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We present a search for the decays of B0 mesons into a final state containing a Λ baryon and missing
energy. These results are obtained from a 711 fb−1 data sample that contains 772 × 106 BB̄ pairs and was
collected near the ϒð4SÞ resonance with the Belle detector at the KEKB asymmetric-energy eþe− collider.
We use events in which one B meson is fully reconstructed in a hadronic decay mode and require the
remainder of the event to consist of only a single Λ. No evidence for these decays is found, and we set
90% confidence level upper limits on the branching fractions in the range 2.1–3.8 × 10−5. This
measurement provides the world’s most restrictive limits, with implications for baryogenesis and dark
matter production.

DOI: 10.1103/PhysRevD.105.L051101

According to the B-Mesogenesis mechanism [1,2], the
CP-violating oscillations and subsequent decays of B
mesons in the early Universe can simultaneously explain
the dark matter (DM) relic abundance and baryon asym-
metry. A robust prediction of this mechanism is a branching
fraction larger than BM ¼ 10−4 for B0 mesons decaying into
a final state containing a Λ baryon, missing energy in the
form of a GeV-scale dark sector antibaryon ψDS, and any
number of light mesons; BðB0 → ΛψDS þmesonsÞ > 10−4.
The limit BM strongly depends on the semileptonic asym-
metries in neutral B meson decays [2,3]. At present, the best
bound on such a process is an exclusive branching fraction
of BðB0 → ΛψDSÞ≲ 2 × 10−4 derived from an inclusive
ALEPH search for events with large missing energy arising
from b-flavored hadron decays at the Z peak [2,4]. In order
for this decay to exist, a new TeV-scale bosonic colored
mediator Y is required. This heavy mediator can be
integrated out to yield an effective four-fermion operator
Ous ¼ ψDSbus. An example diagram of the corresponding
decay is shown in Fig. 1. Successful baryogenesis requires a
ψDS mass ≲3.5 GeV=c2 as indirectly constrained by LHC
searches on TeV-scale color-triplet scalars [2,5]. We report
the first search for B0 → ΛψDS exclusive decays using the
full Belle data sample of 711 fb−1 collected near the ϒð4SÞ
resonance. Charge-conjugate decays are implied throughout
this paper.
This measurement is based on a data sample that

contains ð772� 11Þ × 106 BB̄ pairs, collected with the
Belle detector [6] at the KEKB asymmetric-energy eþe−
(3.5 on 8.0 GeV) collider [7] operated at the ϒð4SÞ
resonance. In addition, we employ an 89 fb−1 data sample
recorded at a center-of-mass (c.m.) energy 60 MeV below
the ϒð4SÞ resonance (off-resonance data) to characterize
the background. The Belle detector is a large-solid-angle

magnetic spectrometer that consists of a silicon vertex
detector (SVD), a 50-layer central drift chamber (CDC), an
array of aerogel threshold Cherenkov counters (ACC), a
barrel-like arrangement of time-of-flight scintillation coun-
ters (TOF), and an electromagnetic calorimeter comprised
of CsI(Tl) crystals (ECL) located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux-return located outside of the coil is instrumented
to detect K0

L mesons and to identify muons. Two inner
detector configurations were used. A 2.0 cm radius beam
pipe and a three-layer SVDwere used for the first sample of
152 × 106 BB̄ pairs, while a 1.5 cm radius beam pipe, a
four-layer SVD, and a small-inner-cell CDC were used to
record the remaining 620 × 106 BB̄ pairs [8].
We study properties of signal events, identify sources

of background, and optimize selection criteria using
Monte Carlo (MC) simulated events. These samples are
generated using the software packages EvtGen [9] and
PYTHIA [10], and final-state radiation is included via
PHOTOS [11]. The detector response is simulated using
GEANT3 [12]. We produce B0 → ΛψDS MC events accord-
ing to a phase-space model for eight individual values
of the ψDS mass in the range 1.0 GeV=c2 ≤ mψDS

≤
3.9 GeV=c2 to calculate signal reconstruction efficiencies.
To estimate background, we use MC samples that describe
all eþe− → qq̄ processes. Events containing eþe− → BB̄

FIG. 1. An example diagram of the B meson decay process as
mediated by the heavy colored scalar Y that results in DM and a
visible baryon. The dark sector antibaryon ψDS decays into stable
DM particles: a dark sector scalar antibaryon ϕDS and a dark
Majorana fermion ξDS.
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with subsequent b → c decays, and eþe− → qq̄ (q ¼ u, d,
s, c) continuum events, are both simulated with 6 times the
integrated luminosity of Belle. Rare charmless B meson
decays are simulated with 50 times the integrated
luminosity.
Event reconstruction for this analysis is performed

entirely in the Belle II software framework [13] by
converting Belle data structures to that of Belle II [14].
We identify signal candidates by fully reconstructing
the accompanying neutral B meson (Btag) and requiring
a single Λ baryon on the signal side. We analyze the data in
an unbiased manner by finalizing all selection criteria
before viewing events in the signal region.
The Btag candidates are reconstructed in hadronic decay

channels using the Full Event Interpretation algorithm [15].
The algorithm employs a hierarchical reconstruction ansatz
in six stages. In the first stage, tracks and neutral clusters
are identified and required to pass some basic quality
criteria. In the second stage, boosted decision trees (BDTs)
are trained to identify charged tracks and neutral energy
depositions as detector-stable particles (πþ; Kþ; μþ; eþ; γ).
In the third and fourth stages, these candidate particles
are combined into composite parents (π0; J=ψ ; K0

S; D
0;

Dþ; Dþ
s ), and, for each target final state, a BDT is trained

to identify probable candidates. At the fifth stage, candi-
dates for excited mesons (D�0; D�þ; D�þ

s ) are formed and
separate BDTs are trained to identify viable combinations.
The input variables of each stage aggregate the output
classifiers from all previous reconstruction stages. The final
stage combines the information from all previous stages to
form Btag candidates. The viability of such combinations is
assessed by a BDT that is trained to distinguish correctly
reconstructed candidates from wrong combinations and
whose output classifier score we denote as the signal
probability otag. The purity of the Btag candidate is
improved by selecting candidates with otag > 10−3. We
further select the Btag candidates using the energy differ-
ence ΔE≡ EB − Ebeam and the beam-energy constrained
mass Mbc ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
beam=c

4 − jp⃗Bj2=c2
p

, where EB and p⃗B are
the reconstructed energy and momentum of the Btag

candidate in the ϒð4SÞ c.m. frame, respectively, and
Ebeam is the beam energy in this frame. We require Btag

candidates to satisfy the requirements 5.27 GeV=c2 <
Mbc < 5.29 GeV=c2 and jΔEj < 0.06 GeV. We apply a
calibration factor for the hadronic tagging efficiency,
derived from exclusive measurements of B0 → Xlν decay
channels, to all correctly reconstructed Btag candidates in
MC simulation. A full description of this procedure can be
found in Ref. [15].
The particles in the event not associated with the Btag

meson are used to reconstruct a Bsig → ΛψDS candidate. The
Λ candidates are reconstructed via Λ → pπ− decays in the
mass range 1.112 GeV=c2 < Mpπ− < 1.119 GeV=c2 (cor-
responding to an ∼3σ range around the nominalmΛ [3]) and

selected using Λ-momentum-dependent criteria based on
four parameters: the distance between the two decay
product tracks at their closest approach, in the direction
opposite that of the eþ beam; the minimum distance
between the decay product tracks and the interaction point
(IP) in the transverse plane; the angular difference
between the Λ flight direction and the direction pointing
from the IP to the Λ decay vertex in the transverse plane;
and the flight length of the Λ in the transverse plane.
Measurements from CDC, TOF, and ACC are combined
to form the charged particle identification (PID) like-
lihoods LðhÞ (h ¼ p;K; or π), where Lðh∶h0Þ, defined as
LðhÞ=½LðhÞ þ Lðh0Þ�, is the discriminator between the h
and h0 hypotheses. We require Lðp∶KÞ > 0.6 and
Lðp∶πÞ > 0.6 for the proton from the Λ decay. The proton
PID efficiency in the produced B0 → ΛψDS MC events is
70%–99%, with the purity being 100%.
To suppress background with particles undetected along

the beam pipe, we require the cosine of the polar angle of
the missing momentum in the laboratory frame [6] to lie
between −0.86 and 0.95. After identifying the Btag candi-
date and reconstructing the Λ baryon, we require that no
additional charged tracks remain in the event. This veto and
the PID requirements for protons eliminate any multiple Λ
candidates in our samples. If there are multiple Btag

candidates in an event, the candidate with the highest
otag value is chosen.
While the topological distribution of particles in B decay

events is more isotropic, that for continuum events, the
dominant background at this level, is more jetlike. To
suppress the continuum background, we simultaneously
optimize the requirements on two event-shape variables:
the ratio of the second to zeroth Fox-Wolfram moments
[16] of the event, R2; and the cosine of the angle between
the thrust axis [17] of the Λ and the thrust axis of the Btag,
cos θT. This is done by maximizing a figure of merit
ε=ðα

2
þ ffiffiffiffiffiffiffi

NB
p Þ, which is independent of the assumed signal

branching fraction and optimized for new decay modes
[18]. Here, ε is the signal efficiency, while NB denotes the
number of background events passing the requirements on
the two event-shape variables. Both values are determined
from MC simulation, with the number of continuum events
being corrected with an overall factor based on the off-
resonance data. We choose α ¼ 3, the number of standard
deviations of the desired sensitivity.
The most powerful variable to identify signal decays is

the residual energy in the ECL, EECL, which is the sum
of the energies of ECL clusters that are not associated with
the Btag decay products nor with the signal-side Λ candi-
date. To suppress contributions from noise in the ECL,
minimum thresholds on the cluster energy are required:
50 MeV for the barrel, 100 MeV for the forward end cap,
and 150 MeV for the backward end cap region. These
thresholds were determined to achieve an optimal signal-
to-noise ratio in the calorimeter clusters. The decays
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B → D�lν are examined as control samples; the observed
EECL distributions are found to be in good agreement with
MC simulations. In a correctly reconstructed signal event,
no additional activity should appear in the calorimeter, so
the EECL distribution for signal events will peak at low
EECL values. The EECL signal region is selected from MC
simulation. It is defined by requiring that the expected
number of background events corresponding to the full
Belle dataset is ≅ 3, thus allowing downward fluctuation of
the number of observed events, nobs. The contamination of
continuum background events in the EECL signal region is
determined from MC simulation, with the scale factor
being determined with the off-resonance data. In addition, a
correction for possible background from rare B decays is
applied to the number of BB̄ events. After all the selection
requirements are applied, approximately half of the
expected background consists of continuum events and
the other half from BB̄ events. The observed and expected
background EECL distributions for mψDS

¼ 2.5 GeV=c2 are
shown in Fig. 2, together with the corresponding signal
distribution.
The signal yield is obtained by counting the number of

events in the signal region. The profile likelihood method
[19] is used to calculate the 90% confidence level (C.L.)
upper limits on BðB0 → ΛψDSÞ, as a function of the ψDS
mass. The likelihood is a Poisson “on-off” model with log-
normal constraints to incorporate systematic uncertainties.

The signal yield is defined as s ¼ 2 × NB0B̄0 × ϵ×
BðB0 → ΛψDSÞ × BΛ, where NB0B̄0 is the number of
B0B̄0 pairs in the full Belle dataset, ϵ is the signal
efficiency, and BΛ denotes the branching fraction
BðΛ → pπ−Þ. The likelihood is defined as

L ¼ Pðnsr; sþ bÞ × Pðnbkg; τ · b0Þ
× G½b;b0; 1þ systðb0Þ�
× G½ϵ; nomiðϵÞ; 1þ systðϵÞ�
× G½NB0B̄0 ; nomiðNB0B̄0Þ; 1þ systðNB0B̄0Þ�
× G½BΛ; nomiðBΛÞ; 1þ systðBΛÞ�: ð1Þ

Here, P is a Poisson distribution,

Gðx;m0; κÞ ¼
1

x
ffiffiffiffiffiffi
2π

p
lnðκÞ exp

�
−
ln2ðx=m0Þ
2ln2ðκÞ

�
ð2Þ

is a log-normal distribution, where m0 is the median
identified with the best estimate for the random variable
x, and κ > 1 encodes the spread in the distribution with
κ − 1 corresponding roughly to the multiplicative relative
uncertainty on x. In Eq. (1), nsr is the number of candidates
in the signal region, nbkg is the expected number of
background MC candidates surviving our selection criteria,
τ ¼ 6 is the ratio between the luminosity of the background
MC sample and the full Belle dataset, and syst denotes the
relative systematic uncertainty and nomi the nominal value.
The expected number of background events corresponding
to the full Belle dataset, b0, is a free parameter of the
likelihood. It has the same relative systematic uncertainty
as nbkg.
For each mψDS

value, we allow different optimization
requirements, and different systematic uncertainties are
included based on the kinematics and reconstruction
efficiency of each sample. The systematic uncertainty
arising from the number of BB̄ pairs is 1.4%. The world
average value of B½ϒð4SÞ → B0B̄0� is ð48.6� 0.6Þ% [3],
leading to a systematic uncertainty of 1.8% on the number

FIG. 2. The observed (solid points) and expected background
(stacked shaded histograms) EECL distributions for mψDS

¼
2.5 GeV=c2, with the first bin representing the signal region.
The shape of the continuum contribution is taken from the off-
resonance data, while the other two background sources are from
MC simulation; each distribution is normalized to the expected
number of events in the first bin. The signal shape (dashed line)
is taken from MC simulation, assuming a branching fraction of
BðB0 → ΛψDSÞ ¼ 8 × 10−5.

TABLE I. Range of systematic uncertainties in the estimate of
the signal efficiencies, δϵ, and the number of expected BB̄
background events, δnBB̄bkg, across the different values of mψDS

.

Source δϵ (%) δnBB̄bkg (%)

Btag correction 8.6 8.6
Proton PID 0.5–2.8 4.3–5.7
Tracking efficiency 0.7–1.9 1.1–1.9
Charged track veto 5.3–6.5 5.3–6.5
Λ selection 2.5–3.6 4.4–4.7
Signal MC statistics 1.2–2.0 � � �
Rare B decays correction � � � 10.6–13.4
Branching fractions � � � 50.0
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of B0B̄0 pairs. The world average value of BΛ is ð63.9�
0.5Þ% [3], resulting in the systematic uncertainty of 0.8%.
The calibration factor for the hadronic tagging efficiency

is studied in Ref. [15] and found to be 0.860� 0.074. The
uncertainty in this value is taken as a systematic uncer-
tainty. The uncertainty due to proton PID is evaluated using
an independent sample ofΛ → pπ− decays. The systematic
uncertainty due to charged track reconstruction is calcu-
lated using partially reconstructed D�þ → D0πþ decays,
with D0 → K0

Sπ
þπ− and K0

S → πþπ−. For the pion, an
additional systematic uncertainty based on a study of low-
momentum tracks from B0 → D�−πþ decays is applied.
The slow pion emitted in the decays of theD� allows one to

probe the low-momentum region. The difference in the
charged track veto efficiency between data and MC
simulation is estimated by comparing the effect of requiring
no extra tracks available in the event on samples of
B0 → Dð�Þlν events. The systematic uncertainty due to Λ
reconstruction is determined from a comparison of yield
ratios of Bþ → ΛΛ̄Kþ with and without the Λ selection
requirements in data and MC samples. The weighted
average of the data-MC difference over the momentum
range is assigned as the systematic uncertainty.
Furthermore, we include the binomial error of the effi-
ciency as a systematic uncertainty.
The statistical uncertainty of the correction on the

number of continuum events in MC simulation is
21.0%–26.9%, based on off-resonance data; this is assigned
as a systematic uncertainty. Since none of the BB̄ back-
ground MC decays surviving our selection criteria are from
exclusively observed and measured processes in experi-
ment, we assign a conservative 50% systematic uncertainty
on their branching fractions; this is the dominant systematic
uncertainty on nbkg. The statistical uncertainty of the
correction for possible background from rare B decays
applied to the number of BB̄ background events in MC
simulation is included as a systematic uncertainty.
The range of systematic uncertainties in the estimate of

the signal efficiencies, δϵ, and the number of expected BB̄
background events, δnBB̄bkg, across the different values of
mψDS

are listed in Table I. The observed and expected
90% C.L. upper limits on BðB0 → ΛψDSÞ as a function of
mψDS

are shown in Fig. 3. A summary of these limits and
the different distinct variables used in their calculation for
each mψDS

is presented in Table II.
The fraction of decays not expected to contain hadrons

other than Λ in the final state as a function of mψDS
is

calculated in Ref. [2] using phase-space considerations.
This fraction multiplied with BM provides the lower bounds
on BðB0 → ΛψDSÞ for B-Mesogenesis. Those bounds
together with the observed 90% C.L. upper limits on

FIG. 3. The observed (solid line) and median expected (dashed
line) 90% C.L. upper limits on BðB0 → ΛψDSÞ as a function of
mψDS

. The�1σ and�2σ expected exclusion regions are indicated
in green and yellow, respectively. A linear interpolation is
performed between the values obtained for the probed mψDS

values. The gray shaded region shows the resulting 90% C.L.
constraints from the reinterpretation of a search at ALEPH for
decays of b-flavored hadrons with large missing energy [2,4].

TABLE II. Summary of the requirements on the event-shape variables R2 and cos θT, the EECL signal region, the signal efficiency ϵ
and its systematic uncertainty δϵ, the systematic uncertainty on the expected number of background MC candidates surviving our
selection criteria δnbkg, the expected 90% C.L. upper limit, the number of observed events nobs, and the observed 90% C.L. upper limit,
for each mψDS

.

mψDS
(GeV=c2) R2 cos θT EECL (GeV) ϵ (10−4) δϵ (%) δnbkg (%)

Expected
limit (10−5) nobs

Observed
limit (10−5)

1.0 <0.31 <0.66 <0.74 3.92 11.0 30.3 2.2 3 2.2
1.5 <0.30 <0.66 <0.74 3.94 11.0 30.3 2.2 3 2.2
2.0 <0.31 <0.70 <0.74 4.05 10.9 30.6 2.1 3 2.1
2.5 <0.33 <0.67 <0.71 4.01 10.9 30.7 2.1 3 2.2
3.0 <0.33 <0.70 <0.71 3.69 11.0 30.8 2.3 3 2.3
3.3 <0.35 <0.70 <0.68 3.32 11.1 28.4 2.6 3 2.6
3.6 <0.44 <0.70 <0.63 2.88 11.7 27.7 3.0 3 3.0
3.9 <0.42 <0.79 <0.57 1.56 11.3 30.2 5.5 2 3.8
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BðB0 → ΛψDSÞ as a function of mψDS
are presented in

Fig. 4. The region mψDS
≳ 3.0 GeV=c2 is excluded for the

O2
us and O3

us operator cases.
In summary, we have reported the results of a search for

the decays of B0 mesons into a final state containing a Λ
baryon and missing energy with a fully reconstructed Btag

using a data sample of 772 × 106 BB̄ pairs collected at the
ϒð4SÞ resonance with the Belle detector. No significant
signal is observed, and we set upper limits on the branching
fractions at 90% C.L., which are the most stringent
constraints to date. Our analysis yields significant improve-
ments and partially excludes the B-Mesogenesis mecha-
nism. We expect that the Belle II experiment [20] will be
able to fully test this mechanism.
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FIG. 4. The observed 90% C.L. upper limits on BðB0 → ΛψDSÞ
as a function of mψDS

(solid line) and the lower bounds on
BðB0 → ΛψDSÞ for B-Mesogenesis using phase-space consider-
ations (shaded bands). The b-quark pole mass is chosen as the
benchmark mass in the phase-space integral (dashed lines), while
two other choices, the B0 meson mass and the b-quark MS mass,
delineate the upper and lower edges of the shaded bands,
respectively. The calculation is performed for the “type-1”
operator O1

us ¼ ðψDSbÞðusÞ and the “type-2” and “type-3” cases
O2

us ¼ ðψDSsÞðubÞ and O3
us ¼ ðψDSuÞðsbÞ, respectively, for

which the phase-space integration is the same.
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