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Eye blink detection is a challenging problem that many researchers are working on because it has the
potential to solve many facial analysis tasks, such as face anti-spoofing, driver drowsiness detection,
and some health disorders. There have been few attempts to detect blinking in the wild scenario,
while most of the work has been done under controlled conditions. Moreover, current learning
approaches are designed to process sequences that contain only a single blink ignoring the case of
the presence of multiple eye blinks. In this work, we propose a fast framework for eye blink detection
and eye blink verification that can effectively extract multiple blinks from image sequences considering
several challenges such as lighting changes, variety of poses, and change in appearance. The proposed
framework employs fast landmarks detector to extract multiple facial key points including the ones
that identify the eye regions. Then, an SVD-based method is proposed to extract the potential eye
blinks in a moving time window that is updated with new images every second. Finally, the detected
blink candidates are verified using a 2D Pyramidal Bottleneck Block Network (PBBN). We also propose
an alternative approach that uses a sequence of frames instead of an image as input and employs
a continuous 3D PBBN that follows most of the state-of-the-art approaches schemes. Experimental
results show the better performance of the proposed approach compared to the state-of-the-art
approaches.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Eye blinking action is one of the significant vital signs that can
ndicate several human health issues such as red eye syndrome,
atigue, and drowsiness. Moreover, the signal of a sequence of
ye blinks is extracted and employed in many applications such
s disabled people communication, fake face detection, and face
nti-spoofing. To appropriately detect an eye blink, several image
nd video processing techniques should be performed before-
and. The first phase of a traditional eye blinking scheme is to
etect the face of the target person/s. There are a lot of face
etection approaches that can be found in the literature where
any of them (Chen, Huang, Peng, Zhou, & Zhang, 2020; Jiang &
earned-Miller, 2017; Kollreider, Fronthaler, Faraj, & Bigun, 2007;
i, Tang, Wu, Liu, & He, 2019; Viola & Jones, 2001) show good and
obust performances in the presence of several challenges.
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893-6080/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
After the face being detected, the goal is to correctly detect
the eyes for further processing. Researchers have proposed many
techniques that detect the two eyes directly or indirectly by
detecting their pupils and gazes. Such techniques can be divided
into two classes: Infra-red based techniques and appearance-
based techniques. The former category involves the techniques
that make use of cameras equipped with infra-red sensors to
obtain several eye location candidates based on their corneal
reflections. Despite their good performance in providing accurate
eye locations, the requirement of additional hardware remains an
obvious downside that needs to be tackled. On the other hand,
appearance-based techniques provide more practical frameworks
that can be easily implemented in various real-world applica-
tions. Likewise, such a category of techniques can be divided
based on their way of processing into two main subcategories:
feature-based techniques and model-based techniques. The first
subcategory consists of techniques that take advantage of the
eye symmetry concept when measuring numerous detected local
image features such as corner, edge, and gradient. Such a subcat-
egory does not require any learning beforehand which makes its
techniques more reliable to deal with untrained scenarios. How-

ever, such techniques are sensitive to noise and highly dependent
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n the accuracy of feature detection where falsely detected non-
ye features lead to less stable performance. On the contrary,
odel-based techniques employ the global appearance of the eye
r face images. Several machine and deep learning networks have
een proposed to extract the accurate location of the eye region
n addition to other facial features. These networks are usually
rained on raw eye images or set of facial features and provide
ccurate and robust eye detection in most cases.
The last phase of an eye blink detection framework is eye state

stimation where the state of the eye is identified whether it is
losed or open. Dozens of eye state estimation techniques are
roposed in the literature and they can be classified into three
ategories: template matching based, shape-based, and learn-
ng based techniques. Template-based techniques compare the
etected eye images with templates that represent both eye
tates and the similarities among these images are measured
o estimate the final eye state. On the other hand, shape-based
echniques make use of different geometric characteristics of
everal shape features such as circular shape, curvature, and
rojection of pixel intensities along with both horizontal and
ertical directions. The last category represents the techniques
hat use both machine and deep learning approaches to verify the
tate of detected eye images where their networks are basically
rained on eye state sequences of (close–open–close) images.
espite their good and robust performances, the majority of these
pproaches are not designed to handle a sequence of eye blinks
n the same video. An effective eye blink detection framework
hould be able to handle multiple blinks in one given video in
ddition to other challenges such as appearance changes and
llumination variations.

In this paper, we aim to use a vision-based framework for
utomatic eye blinking detection where we propose two different
pproaches that improve performance in challenging scenarios.
he first approach starts with constructing a feature-based matrix
hat contains temporal changes of the eyes, then uses SVD to
xtract the eye signal for eye blink detection. Finally, the detected
links are verified using a 2D pyramidal bottleneck block network
PBBN). The second approach uses an end-to-end 3D PBBN to
ecide whether there is a blink in a specific image sequence or
ot. The main contributions of this work can be summarized in
he followings:

• Introducing 2D and 3D light CNNs called Pyramidal Bottle-
neck Block Networks (PBBN) that contain Pyramid Bottle-
neck blocks.

• Proposing moving windowed-singular value decomposition
(SVD) for eye blinks detection

• Proposing an end-to-end 3D PBBN to determine the exis-
tence of blink within an image sequence

The remaining of the paper is organized as follows:
ection 2 presents related work on eye blinking. Then we intro-
uce and describe the proposed approaches in Section 3. Section 4
resents the experiments and discusses the obtained results.
inally, Section 5 draws some conclusions and points for future
irections.

. Related work

Dozens of eye blink detection techniques have been proposed
n the literature. These techniques can be classified into dif-
erent classes according to their input data, way of processing,
nd the features used. There have been a variety of methods
hat proposed to detect eye blinks by estimating the eye states
open/close) using a single image only. Such estimation mainly
tarts by extracting different sets of features such as histogram
f oriented gradients and local binary patterns which are fed
151
into different machine learning techniques to learn the difference
between both eye states. Recently, researchers started using dif-
ferent convolutional neural network architectures to enhance the
accuracy of the state estimation results.

Zhao, Wang, Zhang, Qi, and Wang (2018) proposed a frame-
work based on deep learning for eye blink classification com-
posed of two deep networks. First, they detect the face from
a frame using Viola–Jones, then the eye regions are cropped
using facial landmarks provided by a deformable face alignment
system. The image is fed to their first network which consists
of convolution layers, pooling layers and fully connected layers.
The last fully connected layer is followed by a Softmax function.
In the second network, a flatten vector representing the image’s
pixels is fed to multiple fully connected layers followed by a
Softmax function. In the end, they obtain three outputs: (i) fusion
of Softmax functions from the two networks, (ii) the output of
the first network and (iii) the output of the second network.
These three outputs are passed to cross-entropy loss function
which calculate the model error to train the whole system. This
framework could run in real-time, however it is vulnerable to
outdoor scenarios.

Li, Chang, and Lyu (2018) introduced a method of human eye
blinking detection to expose the fake faces in videos generated by
deep networks. They detected the face using Dlib library (King,
2009), then extracted the facial landmarks via Kazemi algorithm
(Kazemi & Sullivan, 2014). These landmarks were used to align
the face and crop the eye region. The cropped eye region of
each frame was fed to their proposed Long-term Recurrent Con-
volutional Networks (LRCN) which can memorize the dynamic
information from the input sequence. Generally, LRCN (Donahue
et al., 2015) is composed of a visual feature extractor using CNN
and sequence learning using a stack of recurrent neural networks
(RNNs). They used the first fully connected layer of the VGG-
16 model (Simonyan & Zisserman, 2014) to extract the features.
Similar to Hu et al. (2020) and Li et al. (2018) proposed to
use a RNN to capture temporal information of eye blinking in
unconstrained scenarios. Instead of using deep features extracted
by CNNs, they extracted the eye features using a lightweight
uniform LBP descriptor (Ahonen, Hadid, & Pietikainen, 2006).

The second category of methods represents the techniques
that process the whole video rather than a single image where the
changes with respect to eye appearance features or eye motion
are tracked and analyzed to construct a signal that represents
the blinking events over time. Lalonde, Byrns, Gagnon, Teasdale,
and Laurendeau (2007) introduced a multi-sensor approach that
detects eye blinks in low contrast under near-infrared images.
Initial eyes locations are calculated by finding the minimum of the
large valleys in the extracted face profiles (row-wise projection).
These initial eye locations are used to identify two eye regions
of interest (ROI) in which SIFT feature points are extracted and
tracked over time using Kalman filter to maintain the position
alignment among successive frames. Then, motion detection fol-
lowed by a thresholding procedure are performed in the tracked
ROIs to identify the best eye blobs based on several geometry
metrics such as area, position, angle, and ratios. Finally, the opti-
cal flows in the selected blob regions are computed to determine
the dominant direction where vertical downward motion vectors
are used to indicate the existence of an eye blink. This approach
shows high detection rate and it performs in near real time.
However, the usage of infrared illumination may cause harm to
eyes especially at close distances.

Lee, Lee, and Park (2010) proposed a technique that detects
both face and eye regions using Adaboost algorithm followed
by illumination, binarization, and morphological operations. They
introduced two features to detect the eye blink properly. The
first feature is extracted by computing the height to width ratio
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Fig. 1. Eye system overview.
of each eye region. The second is obtained by computing the
cumulative difference of the number of black pixels over time
based on the assumption that this difference corresponds to the
changes in the eye state. For better detection accuracy, the two
extracted features are fed to a support vector machine (SVM)
which is adaptively selected based on view angle of the target
face. This approach shows robustness to different facial poses
and different lighting conditions. On the downside, the eye blink
detection misdetects many eye blinks due to the sensitivity of
the proposed cumulative difference procedure to camera location,
eye size, and initial eye mask.

Drutarovsky and Fogelton (2014) presented a motion based
eye blink detection method that tracks the initial eye regions
over time using a flock of KLT trackers. The tracked eye regions
are split into 6 blocks where the dominant motion vector in
each block is extracted by averaging the local vertical motion
components located in the processed block. Then, a simple state
machine is fed with the variance of the extracted average motion
vectors to determine the eye state and detect the eye blink
accordingly. Recently, the same authors enhanced their work by
using Gunnar-Farneback tracker which provides less outliers than
KLT tracker and better distribution of motion vectors. Subse-
quently, all vertical components of extracted motion vectors are
normalized by the intraocular distance and averaged to construct
a waveform that shows changes in its magnitudes while eye
blinks. More recently, the same authors proposed another eye
blink detection scheme that uses optical flow for the motion
detection phase and LSTM for the eye state estimation phase.
Their proposed approaches achieved high accuracy when they are
tested on the existed datasets in addition to their proposed one.
However, the tested datasets are limited to indoor videos and
involves limited number of persons.

Chen, Wu, and Chien (2015) proposed a set of schemes for eye
blink detection and gaze estimation without taking the advantage
of infrared illumination. After the eyes being detected, several
image preprocessing procedures are performed to eliminate the
noise caused by the changes in normal-light conditions and re-
flections. To tackle the challenges presented while detecting eye
parts under visible lighting conditions, they modified Starburst
algorithm to make it more robust to such challenges. Using the
adaptive Starburst extraction algorithm, their proposed technique
correctly identifies both the iris and limbus features. Afterwards,
the aspect ratio of the bounding box that contains the iris mask is
152
computed over time where large values indicate eye-close states
while small values indicate eye-open states.

Daza, Morales, Fierrez, and Tolosana (2020) proposed an eye
blink classification approach using a modified VGG16 architec-
ture. They also presented a dataset for eye blink classification
under controlled conditions using three different sensors, namely
2 cameras (RGB and NIR) and electroencephalography (EEG) to
detect the blink. Ryan et al. (2021) focused on blink detection
using event cameras by proposing a fully convolutional gated re-
current YOLO network to detect eyes and then track them. Then,
a fixed time window is used to analyze the presence/absence of
eye blink.

3. Proposed approach

In this section, we aim to provide a detailed explanation of
the proposed approach that tackles several challenges in the
field of eye blinking detection. Our approach is divided into
two main phases. The first one involves several preprocessing
procedures such as face detection and eye detection while the
second phase involves two processing stages: eye blinks detection
via moving-windowed SVD and eye blink verification via 2D PBBN
that verifies the existence of eye blink in each sub-sequence
candidate extracted in the first stage. The general workflow of
the proposed approach is shown in Fig. 1.

3.1. Face/facial landmark detection and eye region extraction

The first task of most facial analysis approaches is face de-
tection. For this reason, the best face detection approach that
is suitable to our eye blink detection approach is selected. The
face detector we opted for is based on a Single Shot Detector
(SSD) framework (Liu et al., 2016) using a ResNet model. After
the face being detected, the eyes should be accurately localized
to avoid the negative impact that false eye localization has on
the eye blinking system. Therefore, our work is proposed to effec-
tively tackle the eye localization challenges such as robustness in
uncontrolled conditions, computation time and sensitivity to the
illumination changes.

For an efficient eyes localization process, we propose to use
Kazemi algorithm (Kazemi & Sullivan, 2014), which detects 68
facial points with specific coordinates that surround certain parts
of the face including the eyes and nose (see 2) which can be



S.E. Bekhouche, I. Kajo, Y. Ruichek et al. Neural Networks 152 (2022) 150–159

c
m
i
t
T
t
T
t
d
t
t
r

3

R
m
k
t
c
t
b
s
v
c
t
e
e
s

U

w
U
s
w
w
a
i
f
b
t
s

o
v
r
b
t
a
b
e
[
a
b
b
e
o
a
T
a
r
h
p
{

d
b
t
t
t
e

m
t
i
i
d

3

f
i
m
(
a
m
(
r
P
i
r
t
s
t
t
s

t

Fig. 2. Positions of 68 facial landmarks.

omputed in about 1 millisecond. After detecting the facial land-
arks in the input facial image as shown in Fig. 2, the face pose

n the 2D image is rectified based on the eyes center similar
o Bekhouche, Ouafi, Dornaika, Taleb-Ahmed, and Hadid (2017).
hen, the landmarks from 37 to 42 and from 43 to 48 are used
o crop the right-eye image and the left-eye image respectively.
he method of cropping the eyes depends on padding the region
hat surrounds the landmarks of the intended eye by 25% in all
irections. Finally, the cropped left and right eyes are resized
o 96 × 96 pixels and placed according to their timestamp into
wo image sets representing both left and right eye sequences
espectively.

.2. Moving-windowed SVD

Suppose we have an image sequence A = {I1, I2, . . . , Ik} ∈
m×n×k that contains the cropped left/right eye images where
refers to the image height, n refers to the image width, and
indicates the number of images. Thus, a feature-based matrix

hat contains temporal changes of the pixels in eye regions is
onstructed as follows. After properly tracking and segmenting
he eye regions, the segmented eye regions are divided into d
locks. Then, the pixel energy (sum of the square pixels’ inten-
ities) in each block is computed to construct a one-dimensional
ector that contains the energy values of all blocks in a single
ropped frame. Subsequently, the extracted vectors are employed
o construct a k × d matrix B = {e1; e2; . . . ; ek}, where each row
t is an energy observation d-dimensional vector. To extract the
ye change signal that best represents the eye blinking event, the
ingular value decomposition of matrix B is computed as follows:
TBV = S = diag(s1, . . . , sp) ∈ Rk×d (1)

here p = min{k, d} and s1 ≥ s2 ≥ · · · ≥ sp ≥ 0. The matrices
∈ Rk×k and V ∈ Rd×d are the left and right singular vectors, re-

pectively. Practically, a reduced-size SVD is utilized in this paper
here the number of rows in the matrix U ∈ Rk×k is reduced to d
here U become U ∈ Rk×d. As discussed in Kajo, Kamel, Ruichek,
nd Malik (2018), the matrix U contains the same temporal
nformation as the corresponding original matrix B. Given this
act, the structures of the left singular vectors of matrix U should
e further investigated. From a signal processing point of view,
he projection of matrix B onto the first left singular vector u1
ubspace reveals the low-rank information embedded in B. On the
153
ther hand, the projections of B onto the remaining left singular
ectors’ u2, u3 . . . ud subspaces reveal the sparse information that
epresents the temporal changes in B. Therefore, the vector that
est represents the eye change signal is expected to be one of
hese vectors. The left singular vectors contain both negative
nd positive entries with values ranging between −1 and 1. For
etter representation and analysis of the estimated eye signal, the
ntries of the vectors of interest are scaled to fall on the interval of
0 1]. The scaled vectors are temporally processed using a moving
verage filter to reduce the outliers and remove the noise. The
est vector that represents the eye change signal is determined
ased on its frequency information. To achieve this, a frequency
stimation via fast Fourier transform is performed on each vector
f interest and the vector having its principle frequency within
predefined interval and has the largest amplitude, is extracted.
he entries that correspond to the frames when the eye is closed
re expected to have large values while the entries that cor-
espond to the frames when the eye is open are expected to
ave small values. Based on this fact, a coarse peak analysis is
erformed on the extracted vector-signal to obtain a set C =

A1, A2, . . . , Al} ∈ R96×96×k×l that contains l sub-sequence can-
idates of size 96 × 96 × k which are expected to show the eye
link events. Due to the fact that the verification stage is designed
o deal with sequences with single potential eye blink, the ob-
ained candidates are fed individually into the proposed 2D PBBN
o verify the presence/absence of an eye blink. Fig. 3 illustrates an
xample of eye change signal extraction from a given video.
To achieve the real-time requirements, a moving window

echanism is used where the initial SVD components are ex-
racted using the first k frames and the first frame in the sequence
s removed when a new frame is arrived. The eye change signal
s updated every second and the new added part is analyzed to
etect new eye blink/s.

.3. Pyramidal convolution neural network

Deep learning algorithms have significantly improved the per-
ormance in many computer vision tasks where deep learn-
ng models can learn more robust features compared to classic
ethods. Starting with LeNet (LeCun et al., 1995) then Alexnet

Krizhevsky, Sutskever, & Hinton, 2012), more generalized deep
rchitectures have been merged like VGG (Simonyan & Zisser-
an, 2014), ResNet (He, Zhang, Ren, & Sun, 2016) and Inception

Szegedy et al., 2015). Inspired by residual block and bottleneck
esidual block (He et al., 2016), we propose a simple block named
yramid Bottleneck which can be applied to both 2D and 3D
nputs. The idea behind the Pyramid Bottleneck (PB) block is to
educe the total number of blocks in an architecture which leads
o reduce the number of the parameters. The importance of a
maller number of parameters is mainly to shorten the inference
ime of the model and to fit the size of the model to the size of the
raining set, because the eye blink dataset does not contain many
amples to train a model with a large number of parameters.
The proposed PBBN is composed of a starting block that con-

ains a convolutional layer that filters the 96 × 96 × 3 input
image with 64 kernels of size 3 × 3 without stride, a batch nor-
malization layer which normalizes each input channel, ReLU layer
which performs a threshold operation for the negative values to
be set as 0 and a max-pooling layer of 3 × 3 with a stride of
1 × 1. Then, multiple PB blocks started with the convolution of 64
kernels and it doubles the kernels after each PB block. Finally, the
networks end with a global average pooling which is connected
with a fully connected layer that has the size of the number of
classes or number of labels of the intended task.

The PB block is a bunch of branches shaped like a pyramid
so that each branch contains multiple layers, the number of
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Fig. 3. Eye signal extraction from image sequence of eyes.
Table 1
Architecture of an example of 3D PBBN that contains one pyramid with two branches.
Block Layer Filters number Filter size Stride size Output

Input

3D Conv 64 3 × 3 × 3 × 3 1 × 1 × 2 96 × 96 × 7 × 64
BN – – – 96 × 96 × 7 × 64
ReLU – – – 96 × 96 × 7 × 64
MaxPool 1 3 × 3 × 3 1 × 1 × 2 96 × 96 × 4 × 64

P1

B1 3D Conv 64 1 × 1 × 3 × 64 2 × 2 × 1 48 × 48 × 4 × 64
BN – – – 48 × 48 × 4 × 64

B2

3D Conv 64 3 × 3 × 3 × 64 1 × 1 × 1 96 × 96 × 4 × 64
BN – – – 96 × 96 × 4 × 64
ReLU – – – 96 × 96 × 4 × 64
3D Conv 64 1 × 1 × 3 × 64 2 × 2 × 1 48 × 48 × 4 × 64
BN – – – 48 × 48 × 4 × 64

Add ADD – – – 48 × 48 × 4 × 64
ReLU – – – 48 × 48 × 4 × 64

Output AvgPool – – – 1 × 1 × 1 × 64
FC – – – 2
layers changes according to the number of PB. Let say we have
l branches, the first branch has one convolution layer, the second
branch has two convolution layers, and so on. Each convolu-
tion layer is followed by a batch normalization layer and ReLU
layer except the last convolution layer of each branch where it
is followed only by batch normalization. The last convolutions
have filters of size 1 × 1 with a stride of 2 × 2. After each
B block, the channels dimension increases by double, and the
patial dimensions (i.e., h × w) are reduced to half, and each PB
ranch starts with convolution layers that have a filter size of
l − 1 × 2l − 1, and it keeps reducing the filter size by 2 of the
ext convolution of the same branch where l is the number of

branches. The PB block could be explained mathematically as a
given input x ∈ Rc×h×w , where c is the number of channels; h, w
re the height and width, respectively. The new feature map F ′ is

computed as:

F ′(x) =

l∑
b=1

Fl(x) (2)

where l is the number of the branches inside the Pyramid Bottle-
neck and Fl is series of l convolutions. The outputs of branches are
added element-wise together, hence the convolution layers have
zero-padding except the last convolution layer of each branch,
Fig. 4 illustrates an example of PB block with 4 branches.

Regarding the 3D Pyramid Bottleneck Block, it has the same
characteristics as 2D one except for the input that contains depth
information and they also differs in the spatial size of the filters
where their size in 2D is l × l as for 3D it is l × l × 3, this is
due to the fact that the depth has small dimension compared
to the spatial information. Fig. 5 illustrates an example of 3D PB
154
block with 3 branches. Similar to 2D PBBN, 3D PBBN is composed
of an opening block that contains a 3D convolutional layer that
filters the 96 × 96 × 13 × 3 input sequence with 64 kernels of
size 3 × 3 × 3 with stride 1 × 1 × 2 for downsampling the
temporal dimension where 13 is the number of frames, a batch
normalization layer, ReLU layer and a 3D max-pooling layer of
3 × 3 × 3 that also downsamples the temporal dimension to half
and maintains the spatial and channels dimensions. Then, come
multiple 3D PB blocks like 2D CNN that down-sample the spatial
dimension by half and double channels dimension after each 3D
Block. The 3D PBBN ends with global average pooling, a fully
connected layer that has two outputs and a softmax layer (case of
eye blinking classification). Table 1 illustrates the architecture of
an example of a 3D PBBN that contains one pyramid with two
branches. As the latter table shows, the downsampling of the
temporal dimension is done only in the first 3D convolution layer
and the max-pooling layer. On the other hand, the downsampling
of the spatial dimension is done after each PB block where the
output will be downsized to half. Finally, the global average pool-
ing layer will downsample both spatial and temporal dimensions
to generate one feature map that is connected to a fully connected
layer with an output corresponding to the specific task of the
model.

4. Experiments

We consider two baseline tasks to evaluate the proposed work.
The first task relates to eye blink classification where the objec-
tive is to determine the presence or absence of an eye blinking
in a short sequence of images that contain only single eye blinks.
As for the second task, named eye blink detection, the objective
is to determine the time and duration of the detected eye blink.
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Fig. 4. Example of 2D Pyramid Bottleneck Block with 4 branches.
Fig. 5. Example of 3D Pyramid Bottleneck Block with 3 branches.
i
t

.1. Eye blinking classification

.1.1. Datasets
In this work, we focused on real scenarios of eye blinking clas-

ification, therefore we chose HUST-LEBW dataset as a suitable
ataset for eye blinking classification in the wild. This dataset
as created using clips from 20 movies and TV series such as
he Matrix, A Chinese Fairy Tale and Game of Thrones. These
 a

155
clips were split into a training set and testing set and each clip
is divided into multiple sub-clips videos, so the total number
of videos reaches 90. Each video is either with a resolution of
1280 × 720 or 1456 × 600 and the actors in the videos appear
n different poses and under different viewpoints. Through all
he videos, 1314 samples were extracted and each sample is
nnotated with either a presence or absence of eye blink. The
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Table 2
Distribution of sequences in HUST-LEBW dataset.
Eye Blinking Train Test

Right Yes 256 126
No 190 98

Left Yes 243 122
No 181 98

Table 3
Performance of the different variants of the proposed 3d PBBN in HUST-LEBW
dataset.
Network Parameters F1 Recall Precision

3D PBBN P2B2 437184 0.8463 0.8548 0.8379
3D PBBN P2B3 1974912 0.8640 0.8710 0.8571
3D PBBN P2B4 5933952 0.8265 0.8548 0.8000
3D PBBN P3B2 1286784 0.8509 0.8629 0.8392
3D PBBN P3B3 5775360 0.9105 0.8871 0.8730
3D PBBN P3B4 17220096 0.8245 0.8145 0.8245

details are shown in Table 2. Each sample has a time span of 13
frames.

4.1.2. Evaluation
To address the problem of eye blinking classification, we per-

ormed some experiments using different combinations of the
roposed 3D PBBN on HUST-LEBW dataset. As a classification
roblem, the evaluation of the performance of these experiments
s done using Recall, Precision and F1 metrics which are computed
s follows:

ecall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1 =
2

1
Recall +

1
Precision

(5)

Unlike the proposed 2D PBBN, the proposed 3D PBBN is ap-
plied on the aggregate successive frames to learn the spatiotem-
poral information as we mentioned in Section 3.3. For a fair
comparison with other works, we have used a span time of
13 frames as depth for the input video sequence that is fed to
the proposed 3D PBBN. The training of the network is similar
to the training of 2D PBBN, however, we reduced the mini-
batch to 16 samples. Also, the loss function differs, we used
cross-entropy function with mutually exclusive classes (blink/no-
blink). We have chosen to evaluate the performance of different
combinations of the proposed 3D PBBN by changing the number
of pyramids from 2 to 3 and the number of branches of each
pyramid from 2 to 4, which gives rise 6 combinations. Table 3
illustrates the results of each 3D PBBN combination on the eye
blinking classification problem.

To show the generalization ability and the stability of the pro-
posed model, we conducted more experiments besides the latter
one. Specifically, we conducted three groups of experiments. The
results of these experiments are shown in Table 4.

In the first group, we try to reduce the randomness of the
training of the deep network. To this end, training and testing
were repeated five times with the same training/test split. The
average and standard deviation of recall, precision and F1 score
were reported. In the second set of experiments, we aim to reduce
the randomness introduced by the selection of the training set.
For this purpose, we perform 5 different random splits (70% for
the training and 30% for the tests) and report the corresponding
average and standard deviation of the evaluation metrics. In the
last set of experiments, we use the classical scheme of five fold
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Fig. 6. ROC curves of the eye blinking classification results of the 3 branches
3D PBBN combinations.

cross-validation. As can be seen, the obtained standard deviations
are relatively small for all types of runs, indicating that the
solution proposed by our scheme is stable both in terms of the
training process of the network and in terms of the selected
training images or videos.

From this table, we can observe that 3D PBBN P3B3 (3 pyra-
mids with 3 branches in each pyramid) has the best results among
the other variants. Also, we can notice that the best results are ob-
tained from 3 branches pyramids (rows 2 and 5 of Table 7). Fig. 6
illustrates the ROC curves of the eye blinking classification results
of the three 3D PBBN combinations, where it shows the promising
potential performance of the three combinations of the proposed
3D PBBN with three branches. For a comprehensive evaluation,
Table 5 provides comparison between the best combination (3D
PBBN P3P3) and the state-of-the-art approaches where it reveals
that the proposed approach is significantly better compared to
the rest approaches in the recent benchmark.

4.2. Eye blinking detection

4.2.1. Datasets
The Epan-EyeBlink dataset1 was collected from Youtube

videos running at frame rates of 30fps. We collected and trimmed
18 videos with a variation of subjects, poses, no glasses/glasses,
expressions and illumination. Unlike other publicly available
datasets, the videos in the proposed dataset have multiple blinks
in their sequences which allows studying the time and width
of each blink. The average time of the videos is 26 s, and the
average number of blinks is 15. Fig. 7 shows some samples from
our Epan-EyeBlink dataset.

4.2.2. Evaluation
We use the same metrics as for eye blinking classification.

However, the TP, FP, and FN are defined in a different way where
TP means there is intersection in time dimension between the
predicted blink and ground truth. FN and FP are the numbers of
missed blinks and the number of false detected blinks.

In this section, we performed three evaluations for eye blink-
ing detection. The first one is concerned with the proposed mov-
ing windowed-SVD approach, the second one about the proposed

1 https://github.com/Bekhouche/Epan-EyeBlink.

https://github.com/Bekhouche/Epan-EyeBlink
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Fig. 7. Samples from Epan-EyeBlink dataset.
Table 4
Performance of the proposed 3D PBBN using different training strategies in HUST-LEBW dataset.
Strategy Eye idx Recall Precision F1 score

5-repetition Left 0.9049 ∓ 0.0093 0.8805 ∓ 0.0086 0.8925 ∓ 0.0135
Right 0.8984 ∓ 0.0067 0.8844 ∓ 0.0063 0.8913 ∓ 0.0060

5-random split Left 0.9032 ∓ 0.0103 0.8770 ∓ 0.0191 0.8898 ∓ 0.0116
Right 0.8952 ∓ 0.0181 0.8691 ∓ 0.0138 0.8819 ∓ 0.0142

5-fold cross validation Left 0.8968 ∓ 0.0177 0.8642 ∓ 0.0199 0.8801 ∓ 0.0135
Right 0.8901 ∓ 0.0188 0.8593 ∓ 0.0203 0.8744 ∓ 0.0180
Table 5
Performance comparison among the different eyeblink verification methods on HUST-LEBW dataset.
Method Eye idx Recall Precision F1 score

Morris (ver.) (Morris, Blenkhorn, & Zaidi, 2002) (2002) Left 0.5246 0.4741 0.4981
Right 0.5635 0.5064 0.5334

Morris (hor.) (Morris et al., 2002) (2002) Left 0.6393 0.5342 0.5821
Right 0.5476 0.5107 0.5285

Morris (flow) (Morris et al., 2002) (2002) Left 0.4918 0.4918 0.4918
Right 0.4286 0.4741 0.4502

Chau (Chau & Betke, 2005) (2005) Left 0.1721 1.0000 0.2937
Right 0.2302 0.9656 0.3718

Drutarovsky (Drutarovsky & Fogelton, 2014) (2014) Left 0.1190 0.4757 0.1904
Right 0.0952 0.2860 0.1428

Daza (Daza et al., 2020) (2020) Left 0.9603 0.6080 0.7446
Right 0.7950 0.7348 0.7637

Hu (Hu et al., 2020) (2020) Left 0.7805 0.7385 0.7589
Right 0.8333 0.7778 0.8046

Proposed (3D PBBN) Left 0.9161 0.8812 0.8983
Right 0.9048 0.8507 0.8769
Table 6
Results of the proposed SVD approach on Epan-EyeBlink dataset.
Video Recall Precision F1
1 0.8205 0.8205 0.8205
2 1.0000 0.2405 0.3878
3 0.9048 0.4750 0.6230
4 0.9467 0.4863 0.6426
5 0.9200 0.4035 0.5610
6 1.0000 0.5778 0.7324
7 1.0000 0.0909 0.1667
8 0.8537 0.5512 0.6699
9 0.8148 0.4074 0.5432
10 1.0000 0.8636 0.9268
11 0.9245 0.6164 0.7396
12 1.0000 0.3483 0.5167
13 1.0000 0.1374 0.2416
14 1.0000 0.3226 0.4878
15 1.0000 0.6419 0.7819
16 0.7609 0.6604 0.7071
17 0.9635 0.6839 0.8000
18 1.0000 0.2815 0.4393
Average 0.9394 0.4783 0.5993
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2D PBBN, and the last one evaluated the combination of the
proposed moving windowed-SVD method and the proposed 2D
PBBN. Herein, we evaluate the proposed moving windowed SVD
on the Epan-EyeBlink dataset, the detailed results are presented
in Table 6. The results show poor precision and high recall owing
to the fact that the proposed moving windowed-SVD gives a lot
of false detected blinks. On the other hand, it detects most of the
blinks.

In the case of the combination-based approach, the objective
of the 2D PBBN is to verify the existence or absence of eye blink to
enhance the performance of the SVD approach by filtering most
of the false detected blinks. Therefore, we first trained a light 2D
PBBN (2 pyramids and each pyramid has 2 branches) using some
images of the HUST-LEBW dataset. To make the database suitable
for training the proposed light 2D PBBN, we took three images
from each sequence and labels them similar to their sequence
label, so that we have 2610 images for training and 1332 images
for validation. The best-achieved result on the validation subset
was 91.14% recall.

The results of the 2D PBBN on the Epan-EyeBlink dataset
are given in Table 7. Then, the trained network is applied on
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Table 7
Results of the proposed PBBN approach on Epan-EyeBlink dataset.
Video Recall Precision F1
1 0.8478 1.0000 0.9176
2 1.0000 1.0000 1.0000
3 0.9545 0.9545 0.9545
4 0.9074 0.9608 0.9333
5 0.8846 0.8846 0.8846
6 1.0000 0.9808 0.9903
7 1.0000 0.6364 0.7778
8 0.7917 0.9500 0.8636
9 0.9107 0.9623 0.9358
10 1.0000 1.0000 1.0000
11 0.9381 0.9464 0.9422
12 1.0000 0.8750 0.9333
13 1.0000 0.6667 0.8000
14 1.0000 0.9268 0.9620
15 1.0000 0.9517 0.9752
16 0.7794 1.0000 0.8760
17 0.9638 0.9568 0.9603
18 1.0000 0.9143 0.9552
Average 0.9432 0.9204 0.9257

Table 8
Results of the proposed SVD+2D PBBN approach on Epan-EyeBlink dataset.
Video Recall Precision F1
1 0.8478 1.0000 0.9176
2 1.0000 1.0000 1.0000
3 0.9512 0.9750 0.9630
4 0.9699 0.8815 0.9236
5 0.9636 0.9298 0.9464
6 1.0000 0.9333 0.9655
7 1.0000 0.8485 0.9180
8 0.9130 0.9921 0.9509
9 0.9138 0.9815 0.9464
10 1.0000 0.8636 0.9268
11 0.9490 0.9371 0.9430
12 1.0000 0.8764 0.9341
13 1.0000 0.8550 0.9218
14 1.0000 0.8629 0.9264
15 1.0000 0.9256 0.9614
16 0.8281 1.0000 0.9060
17 0.9733 0.9430 0.9579
18 1.0000 0.9556 0.9773
Average 0.9617 0.9312 0.9437

all the detected blink candidates obtained by the proposed SVD
based method, and the results are shown in Table 8. Due to the
high recall of the proposed 2D PBBN based verification phase,
the thresholding parameters used in the peak analysis proce-
dure applied on the extracted eye signals, are set to be as low
as possible. Such step guarantees the detection of the majority
existed eye blinks in an eye signal which is clearly indicated
by the high precision values in Table 8. On the other hand,
lowering the thresholding parameters increases the likelihood of
false detections which is resulted in low recall values as reported
in Table 8.

The performance comparison of the proposed approach with
he recent state-of-the-art approaches on the proposed Epan-
yeBlink dataset is provided in Table 9. We can observe that our
roposed SVD based method has a better recall than the other
tate-of-the-art approaches however its precision is very low due
o the multiple false detections. On the other hand, the proposed
BBN has good precision and recall. Wherefore, the combination
f SVD + PBBN improves both precision and recall and it has the
est results among the other works.

. Conclusion

In this paper, we proposed different supervised and unsuper-
ised learning approaches to provide an effective and robust eye
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Table 9
Performance comparison among the different eyeblink detection methods on
Epan-EyeBlink dataset.
Method Recall Precision F1
Li (Li et al., 2018) (2018) 0.8507 0.8153 0.8326
Maior (Maior, das
Chagas Moura, Santana, & Lins,
2020) (2020)

0.8976 0.6120 0.7278

Hu (Hu et al., 2020) (2020) 0.8712 0.8636 0.8674
Proposed (SVD) 0.9394 0.4783 0.5993
Proposed (PBBN) 0.9432 0.9204 0.9257
Proposed (SVD-PBBN) 0.9617 0.9312 0.9437

blink detection framework. First, we proposed an efficient 3D
model to determine the exists of an eye blink in eye sequence
images as this model contains a small number of parameters
compared to known CNN models. Second, we incorporated the
unsupervised learning using SVD which is effectively employed to
extract the eye motion signal that contains unique patterns which
represent the eye blinks. Then, the supervised learning based on
the 2D PBBN which is utilized to verify the detected eye blink
candidates and enhance the detection performance in terms of
recall values. Such fusion of supervised and unsupervised learning
approaches provides a robust eye blink detection framework that
is capable of handling several challenges such as different light-
ing conditions, variety of appearance, and multi-blink sequences.
Moreover, available datasets within this research field were lim-
ited to sequences with only one eye blink per sequence which
in turn prevents the evaluation of the performance of proposed
techniques in the long-term and in the presence of the challenges
that accompany these sequences. Therefore, we introduced a new
dataset that involves several videos with multiple eye blinks in
each sequence in addition to different challenges. The experimen-
tal results indicate the effectiveness and outperformance of the
proposed framework compared to state-of-the-art methods.

As future work, we envision the use of temporal transform-
ers networks and the improved combinations of CNN-LSTM for
eye blinking and other related applications such as yawning
and drowsiness detection. One limitation of the state-of-the-art
eye blinking methods is that they require frontal face. Thus, we
envision trying to tackle and investigate this problem by using
non-frontal faces.
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