlier, is that
superluminal signal propagation does not automatically lead
to the possibility of building time machines or, more gen-
erally, abnormal causal behaviour. There are claims in the
literature that any kind of superluminality is problematic,
see for instance [53–55]. The opposite view was defended,
for example, by [56,57]. Geroch has argued nicely for the
position that superluminality does not automatically imply
causal troubles [58], by making the point that chronologi-
cally pathological spacetimes cannot correspond to the evo-
lution of a well-posed initial value problem. From our point
of view, the key point is that superluminality is not suffi-
cient for causal pathologies to appear. The theory must allow
for further manipulations. In the presence of a background
structure, these manipulations depend on the properties of the
background structure and could thus well be forbidden, for
example in the rather general case in which this background
structure has a causal structure (Galilean or Minkowskian)
on its own.

6 Summary and conclusions

This work started by inquiring whether it is possible to sim-
ulate geometries with CTCs within the analogue gravity pro-
gram. We began analyzing probably the most famous geom-
etry possessing CTCs: the Gödel spacetime. There are claims
in the literature that it is impossible to reproduce spacetimes
with CTCs of any sort. The reason is that the analogue sys-
tem must be embedded in a laboratory, and the laboratory
is living in a (locally) Minkowskian spacetime which has a
well-behaved causality. This causality must be inherited by
the analogue model.

We have seen that this argument needs further qualifica-
tions. We have shown that certain configurations with CTCs
can be perfectly reproduced in an analogue system, and in
fact Gödel’s spacetime belongs to this category. However,
this class corresponds in a specific sense to trivial CTCs.
The really interesting situations correspond to spacetimes
with CTCs which moreover also have chronological hori-
zons. Such horizons separate the region with CTCs from the
region without CTCs. It is this category of spacetimes that
lead to pathologies when we attempt to simulate them.

We have presented a simple catalogue of analytical space-
time metrics containing CTCs that we have later attempted
to simulate in analogue gravity setups. In all the examples
analyzed, the presence of a chronological horizon leads to an
insurmountable obstacle for its implementation in analogue
gravity: one or more physical parameters of the analogue sys-
tem must diverge at the chronological horizon. In some cases,
these divergences can be smoothed out, but this destroys the
regularity of the Lorentzian metric description which leads
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to the interpretation of the physical system as a gravitational
analogue in the first place. We have focused on an acous-
tic system in which it is essentially the velocity of the fluid
which must diverge in order to create the required tilting of
the sound cones. We have shown that it is perfectly possible to
simulate geometries allowing superluminal behaviours such
as warp drives. However, this does not imply directly that one
can build an analogue time machine, as we have discussed in
detail. It is in fact the formation of a chronological horizon
which is forbidden in the analogue implementation, since it
is not possible to create a warp drive travelling backward in
laboratory time.

The obstructions found by exploring the analogue gravity
implementation of CTCs resonate with Hawking’s idea of a
Chronology Protection mechanism in semiclassical General
Relativity. From the point of view presented here, such pro-
tection mechanisms arise naturally in frameworks for Emer-
gent Gravity. In these emergent frameworks, there exists a
background structure with a more fundamental underlying
causality, which naturally prevents the type of manipulations
required to create chronological pathologies.

Finally, we sum up three important lessons from the
present work. (i) Superluminality itself does not imply the
possibility of abnormal causal behaviour such as time travel;
(ii) Problems in the analogue implementation of chronolog-
ical horizons appear due to the relative tilting of the causal
cones; (iii) The current observational absence of chronolog-
ical pathologies in our universe is naturally explained in
frameworks in which there is a fixed underlying causality
beyond the local General Relativistic modifications explored
so far.
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