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CNN‑based flow control device 
modelling on aerodynamic airfoils
Koldo Portal‑Porras1, Unai Fernandez‑Gamiz1*, Ekaitz Zulueta2, 
Alejandro Ballesteros‑Coll1 & Asier Zulueta2

Wind energy has become an important source of electricity generation, with the aim of achieving a 
cleaner and more sustainable energy model. However, wind turbine performance improvement is 
required to compete with conventional energy resources. To achieve this improvement, flow control 
devices are implemented on airfoils. Computational fluid dynamics (CFD) simulations are the most 
popular method for analyzing this kind of devices, but in recent years, with the growth of Artificial 
Intelligence, predicting flow characteristics using neural networks is becoming increasingly popular. 
In this work, 158 different CFD simulations of a DU91W(2)250 airfoil are conducted, with two different 
flow control devices, rotating microtabs and Gurney flaps, added on its Trailing Edge (TE). These flow 
control devices are implemented by using the cell-set meshing technique. These simulations are used 
to train and test a Convolutional Neural Network (CNN) for velocity and pressure field prediction and 
another CNN for aerodynamic coefficient prediction. The results show that the proposed CNN for field 
prediction is able to accurately predict the main characteristics of the flow around the flow control 
device, showing very slight errors. Regarding the aerodynamic coefficients, the proposed CNN is 
also capable to predict them reliably, being able to properly predict both the trend and the values. In 
comparison with CFD simulations, the use of the CNNs reduces the computational time in four orders 
of magnitude.

List of symbols
Abbreviations
AI	� Artificial intelligence
ANN	� Artificial neural network
CFD	� Computational fluid dynamics
CNN	� Convolutional neural network
DL	� Deep learning
HAWT​	� Horizontal axis wind turbine
RANS	� Reynolds-averaged Navier–Stokes
ReLU	� Rectifier linear unit
RMSE	� Root-mean-square error
SST	� Shear stress transport
TE	� Trailing edge
VG	� Vortex generator

Symbols
*	� Dimensionless variable
‘	� Variable ranged between 0 and 1
AoA	� Angle of attack
β	� Flow control device orientation
c	� Airfoil chord length
CD	� Drag coefficient
CL	� Lift coefficient
CL/CD	� Lift-to-drag ratio
�z	� First cell height
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L	� Flow control device length
ρ	� Density
p	� Order or accuracy (Richardson extrapolation)
R	� O-mesh radius
R	� Convergence condition (Richardson extrapolation)
Re	� Reynolds number
RE	� Richardson extrapolation solution
µ	� Dynamic viscosity
U∞	� Freestream velocity

In recent years, with the aim of achieving a cleaner and more sustainable energy model, wind energy has become 
an important source of electricity generation. Even so, an improvement in wind turbine performance is still 
required in order to compete with conventional energy sources in terms of energy production and associated 
costs. To solve this challenge, the implementation of both active, such as rotating microtabs, and passive, such as 
Gurney flaps, flow control devices is a widely used solution. Aramendia et al.1,2 extensively reviewed the available 
active and passive flow control devices for wind turbines.

Simulations by means of CFD tools are the most popular method for analyzing and optimizing the perfor-
mance of airfoils and their flow control devices. Many authors have studied several different flow control devices 
applied on airfoils by means of CFD. For example, Fernandez-Gamiz et al.3 and Aramendia et al.4,5 performed 
parametric studies to analyze the effects of the implementation of passive microtabs and Gurney flaps, respec-
tively, on the TE of the DU91W(2)250 airfoil.

In some cases, CFD simulations can be very demanding in terms of computational time and resources, 
especially when several simulations are necessary to optimize a flow control device or accurate turbulence 
modeling is required. For this reason, many authors have used alternative meshing models to reduce simulation 
time. Among these models, the cell-set model, introduced by Ballesteros-Coll et al.6 can be highlighted. In that 
work, different Gurney flaps were added to the TE of a DU91W(2)250 airfoil by means of the cell-set model. 
In further studies, Ballesteros-Coll et al.7,8 implemented microtabs and rotating microtabs on the same airfoil. 
Other authors, such as Portal-Porras et al.9,10 used this meshing technique to model the performance of three-
dimensional Vortex Generators (VG) on a flat plate. All of them showed good agreements between the cell-set 
model, the fully-resolved model and the experimental data. Therefore, this meshing model is considered suitable 
for this kind of problems.

Despite the accurate predictions that can be obtained through CFD simulations, the increase in the computing 
speed of computers and the growth of Artificial Intelligence (AI) have led to an increasing number of studies in 
which Deep Learning (DL) techniques are used for flow prediction, obtaining a significant reduction in terms 
of computing time. For example, Ye et al.11 proposed a Convolutional Neural Network (CNN) to predict the 
pressure distributions around a cylinder based on the velocity field on its wake behind, Guo et al.12 and Ribeiro 
et al.13 designed different CNNs for two- and three-dimensional laminar flow prediction, Portal-Porras et al.14 
used a CNN to predict turbulent flows on a channel, and Abucide-Armas et al.15 proposed a data augmentation 
technique to improve the predictions of the CNN proposed by Ribeiro et al.13 for unsteady turbulent flows.

Regarding airfoils, several machine learning algorithms have been proposed to study their performance. 
Initially, the most commonly used architecture was the Multi-Layer Perceptron (MLP) learning architecture. For 
example, Sekar et al.16 presented a two-step-consistent approach to predict the flow fields over an airfoil using 
deep learning techniques. In the first step the airfoil is parametrized into 16 airfoil parameters by means of a 
CNN, and in the second step a deep MLP network is used to predict the flow fields over airfoils. Even so, this 
architecture is not specifically designed to exploit spatial and temporal correlation that are intrinsic in many real-
world problems. For this reason, the vast majority of current studies similar to the present one use other types 
networks, being the most common ones the CNNs. Yilmaz and German17 studied the airfoil pressure coefficient 
predictions provided by a CNN by varying its parameters, providing an initial approximation for a suitable CNN 
design. Thuerey et al.18 proposed a CNN to approximate the velocity and pressure fields obtained by Reynolds-
Averaged Navier-Stokes (RANS)-based Spalart-Allmaras19 turbulence model on airfoils.

For the prediction of aerodynamic coefficients, there is a broader variety of architectures used, since these 
studies offer greater design flexibility than those of the fields. However, as stated by Zhang et al.20, although other 
networks can provide similar predictions, the CNN is the one that offers the greatest generalization capacity, 
allowing different geometries to be introduced as input in the network in a simple way. For example, in that 
study the lift coefficient of different airfoils are predicted with various network architectures. Chen et al.21 used 
a CNN to predict the drag ( CD) and lift ( CL ) coefficients of different airfoils.

Regarding flow control devices, there are some studies in which deep learning techniques are used for a 
better understanding of the behavior of flow control elements in airfoils. For example, Rodriguez-Eguia et al.22 
and Aramendia et al.5 used ANNs to predict the aerodynamic coefficients of an airfoil with flaps and Gurney 
flaps, respectively. However, in these studies the parameters are not predicted directly from the geometry and 
boundary conditions. Therefore, there are no deep learning studies applied to CFD in which the behavior of 
flow control elements is analyzed.

The present paper aims to evaluate the possibility of analyzing flow control elements applied to airfoils by 
means of deep learning techniques. For this purpose, velocity and pressure fields around different Gurney flaps 
and rotating microtabs implemented on the TE of the DU91W(2)250 airfoil by means of a CNN are predicted. 
In addition, a variation of the CNN is proposed to predict the CD and CL coefficients of the studied airfoil with 
each flow control device.
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The remainder of the manuscript is structured as follows: “Methodology” provides an explanation of the 
methodology followed for preparing and running the CFD simulations and designing and training the proposed 
CNNs; “Results and discussion” shows qualitative and quantitative comparisons between the CFD results and 
CNN predictions; and “Conclusion” explains the conclusions reached from this study.

Methodology
CFD setup.  With the purpose of obtaining data for training, validating and testing the proposed neural net-
work, 158 CFD simulations of the DU91W(2)250 airfoil were conducted, each one under different conditions in 
terms of flow control device geometry and angle of attack (AoA). The selected profile, DU91W(2)250, is a profile 
extracted from a broadly referenced NREL horizontal axis wind turbine (HAWT), as stated by Jonkman et al.23. 
Star-CCM+ v2019.124 commercial code was used to run these simulations.

To perform the mentioned simulations, a two-dimensional structured O-mesh was generated, with the studied 
airfoil on its center. Following the study of Sørensen et al.25, the radius of this mesh (R) was defined as a func-
tion of the chord length (c) of the airfoil, R = 32 · c . Therefore, as the chord length of the DU91W250 airfoil is 
equal to 1 m, R was set at 32 m. This mesh consists of around 207,000 cells. Non-slip conditions were assigned 
to the contour of the airfoil, and the first cell height ( �z ) normalized with the chord length of the airfoil was set 
at �z/c = 1.35 · 10−6 . On previous works, Fernandez-Gamiz et al.3 studied the mesh dependency of the used 
mesh, and showed a dependency below 4% for the calculation of CL and drag CD coefficients. Figure 1a provides 
a general view of the mesh, and Fig. 1b, a close-up view of the near-airfoil region.

In order to validate the results obtained with this mesh, the obtained results are compared with the experi-
mental data results from the LM Low Speed Wind Tunnel obtained by Timmer26. For this comparison, the clean 
airfoil with different angles of attack is considered.

In addition, a mesh convergence study is performed considering the lift-to-drag ratio, in order to verify 
that the numerical solution is independent of the mesh resolution. With this purpose, the General Richardson 
Extrapolation27 method is used. To apply this method, three different meshes are generated, with a mesh refine-
ment equal to 2. The fine mesh consists of around 207,000 cells, the medium mesh of around 103,000 cells and 
the coarse mesh of around 52,000 cells. Table 1 summarizes the results obtained for the grid convergence study, 
were RE is the solution of the Richardson Extrapolation, p the order of accuracy and R convergence condition. 
As the obtained R values are between 0 and 1, the solution is within the asymptotic range of convergence for all 
the tested angles of attack. Figure 2 compares the CFD results obtained with each mesh and the experimental 

Figure 1.   Structured mesh generated around the airfoil: (a) general view; (b) detailed view.

Table 1.   General Richardson extrapolation results for the lift-to-drag ratio.

AoA (°)

Mesh
Richardson 
extrapolation

Coarse Medium Fine RE p R

0 30.18 42.72 46.44 48 1.75 0.3

2 48.64 75.84 82.44 84.55 2.04 0.24

4 65.12 92.17 100.19 103.56 1.75 0.3

6 72.1 97.55 106.03 110.28 1.58 0.33

9 54.03 80.17 87.14 89.68 1.91 0.27
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data. As the results demonstrate, the results obtained with the fine mesh are close to the experimental ones, and 
the convergence criteria is fulfilled, which means that the mesh is suitable for these simulations.

Two different flow control devices were added to the TE of the airfoil: Gurney flaps and rotating microtabs. 
A total of 48 different cases with Gurney flaps were considered, with different lengths and angles of attack; and 
105 different cases with rotating microtabs, with different lengths (L), orientations (β) and angles of attack. The 
remaining five cases consist of the airfoil without flow control devices. All the studied cases are summarized in 
Table 2.

These flow control devices were added to the previously-explained mesh by the cell-set model. This modelling 
technique consists of defining a geometry on an already-generated mesh, and then, splitting this geometry into 
a new region, and defining it as wall with no-slip conditions. As demonstrated by Ballesteros-Coll et al.6, this 
model is suitable for this kind of problems, since a global relative error of 3.784% of this model in comparison 
with the fully-resolved model was obtained in that study. Figure 3 illustrates an example of the cell-set model 
implementation for a rotating microtab.

Regarding the fluid physics, the dynamic viscosity of the air was set at µ = 1.855 · 10−5Pa · s , and the density 
was set at ρ = 1.2041kg/m3 . The freestream velocity of the flow was set at U∞ = 30m/s , which means that the 
Reynolds number (Re) is equal to 2 · 106 . For turbulence modelling RANS-based k-ω Shear Stress Transport 
(SST) model by Menter28 was chosen, which combines the k-ω model for the near-wall zones and k-ε model for 
the regions far from the walls. UpWind algorithm was employed for the pressure–velocity coupling and a linear 
upwind second order scheme was used to discretize the mesh.

Convolutional neural network.  Input and output layers.  The domain is represented by four different 
128 × 256 layers. The first two layers represent the geometry of the airfoil and the flow control device, and the 
other two layers represent the velocity components in both directions.

The layers describing the domain are generated by means of a binary representation, where the points belong-
ing to the geometry are identified with a 1 and those which do not belong to the geometry are identified with a 
0. One of these layers provides an overview of the airfoil, while the other provides a close-up view of the airfoil 
TE, showing the flow control device in detail. Figure 4a shows the zones represented by each layer, and Fig 4b,c 
display and example of these two layers.

The velocity layers provide the value of the velocity components. These layers are used to determine the AoA 
of the airfoil accurately, since in the above-explained binary-representation layers, slight variations in orientation 

Figure 2.   Lift-to-drag ratio comparison of the three generated meshes and the experimental data obtained by 
Timmer26.

Table 2.   Analyzed flow control devices and all their configurations.

Flow control device Length (in % of c) Orientation AoA

Clean airfoil – – 0°, 2°, 4°, 6°, 9°

Gurney Flap 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 – 0°, 2°, 4°, 6°, 9°

Rotating Microtab 1, 1.5, 2 0°, −15°, −30°, −45°, −60°, −75°, −90° 0°, 1°, 2°, 3°, 4°, 5°



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8205  | https://doi.org/10.1038/s41598-022-12157-w

www.nature.com/scientificreports/

may not be correctly represented. Figure 5a,b show the velocity layers, which represent the x and y components 
of the velocity, respectively.

Concerning the output of the networks, three layers and two scalars are considered. The three layers cor-
respond to the velocity (both components) and pressure fields on the TE of the airfoil, and the scalars are the 
CD and CL coefficients.

To prepare the output layers, the values were first interpolated to fit into a 128 × 256 arrays. Then, the values 
of those arrays were normalized, following Expressions (1), (2) and (3).

Figure 3.   Cell-set implementation for modelling a microtab: (a) geometry of the microtab; (b) microtab 
generated using the cell-set model.

Figure 4.   Domain representation layers of a Gurney flap: (a) sketch of the area represented by each layer (airfoil 
overview layer marked in blue and flow control device close-up layer marked in green); (b) airfoil overview 
layer; (c) close-up view of the flow control device layer.
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where u∗x , u∗y and p∗ are the dimensionless variables.
Finally, all the values of the layers are ranged between 0 and 1 following Expression (4), in order to speed up 

and enhance the training process.

where Φ is replaced by each dimensionless variable.
This last step is also followed to range between 0 and 1 the input layers and the output scalars corresponding 

to the coefficients.

CNN architecture.  In the present paper, two different CNN are considered, one for velocity and pressure field 
prediction, and another one for drag and lift coefficient prediction. This networks were designed and trained 
using MATLAB 2021a29 commercial code with its Deep Learning Toolbox30.

For velocity and pressure field prediction, an U-Net architecture31 is proposed, based on the previous works 
from Ribeiro et al.13 and Thuerey et al.18. The U-Net architecture is a special case of an encoder-decoder network. 
The proposed network consists of four encoder/decoder blocks. Each encoder block contains two convolutional 
layers. The first one is followed by a ReLU (Rectifier Linear Unit) layer, and the second one is followed by a ReLU 
layer and a Max Pooling layer. The kernel size of the first two encoding blocks is equal to 5, and strided convolu-
tions are performed on those blocks, in order to reduce the data size for the training step. The kernel size of the 
last blocks is equal to 3. After each encoding block, the number of filters is doubled. The decoding blocks perform 
the reverse process of their symmetrical blocks of the encoding phase, and they are connected to the encoding 
blocks by concatenation layers. Figure 6 provides a schematic view of the explained network.

For lift and drag coefficient prediction, only the encoding part of the CNN is considered. In this case, a fully 
connected layer is added after the last layer. Unlike the complete structure, this network does not return a layer, 
it returns two scalar values, CD and CL . Figure 7 shows a schematic view of this network.

For the network training, Adam32 optimizer is employed in both cases, with a batch size of 64. For field pre-
diction, a learning rate of 0.001 and a weight decay of 0.0005 is selected; and for coefficient prediction a learning 
rate of 0.0001 and a weight decay of 0.0005. From the dataset of 158 samples, 21 are considered for testing the 
network. The other 137 are divided into 70% training and 30% validation for field prediction and 90% training 
and 10% validation for coefficient prediction.

These hyperparameters and data-splitting ratios were selected after training this network with 27 different 
configurations of these parameters. From the analyzed configurations, the selected ones provide the minimum 
Root-Mean-Square Error (RMSE) of the analyzed magnitude. Appendix A provides a summary of the considered 
configurations and the obtained RMSE for each magnitude and coefficient.

Results and discussion
In order to determine the accuracy of the proposed CNN, the predictions of this CNN have been compared with 
those obtained by CFD. For this comparison, the 21 simulations of the test-set mentioned above are considered.

Velocity and pressure field prediction.  The velocity and pressure fields obtained by the CNN are both 
qualitatively and quantitatively compared in order to determine the accuracy of the proposed CNN for field pre-

(1)u∗x =

ux

u∞

(2)u∗y =

uy

u∞

(3)p∗ =

p

ρ · u2
∞

(4)�
′

=

�−min(�)

max(�)−min(�)

Figure 5.   Velocity component layers: (a) component in x direction; (b) component in y direction.
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diction. For the qualitative comparison, four different cases are considered, each one with a different geometry 
and AoA. All these cases can be found in Fig. 8.

The results show that the proposed CNN is able to accurately predict the velocity and pressure fields around 
the flow control devices in all the tested cases. The most problematic area is the wake behind the flow control 
device in all the analyzed cases, especially when predicting ux . Some errors are also visible in the contour of the 
airfoil. In geometries which have surfaces perpendicular to the flow, i.e., Gurney flaps and rotating microtabs 
with high angles of orientation, slight errors of velocity fields appear at the front side of the flow control device. 
However, the CNN is able to reliably predict the flow characteristics, and all these mentioned errors are not 
considered significant.

In order to obtain a quantitative view of these results, data distribution histograms are made for each analyzed 
magnitude. In agreement with the qualitatively compared fields, the data distribution histograms show nearly 
equal shapes, being the ranges with the most data the only ones where differences between the two methods can 
be appreciated. Figure 9 shows data distribution histograms.

In addition, the arithmetic mean (µ) and standard deviation (σ) of both methods are calculated from the data 
distribution histograms. These two values, in accordance with all the results shown above, show almost equal 
values for all magnitudes, as shown in Table 3.

Aerodynamic coefficient prediction.  In order to evaluate the accuracy of the network for predicting 
aerodynamic coefficients, the predicted CD and CL coefficients are compared to the benchmark values obtained 
by CFD simulations. In addition, the lift-to-drag ( CL/CD ) coefficient, which is calculated from the predicted 
coefficients, is also compared. The plots from Fig. 10 provide this comparison.

As the plots demonstrate, the CNN is able to reliably predict aerodynamic coefficients. In the case of micro-
tabs, CD values increase exponentially with low AoAs, and subsequently, for AoA > 6°, they decrease slightly. In 
the case of the Gurney flaps, this upward trend can also be seen throughout the analyzed range. In contrast, CL 

Figure 6.   Schematic view of the proposed CNN for velocity and pressure field prediction.

Figure 7.   Schematic view of the proposed CNN for aerodynamic coefficient prediction.



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8205  | https://doi.org/10.1038/s41598-022-12157-w

www.nature.com/scientificreports/

values follow a linear trend with respect to AoA in all the cases considered. With microtabs, the CD/CL ratio 
shows a sharp rise for low AoA, followed by a less pronounced drop and a further stabilization for high AoA. 
The rise and the fall are more pronounced as the length of the microtab increases. When using Gurney flaps the 
CD/CL coefficient follows a logarithmic trend, tending to flatten out for AoA > 4°.

CD predictions show small discrepancies between the two methods. With microtabs these differences become 
more noticeable as the microtab length increases and the AoA decreases, and with Gurney flaps as the AoA 
increases. In contrast, the predictions of the CL are almost the same in all the studied cases. Nevertheless, the 
results show that the network is able to predict this trend, with values close to those obtained by CFD.

In order to quantify the results, the absolute and relative errors of the predictions are studied. These errors are 
shown in Table 4. As previously demonstrated, the errors of the CD predictions are higher than those of CL , with a 

Figure 8.   Comparison of the velocity and pressure fields obtained by means of CFD and CNN: (a) Gurney flap 
L = 1% and AoA = 0°; (b) microtab L = 1%, β = − 15° and AoA = 2°; (c) microtab L = 1.5%, β = − 45° and AoA = 6°; 
(d) microtab L = 2%, β = − 75° and AoA = 9°.
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maximum relative error of 32.44%. However, the average relative error is 6.17%, which is considered acceptable. 
Low errors are observed in all the CL predictions, with an average relative error of 0.827%.

Performance analysis.  The main objective of using neural networks to predict flows is to reduce the com-
putational time required to run CFD simulations. Therefore, the computational time requirements for each 
method are compared. As shown in Table 5, neural networks clearly outperform CFD simulations in terms of 
computational time. As expected due to its simplicity, the CNN for aerodynamic coefficient prediction is the 
fastest one, being 16,148 times faster than the CFD simulations. However, the complete CNN used for field pre-
diction is also considerably fast, being 7529 times faster than the CFD. Regarding the network training time, it 
took 12 h to train the CNN for field prediction and 5 h to train the CNN for coefficient prediction, which means 
a total of 17 h. This is slightly longer than the time required to perform a single CFD simulation. A single core of 
an Intel Xeon 5420 CPU was used for running CFD simulations and CNNs.

Figure 8.   (continued)
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Figure 9.   Data distribution histogram of the test-set: (a) data distribution of ux ; (b) data distribution of uy ; (c) 
data distribution of p.
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Conclusions
In the present work, the implementation of flow control elements in airfoils using deep learning techniques is 
analyzed. With that objective, two different CNNs are proposed. One of them predicts the velocity and pressure 
fields around flow control devices implemented in the TE of the DU91W(2)250 airfoil, and the other one predicts 
the CD and CL aerodynamic coefficients of the airfoil for the same cases. These networks were trained and evalu-
ated using the results obtained from CFD simulations, in which the cell-set model was used to implement the 

Table 3.   Arithmetic mean and standard deviation of the results obtained by CFD and CNN.

Method

CFD CNN

ux uy p ux uy p

Arithmetic mean (µ) 20.9538 −2.5385 82.8164 20.9784 −2.5076 82.9625

Standard deviation (σ) 8.7620 2.0860 91.6118 8.7086 2.0939 90.7867

Figure 10.   Aerodynamic coefficient comparison of all the tested cases.

Table 4.   Summary of absolute and relative error of CD and CL coefficients predicted by the CNN.

Error

CD CL

Min Max Mean Min Max Mean

Absolute error 0.00002 0.00074 0.00023 0.0005 0.04 0.0089

Relative error 0.19% 32.44% 6.17% 0.033% 2.786% 0.827%

Table 5.   Computational time requirement comparison.

Method Computational time (s) Speedup Training time (h)

CFD 53,612 – –

CNN (field prediction) 7.12 7529 12

CNN (coefficient prediction) 3.32 16,148 5

CNN (total) 10.44 5135 17
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flow control devices. The dataset contains a total of 158 cases, with two different flow control devices, rotating 
microtabs and Gurney flaps, with different geometries and under different conditions.

Regarding the CNN for field prediction, the results indicate that the proposed network is able to predict the 
main flow characteristics around the flow control device, with very low errors, which mainly appear on the wake 
behind the flow control device and on the contour of the airfoil. This is attributed to the fact that the area of the 
wake behind the flow control device is the area in which the most differences appear between samples. Therefore, 
this area is the most conflicting one for the learning process of the neural network, and consequently, the area 
where most errors appear. Nevertheless, the network is able to correctly predict the main flow characteristics 
in this region.

With respect to aerodynamic coefficients, the CNN is also able to predict them accurately, with mean rela-
tive errors of 6.17% for CD and 0.827% for CL . In both cases, the networks are sensitive to small changes of the 
geometry or the AoA, which is a key feature for geometry optimization.

In terms of computational time, the proposed networks clearly outperform the CFD simulations, reducing 
the computational time in four orders of magnitude.

Therefore, this paper demonstrates that flow control devices can be studied by means of neural networks, with 
acceptable errors and a significative reduction of required computational time and resources.

Accepted: 6 May 2022
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