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1. Introduction

Our purpose is to study the classical approximation of the linearized version of a three

wave kinetic equation, around one of its equilibria,

0

So(ra) = 7 (u(r.y

) —u(r,z))K(z,y)dy, 7>0,z>0 (1.1)
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1 1
R

K(x,y)( ) Ve >0, Yy >0, x #y. (1.2)

In a condensed gas of quantum Bose particles ([17,27]), correlations arise between the
superfluid component and the normal fluid part corresponding to the excitations. This
causes number-changing processes, where an excitation splits into two others in presence
of the condensate. A kinetic equation which includes these processes in a uniform Bose gas
was first deduced in a series of papers by Kirkpatrick and Dorfman [22]. More recently,
Zaremba & al. extended the treatment to a trapped Bose gas by including Hartree—Fock
corrections to the energy of the excitations, and derived coupled kinetic equations for the
distribution functions of the normal and superfluid components, sometimes called ZNG
system (see [33]). Kinetic equations for quantum particles although similar in many
aspects with the classical Botzmann equation, present new and interesting properties
and have already been considered in the mathematical literature (cf. [14,23,29,30] and
references therein).

Only solutions that do not depend on the space variable are considered in this paper.
First because our interest is mainly centered on the properties of the collision operator,
but also because the homogeneity hypothesis simplifies very much the difficulties. These
solutions are called spatially homogenous, or simply homogeneous. As noticed in [31],
§5.2, they naturally arise in numerical analysis where all numerical schemes achieve a
splitting of the transport operator and the collision operator. It is also expected that
spatial homogeneity is a stable property, in the sense that a weakly inhomogeneous initial
datum leads to a weakly inhomogeneous solution of the Boltzmann equation, as it has
been mathematically justified in [2] under some ad hoc smallness assumptions.

Under the conditions of spatial homogeneity, in the limit of temperature below but
close to the critical temperature, the following system was first deduced in [10,22],

on

a(tvp) = Cl,Q(nC(t)5 n(t))(p) t> 07 pE Rga (a)

where C1 2(n.,n) is the three waves collision integral,

Ci2(nc(t),n(t)) = ne(t)I3(n(t))(p) (1.4)
// (p.p1.p2)—R(p1,p,p2) —R(p2. p1,p)|dprdpa,  (1.5)
(R3)2
R(p,p1,p2) = [6(|p|* = |p1]® = |p2|*)0(p — p1 — p2)] X
X [nina(1+n) — (1 +mn1)(1 + na2)nj. (1.6)

In these notations ny = n(t, pe), n(t, p) denotes the density of particles in the normal gas
that at time ¢ > 0 have momentum p and energy w(p) = |p|?, and n.(t) the density of
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the condensate at time ¢. The term (1.4) describes the 1 <+ 2 splitting of an excitation
into two others in the presence of the condensate. For example (1.6) is for the splitting
of the particle with momentum p in particles of momentum p; and po, and similarly for
R(p1,p,p2) and R(p2,p1,p). The specific form of such a term depends on the dispersion
relation w(|p|) for the energy of quasiparticles and on the matrix element M of the
effective Hamiltonian describing the interaction between them. The expression [p|* for
the dispersion relation is deduced from the well established Bogoliubov approximation

gn|p|2 |p|2 2\
(Ipl) = (T + (%) )

where m is the mass of the particles, g = 4ram ! is the interaction coupling constant and
a is the s-wave scattering length, n is the total particle density. When the temperature T’

of the gas is low but still such that kgT >> gn. (where kg is the Boltzmann constant)
2

the approximations w(|p|) ~ % + gn. and |MJ? = g;:; are used. In order to simplify

the notations it is assumed in (1.4)—(1.6) without loss of generality, that the mass of the

particles is m = 2 and the interaction coupling constant is g = 1.

Other theoretical models do exist to describe Bose gases in presence of a condensate
(cf. [27]), but ZNG system, and (1.3a), (1.3b) in particular, are specially well suited to
apply analytical PDE’s methods and obtain quantitative estimates of some important
properties.

It is well known that the equation (1.3a) has a family of non trivial equilibria ny,

no(p) = vo(lp|*) (1.7)

vo(w) = (e — 1)71, Yw > 0. (1.8)

The parameter 8 may be any positive constant and is related to the temperature T' > 0 of
the gas at equilibrium ng through the formula, 8 = 1/(kgT) where kp is the Boltzmann’s
constant. It is easily checked that R(p,px,pe) = 0 if n = ng.

It is known (cf. [8]) that for all constants p > 0 and all non negative measures n;,
with a finite first moment, the system (1.3a)—(1.6) has a weak solution (n(t),n.(t)) with
initial data (n;y, p). For all ¢ > 0, n(t) is a non negative measure with finite first moment
that does not charge the origin, and n.(t) > 0. System (1.3a)-(1.6) was also treated in

One basic aspect of the non equilibrium behavior of the system condensate—normal
fluid is the growth of the condensate after its formation (cf. [33,5,27], and references
therein). Although the relation of n. with the condensate amplitude is not straightfor-
ward (cf. [33,19,27]), it seems nevertheless very closely related to the total number of
particles of the system having an energy less than an arbitrarily small, but fixed, value
(cf. [19]). It turns out that the evolution of n.(t) crucially depends on the behavior of
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n(t,p) as |p| — 0 as indicated for example by Proposition 2 in [30]. When the measure
n(t) is written as n(t,p) = |p|~tg(t,|p|?), it is proved in [8] that, if g(¢) has no atomic
part and has an algebraic behavior as [p| — 0 then,

n(t,p) = a(t)lp|?, (1.9)
Ip|—0
for some function a(t), (cf. [8]). These results of [8] and [30] make use of some regularity
hypothesis on the solution n(t, p). But none of these properties have been proved to hold
for the solutions n of the system (1.3a)—(1.6) obtained up to now.

1.1. Small isotropic perturbation of a Planck distribution

Ounly radially symmetric perturbations of the equilibrium ng(p) are considered in
what follows. Under such condition all the angular integrations can be performed in
the collision integral (1.3a) and obtain an equation with only two real, non negative
independent variables ¢ and |p|. For non isotropic perturbations Q(t,p), if expanded
in spherical harmonics as Q(t,p) = >, Q¢,mYe,m(p), similar, although slightly more
involved equations are obtained for the evolution of the different angular momentum
eigenstates Qg (¢, |p|) (cf. equations (21), (22) in [16]). It would be of course of interest
to know the possible effects of non radial perturbations, but this is out of the scope of
this article and left for future work.

In order to prove the existence of isotropic, regular classical solutions to (1.3a)-(1.6)
satisfying (1.9), we first consider the linearization of (1.3a) around an equilibrium ng.
The linearized equation was essentially obtained in [16] as briefly described in §5.3 of
the Appendix: consider first the new isotropic dependent variable €2,

Q(t, pl)

_— (1.10)
. 2 [ Blp|?
4 sinh (%)

n(t,p) = no(p) +no(p)(1 + no(p))2t, Ipl) = no(p) +

When (1.10) is plugged in (1.3a), and only the linear terms in § are kept, then after the
change of variables

o=l r= [P (5) s e =2
0

B p|?

the linearized equation for u reads (cf. [16] and §5.3 of the Appendix)

Oou r
S = pel) [ (ulrv) — u(r.) 0 (o, )y (1.12)
0
_ 1 1 y3 sinh 22
M(z,y) = <sinh |22 — 2|  sinh(z? + y2)> a3 sinh y2’ (1.13)
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where p.(7) = n.(t). When coupled with the equation

PL(r) = —pelr / / (u(r, ) — u(r, )M (2, y)2*dy dz, (1.14)
0 0

it is easily checked that, if Fubini’s Theorem may be applied when the collision integral
in (1.12) is multiplied by ng(z)(1+ no(z))2? and no(z)(1+ no(z))x? and integrated over
(0, 00),

pl(T) + d%l_ /no(x)(l + ng(z))u(r, z)xtdr = 0,
0

/ )(1 + no(z))u(t, z)x8dx = 0.

0

These identities reflect the conservation of the total number of particles and energy and
therefore, system (1.12), (1.14) seems a reasonable linearization of (1.3a), (1.3b). The
factor p.(7) may now be scaled in equation (1.12) with a new change of time variable,
denoted t again with some abuse of notation,

T

t= /nc(s)ds

0

to obtain the equation,

/ (t,y) — u(t,z))M(z,y)dy (1.15)
0
1 1 y> sinh 22
I _ B _ 1.16

The kernel M in (1.16) directly follows from the linearization of C1 2(n.(t),n(t)) in the

right hand side of (1.3a) and the expression of ng(p)(1+ne(p)) = B (2 sinh 6%) B
in the left hand side as explained in §5.3 of the Appendix.

The Cauchy problem for equation (1.15) is still delicate and as a first step in that
direction we consider in this work the simplified equation (1.1), (1.2), obtained only
keeping in M the leading terms of the hyperbolic sine functions for small values of
their arguments. This reminds somewhat the classical field limit were large occupation
numbers of different modes are assumed ([27], Chapter 10).
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For K given in (1.2), our purpose is then to solve the following problem,
Ju i
a(tv‘r) = (U(t,y) - u(t,x))K(x,y)dy, t> 07 T > 07 (117)
0

L(®)(@) = [ (ult.y) = u(t.0)K (. )dy (L1
0

u(0,2) = fo(w) (1.19)

Again, for general, non necessarily isotropic, perturbations, similar simplified approxi-
mated equations may be obtained for the non radial components £y ., of Q (cf. equations
(36), (38)—(43) in [16], for £ =1 and ¢ = 2).

The Cauchy problem for equation (1.15) is considered [11] as a perturbation of (1.1).
Integro differential equations of that form, in several dimensions but with integrals over
all RV, have been much studied, under conditions on the kernels K, M ensuring that
the integro differential operator satisfies an ellipticity property of some order s > 0. The
best known is the kernel C|z —y|~1~* for s € (0,2) that, for some constant C' > 0, gives
the operator (—A)*/2. But weaker conditions on more general kernels may be found in
[18] and the many references therein. A case where s = 0 is considered in [20].

For u a regular function, equation (1.1) may be written (cf (5.48) in the Appendix),

ou T (z\ ou dy
o (x)= [ H{—)—(ty)— 1.2
i = [ (%) S (1.20)
0
1 1+ 72 1 1
H(r) = ]]-0<r<1; log (1 — T2> + ]]-7‘>1; log (1 - ﬁ) . (1.21)

Equation (1.20) may be solved using the Mellin transform. Similar questions were consid-
ered with similar methods in [12], and in [13] for “post gelation” solutions of a coagulation
equation. Some of the technical results in the last Section of [13] will be of some use in
this work. The equation (1.3a) may actually be written as a coagulation-fragmentation
equation, with nonlinear fragmentation, in terms of the energy w = |p|? as indepen-
dent variable for a measure g defined as |p|n(t,p) = g(¢t,w) (cf. [15], and [4] for general
coagulation-collisional fragmentation equations).

Remark 1.1. The linear equation (1.1) also follows if, first only quadratic terms are kept
n (1.5), (1.6), and then linearization is performed around the equilibrium w=*(p) = |p| 2.
The first step yields a three wave turbulence type equation, considered by several authors
[9,15,21], and (1.20) is the linearization of that equation around the equilibrium w=(p).
Our setting is a bit narrow within the three waves area, since the specific form of the
dispersion relation w and of the matrix element M are strongly used. Other examples
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of three wave kinetic equations may be found in [32], for capillary waves, weak acoustic
waves and others.

1.2. Main results

The use of the Mellin transform, that is denoted by .#, makes the spaces E,, , for
p < g, presented for example in Chapter 11 of [24], very suitable. They are defined as
the dual of the spaces E, , of all the functions ¢ € €°°(0, co) such that:

Np g k(@) = Sl;% (lcpyq(sv)azkJrl ’¢k(x)|) < 0

P if0<ze<1
Fp.a(7) = {x_q, ifx>1

with the topology defined by the set of seminorms {Ny, 4}, o - It follows that E  are
the subspaces of 2'([0,00)) of Mellin transformable distributions ([24]). We call

Spq={s€C;Ze(s) € (p,q)}, /WeER, Vg eR, p<yq. (1.22)

We also denote H”

loc the set of locally Holder continuous functions f of order p that

satisfy,
VK C (0,00) compact set, ACk > 0; |f(x) — f(y)| < Cklx —y|?, Ve € K, Vy € K.
For a € (0,1) and z > 0 we denote O, (z) = |z — 1|7*(log x); and for 6 € (0, 1),

1 follro = 1 folls + sup 2| fo(2)].
0<z<1

We denote arg and log the principal values of the argument and logarithm functions.
The second moment of a function f(x), or .Z(f)(3), is sometimes called the energy of
f, because it is equal, up to a constant, to the total energy of a system of particles with
energy |p|?, whose momentum density function is n(p) = f(|p|).

Theorem 1.2. There exists a function A € C((0,00); L*(0,00)) satisfying (1.20)) in
2'((0,00) x (0,00)) and such that

lim A(t) = 81, weakly in 2'(0,0). (1.23)

t—0

(logz)A € C((0,00) x [0,00)) (1.24)
1-2t

lim ¢~ ‘e_l/tY‘ A (t, 1+ e_l/tY) =1 (1.25)

t—0

uniformly for' Y on bounded subsets of R. For allT >0, A(t) € Ej o, 4 (A(t)) is bounded
on So2 for allt € (0,T). The function A is such that,
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(logm)aazl—: € C((0,00) x (0,00)) ¥m € N\ {0}, (1.26)
L O A

(log ) D O € C((0,00) x (0,00)), Ym € N, (1.27)

VkeN, AeC™ ((%,oo);CWO,oo)),VmGN. (1.28)

vr € (0,1/2), Va € [0,7); ©4A € C ((2r,1); H],,*(0,00)) , (1.29)

(where we recall that O, (x) = |x —1|7*logx ), and satisfies (1.1) for almost every t > 0
and x > 0. The second moment of A(t) is one for all t > 0.

Theorem 1.3. If for some T > 0, A; € C((0,T); L*(RT)), j = 1,2 are supposed to be
two solutions of (1.20), that satisfy (1.23), such that, for allt € (0,T), Aj(t) € Ej 5 and
M (N1 (t) — Aa(t)) is bounded in So o, then Ay (t) = Aa(t) in Ep o for allt € (0,T).

The fundamental solution A of the linearized equation inherits the conservation of the
energy property that holds for the nonlinear equation (1.3a). As shown by (1.24), the
Dirac measure at = 1 is instantly regularized to a function A(t), whose regularity is
given by (1.26)-(1.29). Property (1.25) shows that, for small values of ¢t > 0, A(t) behaves
at x = 1, like t|z —1/?*~1. The regularity of A(t) at x = 1 shown in Theorem 1.2 improves
as the value of ¢ increases, as seen in (1.28). By (1.29), (3.54), for all t € (0,1/2) the
function A(t) is locally Holder continuous around = = 1 of order r — «a for any r < 2t
and « € (0,r). For t > 1 it follows from (1.28) that A is C*. Detailed estimates of A(t, )
and some of its derivatives are given in the Sections below. This fundamental solution is
used to solve the initial value problem.

Theorem 1.4. Suppose that fo € L'(0,00) and define,
Vi t z\ dy
u(t,z) = | folyAl—-,—]—, Vt>0, Vx> 0. (1.30)
) vy, vy

Then, u € L°((0,00); L'(0,00)) N C((0,00); L}(0,00)) and it satisfies (1.20) in
2'((0,00) x (0,00)),

/u(t,az)xde = /fo(x)xde, vt > 0, (1.31)
0 0

there exists a constant C' > 0 such that

a®lls < Cllfolls, e > 0 (132
and u(t) = fo, in 2'(0,00). (1.33)
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If fo € LY(0,00) N L>®(0,00) then u(t) € L>°(0,00) for all t > 0, there exists a constant
Cs > 0 such that,

[u(®)]loo < Cooll folloo, V¢ > 0. (1.34)
If fo € L'(0,00) N L5 (0, 00),
L(u) € Li((0,00); L>(0, 00)), (1.35)

there exists a constant C > 0 such that, for allt > 0 and x > 0,

C Bz~ +327°) || foll1, a.e.x > 3t

C(1+ |log |z/2t — 1||) <
(1 _0)2x z€

sup |f0(z)|>, a.e.x € (2t/3,3t) (1.36)
(2t,3x)

Ct 2 +t732)||foll1, a.e.x € (0,2t/3),
and u satisfies (1.1) for a.e. t > 0,2 > 0.

The solution u also satisfies the following properties,

Proposition 1.5. If fo € L*(0,00) and u is given by (1.50), the following holds.

1.- For every 6 > 0 as small as desired, and for all t > 0,

t 00
utia) =, Wost)+ (3 [ty +070 [ ) 0 (00), o)
0 t

Wuit) = At [ oty + At [ oty + [ o)y (5) % (1.38)
0 0 0

for Ay, Ay constants given in (4.75) and by (r) = O(r~3) given in (3.15).

r—
2.- For allt > 0, the function u(t) is locally Hélder continuous on (0,00). More precisely,
(i) There exist numerical constants C > 0 and of € (—2,—1) such that

lu(t, z) —u(t,z")| < C||foll1 (t_2 + x_l_ggt_H"g) |z —a'|, for 0 <2’ <z <t (1.39)
(ii) For all ¢ € (0,2) there exists a constant C > 0 such that,

Ju(t, 2)—u(t, 2')] < Cllfollile — o] (2! =471 4 ta~*) +

+C||f H |.Z‘—.’L‘/|1_a N ‘x_l,/|r—a
ol a1 |log(z/ /)1 " ta'm—|log(a’ /t)|1+e)(r=a) )

if0<z’ <t<um, (1.40)
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where o, € (—2,—1) is a constant independent of t,x and fy, withr = =, a = a(t,z) =

2x
(MTQ, and M any constant larger than 3/2.

(iii) There exists a numerical constant C > 0 such that, for fo € L'(0,00) N L$°,(0,00),

t2 1 t Clr —a'|'—
|u(t, z) — u(t, $)|<O|I—I'|||fo||1< +t—+_4>+4x/1a x

z ol | Cle—a*
x <|fo||Lm<m/,3mf>t O ) o | ol ) (1 + log(/a),
if ©>a" >t>0. (1.41)

3.- (Conservation of the energy.) For allt > 0

E/ut x)2’dr < oo <= . (fo)(3 )—/fo(x)x2dx<oo (1.42)
0 0
and A (u(t))(3) = A (fo)(3) in that case. (1.43)

The constant o is defined in Proposition 2.1 below. The existence and uniqueness
of A as weak solution of (1.20) and properties (1.24)-(1.25) are proved in Section 2.
Further estimates on A, are shown in Section 3, from where it follows that A solves
(1.1) almost everywhere. The Cauchy problem (1.17), (1.19) is solved in Section 4 where
Proposition 1.5 is also proved. Several quite technical proofs of some of the auxiliary
results are given in the Appendix.

2. The fundamental solution A. First properties

The purpose of this Section is to obtain the fundamental solution of equation (1.20)
and prove several properties about its regularity, in terms of classical functional spaces.
Following the arguments of [32] (cf. [13,14] for two other examples), the fundamental
solution of (1.20) is obtained as the inverse Mellin and inverse Laplace transforms of a
solution V of,

2V(z,8) =W(s—=1)V(z,s — 1) z2€C, Ze(z) >0, s€Spo (2.1)

\/—_

+
W(s) = =2, — 2¢ (%) — 7 cot ( ) , €8 94 (2.2)

TS
4
where v, is the Euler constant and ¥ (z) = I'(2)/I'(z) is the Digamma function. The
function W in (2.2) is related with the Mellin transform of the function H in (1.21) as

W(s) = —s/rsH(r)dT, Vs €S 24 (2.3)
0
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w
20

V(T

Fig. 1. Zeros and poles of the function W(s).

The following properties of the function W are essential for all what follows (Fig. 1).

Proposition 2.1. The function W is meromorphic on C, analytic on the domain S_s 4
and is such that W(0) = W(2) = 0. It has actually a sequence of zeros and a sequence
of poles distributed as follows.

1.- Poles. The poles of the function W are located at {s, = 4n,n = 1,2,3,4,---}
(with residue equal to 4) and at {s} = —2(2n + 1), n = 0,1,2,3---} (the residue at
these points is —4).

2.- Zeros. The zeros of the function W, different from 0 and 2, are located at two
series of points that we denote {0,, n =1,2,3,---} and {o%, n=0,1,2,3,---}. These
points are such that on € (Sp+1 — 1, 8n41) and o) € (s¥, sk +1).

The winding number of W (s) is zero for Ze(s) € (0,2) and

1
W(s) = —2log|s/2| — 'ye—|—0< 2) 5 =u+iv, |v| = co. (2.4)

W’(S)ZMJFO(U—Z), W"(s)=§+o<l> | 500 (2.5)

Proof. The analyticity properties of the function W, and the location of its zeros and
poles directly follow from the properties of the Digamma and cotangent functions as
given in [1]. On the other hand, if for all z € C, arg(z) denotes the principal argument
of z (i.e. —m < arg(z) < m),

20 () -2

=2log (

;)JrQZarg( )+O(|v| D, v— o0
s

s
4

2)+Z7T+O lo]™1), v — o0
T

7TCOt( )z—m—l—O( ”), v — 00.
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It follows that

W(s) = —2v. — 2log (‘

When v — —o0,
24 (—) _2log(
|

%D —Z.7T+Z'7T+O(672v

), v— o0

) —|—21arg( ) +O0(lv]™), v = —o0

=2log D —im+O0(jv|™h), v = —c0

7TCOt( ) =ir + O (e

and (2.4) follows. Similar arguments give (2.5) using

/

’\l\D|CIJ[\'>|CIJ

), v — —o0,

%2 (csc (%))2 — PolyGamma (1, g)

W' (s) = 7%3 cot (%S) csc (%8)2 — %Poly(}amma (2, g) .0

As a first step to solve (2.1), (2.2) we consider the “stationary and homogeneous
case.

W'(s) =

Proposition 2.2. For any 8 € (0,2) fized, the problem

B(s)=-W(s—1)B(s—1), Vs € C;Ze(s) € (8,8+1)

(2.6)
admits the following solution,
B(s) = 1 W L L d 2.7
(s) = exp o8(-W) \ T —amtmp ~ T oz ) % (2.7)
e(p)=8

Proof. In order to solve (2.6) we notice that, if logarithms may be taken to both sides
of the equation the following identity would follow

log(B(s + 1)) = log(B(s)) + log(—W (s)).

(2.8)

Then, for any 8 € (0,1) fixed, we define the new variables
Vs € C; Ze(s) € (8,8 +1), ¢ =em=h) (2.9)
Q(¢) = log(=W (s)). (2.10)

Since W (s) is analytic on the strip Ze(s) € (0, 3), the function @ is analytic on C. By
(2.9),
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o= () 5 v (L), smuin oo
log(—W(s)) = log (210g(|2) + +0(| |>) = log(log [v]) + O(1), |v| — oo.

Since by definition [¢] = ™2™, |v| = % and

Q)| = loglogl) +0(1) = logllogllog[C[) +O().  (211)

The function @ is then very slowly divergent as |(| — oo or || — 0.

On the other hand, we write s = u+ v with v € R and v € R and consider the limits
of the variable ¢ = {(s) defined in (2.9) when v — 87 and u — (8+ 1)~ for v € R fixed,
i0

Vo eR: lim ¢ = e 2™ lim €%, lim ¢ =e 2™ lim e
u— B+ 6—0 u—(B+1)— 0—27m

By (2.11), the following Cauchy’s integral:

1 i 1
00 =gz [ (72 iy i weS b @
0

is absolutely convergent for all ¢ € C \ [0, 00). If we denote,
Vr e R: ap(r +140) = lim¢(re®), o(r —i0) = lim (re?), (2.13)
0—0 0—27

then, (r —i0) = ¢(r +10) + Q(r), Vr > 0. (2.14)

The function b(s) = ¥(¢), defined, for s € C; Ze(s) € (5,8+ 1) as

T 1 1 ,
5) :/Q(r) ( - ) dr, r=e*"0=0 dr = 2inrdp
0

r—¢ r+1

1 1
= / IOg(—W(p)) (1 _ 2in(s—p) B 1 +e—2i7r(p—5)> dp
Ze(p)=B

satisfies
b(s+1) =0b(s) +log(—W(s)),Vs € C;Ze(s) € (B,6+ 1)
and the function B(s) = exp(b(s)) given in (2.7) satisfies (2.6). O

By classical arguments of complex variables it is straightforward to check that the
function B obtained in Proposition 2.2 satisfies the following,
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Proposition 2.3. The function B is analytic on the domain s € Sg 2 where it is given by
the integral in (2.7) for some 5 € (0,1) such that B < Re(s) < p+ 1. It is extended to
a meromorphic function on the complex plane by the following relation,

B(s)=-W(s—1)B(s—1),Vs € C. (2.15)
It has a sequence of poles and a sequence of zeros, determined by the zeros and poles of
the function W as follows.
1.-Poles. The poles of the function B are located at s =0, s = —1, at {4n+ 1,n =
1,2,3,---} and at {o, n=10,1,2,3,--- },
2.-Zeros. The zeros of the function B are at s =3, s =4 at {—n, n =6,7,8,---}
and at {o, +1, n=1,2,---}, (defined in Proposition (2.1)),

where the points o}, and o, are defined in Proposition (2.1)).

Proposition 2.4. Let B the function defined by (2.7). Then, for all R > 0 there exist two
positive constants C1 and Cy such that, for all Ze(s) € (0,2) and | Fm(s)| > R,

C1 < |B(s)| < Cs.
Proof. The function log(—W(s)) is,
log(=W (s)) = log(|W(s)[) + iArg(=W(s)).
Since, by Proposition (2.1), arg(—W(s)) — 0 as S m(s) — to0o,
lim arg(-W(¢)) =0, lim arg(—W(()) =0
It follows from Lemma C.2 in [12] that the function 1 defined in (2.12) satisfies,

P(¢) =10(¢) + o(log¢]), ¢—0
$(¢) = i0(C) + o(log |(]), [¢] — o0

00 = o ]0 log<|w<s>|>( L )ds.
0

s—( o541
We deduce lim g, (5)— o0 | B(8)| = lim gy, (5)——oo |B(s)| = 1 and the result follows. O

Proposition 2.5. For all M > 0 and R > 0, there exists two positive constants Cy pr and
Ca.nm such that, for all s € C, |Ze(s)| < M, and |Fm(s)| > R,

Ci mlog|Fm(s)| < B(s) < Cy prlog|fm(s)]. (2.16)
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Proof. If 0 < Ze(s) < 2 we may apply Proposition (2.5). If for example Ze(s) € (2, 3),
we use (2.15) to write:

B(s)=-W(s—1)B(s—1)
where now Ze(s — 1) € (0,2). We deduce,

Ci{W(s = D] < [B(s)] < C2o|W (s — 1)},
and (2.16) follows by Proposition 2.1. O

Remark 2.6. The function B given in (2.7) is not the only one that satisfies (2.15). Indeed
many others are obtained by means of

By(s) = ™ B(s),Y € Z (2.17)
and linear combinations of them.
It easily follows from (2.7) in Proposition 2.2

Corollary 2.7. For all s € C and 'Y € C such that Ze(s) € (0,3) and s+Y € So 3

B(s)
Bist+y) oF </>_5 log(—W (p))®(p—s,Y)dp |, B€(0,3)  (2.18)
00, Y) = — ! (2.19)

1— 6721'71'0' - 1— e2i7r(70+Y) :
The problem (2.1), (2.2) is reduced to a simpler one using the function B(s).

Proposition 2.8. The function defined by the integral

B(S) e((T—S) log(—2) do

\%4 = - 2.20

<Z75> 2% 2 / B(O’) (1 — 62”‘—(570))’ ( )
Ze(o)=p

for B € (0,2) such that 8 < Ze(s) < 4+ 1, is well defined and analytic for Ze(z) > 0
and s € Sp,2 where it satisfies,

2V(z,8) =W(s—-1)V(z,s—1)+ 1. (2.21)
Proof. Let us define the function H(z,s) as,

V(z,s) = e *18(2) B(s)H(z,s), (2.22)
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where log(z) = log(|z]) +iArg(z) and Arg(z) € (—2m,0]. The equation (2.1) on V yields
the following equation for H:

ze 182 B()H (2,5) = —ze *18)W (s —1)B(s — 1)H (2,5 — 1) + 1

eslog(—z)
B(s)H(z,5) = =W (s = 1)B(s = H (2,5 = 1) + ———
eslog(fz)

B(s)H(z,s) = B(s)H(z,5 — 1) + —

and then, for all z € C such that Ze(z) > 0 and s € C, Ze(s) € (0,2)

H H P 2.23
(2,8) — H(z,s — )_T(s) (2.23)
We may use again the change of variables (2.9) and define,
h(z,¢) = H(z,5), B(¢)=B(s)
and deduce from (2.23) that h has to satisfy
2imtBa(z) pou(z) 1 _
h(zr —i0) = Bz, 4i0) + o T 0 ae) = B (g0

It follows that

_log(—2) __logle| | Arg(—2)
2T 2T 2

a(z)

and the choice of the log(z) is such that —1 < (Re(a(z))) < 0. By Proposition (2.5) it
follows that the integral

oo

1 e2i7rﬁoc(z) Ta(z) dr
h(Z7§)—— /E(T) (T_C)

2 z

is absolutely convergent and defines a function h analytic on the domain
{(2,8); z€ C, Ze(z) >0, s€C\[0,00)}
that satisfies (2.24). Using the original variables we obtain that

1 ealog(—z) do
H = - , 2.2
(Zv 5) P / B(O') (1 _ 62171'(3—0)) ( 5)

Gte(o)=B

is well defined, analytic on z € C, Ze(z) > 0, s € C,Ze(s) € (B, 5+ 1) where it satisfies
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eslog(—z)

H(z,s)— H(z,s—1)= B

(2.26)
Since 8 € (0,2) is arbitrary, using a contour deformation argument in the integral of the
right hand side of (2.26), H is extended as an analytic function z € C,%Ze(z) > 0 and
s € C,Ze(s) €(0,2).

Using now (2.22) we recover the function

V=g [ e
T 2imz B(o) (1 — e2in(s=0))’
Ze(o)=p

Since B is analytic and non zero on Ze(s) € (0,2) and 8 € (0, 2) is arbitrary the function
V is analytic on z € C,Ze(z) > 0 and s € C,Ze(s) € (0,2) and satisfies the equation
(2.21) for Ze(s) € (1,2). O

Corollary 2.9. The following inverse Laplace transform of V

d—+ioc0
1
Ul(t,s) = %in / e'V(z,8)dz, B—-1<d<p,
d—ioco

is well defined for t > 0 and Ze(s) € (0,2). For allt >0, U(t,-) is analytic on Sp2,

1T
e(0)=

s “(@=)P (g — s
Vs € Sos, Ult,s) = g( ) / %da, VB € (Ze(s),2)  (2.27)

may be extended to C as a meromorphic function such that U(t,3) = 1 and satisfies,

Vk e N, U e C%((0,00) x Sp2) (2.28)
%—[i(t, s)=W(s—1)U(t,s — 1) Vt >0, Vs € Sy 3. (2.29)

Proof. For all o and s such that Ze(s) < Ze(o), and ¢ > 0,

c+ioco
1 €' (o—s)log(~2) —(o—s) 2im(o—
— [ Sel sz = I — ) (B9 1))
2m z

c—1i00

We use now that Stirling’s formula for I'(z2) is uniformly valid for argz € (—m+¢€g, m—¢9)
with g9 > 0, to deduce that, for all R > 0 and 3 € (0, 2)

7|o|

ID(o — )| < %%2'0', Vs;|s| < R. (2.30)
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The right hand side of (2.27) is then absolutely convergent. The identity (2.27) and the
analyticity of U(t,-) on 8(0,2) follow for §—1 < Ze(s) < . We also deduce from (2.30)
that the integrals

d ( _o_o\ (o —35)
2 () S e, ke N
/ dt ( o k€
ZRe(o)=p
are absolutely convergent and analytic functions of s on the strip Ze(s) € (0,2). There-
fore,

o B(s) d (,_o—s) Llo—5)
gl (s =5 / di (t ) “Blo) %
Re(o)=p

and (2.28) follows. On the other hand, since

d+1i00
i / ezte(afs) log(fz)dz — tf(afs)fll-w(l +o— S) (621'77(075) _ 1)
2

d—ioco

the inverse Laplace transform of zV(z) is well defined for all ¢ > 0 and given by,

. dtioo B(s) (o--17(1 )
. __B(s TS +o—s
%in / e** 2V (z,8)dz = Sim / Blo) do.
d—ioco Re(o)=p

The expression (2.27) indicates that U(-,s) € C((0,00)). If the integration contour in
(2.27) is deformed towards lower values of 8 and the pole of the function I'(c — s) at
o — s =0 is crossed,

s (=T (0 — 5
Ult,s) = 1 — Jz;r) / #da, B e (0,%e(s)). (231
Ke(o)=p'

Since now Ze(o —s) < 0, it follows that U(-, s) € C([0,00)) and U(0, s) = 1. By classical

deformation of contour arguments U () is now extended as a meromorphic function to
all of C, and U(¢,3) =0 by (2.31) and because B(3) = 0 (cf. Proposition 2.3). Using

Z(Ui(+8) (2) = 2V (z,5) = U(0,5),

we deduce

d+i00
1
88—2](1578) = %in / et (2V(z,8) — 1) dz
d—ico
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We apply now the inverse Laplace transform to both sides of the equation (2.21) with
He(s) € (1,2), since U(t) is analytic on Sp 2 and so is W on S_s 4, (2.29) follows. O

The following properties of U are important for what follows,

Proposition 2.10. For all T > 0, there exists a positive constant Cp such that for all
se 8, te(0,1),

de

U(t,5)] < Cre2 sl =0 (2.32)
oUu 02U ot loe(|bs

(1+8)‘g(t,s) + (14 |s))? 55z (1:9)| < Crte 2t log(lbs1) (2.33)

oUu

57 (t:9) < Cpte 218D (1 4 | 1og |s]|) (2.34)
o (oU ,| 9% [oU Cr(1+|log|s||)

1) g () oo+ o ls? o (57 ) o)) < CEARE. eas)

The proof of Proposition 2.10 is essentially the same as that of Proposition 8.1 in
[13], only differing in small details, and is presented in the Appendix. It is based on the
expression of U(¢, s) given in (2.27) and also

_ B(S) t_YF(Y) _ P(s,0,t)
Ult,s) = — / Berv™ - / T AYYY  (2.36)
Re(Y)=B—Re(s) Ze(o)=p

where

1
U(s,Y,t) = / log (=W (p))©(p—5,Y)dp—Ylogt —Y + <Y - 5) log,
Re(p)=PB

with © defined in (2.19), and
I'y)
ANV = Sreyyyi

The estimates for |s| follow from contour deformation methods on (2.27). The estimates
for |s| large are deduced using the stationary phase argument on (2.36).
As a Corollary, the inverse Mellin transform of U(¢) is well defined.

Corollary 2.11. For every t > 0 there exists a unique distribution A(t) := .4~ (U(t)) €
Ej o, the inverse Mellin transform of U(t) such that:

M (A(t)) (s) = U(t,s), Vs € Spz (2.37)
A e C((0,00); Ej o). (2.38)
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For allt > 0 it is given by the following expression,

ct+i00
N [ 1 .
At,z) = (arg) 3 / Ul(t,s)s™“x"%ds |, c€(0,2). (2.39)
When t > 1/2,
1 ct+io0o
A(t,z) = 3 / U(t,s)x™°ds, ¢ € (0,2). (2.40)
T

Proof. By Corollary 2.9, for every ¢ > 0, the function U(t) is analytic on the strip
Ze(s) € (0,2). By Proposition 2.10

|U(t,s)] < |bs|™2, Vt € (0,1).

It follows that, for all ¢ > 0, the function s~5+2U (¢, s) is analytic and bounded on the
strip Ze(s) € (0,2) as |s| — oo for K = 2. It follows from Theorem 11.10.1 in [24] that
there exists a unique tempered distribution A(t) € Ej , that satisfies (2.37) and is given
by (2.39). As soon as t > 1/2, the integral in the right hand side of (2.40) is absolutely
convergent and its Mellin transform is U(¢) from where it is equal to A(¢). Property
(2.38) follows from (2.28) and the continuity of the inverse Mellin transform. O

It is now possible to apply the inverse Mellin transform to both sides of (2.29).

Proposition 2.12.

A(t) € C1(0,00; Ef 5) (2.41)
oA O\ . o
E = (a—x *H) m C((O7OO)7E1,3) (242)

where H is the function defined in (1.21).

Proof. By (2.38), 0,A(t) € C(0,00; Ef 3) and for all s € Sy 3,
M (O, A(t))(s) = (s —1)U(s — 1), and

Since A (H)(s) = —%, it then follows for all ¢ > 0,

MW (s — 1)U (t,s — 1)) (x) = <%§f) * H> (z) in E] 3

On the other hand, by (2.29) and Proposition 2.10
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o <8U(t)>(x) =4 (W(s—1)U(t,s — 1)) =

ot
9 2 1 c+1i00
_ (o[ 1 - I
<xax) 2ri / W(s=1U(t,s —1)s 2z ™"ds | . (2.43)

By Proposition 2.10 again, for all ¢ > 0 and = > 0,

c+ioco c+ioo
d ]. —2 _g o 1 —2 —s
7 | 5 /U(t,s)s x %ds | = 5 /W(s HU(t,s —1)s “ax~°ds (2.44)

c—100 c—100

and the integral in the right hand side of (2.44) is absolutely convergent, uniformly for
x and t in compacts subsets of (0,00) x (0,00). It is then a continuous function on
(0,00) x (0,00). It is then possible to apply the operator (zd,)” to both sides of (2.44)
in the sense of distributions to obtain (2.42). O

The following Proposition, shows some important properties of A.

Proposition 2.13. The function A(t) defined in Corollary 2.11 satisfies (1.24), and
(1.26)~(1.29).

Proof. By its definition, A(t) € Ej 5, and for all m € N,
A (((log )0, A(t))(x)) = 050U (t, 5)

= 0O <U(t, s—m) ﬁ Wi(s — €)> in Smotm-  (2.45)
=1

Property (1.26) follows from the decay of the function at the righthand side of (2.45) as
|-#m(s)| — oo. Indeed, by Proposition 2.10, (2.4) and (2.5), for every m > 1 and ¢t > 0
there exists a positive constant C' > 0, depending on m, b and ¢, such that,

Os <U(t, s—m) ﬁ Wi(s — é))
=1

It follows that, for ¢’ € (m,2 + m),

<C(1+1s))" 1 Vs € Smotm-

¢ +ico m
((logz)0"A(t))(x) = % / Os (U(t, s—m) H W(s — €)> x~%ds (2.46)
¢/ —ioco =1

where the integral in (2.46) is absolutely convergent. Since moreover the integral con-
verges uniformly for # and ¢ on compact subsets of (0,00) x (0,00), property (1.26)
follows. Notice that the same proof shows (log z)A € C((0,0) x (0,00)). Similarly,
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A (((log 2)*0:0;" A(1)) () = 0% (log(s — 1) " U(t, 5))

= 0? (log(s -1 U(t,s —m) H W(s — €)> , in S 24m-
- (2.47)

Again by Proposition 2.10, (2.4) and (2.5), for every m > 0,t > 0, there exists a positive
constant C' > 0 such that,

< C(1+s])"* " logs)|, Vs € Sim.24m-

02 (U(t,s —m) ﬁW(s —£)>

=1
Then,
¢ +ioco m
(log z)?0;™ (t, x)(t, x) = L / 02| U(t,s —m) H Wi(s—40) ) x%ds
t ’ ’ 27i ‘ s ’ P

and, since the integral is absolutely and uniformly convergent for x and ¢ on compact
subsets of (0,00) x (0, 00), property (1.27) follows.

In order to prove (1.24) we first notice that for ¢ > 1/2, formula (2.40) may be used.
Using (3.4), if we deform the integration contour in (2.40) towards lower values of Zes
and cross the pole of B(s) at s = 0, using Res(B(s),s = 0)) = —B(1)/W’(0) we obtain

T)=—s r~? B(s) o — )t~ ") dods
A(t,x) / / B(O’)F( )t dod

) / F(a)t‘”‘1d0+

B(o)

1 B
+— / x~° / B((j))F(U — )t dods, ¢" e (~1,0)
Fe(s)=c" Ke(o)=p

It follows that A € C([1/2,00) x [0,00)) since both integrals converge uniformly for x
and t on compact subsets of [0,00) x [1/2,00). For ¢t € (0,1/2)

c+ioco
1
(logz)A(t,x) = 5 / OsU(t, s)x™%ds. (2.48)
i

It follows from (2.27) that U(t) is meromorphic on the strip S_; 5 with a simple pole at
s = 0. Then, 0,U(t, s) is also meromorphic on S_; » and has a pole of order 2 at s = 0.
We deduce
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¢ +ico
B(1) T(o0)t-7-1 1 / .
log 2)A(t ) = — ) G JU(t, s)z—5ds,
(log z)A(t, z) 25 W (0) / B(o) o+ s 0sU(t,s)x™%ds
Re(o)=p ¢!’ —ioco

for ¢ € (—1,0) and, arguing as before, (logz)A € C((0,1/2) x [0,00)) and (1.24) follows.
In order to prove (1.28) we notice that, by Proposition 2.10, (2.4) and (2.5) again, for
all k € N and m € N there exists C' > 0 such that

)| < Ols|"%|log |s||™, for |s| >> 1.

(s —k)U(t,s—m ﬁ

Then, for t > 1, k <2t —1, and ¢ € (m+ k,2+ m + k) the identity (2.40) may be used
to write

¢/ +ioo m
ogk+mA _ (_1)k / (S _ k;)k (U(t, 5 m) H W(S . €)> Jj_s_de, (249)

Ozkotm 271

where the integral in (2.49) converges absolutely. Since the convergence is uniform in
compacts of ((k+1)/2,00) x (0,00), property (1.28) follows.
We prove now property (1.29). For all ¢t € (0,1/2), r € (0,2t), and |s| large,

0 (1 _3"’7")1:175

—U(t,s—r) T —s)

e < faf 75| TR (2.50)

the fractional derivative of order r of (logx)A, is then

¢ +ioco
9" (logz)A(t) _ 1 / T(1—s+7) 0 B
Oar 2mi | T T(—s) 550 (ts —r)zds (2.51)

c € (r,2), (cf. [26], §2.10), where the integral in the right hand side of (2.51) converges
absolutely for z and ¢ in compact subsets of (0, c0) x (0, 00). For each ¢ > 0 the function
(log z)A(t) has continuous fractional a-derivative of order  on every compact subset of
(0,00) and by (2.51), for all t >0

0" ((log z)A(t, x))
ox"

vr' € (r,2), 3C >0, ‘ ‘ < Cpz™", Yz > 0. (2.52)

By Theorem 3.1 [28], (1.29) follows for o = 0 and r € (0, 2t). Moreover, since

1 U (t,s) _,
(log x)A(t,z) = %in / 95 ° ds,
Ze(s)=c
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by the continuity property (1.26), and an integration by parts,

) 1 ou(t,s) ,
il_}Hll(logl')A(t,l') = 5in / Tds = 0.
Ze(s)=c

Then property (1.29) is deduced for « € (0,r) using the result in [25], p. 14. O
Corollary 2.14. The function A satisfies

lim A(t) = 8y, in 2'(0,00). (2.53)

t—0

Proof. Consider any test function ¢ € Z(0,00) and suppose that supp(yp) C (a,b) for
some 0 < a < b < 0o. Then

(A(), ) — (1) =////’1(U(t) — 1) () p(a)dx
0

1 7 C7OO(U(15, s) — 1) 2~ *dsp(z)dz

24T
0 c—ioco

c+ioco oo

/:U_sw(ac)dac (U(t,s) —1)ds

c—ioo 0

1
20w

c+ioco

= o / ()1 — 8) (U(L,s) — 1) ds.

c—100

By definition, for s = ¢+ iv, v € R, Ze(s) € (§,2),

o0 o0 C
1— —_ —s — 2—s <
)1 =) = [ plaede = s [ et < o
0 0
As we have seen above (cf. (2.31)), for Ze(s) € (5,2),
(=T (y —
v -1=1861| [ T, 8 e 0.0
B(o)
Fe(0) =B’
, tf(i]m(afs))l—\(a . S)
< Fe(s—B') /
< |B(s)|t Bo) do

(o) =p'

< Ce@e(s—,@”) logt log ‘S|
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Then, for Ze(s) =c> [

c+i00
1
(Ao =)l = 5| [ #D=9) Ut - 1)ds
c+ioco 1 | |d
< Cele—B") logt _ < Cele—B)logt [ 108 [V] AU )
< Ce /|///(<p)(1 s)|log|s||ds| < Ce /1—|—|1)2 thO 0

c—1i00
3. Further properties of A

In this Section we first give the main terms in the asymptotic behavior of the fun-
damental solution A(t,z) in different regions of the ¢,x) plane. More detailed results
are also given on the continuity and derivability properties of the function A, in par-
ticular around the point z = 1, where the Dirac’s delta formation is described. These
results are used later, first to solve the Cauchy problem associated to equation (1.1) for
a large set of initial data, and then to get the precise behavior of the solutions. This will
be mainly done with the representation of A as a contour integral, using the classical
contour deformation argument and Cauchy’s residue Theorem.

p(o) = Res (BES) s = 0) , 7(0) = Res(B(s),s = o) (3.1)
7(0) = Res(s~2B(s),s = o), j(o) = Res <W1(S) s = a) (3.2)
P(n) = Res (%,w = n) , Q(n) = Res (%,w = n> = —nP(n). (3.3)

Notice that —n is a simple pole of % for n € {0,---5} and a double pole for n > 6.

3.1. Behavior of A fort > 1
The function A satisfies the following estimates when ¢ > 1

Proposition 3.1. For allt > 1,

Aft,2) = £7Qu(6) + Qa(t,6), 6= (3-4)
Ql(e):;Tl7T / 0=*B(s)[(3 — s)ds (3.5)

Re(s)=c
Qg(t,ﬁ):—r; / o / g((j))F(a—s)t”dads (3.6)
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; B2>3. (3.7)

C1 = —

BLW(L)W'(2)

Proof. Since ¢t > 1 the function A(t) is given by (2.40). By (2.27) one has then at z = t,

At,z) = —ﬁ / B(s)6~° / %dads (3.8)

Ze(s)=c Ze(o)=p

where ¢ € (0,2) and 8 € (¢,2). For ¢ € (0,2) fixed, the function % is analytic in
the strip Ze(o) € (¢,3) and has a pole at ¢ = 3. Thanks to the decay of the function
% as | #m(o)| — oo, it is possible to deform the o-integration contour to larger
values of Ze(o), keeping c fixed, and cross the zero of B(o) at o = 3 and obtain, by

Cauchy’s residue Theorem,

Flo—s)t™ . 3 T
/ Wda = —2irt °T(3 — s)Res(B(0) "0 =3) + /
Re(o)=p He(o)=P2

(3.9

where 5 € (3,4). Since Res(B(o)~ !0 =3) = (B(1)W(1)W'(2))~!, by (3.8) and (3.9)

1 _ —2imt30(3 — s) I(o—s)t™°
Alt,z) = — B(s)0~* ————d
R S N e TR e
Ze(s)=c Fe(o)=p2
and the Lemma follows. O
Proposition 3.2. For all € > 0 as small as wished,
2013(1) 1—
= I3 € 3 .1
Q1(9) W) +0.(16]'°) as6—0 (3.10)
Q1(0) = c107°B(3) + O- (|0]"*"°) as 6 — oo, (3.11)

Proof. For § — 0 we deform the s-integration contour in (3.5) towards smaller values of
Ze(s) until we cross the first pole of the B(s) located at Ze(s) = 0. Since Res(B(s), s =
0) = —B(1)/W'(0) we deduce
al(3)B1)  « / .
Q1(0) W (0) + %in 07°B(s)I'(3 — s)ds
Ze(s)=oz

where as € (—1,0) and then,

07°B(s)I'(3 — s)ds| < 0|72 / |B(s)|T(3 — s)||ds].

Re(s)=ao Re(s)=as
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Since I'(3) = 2, (3.10) follows.
For 8 — oo we deform the s-integration contour in (3.5) towards larger values of Ze(s)
until we cross the first pole of T'(3 — s) located at Ze(s) = 3. It follows,

Ql(o):c19*33(3)+2‘371 / 0="B(s)[(3 — s)ds
Y3
Ze(s)=a3

with a3 € (3,4) and then,

07°B(s)['(3 — s)ds| < |63 / |B(s)|T'(3 —s)lds|. O

Re(s)=as Re(s)=as

Proposition 3.3. For any 6 > 0 as small as desired,

Q2(t,0) = cot ™ +b1(t) + O (t810]' ) + O (10| °t57°) as 6 -0, (3.12)

Q2(t,0) = cst™* 0> + 0 (10"t + 0 (16| °t~*7°) as 0 — oo, (3.13)
with ) =0t %), t>1; = —%7 cs = p(4)B(5).

Proof. We deform the o-integration contour to larger values of Ze(o), cross the zero of
B(o) at 0 = 4 to obtain

Qa2(t,0) = a(0)t™* + Ry (t,0); a(f) = @ / 6~ B(s)['(4 — s)ds,

2im
Re(s)=c
_ 1 s B(s) o
Rl(t,ﬂ)—47r2 / 0 / B(O’)F(U $)t™%dods.

Ze(s)=c Re(o)=4+46

If 6 € (0,1), we use the pole of B(s) at s =0 and obtain

__pT(4)B(1) -
Then Ri(t,0) =bi(t) + 0 (|0]'°t™®), 0 (0,1), t > 1.
bi(t) = —%% / F%’();)Uda, b <O, t>1,  (3.15)
ZHe(o)=4+06

and (3.12) follows. Suppose now that § > 1. We use the pole of T'(4 — s) at s = 5 (the
point s = 4 is a zero of B) in the expression of «(f),

a(0) =607°B(5)p(4) + 0 (67°79)
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The order of the remainder term comes from the pole at s = o1 + 2 of the Gamma
function. On the other hand, using the pole of B(s) at s =5 in the expression of Ry,

Ri(t,0) =0 (0|t °),t>1,0>1. O
By (1.28), A € C*((0,00) x (0,00)) and the first derivatives of A satisfy,

Proposition 3.4. Fort > 1/2, and 6 > 0 as small as desired,

aAéij ?) = 6er(—1)t™1+0 (t_4 ‘%‘5) as % — 0, (3.16)
3/\{()2 z) =c13B(3)z* +0 (t_4 ’%‘45> as % — 00, (3.17)
‘% <Ot Vo € (0,t/2) (3.18)
‘% < Cx™*, Vo > 2t. (3.19)

Proof. Since t > 1, by (2.27) and (2.40) for any ¢ € (0, 2)

OA(t,x) -1 a1 sB(s) o1
e 12 / 0 / B(o) (o —s)t dods (3.20)
Re(s)=c Reo=[

Estimates (3.16), (3.17) follow now from exactly the same contour deformation arguments
as in the proofs of Propositions 3.1, 3.2 and 3.3. Notice in particular that, since s = 0
is a simple pole of the function B(s) (cf. Proposition 2.1 and Proposition 2.3), the first
singularity smaller than any ¢ € (0,2) is at s = —1. On the other hand, by (2.40) and
(2.29),

c+ioco
9 1 -
o A2) = o / Ult,s = W(s = Dz~"ds
i 700 / R R €5 I Y
= B(o) t B

o—i00 Ze(0)=f

When 0 < 1/2, deformation of the o integration contours towards larger values of Ze(o)
and of the s integration contour towards smaller values of Ze(s) give, due to the zero of
B(o) at o = 3 and the pole of B(s) at s = 0, the existence of a positive constant C' such
that

2A(t7 x)

C
< —14-3 = — .
5 <Cx 't°0 a0 Vit > 1,Vz € (0,t/2)
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For 6 > 2 we first deform the o integration contour towards larger values of Ze(c) and
then the s integration contour is deformed towards larger values of Ze(s). In the first
step we meet again the pole of B(c) at ¢ = 3. Then, in the second step the pole of
I'(4 — s) at s =4 is met from where,

C
<Cx 707 = vt > 1,V >2t. O
X

0
P

3.2. Behavior of A fort € (0,1)

When ¢t € (0,1) the continuity of (logz)A(t) on (0,00) has been proved in Propo-
sition 2.13. In this Section more detailed behaviors are obtained, considering for any
p€(0,1),

[0,00) = dy., Uds, , Uds, , (3.22)
di.,=10,1-p] (3.23)
do,, ={x>0;0< |z —1]| < p} (3.24)
ds, , = [14 p,00). (3.25)

3.2.1. Behavior of A for 0 <t <1/2 and x € dv,,Uds, , for p >0 fized

Proposition 3.5. For 0 <t < 1/2, and € > 0 as small as desired there exists C. > 0,

IA(t,z)] < Coa™3%et972 4 Cya™5t", Va > Rt, R> 1, (3.26)
A(t,x) =z (t) + O(x)®, Vo < pt, p € (0,1), (3.27)
F(—1)t1 t=°T (o +1) .
— —_— = ° t 1 . ~2
A1(t) ~ i B(o) do=0(t°), t € (0,1) (3.28)
Fe(o)=p

oA —34¢,8— —5,6

E(t,x) < Cex™ 57+ Cox™>t°, YV > Rt, R> 1, (3.29)

A
'%—t(t,x) < Cxt*, Va € (0,t/2). (3.30)

Moreover, for all p € (0,1),
— € C({(t,;z) € (0,1) x (0,pt)} ) NC({(t,z) € (0,1) x (1 + p,00)}), (3.31)

*

2 1o
oA t,x) = Z (£> T R;(t)+0O (aj_l_”;+5t_”§_a,) , Ve <pt, pe(0,1), (3.32)

where
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r(l+o¥)o* = .
Ri(t) = ( 1) <_B( 5 +0 (t1_01)> , e >0,e >0, arbitrary small.
j

i (1+0) 1+o
(3.33)
A 2p(2
g—x(t’ x) = 2(7 )t L3 40(tx™%), e > 0 arbitrarily small, Yo > 1+ p. (3.34)

Proof. When t € (0,1) we may start from (2.39), (2.27) and consider then the integral,

] t7\9 (o — s
I " dos %z * 2
(t,x) = ype) Jox / B(o) dos ™z %ds, 0<c<p <2,
c—100 Re(o)=p
T +“B(s)T(w — 5)
- UB(s)(w—s) 5 xS
- / / 0 s (t) duwds. (3.35)

o100 Fe(w)=p

We start with the proof of estimate (3.26). Since z/t > 1 and 0 < ¢ < 1, in order
to estimate the size of the integral in the right hand side of (3.35) it is natural to seek
for large values of Ze(s) and smaller values of Ze(w). Let us then deform, at s fixed
such that Ze(s) = ¢, the w-integration contour towards lower values of w. Since we have
taken 8 > ¢, the first singularity that is found is at the pole of I'(w — s) where w = s.

2
Re(s)=c

L[ st a0 - 0 st

we obtain, for 8] € (0,¢) and z > 1, or x < 1,
_ZB T\
I(t,x) 47r2 / / (w —9) (?) t~“dwds (3.36)
(s)=cZe(w)=

We let now 1 fixed and move ¢ towards larger values in the integral at the right hand
side of (3.36). The function under the integral sign is singular at two different families

of poles,
six=p01+k, k=1,23,--- (poles of I'(w — s) for Ze(s) > f3}), (3.37)
Som=4n+1, n=1,2,3,--- (poles of B(s)). (3.38)
It follows,
2 oo
€T —k—ﬂl €T 4n—1
Ata) = (a5 ) <u< S E) Ay () t)) CEa1 (339)
k=1 n=1
%\ —k—B] B )
=u®Y(F) AP+ (F) U+ 1)) (3.40)
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Ay = (R R BOLED ey L [ (3.41)
() =P
un(t)zf‘;’;; / %r% (3.42)

Fe(w)=P1

In order to estimate p(t) for 0 < ¢ < 1 we deform the integration contour Ze(w) = 3
towards lower values of Ze(w). Since f] € (0, ¢), the singularities are the negative zeros
Of B(w)7 §=-—-Nn,n= 767 777 783 tee and

oo

plt) = 3 pl-m (3.43)
n=6
On the other hand, for each n € N, the set of poles of I'(w—4n—1) such that Ze(w) < (4
is {—1,—-2,-3,—4,---}, but —1 is a pole of B(w) too. The zeros of B(w) are the negative
integers {—6,—7,—8, - - - }. Therefore, the singularities of % are the simple poles
{—2,-3,—4, -5} and the poles {—6,—7,—8,--- } of multiplicity two,

Vn(t) = 7f4n+1 Z’Yn,ftz (344)
(=2
(_1)Z+47L+1 ' Lo 5 55
’Yn,Z—B(_E)(g_'_Zln_'_l)'» — L&ttty ( )
INw—-4n—1
Tn,le = Res (((A}_B((:L))’w = —€> s {= 6,7, cee (346)
It follows that,
N\ —1-81 N\ —5 T
< = 6 —) 2= .
|A(t,x)\_01<t> t +02(t 2, 2>10<t<1

Since 3 is arbitrary in (0, ¢) and c¢ is arbitrary in (0,2), 51 may be taken as close to 2
as desired.

The proof of (3.27), (3.28) follows similar arguments. For ¢ € (0,1) and = € (0, pt)
with p € (0,1), the behavior of I(¢,z) is obtained by deforming the contour integrals
to lower values, first of Ze(s) and then of Ze(o). In first step the sequence of poles of
s72B(s), with Ze(s) < 0 is crossed. These are located at s = 0 and points ¢}, defined in

Proposition 2.1, starting at oj = —1, and then

7(0) t~°T(0) x

=8 [ ST e (1)

(t,z) Sim / Blo) + M)z +p1(t ;
Ze(o)=p

2 o)z t=°T'(oc — o,

piltz) = % / %d‘f = 0(t°2°), t € (0,1),z € (0, p),
n=1
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32
since the first pole of I'(0 — ¢ ) / B(0) with negative real part is located at o = —6, (3.28)

follows.
The same method gives estimate (3.29). Starting from (2.39) and (2.29), we deduce

ct+io00
d N’ [ 1 .
aA(t,z) = (x(?x> 5t / U(t,s — 1)W(s—1)s “z"%ds

5240 (t) “Y Jods

c+ioco
_ (.0 = / B(s)I'(oc—s+1)
= \"oz) |4 B(o)
c—1i00 Ze(o)=p

With the same argument as before we deduce

it =o 03 () gt 32 (5)
k=

ot

—dn
(4n +1)%v,(2)

[

0 x\ b1 T\~ x
tx) <C —1(—) 4 C —1(—) 2, Ys10<t<1.
g Mb0)| < G G ey t
For estimate (3.30), where x € (0,t/2) the s integration contour is moved towards smaller

values of Ze(s). The sequence of poles of B(s), with Ze(s) < 0 is then crossed. These
are located at s = 0, —1 and points o;; of Proposition (2.1). We deduce, arguing as before

(+2) (Bt (2)+ 32 () ).

WAt x) = | x=—
Ox n=0
=) (35) + e (5) )
n=0
Dn(t) = ;’; / %t— dw; fia(t) = ;;; / F(;(—;)Q)t_"da
Re(o)=p

Pe(w)=0
The functions 7, and fis are now determined by the sequence of zeros of B(c) such that

He(o) < 0. Since the first one is at s = 6 estimate (3.30) follows
From (2.39) and basic properties of the Mellin transform,

3
oA (t,z) = (x(,%) (J(t,z)) where, forc’ € (1,2),

oz
¢/ +ioco Y .
J(t,z) = —ﬁ / / t IB(SB(;))F(U =) (s —1)s73 (%) dods.

c’—ico Re(o)=0
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For ¢t € (0,1) and z € (0, pt) the behavior of J(t,x) is obtained by deforming the contour
integrals to lower values, first of Ze(s) and then of Ze(c). In the first step we cross first
the pole s = 0 then, the poles o} + 1 of B(s — 1) of (s — 1)72B(s), and obtain,

B<5 — 1) * : T 7170; D* —1—05+e;—0o5—¢'
J(t,x) = <%68T;S=0> Ro(t)—i—Z(—) Rj(t)—i-()(:r st s )
j=1

t
* _ t—o—lr(o.) D* _ 7’(]. + 0-;)0—;( t_U; ]
Ri(t) = / Wda’ Rj(t) = (1+03)3 <_B(1+a;-‘)+0<t >>

Re(o)=p

and, (3.33) follows, with the same argument as in the proof of (3.27), (3.28).

The estimate (3.34) where z/t > « > 1 requires to deform first the s contour integrals
in J towards larger values of Ze(s). Since by construction ¢ < 8 we first the pole of
I'(o — s) at s = o, from where, for ¢’ € (3,2),

o) = / 0= it Tt )

2im W(o—1)
Re(o)=p
1 i - 0BG - )Ee )
s— s— o—38) [T\ S
Jl(t,l') = _H / / B(O’)S3 (;) dods
Re(o)=p c’'—ico
2p(2
J(t,x) = %t_lx_?’ +0 (t'a=**°) — Ji(t,z), for arbitrarily smalle > 0

The s integration contour in J; is moved to larger values. The next pole of B(s — 1) is
at s = 6. Since 0 = 3 is a zero of B(c), that we do not want to cross, the condition

o —s € (—1,0) can not be maintained. The singularities of I'(c — s) at ¢ — s = —1 and
o — s = —2 are crossed. Since
! / 20— Loga)?1eg 1y (2) = 0, Vo > 1
— ———=do = -(logz x) = x
2im 0+ 13 g VBT 20,0 ’ ’
Ze(o)=p

this gives, using (2.15), for d € (5, 6),

ot 7 20 +1)
Jl(t,x) = —% / WW(U)dO’ + JQ(t,l')
Fe(0)=0

d+-i00

1 t=o Y s—1)B(s—1)I'(c —s) fo\~*

ol ) = 472 / / B(o)s? (;) dods
Re(o)=p d—ioco

then Ji(t,z) = O(ta~%) + Jo(t,z), Jo(t,z) = Ot z75°)

and (3.34) follows from the location of the zeros and poles of W and B. O
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3.2.2. Properties of A fort € (0,1) and 0 < |z —1] <1

Proposition 3.6. There exists a constant C' such that

[A(t,x)| < |$C_Y ik Vo, 0< |1 —z| <1, Vte(0,1)

0 C(1+tllog |z — 1|])

—A < ; 1-— 1 1).
5 (t,m)’_ o] , Vo 0< |1 —z| <1,Vte (0,1)

Proof. We define the new variables
X =logz, A(t,X)=A(t,x), Vt >0,z > 0.

. 1
Then, VX eR, At,X) = 5 e *XU(t, s)ds.
(s
Ze(s)=c

After two integrations by parts:

- 2
A(t,X) = 1 / (e7*X —1) %Tg(t,s)ds.

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

When |s| < 1, we use [e=*X — 1] < |sX| and deduce from (3.51) and Proposition 2.10

52

e e
Re(s)=c Ze(s)=c
|s]<1 [s|>1

1X]

But,

B 92U 1 —u 0*U v
| e enGreae- [0 g (ng)a

Re(s)=c Re(u)=cX
[s|>1 Jul>|X|

and by Proposition 2.10

(e*¥ —1) t e — 1]
> 7 < L Dl
/ T E ¢S | i Xl

Ze(s)=c Re(u)=cX
[s|>1 [ul>|X]
e 1] [y
=t/ X ———=|du| < t|X ——|du].
X[ el <X Tl
Ze(u)=cX Ze(u)=cX

[ul>|X| [u|>|X|
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If s = ¢+ iv, then e™* = e~ “Xe~" and for X bounded,
e — 1’2 = e 2% ((cos®(vX) — 1) +sin*(vX)) < C
and, if u = ¢X + iw,

le™ — 1| dw dw C
— d < — < _— =
e =0 e S0 e T X

Ze(u)=cX Re(u)=cX R
Jul>|X]| X2 w > X2

This shows (3.47) and a similar calculation gives (3.48) using that,

ot 2w
Re(s)=c

vx ek, Lawx) = / x4 gis. o

Lemma 3.7. For all € > 0 as small as desired, there exists a constant C. > 0 such that
for allt € (0,1), a € (0,2t), and all x € (0,2),

Ce
x¢| log z|*”

|(log 2)' ~*A(t, z)| < (3.52)

Proof. Tt follows from (2.33) that, there exists C' > 0, independent of ¢, such that for
te€ (0,1) and z € [0, 2),

|(log z)A(t,z)| < Ct / (14 [s|)"1 22 %d|s| = %’

€
Re(s)=e

and then, for all « € (0,1),

log z)A(t, x)| < Ceax™¢
[logz|®  — |logz|®

|(log )" A(t, z)| =

Our next goal is an estimate of the Holder property (1.29) for A(t). We start with,

Lemma 3.8. For all r € (0,1/2), all € > 0 arbitrarily small, there exists a constant
C(r,e) > 0 such that, for a € [0,7) and a,b satisfying 0 < a < b < 0,

vt € (0,1), Y(z,y) € (a,b) X (a,b),
2+ a)C(r,e)lz —y["

a€

Oa(2)A(t, ) — Ouly)A(t, y)| <

(3.53)

where, O, = |z — 1|7*(log x)
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Proof. We deduce from (1.24) and (3.52) (cf. Theorem 3.1 [28] for example) that for all
e > 0 arbitrarily small, there exists a constant C(r,e) > 0 such that, for a,b satisfying
0<a<b<oo

vt € (0,1), V(z,y) € (a,b) x (a,b),

Clre)le —yl"
aE'

|(log 2)A(t, ) — (log y)A(t, y)| <

This is (3.53) for & = 0. Property (3.53) for all a € [0, r) follows by simple straightforward
calculation (cf. for example 5° in [25], p. 14). O

Corollary 3.9. For all r € (0,1/2), for all € > 0 arbitrarily small, there exists a constant
C = C(r,a) > 0 such that, for a € [0,7) and a € (0,2),

vt € (0,1), V(z,y) € (a,2) X (a,2),

Cle — y|m—o
g 2"~ A(t, 2) — [log y|*A(t, )| < — ==Y

S allogairar—ay (354

Proof. Let us write,

|log z|' = *A(t, z) = ¢(t, z)w(x)

o(t,z) = (loﬁjzAl(z x), w(z) =

|z —1]*

log

By Lemma 3.8 and the mean value Theorem,

p(t, )w(r) — p(t, y)w(y) = (p(t, ) — o(t, y))w(y) + ¢()(w(t,z) —w(t,y))
2+ a)C(r,T,e)|lx —y|" @

lo(t, x) — ot y)llw(y)] < = sup |w(z)]
a z€(a,2)
w(@) —w(y)| < sup [w'(2)l|lz —y| < —=——rr|z —yl,
2€(0,2) allogalt+e
because,
: o — 12 (z — 1) 1—a _ |z 1] -
= 1 « 1 O‘
w!(2) e Nlosal' ™" — e llog '~
— 1@ H(x -1
+ |a:1 | |10gm|_aL, H = Heaviside’s function
0g
c
"(z)] < v 2
|w (x)‘ —a|10ga|1+a’ IE(G, )

But since, |w(z)| < w(2) for all z € (0,2) we deduce by interpolation, for all § € (0,1),
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Clz -y’
a[log a| ()P

jw(z) —w(y)| <

and, for § = r — a that may be supposed to be larger that ¢,

(4 +20)C(r,e)|w —y["* Cla -yl
|<p(t, x)w(z) - (p(ta y)w(y)| < aE ar_a‘ 10ga|(1+0‘)(r—a)
Cla —yI" "

- ar—a| loga‘(l—&-cx)(r—a)
for some constant C' > 0 that depends on r, @ but not on a. O

Proposition 3.10. For all r € (0,1/2), a € [0,7) and t € (2r,1), if m(x,y) = min(z,y)

2A(t, )|z —y[' 7 Cla —y["°
At —A(t < 3.95
A =MDl S = eTlog e © il gyl log m(z, I 10— >
and the function A satisfies property (1.29)
Proof. 1—a
A(t,y) — At  z) = [log x| ~*A(t, ) A1 (z,y) + As(t, 2,y) (3.56)
1 1
4 _ N 3.57
o0 = (o= ~ Mg 357
| logz['~*A(t, ) —logy)' ~*A(t,y)
As(t = 3.58
2( ,x,y) ( |10gy‘1_a ( )
|A (,’,U y)| — |10g$|17a 7 |logy|1ia ||10gl’| B |10gy||170‘
o [log z['=[log y[1== | ~ [logz|'~*[log y[I—*
1 d e
— —_— 1 —
|log z['~|log y| '~ ((dzl ng') Ol y')
g @r -yl
§1=e[logz['~*|log y|' =
for some ¢ between x and y, and then,
21z — y|te
Ay (2, y)| < [z~ y] (3.59)

min(z, y)'~|log z|'~*|log y['~*

Using Corollary 3.9 to estimate As, the result follows. 0O
3.8. Behavior of A as x — 1

In the following Proposition the behavior of A is given in the neighborhood of = 1.
Tts proof, somewhat technical is given in the Appendix.
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Proposition 3.11. For all bounded subset A C R, there exists a constant C, > 0 such
that,

sup ¢ HX|MHIA(L X)| < Cy (3.60)
XeA, te(0,1)

|X‘1—2t 8[\

sup  ——————= — (1, X) < Ca, 3.61
XeA, te(0,) (14 2tlog |X]|) ot (% X) (3.61)
and, uniformly on A,

lim ¢~ X P 2A(, X) = 1, (3.62)
t—0

|X|1 2t a]\

lim ————— t, X .
I A 2tTog ) ot ) = (3:63)

Remark 3.12. For any ¢ € Cc(R),

hmt/pq 142t X)dX = p(0).

Corollary 3.13.

lim ¢ ’e—l/tY’HtA (L1+e i) =1 (3.64)

t—0

uniformly on bounded subsets of R.
Proof. For ¢ > 0 sufficiently small, depending on the bounded set K of R where Y varies,
1+ e Yty > 0. Then we define 14 e~'/*Y = X and by definition A(t,1 + e /'Y) =
A (t,X). By (3.62), uniformly for X in bounded subsets of R,
lim ¢~ X2 IA(L, X) =1 (3.65)
t—0
lim ¢~ XA 1+ e VYY) =1 (3.66)
t—0
But, since
lime 'Y = 0, uniformly for Y on K,
t—0

it follows that

lim X = 1, uniformly for ¥ on K.
t—0

Then
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ety |
lim = lim
t—0 X t—0

=1

from where
lim ¢ Y X IA(L 1+ e VYY) = lim ¢ e VY RTIA(L 1+ e YY) = 1
t—0 t—0

uniformly for Y € K. 0O

Corollary 3.14. For all R € (0,1) there exists Cr > 0 such that

Crt
IA(t,z)| < ﬁ Vs o — 1]t < R, t € (0,1),
- —
0 Cr(1+2t] -1
EA(t,x)‘ < il |+ 1c|>1g_|2a:t D, Va; |z —1let/* < R, t € (0,1).
—

Proof. By (3.60), for all ¢ € (0, 1),

2t
-1
|A(ta1+6 /ty)|< -2t

<— = _ _ We(-RR).
Y

In terms of x = 14 e~ '/*Y, (3.68) follows. Similarly, (3.69) follows from (3.61).

Corollary 3.15. The function A satisfies,
A € C((0,00), L*(0, 00)),

and there exists C' > 0 such that,

C’
A < 1 ¥ >0

Proof. We prove (3.72) first. For ¢ € (0,1) we use the estimates in Section 3.2

1/2

/|At . |dx—/|Atx da + / \A(t,x)|dm+/|A(t,x)|dm.

la—1|<1/2 3/2
The first and third integrals in the right hand side of (3.73) are estimated as,

1/2

/| t;v|dx<t/
FEThe

/|A (t,z)|dx < C’lt”ﬁl /xflfﬁida:+02t7/x76d:c.
3/2 3/2 3/2

39

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)
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For the second integral in the right hand side of (3.73) we write,

A(t, z)|dz = / A(t, z)|dz + / A(t, 2)]

lz—1]<1/2 0<|z—1|<e—1/t e~ Mt<|z—1|<1/2
dx dx
<Ct —— +Ct —_—
= / o — 1] / o — 1]
0<|z—1|<e—1/t e~ /t<|z—1|<1/2
e—l/t 1/2
d d 2C
— 20t / c 2 9Ct0g2 + 2C.
z1 z e
0 e—1/t

For ¢ > 1, by Proposition (3.1)

IA(t,2)|de =t [ 1Q1(0)|dz + [ |Q2(t,0)|dx,
/ [ ]
=172 [ |Qu(0)|d6 +t | |Q2(t,0)|db,
[ ]

where we used the change of variable § = . Then (3.72) follows since, by Proposition
(3.2), Q1 € L*(0,00) and, by Proposition (3.3),

[ 1Qa(t.0)1as < 1 (3.74)
0

On the other hand if t; > 0 and |t —¢1] < ¢1/4, for any € > 0 small fixed and R large to
be fixed,

/|At1, t.ib‘)‘—11+12+]3+]4
hz/Mh, Ato)lde < sup [A(tr,z) — Alt,2)
0 z€[0,1—¢)
1+4¢
I = / A(t,2) — Alto, 2)ldz < 2 sup  |A(t,2)|
z€[l—e,14¢)
te(Btl 521)
&-/WA@ Altzo)ldz < sup  [Altr,z) — Alt,2)
z€[1+€,R)
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oo

14:/|A(t1,x)—A(t2,x)|da:§ /|A(t1,x)|dm+/\/\(t2,w)\dx
R R

R

The terms I, I> and I3 tend to zero as t — t1 by the continuity of (logx)A(¢,z) for
t>0and z € RT\ {1}. If 0 < ¢; < 1, we deduce I, < CR™# from an estimate similar
to (3.71) written for R instead of 3/2. For ¢ > 1, it follows from (3.4) and (2.30) that
I4 < CR'~¢ where ¢ may by chosen in the interval (0,2). The choice ¢ € (1,2) ensures
that for all ¢ > 0, Iy — 0 when R — oo. This proves (3.71). O

In order to check that A satisfies (1.1) let us show first that L(A(¢)) is well defined.
When ¢ > 1 this follows from the C* regularity of the function A().

Proposition 3.16. L(A) € C((1,00) x (0,00)). For all t > 1, there exists a numerical
constant C' > 0 such that

L(A@®))(z) < x_ct; min (%7 i) , Vo > 0.
Proof. For t > 1, A(t) € C1(0,00) and by Propositions 3.1-3.3
|A(t,z)] < min(t™3 273).
Therefore, for every z > 0, and y € (0,2/2)
IA(t,y) — A(t,2)|K(z,y) < Cax ™2 (min(t_?’,x_B) + min(t_3,y_3))

Then, if x € (zg — &, 20 + &) for some x5 > 2 > 0,

C(x0 — €)*Locy<(wote)/2
min(¢t=3, (zg — &)%) + min(¢ =3,y ~3))

|A(t7y) - A(t7m)|K<xay)]lO<y<m/2 < (

and since the right hand side belongs to L!(0, o) it follows that

z/2

/ (At,y) — At,2) K (2, y)dy € C(0,00).

0
z/2
Moreover: / IA(t,y) — A(t,2)| K (2z,y)dy < Cmin(t™3, 273z 14
z/2

C
/ min(t 3,y 3)dy < Cmin(t =3,z )2~ + pove) min(t~! 7).
x



42 M. Escobedo / Journal of Functional Analysis 282 (2022) 109390

On the other hand, for > 0 and y > 3z/2,
IA(t,y) — A(z)| K (2,y) < Cmin(t2,273)y 2 + Cy ?min(t 3,5 %)
and if © € (zg — €,z0 + ¢€) for some xg > 2¢ > 0,
IA(9) = A@IE (@, 9) 1,200/ < Oy~ (min(t ™, (¢ - 20) ™)+
+Cmin(t 3, y*3))1y23(£_$0) /2 € L0, 00).

It follows that

oo

[ at.9) - At ) K@ )iy € C0.00)
3z/2
and,
/ IA(t,y) — A@)| K (z,y)dy < Cmin(t™>, 2" %)a™" + C/min(t‘37 y—3>‘yi—i’
3z/2 37“”

< Cmin(t2,27 %)zt
For all z > 0, y € (z/2,32/2),

oA 1
(A(tvy) - A(tvx))K(xvy) S sup p) (tvy)‘ -
z/2<y<3x/3 | OL Yy

3z /2
from where, as before we deduce first that [ (A(t,y) — A(t,2))K(z,y)dy € C(0,00)

x

and
3z/2
A
[ ) - MoKy <C s 8—<t7y>‘ < Cmin(t,c%). O
/s v/2<y<30/3 | OT

For 0 < t < 1 the argument is based rather on (3.55) of Proposition 3.10

Lemma 3.17. For all r € (0,1/2), o € [0,7), t € (2r,1) there is a numerical constant
C > 0 such that, for all x > 0,

pao@l s BE (1 )

|log z|t—« z|log z|(1+a)(r—a))
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Proof. Tt follows from (1.26) (proved in Proposition 2.13), Proposition 3.5, Proposi-
tion 3.6 and Corollary 3.14, that when ¢ € (0,1) for all € > 0 as small as desired and all
p € (0,1) there is C. > 0 and C, > 0 such that,

x73%e vz > 3/2

t 1
At )| < 3 g =g Yl 1< (3.75)

Cox Yz € (0, pt).

Then, if we denote J(t,z,y) = |A(t,z) — A(t,y)| K(z,y)

x/2 x/2 x/2

/ J(t,2,y)dy < |A(t )] / K(x,y)dy + / A 9)IK (2, )dy
0 0 0
( ) z/2
Alt,x C 9
< ’ — A
S =5t /y (t,y)dy
0

If z > 3, and there are constants p > 0 and § > 0 such that z/2 > 14 de~ '/t pt <
1— e 1/t

z/2 pt 1—de~ 1/t 146e 1/t
[mewian< [¢a [eodrs [an
0 0 pt 1—8e—1/t
3/2 z/2 5
N O R AR
14+e—1/t 372 k=1
Using (3.75)
1-§e~ 1/t
dy 1-e =/
0
14+5e~ 1/t 3/2
dy dy
I3 < Ct — 2 <O, I, <(Ct <C
3= / PESTEET / e
1—ge—1/t 14+8e—1/t
z/2 9 xz/2
Yy £, 2 5
I5§C/WSO$7 /y|A(t,y)|dy§C’(l+x), Va > 3.

3/2 0
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When z € (0,3) we have three possible cases. If for some p € (0,1), z/2 < pt, then,

x/2
[ il < s
0

If for some p € (0,1) and § > 0, z € (pt,1 — de~'/?) then,

x/2 z/2
/yQIA(tyy)Idy < Cta? / ld_—yy = COsta? < C
0 0

If, for some ¢ > 0, 2/2 € (1 —de~ '/t 1 + Je~/?). In that case,

z/2 1—§e— L/t z/2
/ﬁmwmwg / VIt y)ldy + / V2 IA(t )ldy
0 0 1—§e—1/t

1—ge 1/t ©/2

dy dy

< 2 2 2z <

Cx“t / T—y + Cz*t / (1= y)ia C
0 1—Gde—1/t

And if x/2 € (1 +de~1/t,3/2)

x/2 1—de~ 1/t 146e~ 1/
[Pneways [ el [ Pl
0 0 1—6e—1/t
z/2 1—8e~ 1/t x/2
+ / YA (L, y)|dy < Cx®t / ﬂy + Ozt / — < C

1 _
1+4+5e—1/t 0 1—fe—1/t

Then,

z/2
Cz?*
2Nt y)|dy < ——
/yl (,y)\y,1+x4
0

and,

Consider on the other hand,
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o} oo

A A
/ J(t,x,y)dyg m—l—Cm / M
T Y
3z/2 3z/2

We have as before several cases. If 3z/2 > 3, we may write,
[ Alt,y)d [ d
/ (t7y) y S C / y — C.'I;_5+€.

y3 y678
3z/2 3z/2

If for some § > 0, 3z/2 € (14 de~'/t,3)

e} 3

[ e [ Gty [

3x/2 3z/2

Suppose that, for some ¢ > 0, 32/2 € (1 — e~ '/t 1+ de~1/t), in that case,

oo A( )d 1+6efl/” d 3
— =< C — 4 C +C | = < C,
/ Y3 ly — L[t =2 Iy—ll
3z/2 1—8e—1/t 1+4+8e—1/t

and a similar argument gives the same estimate when s € (0,1 — de~/?) for some ¢ > 0.
Therefore,

¥ A(t,y)dy Vi CA(t,x) Cx
< < .
/ 7 S e and / J(t,x,y)dy < . + [
3xz/2 3xz/2

We are then left with the integral on the domain |z — y| < /2. By (3.55),

/ J(t,x,y)dy < K1 + Ks

lz—y|<z/2
2|A(t — gyl
K, = / | (’ﬁ”x Y| 4
m(z,y)!=|logy[!—«
lz—y|<z/2
|$ ‘T «
Ky = dy.
’ m(z, y)r = |log m(z, )|+ =)
lz—y|<z/2

The first term, K4 is bounded as follows

3z/2 3z /2

CA(tvI') |93 y|1 “ CA(tax) / |$ y| ady
rl-o / |10gy|lfoc ( ’y) y= r2—a |10gy|1 a

z/2 z/2

K, <
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and using the Binomial formula and the behavior of I'(«,7) as r — 0 and r — £oo we

obtain,
3xz/2 3z
R Ry
|z —y|*|logy|'—* '
z/2 /2 x
3.76
/(fc—y)allogyP“" - O( )fco‘ / |10gy\1 * (3.76)
o/2 n=
_ 2 Cxl=«
(F(a log(2/2)) — I'(a, = log z)) < W’ (3.77)
[o=mr==20) [ () o
(y —z)*[logy|'~> = = \n y/) |logyl®
2¢ Cxl=@
= (I(er, —log(32/2)) — I'(a, —log x)) < Tog e[l (3.78)
On the other hand for the second term Ks,
3z/2 B
Ky < / Clo — y[""*K(z,y)dy
m(z,y) | log m(z, y)|(+F)r=e)
x/2
and then, arguing as in (3.76), (3.77),
Y Y _ —1+7‘—ad C
2~ yl Y < , Vo > 0.

/ J(t,,y)dy < Ca— ' 774

x/2 x/2

|10gy|(1+a)(r7a) — l’| loggj‘(l%»a)(rfa))

Since r € (0,1/2), o> —ar+(1—r) > 0 for all @ € [0,7) and then (1+a)(r—a) <1—a
A similar estimate holds for the integral on (x,3z/2). O

Proposition 3.18. For allt > 0

oA
T —(t,z) = L(A(¥))(x) a.e. (3.79)

Proof. If t > 1, A(t) € C'(0,00) and, by (2.42) and (5.48), satisfies (1.1) for ¢ > 1 and
x> 0. For t € (0,1) fixed, A(t) € L(0,00) and ©,A(t) € L*(0,00). Then v, = ¢, * A €
C1(0,00) and there exists a function h € L'(0, 00) such that, up tho the extraction of a
subsequence still denoted v,
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nhj& [lon, — A()]]1 =0, nhﬂrr;@ [vn(z) — A(t,z)| =0, a.e. (3.80)
|vn] < h, a.e. (3.81)

Since the function H, defined in (1.21), is such that H € L'(0,00), we also have,

lim ||H xv, — Hx+A(t)||1 =0, and (H *xv,), — (H=*A), in 2'(0,00), (3.82)

n—roo n—oo

and it may be assumed without loss of generality that

lim |H *v,(z) — H* A(t,z)] =0, a.e. (3.83)

n—oo

Let ©p > 0,29 # 1 be such that (3.80) and (3.83) holds and consider the interval
I(xzo) = (xo(k — 1)/k,zo(k + 1)/k) with k large enough to ensure 1 ¢ I(x(). Since
A(t) € CH(I),

Vo € (0,1), Jim [[on — AWl gn(ry = 0 (3.8)
On the other hand, for all n,

|vn () — v (y)| < Cle —y|P, for ae.ye€ I(x) (3.85)
() = vn(y)| < h(x) + h(y), if y ¢ I(x) (3.86)

then, by the Lebesgue’s convergence Theorem,

(oo}

Ml(w@—%wMme@=/M@—MmWmew
0

n—00
0

and L(vp)(zo) — L(A(f))(xo). It is simple to deduce from (3.85) and (3.86) that for all
n—oo
interval J = [a,b] C (0,00), there exists a constant C; > 0 such that, |L(v,)(z)| < Ck
for all n and a.e.x € I. It follows, that L(v,) — L(A(¢)) in 2'(0,00) and, by (3.82)
n—oo

the Proposition follows. 0O
3.4. Proofs of Theorem 1.2 and Theorem 1.3

Proof of Theorem 1.3. Let us call A = A; — Ay. Then .#(A(t)) is analytic on Sp
for 0 < ¢ < T and satisfies (2.29) on Ze(s) € (1,2), 0 < t < T. By Proposition
(2.10), #(A(t)) is bounded on S for 0 < ¢t < T. By the condition on the initial data
A (A(t)) — 0 uniformly for s on compact subsets of Sp 2. Let £ € C°°(0,00) be such
that £(t) = 1 for 0 <t < T/2 and £(t) = 0 if t > T, and define U(t,s) = . (A(t))(s)£(t)
that satisfies
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%(t, s)=W(s—1U(t,s — 1) +r(t,s) (3.87)
r(t,s) = A (A(t))(s)l(t) (3.88)

and the function r is bounded on (0,7) x Sp.2, 7(t) = 0if 0 < ¢ < T/2. We may then
Laplace transform both sides of (3.87) and obtain, for some constant C' > 0,

2V(z,8) = =W(s—1)V(z,s = 1) + 7(z,s), Ze(z) >0, Ze(s) € (1,2) (3.89)
7(z, 5)| < Ce™2%¢() | Vs € 8, Re(z) > 0. (3.90)

The function V may be split as V = V,, +V}, where V,, is the particular solution of (3.89),

_ 1 B (0—s)log(—2) &
7(28) = —— (s) / e 7(z,0) do

C2im oz B(o) (1 — e2im(s—0))
Ze(o)=B
and Vj, must satisfy
WV .
E(t,s) =-W(s—1V(t,s — 1), Ze(z) >0, Ze(s) € (1,2) (3.91)

The function Vj,(z, s) is analytic on s € S for all Ze(z) > 0, analytic on Ze(z) > 0 and
for all s € S. By (3.90), and our choice of the branch of the log function in (2.20), for
all z€ C, Ze(z) > 20> 0

(o—3) log(—=)
> “Tope(z) L e | |do| T ge(2)
[Vo(z,5)| < Ce™2 P / Bo) 1= erta] < Cye 2 .

(3.92)

On the other hand, using the function Vj, we define, following the same rationale as in
the definition of (2.22), in the Proof of Proposition (2.8)

B Vh(Z,S)@SlOg(_Z)
HED =56

h(z,¢) = H(z,s), ¢ = e*m(s=A),

For every z such that Ze(z) > 0, the function h(z,-) is then analytic on C \ R* and, by
(3.91),

h(z,¢ +i0) = h(z,¢ —i0), ¥C € RT.

It follows that for all Ze(z) > 0, h(z, -) is analytic on C\{0}. But since, by Proposition 2.4
and (3.92), we also have
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Arg(—z)

ei(s—ﬁ)Arg(—z) — Ceclogz |C| T — Ceclogz ‘C‘1/27

es log(—2)| — Ce® log z

h(z,¢)| < C

by Liouville’s Theorem h(z) = 0. Therefore H(2) = Vi (2) = 0 and V = V,. By the
inverse Laplace formula

a+i00

U(t,s) = — / V(z,s)e*dz,

and by (3.90) we have then U(t,s) = .#(A(t,)(s) = 0 for all s € Sand 0 < ¢t < T/2
from where the result follows. 0O

Proof of Theorem 1.2. All the properties of A, up to (1.25), have already been proved
in Proposition 2.13, Corollary 2.14, Corollary 3.13, Corollary 3.15 and Proposition 3.18.
Since W(2) = 0, U(t,3) = U(0,3) for all ¢ > 0 by (2.29), which is the conservation of
the second moment of A(t). O

4. Solution of the Cauchy problem for (1.1)

This Section is devoted to the proof of the existence of solutions to the Cauchy prob-
lem for equation (1.1) for initial data fo € L°°(0,00) or L'(0,00), and the proofs of
Theorem 1.4 and Proposition 1.5.

For all y > 0 we define,

G(t,z;y) =y A (5, %) , Vt>0,Vz > 0. (4.1)

By (3.71), G € C((0,00) x (0,00); L*(0,00)), for y > 0 fixed it is a weak solution to
(1.20) and

lim G(¢,-,y) = d,, in the weak sense of 2'(0,00). (4.2)

t—0

The function G also satisfies the following important property,

Proposition 4.1. There exists a positive constant Cg > 0 such that, for allt > 0,2 > 0,

I(t,x) = / |G (t,z;9)| dy < Cg. (4.3)
0

The proof of Proposition 4.1 has several auxiliary Lemmas and two different cases:
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o If0<t <u,
t d x [e%e] d
Y Yy Y
I(t7x):/ (cenee ) _+/ (ceeee ) _+/ (eene ) =2 (4.4)
——
0 t/y>1l,z/y>1 t t/y<l,z/y>1 T tly<l,z/y<1
efor0<ax<t
x t [e'e] d
Y Yy Y
I(t,ﬂf):/ (cenee ) _+/ (coene ) _+/ (coene ) =2, (4.5)
0 t/y>1,2/y>1 T t/y>1l,z/y<1 ttjy<l,z/y<1

Lemma 4.2. There exists C > 0 such that, for allt >0 and x > 0,

[hG)e=e

Proof of Lemma 4.2. Since y € (0,¢), t/y > 1 and by Proposition 3.1 and Proposi-
tion 3.2,

Then,

t
Va >0, Vt € ( /‘A( )’—y<
J Yy
/ d t\ Pdy 1
Yt >0, Vo € (0 /' ( ) y_/(—) W_ - |
) ) \Y y 3

It remains now to estimate the two last integrals at the right hand side of (4.4), and
the last one at the right hand side of (4.5). To this end we will be using a function §(z),
defined and continuous on z > 0 such that,

s o

0 is decreasing, 0(u) < 1 for all u > 0, 6(1) =

4.1. The domain 0 <t < x

Consider first the domain where 0 < t < y < x where 0 < % <l< 5 In order to use
the estimate on A, this domain is still subdivided.
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Lemma 4.3. Define
Hy(z) =2(140(2)) and H1(z) = 2(1 —6(2)), V2> 0

These two functions are monotone increasing. Moreover

Vz >0, Hi(2) < z (4.7

Vz>3/2, Hy'(z)>1 (4.8)

Vz>0,Hy  (2) < 2 (4.9)
2

Vo >0, Vt € (0,22/3), Ex < tH;! (%) . (4.10)

Proof. Since the function Hj is strictly increasing, its inverse H, Uis well defined. The
choice 6(1) = 1/2 makes Hy(1) = 3/2 then H,'(3/2) = 1. By monotonicity it follows
that Hy'(2) > Hy'(3/2) = 1 for all z > 3/2 and this proves (4.8). Since Ho(2) > z it
follows that z > H, *(z) and this shows (4.10).

Since 6(1) = 1/2, we have Z (1 + 6(1)) = 1 and the function §(z) is strictly decreasing
because so is p(z). Therefore §(z) < 1/2 for all z > 1, and, for all t € (0, 2x/3)

Hy (Z) :i—f (1+5<§”§)) <§—f(1+5(1)):%.

Since Hs is strictly increasing, so is Hy ', 22 < H;' (%) and this proves (4.10). O

Lemma 4.4. For allt > 0, x > 0 such that t < z,

/‘A(f,fﬂﬁgc(1+t+q>1+\pl+<i>2), (4.11)
yy Yy
t
¥ t x\|dy
A== )| =Z<CO+P3+T3), (4.12)
yy Y
tHy ' (%) .
1|z dy
where: Dy (x,t) =t —|==1] =, Vte(0,22/3), (4.13)
yly Y
QTJ:
x _1+2
t|x v dy
Uy (z,t) = —|-=1 —, Vt € (0,2x/3), 4.14
(2.0 oo T e .20 (4.14)
tHy ' (%)
= [tz 5 dy
Dy (x,t :/———1 —, Vt e (2z/3,x), 4.15
2 (,1) [ uly " (2z/3, ) (4.15)
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tH ' (%)

t|x 71+%dy
Vs (x,t) = / —|--1 —, Vt € (0,z), 4.16
3 (2,1) b ) (0,) (4.16)
2z ; _1d
x Y
D3 (z,t) = —-|1-—| —,vte 4.17
3 (2,1) y’ i (0, 2). (4.17)

Proof of Lemma 4.4. We show (4.11) first and start assuming ¢ € (0,2z/3). By (4.10),

/’ <_ e 1) dyy 7<...>dy+ tHZ(f)(m)dyiHZl) (- )dy.  (418)

In the first integral of the right hand side of (4.18), since y < 2x/3, by Proposition 3.5

t o\ —1-81 [ 1\© -6 /2
Z 2 < e z Z
’A<y’y)’ Cl(ﬁ) (y) +02< ) (y> ’
TT d 2z
and then, / ( )‘ L <Ot [y~ dy+C2t2/y_2dy < Ct. (4.19)
t

kY
In the second integral of the right hand side of (4.18), simple computations yield,

|8

ﬂ\wli.w‘

2x (T t z 3 Y T 1

€ —,tHl(—) = —H t<—<—:>6(—)<——1<—.

ve (5am (5)) = tmin <2 <3 =6 (V) <To1<;
Since x > 3t/2 we have y/t > 1. On the other hand, 2/t may take values arbitrarily large,
and then H; " (2) and y/t too. We deduce that §(y/t) € (0,1/2) and by Proposition 3.6,

tHy ' (2

/

2z
3

*\H

( )’ < OBy (z,1). (4.20)

In the third integral of the right hand side of (4.18), since tH, * (%) <y, it follows

that tH{1 (%) <y, from where § < Hj (%) =14 (1 +0 (%)) Then 5 <1+94 (%) and,

since z/y > 1 also,

0<f—1<5(3). (4.21)
Y t
We notice now that since z/t > 3/2 and 3 < £ = u(1 4 6(u)) < 2u, we also have
u = Hy'(x/t) > 3/4. Then y/t varies on the half line (3/4,00) and §(y/t) varies on
(0,(3/4)). We deduce from (4.21), using Corollary 3.13, that for some constant C' > 0,
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—14+2
‘A(t x>‘<c T (4.22)
vy yly
It follows from (4.19), (4.20) and (4.22) that for 0 < ¢t < 2z/3,
[ t x\|dy
t

Suppose now that ¢t € (2x/3,x). We first deduce that since z/t < 3/2 and H; ' is
increasing, Hy ' (z/t) < Hy *(3/2) = 1 and then tH, ' (z/t) < t. Since y € (t, x) it follows
that y > tH2 Y(x/t) and therefore,

Ha(y/t) =

<

(1+6(y/t)) > % — 1+48(y/t) > g — g —1<8(y/t).

Then, for all 0 < t < y < z, we have z/y > 1 and, 0 < 57 1 < d(y/t). By Corollary 3.14,
and (4.15) we deduce, when t € (22/3, z),

(L)% < oo, (2

and (4.11) follows from (4.23) and (4.24).
We prove now (4.12). To this end we write, the left hand side as

o] d tHfl(%) d 2z d oo d
Y Y 4 Y
)2 = )2 R S )= 4.2
JearZ= [ eaZe [ caZe[e0T )
- - 01 (5) 2

In the first term at the right hand side of (4.25) < y < tH; ' (%), then 0 < 1-2<46 (%)
from where, by Corollary 3.13 and (4.16)

tHi ' (2)
x

In the second integral at the right hand side of (4.25), tHf1 (%) < y < 2z and so
§(¥) <1- < % and by (4.17) and Proposition 3.6,

<——1)‘—<C’\1131:t) 0<t<ua (4.26)

W oy (a,t) 0< t < 2. (4.27)

In the last integral at the right hand side of (4.25), since y > 2x, by Proposition 3.6,
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o0 oo 1 o0
/’A(E,E> d_ySCt/id_gSCt/d—igc. (4.28)
; vy)ly ; 1—z/yly SV

The estimate (4.12) follows now by (4.26)—(4.28). O
4.2. The domain 0 < x <t

We estimate now the last integral at the right hand side of (4.5)

Lemma 4.5. For allt > 0 and z € (0,1),

Vi > 2z, /‘A (if)‘@ <C (4.29)
yy Y
t

Vi t z\|dy

vVt € (.13, 2.’1’3), A -, = — < C(l + d3 + \114) (430)
yy Y

t

tHy ' (2) g2
where Wy = / Ly ’ d_y’ vt € (z,2x). (4.31)

yly Y

Proof of Lemma 4.5. If ¢t > 2z then, z/y < 1/2 and Proposition 3.6 gives (4.29).
For t € (z,2z), £ >+ = Hy(1) and t < tH; " (%) by the monotonicity of Hy. On the
other hand,

1
2

() (-5(2) =0

(where use has been made of 22/t > 1), and then, tH; " (%) < 2z. Therefore,

f(m)dy tHl/(%)(~~)dy+ 7 ('“)dy+7o(~~)dy- (4.32)
¢ ¢ tHy (%) 2

In the first term at the right hand side of (4.32) 0 < 1 — 2 < §(¥) because y €
(ttH ' ($)),

tHy ' (%)

[ 1Go)
vy

t

by (4.31) and Corollary 3.14. In the second integral of the right hand side of (4.32)

d—; < Oy (2,t), (4.33)
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€ (tHf1 (%),%) :6(%) <1—§<%.
By Proposition 3.6 and (4.17)
2
/ ' ( >‘<C<I>3xt). (4.34)
tHy ' (%)

In the third integral of the right hand side of (4.32) y > 22 then by Proposition 3.6,

2/‘/\( )’_<c (4.35)

and (4.30) follows from (4.32)—(4.35) for ¢ € (z,2z). O
4.3. Estimates of the functions ®; and U,

In this sub Section some useful properties of the functions ®, and ¥, defined in
(4.13)—(4.17) are obtained.

Lemma 4.6. There exists a constant C' > 0 such that,
(I)1+\Ifl+é2+q)3+(1)4+\1/4§0 (436)
Proof of Lemma 4.6. (i) Estimate of ®;. By definition, for > 0 and ¢ € (0, 22/3),

LtH; ' (2)

By (2,1) = % / Lot = <log (1 ~Lhy (t)> +log3> (4.37)

3

Then, for all € > 0, ®;(z, t) is bounded for all (¢, z) such that 0 < t < z and LH, " (%) €
0,1 — €]. Assume now that £H; ' (%) — 1, and denote u = H; ' (z/t). Since,

éH‘;l (3)= Hl(Lu) =1 +15(u) (4.38)

if LHy" (2) — 1 it follows that §(u) — 0. This implies that u — 0o, and by elementary
calculus,

t i / 1 el 9w
5H1(¥>:1+61 —=1- 5 +O(62),asu%oo
t 1 (T
and  —Hy'(3) = 1+0(e), uw=d7"(T) = T(+0(7). (439)
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Using (4.38), (4.39) and the definition of §, for p > 0 as small as desired and v — oo,

éH’;l (5) = 1+e—%(1+10(e<1p>u)) - 1+1e—% (1+o (o))

and it follows that

t 1/ z
o (105" () 5 -5 +O ).
We deduce the existence of a constant C' > 0 such that for all 0 < ¢ < 2z/3,
Dy (x,t) <C. (4.40)

(i) Estimate of ¥y. Since t € (0,2z/3) and y > tH; " (£) then z/t < Ha(y/t) < 2y/t.
Using that y < x, also we deduce 0 < (% — 1) < 1. Since 1/y > 1/,

Uy (x,t) <tx™ /(1 - p)*lJr *1**dp C. (4.41)

(iif) Estimate of ®y. When ¢ € (22/3,x) and y € (t,2), 0 < + <1 and then, by (4.15)

/ gyt
B, t><t/(x1) Bt fa-ntote
t y y Q? t

1

t
< —/(1 —p) TR gy =27 <273, (4.42)
x

Wl

(iv) Estimate of ®5. By definition, for 0 < t < z,

By (x, 1) = % /2 P B KA (3H11 (3)- 1) (4.43)
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because, if v = H; ' (2) then £ = H;(v) = v(1 — §(v)), and LH; ' (%) = — 5( 5 > 1L

t t
The same arguments as in the estimate of the right hand side of (4.37), show the existence

of a constant C' > 0 such that for all 0 < t < x,
D3(z,t) < C. (4.44)

( ) Estimate of W3. For all y in the domain of integration of Us, y < tH; ( ) and then

y > H—(’:) Since y > z also, we have (1 - 5) (0,1) and we deduce from (4.16),
1 %
tHy (%) 2 FHI() —1+—#
e TRIE
T dy t —1 (3
Wy (z,0) <t / (1_f> " <t>_?2/:_ / (r 11 _ dr
/ y T R

We use now that, because d(z/t) < 1/2, z < Hy(2z) and so %Hfl (%) < 2, to obtain,

t r— ]_ ar(g) —2t
s t / o ir= —H1 We/2 e <0 (4.45)
xr

(vi) Estimate of Uy. By definition, z < t < y < tHl_1 (%) < 2, for all y in the domain
and (1 ) € (0,1). Arguing

of integration. Therefore, as for U3, we have % > = (g)
as for W3, we deduce from (4.31), for all ¢ € (z, 27),

tHfl(%) —14——2 d
Wy(x,t) <t / (1_E> (5 dy
t y y

,1,12715
=tz 'H Y(x/t)2  H@m < C. (4.46)

—
\l\)
—
<
|
—_
N—
™
T
=
o
—
+8
N
U
3

Lemma 4.6 follows from (4.40)—(4.46) O
Proof of Proposition 4.1. Proposition 4.1 follows from Lemmata 4.2-4.6 O

It is now possible to define the solution u of the Cauchy problem.
4.4. Proofs of Theorem 1./ and Proposition 1.5

Theorem 4.7. (i) For any fy € L*(0,0),

77‘ ( )fO(y)’d—jdm<oo,Vt>0. (4.47)
0 0
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The function defined for allt > 0,2 > 0 as

o

u(t’x):/ <y y) foly )

(4.48)

is such that u € L°°((0,00); L'(0,00)) N C((0,00); L1(0,0)) and there exists C > 0,

vt >0, |lu(®)ll < Cllfolh-

(4.49)

(ii) For every fo € L>°(0,00) the function u given by (4.48) is well defined, it belongs to

L>((0,00) x (0,00)) and:

vt >0, [[u(®)lleo < Callfolloo-

Proof of Theorem 4.7. The case (i) is an easy consequence of Corollary 3.15.

Zlu(t,xndx < 77 ol (£, )’ Y i
(e

The case (ii) follows from Proposition 4.1 O

\fo( )|dy
dedy < C [ 377 Tt )

(4.50)

Proof of Theorem 1.4. Property (1.32) has been proved in Theorem 4.7. For all ¢ >

0,t >0,

Vi , T T t x t x
O/|u<t,z)u<t,x>|dx§ 0/|fo<y>|0/\A<y,y) A(yy)

. ‘m 7 E T\ t x
Since: tl’%to/’A (yy) A<y y)
Fo(y)] /°°‘A (t) . (t)
Yy ) vy yy

dxr =0, Yy > 0,

dz < |fo(y)| € L'

d
dx—y.
Yy

by dominated convergence Theorem u € C(0,00; L*(0,00)). On the other hand, for all

v € 2(0,0),
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By Corollary 2.14, for all y > 0 fixed,

) t x . t _
lim [ A (y y) p(x)dr = }gr(l)//\ <y Z> p(yz)ydz = yo(y)
0 0

and since, for some positive constant C,

‘7A (; g) p(z)dz| = /OOA <§z> e(yz)ydz| < C

property (1.33) follows by the Lebesgue’s convergence Theorem. Standard arguments
show that u is a weak solution of (1.20). Indeed, since u; € 2’((0,00) x (0,00)), for all
v € 2((0,00) x (0,00)), if {, ) denotes the duality 2’((0, c0) x (0, 00)), 2((0,00) x (0, 00))

o\ _
atago -

et ) o

/T ——
0

For all y > 0 fixed, we denote 7, the function such that 7,¢(t, z) = ¢(ty, xy). Then,

//A( ) (txdxdt—yz//A t', 2 8_@ (t'y, 2’ z)dx'dt’
0 00

Therefore,
ou T
(Gre) = [t s A sotily
0
((H * A(7)) (2), yp (1Y, 2y)) dzdT fo(y)dy

—— [ [ [ @/ et opdztot)
0
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// (H *u(t)) (x)ps(t, v)dxdt
00

and u is then a weak solution since,

OO(H*A(t/y))(fE/y)fo() [ [u =) A L) E
0 00 Y y

070 OOH (t “) %fo(y)%y - /(u(t,u))H (2) %“ = (H *u(t))(x).

0

If we suppose fo € L'(0,00) N L>(0,00) then, u € L>=((0,00) x (0,00)) and estimate

(1.34) holds true, as it has been proved in Theorem 4.7.
We start now to prove that u satisfies (1.1) for all ¢ > 0 and a.e. x > 0. For > 0 and

t>0,

7(U(t7y) —u(t, ) K (z, y)dy = 77f0(3)><

T t T dz
- /L (A <;>) (;) fo(2) 5 (4.51)
By Proposition 3.18, for all ¢ > 0 and a.e. x > 0, z > 0,

d(1 (D)= 5 ()
and then [ttt p v - /fo (LD % sy
0

Our goal is now to prove, for ¢ty > 0, and almost every z > 0 fixed

r A
[ 05 (%f> - /fo (to “") =4 (453)
0
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To this end, it is sufficient to find a function H(x;z) such that H(z;-) € L(0,00)
and for all z > 0 and ¢ in a neighborhood I = (¢;,%3) of to,

(2

By (3.18), (3.19) in Proposition 3.4, for all ¢t > 0, z > 0, if t/z > 1/2,

< H(xz;z), Vo> 0,Vz > 0,Vt € (t1,t2). (4.54)

€ L'(0,2t) (4.55)

2 2
VE>0, Vo >0 OA (1 |f0 S CZ1fo(2)| _ CZ|fo(2)|
ot \z' z max(t4, z%) zt

and we may chose:

022|f0(2)\

x4

H(z,z) = , Ve >0, Vz < 2t. (4.56)

Next H(z,z) must be found for z > 2t. In that case three different regions in the plane
(to, ) have to be considered.

0<tyg<ls ©oyyedt 30y
0 3a3 0 23 2 0-

If x > 3tp, for a neighborhood I small enough = > 3t for all ¢t € I and by the estimate
(3.29), for all t € I,

x 3t OA [t = a3+ (t\° t\>° x\~2-e
IS < e e Z e
2 2z ‘815 (z z)‘_cg(z) (z) <(z> +(z) )

< Cox 3ttt < Caa3E827 Va2 > 0, Ve e I

We have then, for z > 3%y, and for all ¢ € I a small enough neighborhood of ¢,

C21h)]
H(z,z) = zt
AU PR YE \fo( 0 oo
Z

H(IE, ) € Ll(oa OO),

where the constant C' does not depend on x or I. If ¢y > 3z/2 then t > 3z/2 for all t € I
if I is small enough and by (3.30)

Lo (e x|t I o] o etlh@] g
Z z z

z 2z ot z

and, thanks to (4.55), we chose,
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C 2
%, vz € (0,2t1)
H(z,z) = o 14 (4.59)
t
Gt Ly,
z
H(z,-) € L*(0,00),
where the constant C' does not depend on z or I.
If 2/3 < to < 32, again for a sufficiently small interval I = (t1,t2) such that
x 3z
§<t1<t<t2<? (4.60)

we will have 2/3 < t < 3% forall ¢ € I. A function H (z, z) must be found for z € (2¢;, 00).
We write

z € (2t1,00) = (2t1, 3z) U (3, 00).

In the second interval, x/z < 1/3 and then by (3.48)

(4.61)

oA (3 f)‘ (@)l _ (= Elog(1 = 2/2)) Lfo()] _ Clfo(=)]

ot \z" 2 22 = [(x/2) — 1] 22 T 22

It only remains to find H(z,z) in the first interval z € (2t1,2x) where 1/2 < x/z <
x/t; < 3/2. For § > 0 independent of z consider the domains,

D(t, ) = {ze (2t1,3x);’1—§’ ge*‘%} (4.62)

oz

D(t,x) = {z € (2ty,3x); ’1 - %’ > 677} (4.63)
The two following functions,

N_(§ =¢(1—e) (4.64)
NL(6) =€ (1+e7%) (4.65)

are strictly increasing for £ > 0 and then have an inverse, denoted, £+ = N ! Notice
also that,

N_(§) <§¢= (< E_() (4.66)
Ni(§) > &= &> EL(9). (4.67)

Then

D(t,z) = {z € (2t,3z); Ey (E) < ; =B (§>}
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D¢(t,xz) = D{(t,z) U D5(t, x)

D§(t,2) = {= € (21,30); By (7) > 2}

t t
e = {z e 2 (5) <)

Consider first the domain D°(¢, z). By (3.48) in Proposition 3.6,

oA (L 2

ot \z"z
The term |1 — (z/z)| in the denominator must now be estimated from below. By (4.66),
N_(z/t) <x/t, E_(z/t) —z/t > 0 and

(2)| _ €0 = £[log(1 — z/2)])l fo(2)]

2 = = (/)2 , Vz € D(t,x)

B (3) - i () - E (- (5) = (5 - (?)) 0. ce (V- (3).5)
EL(€) = (14 (5¢ —1)e™%) 7" where ¢ = E_(¢) € (% (% )
Since: 1—(1-6/2)e 2 <14 (6¢—1)e ™ <14e2, V> %
and x/t > 1/2 (because 3x > 2t) we have, (if we denote Kk =1+ e~2),
(8¢~ D)e % < g, vge( (%))
()£ r () et
B (%) - (1+nte ). (4.68)

Different cases must now be considered. Suppose first that z € D¢(¢, z) and for example
z € D§(t, ), i.e. z € (2t,3z) and 7 > E_(%). By (4.68),

(1 H—le—%)* LN
T tE_(z/t) T 2z
and then,
1 -1,-% L\ —1
1—£>1— s = A t(;‘ (1+K€T> .
z 14+ k7 tlem% 14rle 7

We deduce, for all ¢ € (t1,t2), 3x > 2t, z € D5(¢, ),

oA (z Z)‘ fo2)l _ Ilog(w/Z)Qllfo(Z)\ (Hmf—f)

ot 22 z
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and since 1/2 < z/z < z/t; < 3/2 for all t € I, for a positive constant C' independent
on z and tq,

68_1: (z Z)‘ |fo( C|JZ)2(Z)|_ (4.69)

A similar estimate holds for z € D$(t, z) with a similar argument.
We are then left with the domain D(¢, ), where, by (3.69) in Corollary 3.14

oA | fo(z (1+2(t/2) [log |(x/2) — 1]) | fo(2)]
‘ ot <z z)‘ s¢ |(z/2) — 1|1-2(t/2) 22

(1+ log (/%) ~ 11) fo(2)
< O ey - TR

Since z € D(t,x), EL(z/t) < z/t < E_(x/t) and |(z/z) — 1] < 1. Then, for t € (t1,t2),

1t <

E_(x/tn) = 2z~ (x/fz)

= |(z/2) = 1'% > |(x/z) — 1} P=0)
plo,tr) = ﬁ -0

oA [fo(= (1 + [log|(x/z) — 1]]) | fo(2)|
‘ ot (z z)‘ <O ((z/z) — 1[1-r(ti2) 2

Notice that for z € D¢, where (4.69) holds,

ff1‘<1 ' ‘<1
| HE st g

and, from (4.69), for z € D(t, x) too,

OA [fo(2)| _ C(1+log|(x/2) = 1]]) |fo(2)]
E (z z>’ ; |(x/z) — 1|17p(t1,z)z20 : (4-70)

Therefore, when z/3 < to < 3£ the function H(x,z) may then be taken as follows,

C22|fo(2)]

W, Vz S (O,Qtl)

R T T

STV
Z
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where the constant C' may depend on z and ¢; but not on ¢ or z. We have then, shown
that for all ¢y > 0, and almost every x > 0 there exists a neighborhood I = (¢1,t3) such
that, under the hypothesis... on fy,

OA (t a:) fo()] H(z,z)

ot \z z)| 22

/H(x,z)dz < 0.
0

It follows from classical properties of Lebesgue’s integral, that for all ¢ > 0 and a.e.

x>0,
o r t x\d: [ tox\d
a/fo(z)f\ (;7 %) ?Z = /fo(z)at/\ (;7 g) Z_jv (4.72)
0 0

and u satisfies (1.1) for all ¢t > 0 and a.e. z > 0.

It is now possible, to obtain pointwise estimates of d;u(t, ), using essentially the same
right hand side terms that in (4.57), (4.59), (4.71), except that ¢ needs not be replaced
by t1 or to now. It easily follows,

(4.73)

8u(t )’ < C (P~ +227°%) || foll, a.e.x >3t
o) <
4 C(t? +t7%2)||foll1, a.e.x € (0,2t/3).

If € (2t/3,3t) denote,

2
O(t,z)=1- REIn)
and then,
3z
(1 + [log |(z/2) — 1]) [ fo(2)] ‘ C(1+ [log|(z/z) —1])
| e cma S <ze?§1‘,’3m> 'fO(Z>> | T
D(t,x) 2t
and
3z x/2t
/ (1+llog|(z/2) —1])) _ 1 / (1 + [log |y — 1])
(z/2) — 11022 x ly — 1

1 AN -0\ (2/3)'0(1+ (1 —6)|log(2/3)|)
fm(@ +lg -1 >+ 1-0y o
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N lz/2t — 1*=9(1 + (1 — )| log |z /2t — 1||)
(1-0)%x '

Since x € (2t/3,3t) it follows that x/2t € (—2/3,1/2) and |z/2t — 1| < 2/3. Then,

3z

[axlosta - 2 0lios/n, (0 lioglef =)
|(z/z) — 1]922 —(1-6)z (1-0)2x (1-6)2x
C(1+ |log|z/2t —1]|)
- (1-0)%x
and,
ou C(1+ |log|z/2t —1]|) ]
E(t,x)‘ < (-0 (ze?;lt%x) fo(z)|> , a.e.x € (2t/3,3t).  (4.74)

We deduce from (4.73), (4.74) that L(u) satisfies (1.36). O

Proof of Proposition 1.5. When ¢ > 0 is fixed and x — 0 we are in the region where
2x < t and we write, using the definition (1.30) of w,

Yy Y

t fe’e]
_ ta dy o tz dy
IQ—x/A(y,y)fo(wy, 13—/A<y,y>fo(y)y~

In the two first integrals of the right hand side t/y > 1, and then by (3.4), (3.10) and
(3.12), for all 6 > 0 as small as desired,

(G0 = () @) e (L)

[t d
U(t,.r):[l—FIQ—FIg, 11:/A<—,E) fo(y)—y7
0

Therefore,
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t
11+12:0/A(§,§)f0<y>%—2§f t‘S/fo vy (1+0(3)) +

+cot™ 4/fo 3dy+/f0 )b1 (—) @-&-t 105 (‘%’15)/,700(3/)3/361#
0

Since 2z < t < y in I3, it follows that x/y < t/(2y), and by (3.27), (3.28)
5 [ |fo(y)ldy 1—-8,546 |fo(y)|dy
t

This concludes the proof of (1.37), (1.38), where b; is the function given in (3.15) and

B 2 62
A= oW 2T wowe W) (4.75)

In order to prove (1.39)—(1.41), consider now 0 < 2’ < z and write,

u(t,r) —u(t,x') =1 + I (4.76)

(DDt am

oo

JOGD-Gme e

t

I

Three cases may now be considered, depending on whether 2/ < z < ¢, t < 2’ < z or
!/
T <t<uw.

Suppose first that &’ < x < t. Since ¢/y > 1 in I;, by Proposition 3.4 and the mean
value Theorem,

t
, / ,[loA [t d
T G e x—x|0/]% (L.6)[ 17t %

t
2t / o)y, (4.79)
0

In I, y >t > pxr > 2’ from where, by Proposition 3.5, and again by the mean value
Theorem,

/ RED d
%o € (2.2): jnl<lo _Mt/’% (5.6) 172
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We use now Proposition 3.5 to obtain,

oo

L) < Clz—a'|t / €71 fo(y)|ydy < Cla — o'l / o)y > i dy,  (4.80)
t

t

where 0§ € (—2,—1) is defined in Proposition 2.1. Then, for 2’ < z < t:

o0

lu(t, z) —u(t,a’)| < Clo —a'|t™* / [ fo(y)|y*dy + Cla — x'|x—1-“5t/ | fo(y)ly =270 dy,
0 t
(4.81)

and this shows (1.39).
Suppose now that x > x’ > t. By a similar argument as before, using now Proposition 3.4,

/42
in) < S / folw)ldy. (1.82)

0

The term I must be decomposed in three integrals. Two of them are estimated as in
the previous case using Proposition 3.5

J(3(52) -3 (52)) i <t 2 () s
SClw—w’\t‘lx"l/lfo(y)ldy (4.83)

and

7<A(;§>A<;Z)>H> |/\ (L) | 1ot
< Cla —a'lta™ /Ifo y)ldy. (4.84)

The last integral is,

T

= ((52) - (3)) o

x!
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The integration interval goes from 2’ to x, and then t/y < 1 and z'/y < 1 < x/y. We
must then use the Proposition 3.10:
t
G
yy

NP R
y'y y y )|~ a'tellog(a! fy)|t—e

Clx — /|7
$/T7a|10g( //y)| (14a) (r—a)

t (M — 2)t 3
r=goa e € (0,r). M >3= (1+a)(r a)_2M<

(4.85)

(4.86)

DN | =

from where,

+

e ‘ < )’M
[J(¢ 2, 2")] < ——5—g— / y|log(a’ /y)['—=

Cle — 2/ | | folw)ldy
4.
el | yTlog(a fy)| TFa—a) (4.87)

Since (1+ a)(r — ) € (0,1), if fo € L72.(0,00),

x/x’

o0
/ |foW)| L@ ) (y)dy <11l / dz
J lloga/y)[r+ea=e) = O log ) [0500=)

1 foll oo ) -
= ’ 1 (1ta)(r—a) ~ — 1 M\ 1—(1+a)(r—a)
I1-(1+a)(r—a) (log(/a"))*~ < |[follzee (27,2 (log(z/2"))

< [lfoll oo (or,2) (1 + log(z/2")). (4.88)

A

By similar arguments and (4.49) in Theorem 4.7

3z’

[Fo(y) L ar o)y 7 [fo(y)ldy / dy
L < [ ————— <||follL<(z.00 —_———
| | ot = = Mol | Snggtor =

yllog(2’ /y)[* = ||,

1 r 2z 1 7
— dy < o (a7 321) — (log 3)1/% —/ d
T 3log 3o /Ifo(y)l y < [olle @ san - (o8 3)™ + goammas [ 1 folw)ldy
3z’ RYU

(4.89)
and then,

[0 G5 it

x!
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0o
T @ 1
< C<||fO|L°°(z’,3m’)?(1Og 3)t/2” + —| 10g3|1*0‘x’ / |f0(y)|dy> . (490)
3’

It follows from, (4.83), (4.84), (4.87))—(4.90)

] < Clo— o'l [ [faly)ldy + Cla — o/lta™* [ |faly)ldy+

2|£E _:C/|17a

T " 1 T
<||fo||Loo<mf,3wf>;<1og3>t/2 g | Ifo(y)ldy>+
3’

Clz —2'|"@

x/ T—x

+ [ foll oo (ar,2) (1 + log(z /")) (4.91)

Then, since 1 —a € (0,1/2) and t/2z < 1/2

t x o
t2 1 t
ju(t,2) — u(t,2)] < Clo — &' (x— [ 1y + / fowldy + / Ifo(y)dy>+
0
2w — 2! |1 x
e I follLoe (27,327) I |fo dy |+

Clz —a'|"~«
+ -

J;/ T—Q

| foll Lo (@ 2y (1 + log(z/2")), Yo > 2’ >t >0, (4.92)

and this shows (1.41).
Assume now that 2/ < t < x. Then, in the first term I; we use that for all 7 > 1 and
z >0,

A 1
g—m(T, z) = i / sz U(T, 8)ds
Re(s)=c

(cf. (2.27) and (3.20)), and by Proposition 2.10, for all ¢ € (0, 2) there exists a numerical
constant C' = C(c) > 0 such that,

A

)

< C’aflfc/|5|(1 +|s)) "% ds < Ca™ (1 + 7))L

We have then, using the same notation ¢ € (z'/y, z/y),

1—c d
14| <C|x—x|/€ 1+|f?t/y))| )?/ - /1+ct1 C/|f0 )\dy. (4.93)
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On the other hand, we split the I3 term as

12:/---dy+/~-~dy:[2’1+l272
t T

The term I o is estimated exactly as in (4.84). In the term I estimates (4.85) and
(4.86) are used again to obtain,

I 2]z — 2!l |fo(y)|dy
‘ 271| — ll a|1og //t |1 o y

Clx_x/lT [e%
tx! T alog( I/t 1+a)'r ) /lfo |dy

|:E71'/|17a |x7x/|r7a

< . .
< Cllfollx (w’1a| log(a' /) + topT—a 1Og(x//t)(1+a)(r—a)> (4.94)

Then, if 2’ <t < z, for all ¢ € (0,2) there exists a constant C' such that,

t o]
1
[u(t, @) — u(t,a')| < Cla —a| (—x,mtlc [ 15t + 5 [ Ifo(y)ldy>+
0 T

|x_x/|1—a |x_x/|r—oc

I/l—a| log(wl/t”l—a + tx! T log( //t)‘ (14a)(r—a)

+C||fo|1< ) (4.95)

And this proves (1.40). On the other hand, by (2.37) and (4.48), for all ¢ > 0 and s fixed,

A (u(t))(s) = 7011 (5) o)y

Since B(3) = 0 (cf. Proposition (2.3)), properties (1.42) and (1.43) follow from (2.31). O
5. Appendix
5.1. The proof of Proposition 2.10

Proof. Based on the expression (2.27) of U(t)

Ul(t,s) = B €(0,2)

B(s) / t= (=350 (0 — s)
2im B(o) 7
Ze(o)=p
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the proof closely follows that of Proposition 8.1 in [13] (similar to (5.1) in [13]). As in
(8.34) of [13], this may be written,

B(s) t=YT(Y)

_ Yy = Y800 A(VAY 1

Ultys) = 20 / R EE / ¢ W)Y (5.1)
Re(Y)=B—Re(s) Ze(o)=p

where

U(s,Y,t) = / log (=W (p))O©(p—s,Y)dp—Ylogt —Y + (Y — %) log?, (5.2)
Fe(p)=B

with © defined in (2.19), and

Ay = 1)

= Sime vy vz (5:3)

The function A defined in (5.3) is the same as in (8.5) of [13], up to the constant factor
—i(2m)~1/2. The function ¥ defined in (5.2) is similar to (8.4) in [13], the only difference
lies in the function W instead of ®.

The proof of the estimates (2.32), (2.33) of Proposition 2.10 follows then the same
arguments as in [13] with only minor differences. For s in bounded sets, contour defor-
mation and method of residues in the integrals (5.1), (5.2). For |s| large, these arguments
are combined with the stationary phase Theorem applied to ¥(s,Y,t) as a function of
Y, where s and ¢ are fixed. The variable Y is scaled as Y = 2Z log |s|, according to the
behavior of W (s) as #m(s) — oo, for Ze(s) in a fixed bounded interval and the result
follows from the following. If we define,

F(s,() = / log (~W (1)) ©(p — 5.C)dp (5.4)

ZRe(p)=pB

F(s.2)= [ log(=W(p) 0o~ 5,22 og|sl)dp. = F(s.2Zloglsl)  (5:5)

Fe(p)=B

Estimates (2.34) and (2.35) follow now using (2.4) and (2.5). O
Let us define,
T =802U{seC: Ze(s) <L |s|>2L} (5.6)

where Sy 2, defined as Spo = {s € C; Ze(s) € (0,2)}, is the region of analyticity of
Ul(t).
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Lemma 5.1. For any constant C > 0, there exists a constant L > 0 and sqg € C, both
depending on C, such that, for all s € T, N Bs,(0)¢ the function F may be extended
analytically for Z € D(s,C) N Biog|s1 (0) where

8

1
D(s,C) = {s € C,Ze(s) <0, |Ze(s)| < C|.Im(s) + %@
There also exists a constant C' > 0, that depends on C, such that, for all Z € D1(s,C)N
Biog1511 (0) and s € T, N By, (0)0,
8

(s, Z) + Z log(—W (s)) log|s|| < C" (z? +0 (@)) . (5.7)

Proof. The Proof of (5.1) closely follows that of Lemma 14.1 in [13]. The function F is
extended as analytical function on D(s,C) N B =11 (0) by a modification of the repre-
sentation formula (5.5) using contour deformatioxi. The integral in the new integration
contour ¥ is then written as

[ 108 (=W (9) ©(p 5,225 |s)dp = log (~W () [ ©(p ~ 5.2Z o s)dp+
€

€
Wip)
1 ——= | 0O(p—s,271 dp.
+ 105 (32 ) €00 - 52210 sy
©
The first integral may be explicitly calculated. The second is estimated using the cut off
properties of the function ©® and elementary calculus arguments completely similar to

those of Lemma 14.1 in [13]. O
Due to the slow decay of the function U(t, s) as |s| — oo, the following is also needed

Lemma 5.2. There exists a constant C' > 0 such that, for all s € Tp, N Bs,(0)¢, and ¢
such that Z = C/\/ |S| S Dl(S,C) N B iog s (0),
8

8F CK‘Q —a'|s|
‘E(S’C)’ Sm-ﬁ-ce (5.8)
Proof. By (5.5)
oF 0
G60= [ S es-werss) e o
Re(r)=PB—Re(s)
) Wt s) W
— [ Wedewow= [ ek -soi

Re(r)=p—Re(s) Ze(p)=p
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By (2.4) and (2.5),

W(p) 17m@l=o  —2log %[ + 20— 1 0 (|p|-2) [#mlp)|-oo P<2log|%”|>

W'(p) p~t+0(lp™?) _ 1+0(lpI™")

The proof now follows the lines of Lemma 14.1 in [13]. Suppose that #m(s) >> 1 and
denote ¢ = Z+/|s|,

OF (
0s

s <c ‘W;I)O“@ — 5, Z\/Js| ’|dp|
ep)B

<o 'VVVV&’;\ 0(p 5. 2/[3D) ol +

Ze(p)=P,#m(p)>0
ls—p|< Ll

W' (p)
C O(p—s5,7 d
" | G| et = sz ldsl+
ZFe(p)=B6,m(p)>0
|s—p|> 15t
W' (p) _
+C o 000~ 5, 2/Is])| ldpl = 1y + I + Iy

e (p)=B,5m(p)<0

First,

O -5 21|l ¢
L<cC / < / ‘@(O‘,Z\/|S|)‘d0‘
20Tog 7] [sTIog [5
Ze(p)=B,m(p)>0 Re(o)=p—Re(s)
|s—pl< g Im(e)>—Im(s),|o| <G
_C¢ (22 + e‘“ls‘mz) .
~ |s|log|s|
Second,

o / o —szf\wm / o —szf\mm

2plog |p| 2plog |p|
Re(p)=p,.5m(p)>0 Re(p)=B,5m(p)>0
|s—p|> L2l [Tmp|<|s|,|s—p|> 12!
O(p = 5, 2:/J3])| Idp)

.
Be(p)=B.5m(p)>0
[Tmp|>]s|,|s—p|> 15!

=11+ I
2plog |p|

where,
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— 5, Z\/J5] ‘ d
| p‘ C€7a|8| / |dp|

Ir, < / ‘

Al pasl
2plog|p| 2plog |p|
Re(p)=B.5m(p)>0 Re(p)=F.5m(p)>0
\Imp|<|s],|s—p|> L2l [Tmp|<|s],|s—p|>15!
O -5, 21|l ¢
Lo < =< e~ l|dp|
2plog |p| |s|log [s|
Ze(p)=B,m(p)>0 ZKe(p)=B,7m(p)>0
|Imp‘2‘s|,|87p|2% |ImP|Z|5‘1|5*P|Z%
Ce—a’|s|
< =
|s|log |s|

5.2. Proof of Proposition 5.11

The proof of Proposition 3.11 is completely similar to that of Proposition 9.2 in [13].
Only a small modification is needed because of the slow decay of U(t, s) as |s| — co. An

estimate for £ (exp (F)) (%, C) similar to (5.7) is our first step.

Lemma 5.3. For all g > 0 there exists a positive constant C such that, for all M > gg,
for all o such that Ze(c/p(t)) lies in compact subsets of (0,2) and g < |o] < M, and
for all ¢ such that 0 < |Ze(¢)| < 1 and

[Im(O)l=o(t7"), t >0, (5.9)
the following estimate holds,
F A o —(10g(2log‘%‘>
0 ( o 7C> F(pu)’C)tig ~ Gp(t)e ¢ < has(8) (5.10)
95 \p(t) 20log | 32|
har(t) = C (p(t)2o(t_1) + e—a’EO/P“)) Otos M) gt . (5.11)

Moreover, there is 69 > 0, that depends on €y and M, such that for all { such that
0 < |%Ze(Q)] < 1, | Im(C)| < do/t?, for Ze(o/p(t)) in compact subsets of (0,2) and
eo < ‘O’| <M,

]Zf(?yQ (m@tﬂ<caﬂammut4+CaWWW0&m%m (5.12)

where the constant C' may depend on &y and €y but not on M.

Proof. We write,

~ . 7(10g(210g|%|)
8_F (ch) eF(m,C)t_g _ Cpo(t)e ¢ < AL+ Ay (5.13)
s \ p(t) 20 10g|2p(t |
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A= <<>’C>

<) _ e—oog(mog;;;))‘ Col(t ) B

(5.14)
F t o
A2 = AQ <L7C> = a_ (L?<> - Cp( )ba eF(p(t)C)tQ-’ (515)
p(t) s \p(t) 20 log | 3,75
Let us estimate first A;. To this end

o _ <
eF(p 7 > TogTe /(D]

) _ eélog(210g|f(‘2)|)‘ <c ’eglog(mogpb@)’)

o ¢
) (-2 — 5 ) 4 (log (21og
‘ (P(t) 10gU/P(t)|>
We first notice, since Ze(o)/p(t)| lies in a compact set, |u|

» [ul = |Ze(o)| < Cp(t) < e0/2
for t small enough and then |v| = |(¢)| > £0/2. We deduce

Re (glog <210g %D) = (%e(¢))log |21og %H
= (B — a1)log (% +log|ba|) L t—0

= (B1—a1) (log% +O(tlogM)> t—0

Since [t~¢| = e~ (Frmon)logt we have

X

Sl o

(5.17)

’t_ceglog(210g|pb(‘;)‘)’ < (Ol M) (5.18)

(Notice that, if |v| is in a bounded set, the term log |bo| is included in O; (1) and if |v| >> 1

. 1 .
for large M then log |bo| >> 1 too and log (log [bo| + 2 4+ 01(1)) > log (2 + 01(1)).)
On the other hand, by (5.7), if ¢ is small enough

(G ) s (2

)| ¢ 1og|1%>+< )

log|a/p(t

<o (gt )
- (logeg +1/t)  (logeg + 1/t)?
We deduce,

g)t_(: 7Clog(2 logpb(“t)>t_g‘ < C(t + 2£2|C|2)€O(tlogM)

. (5.19)
It follows from (5.14), (5.16) and (5.19)
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() <

Cp(t )

(t + t2|¢|?)eCtlog M) (5.20)
20 log | 52

2p(t |

- ‘té/;( )‘(tthsz)BO(tlogM) (5.21)
0

In order to estimate As we first use (5.19) and (5.18) to get

oF (7)1 4‘ < Ot +1°[¢[*)e?t M) 'e“‘)g@l‘“gm)t“

< O(1 4t 4 t2|¢|?)ellt e M), (5.22)
Since, from (5.8),
OF ( o Cp(t)*[¢I —f
il (R < + Celo/n(®)] 5.23
‘as (o C)‘ (o2 log o/ (D) (528)

it follows,
7 CoOPIP oot oo ar
A ’C)S01+ Cztz <—+Oe a’lo/p(t)] e (tlog M)
2 (p(t) ( I¢1°t7) o2 log [0/ p(2)]
C(l + |<|2t2) ( ( ) ‘C‘Q +e @ 50/!’(0‘) O(tlog M)

If we suppose that || = o(t71), we deduce, (5.10) with

har(t) = C (p(t)%(fl) + e*a'so/w)) eOtlog M) (5.24)

t—0

If we only assume [(| < dpt 2, then, by (5.22),
OF ( o F(555) ¢
c(1
o (50)e | <ca+i
N (;e—awo/p(m) (Ot log M)
< U|210g|0/p )|

C(l + KD ( ( ) = 4 +Ce @ so/p(t)> eO(tlogM)
which proves (5.12). O
Lemma 5.4. For all positive constant €9 > 0

%U (t, %) —H (t, %) | - 0. (5.25)

lim (1)~

t—0
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oyt cp(tyel =S ros (210l ) B
H<t’ﬂ ) 2i / tCT(Q)d¢  (5.26)

(1) i 20 log
Ze(C()=(B1—ax) |2p(t |
im o)~ | L0, (6,-2 ) — i (6,-2) | =0 (5.27)
=0 asT ) T\ ) | T '
(—c10(2108] 25))
H <t, L) - / Cplt)e - SHT(C 1 1)dC (5.28)
p(t) 2im 20 log | 20(0)

Ze(Q)=(B1—a1)
uniformly for Ze(o)/p(t) in compact subsets of (0,2) and |o| € (g9, M (t)) for M(t) > &g
such that log M (t) € (0,t79) for some 6 € (1,2).

Proof. From (2.27), for all § € (0,2) and c € (8 — 1, ),

L
2w
Fe(()=p—Re(s)
It follows, %—U(t, o/p(t)) = —— / g (eF <0/P<t>)<>) T(O)t=Sd¢
S

um S
Re(¢)=p1—au

—o [ g, eremoorora

U(t,s) = — P =0T () dC.

0s

and, we may then write,

2u(tt) =g [ Pl oo

0s (t) 2im 0s
Fe(()=P1—a
1 1
—_— — d —_— DECEEY d
e Cdcrge [ e
Re(()=B1—a1 Re(()=p1—a1
IO g b SImO< B
1
+— / (- )dC=Jr+ Ja+ Js. (5.29)
0m
Ze(()=p1—a1
Im(¢)>%
We now write,
1 OF . Cpltye 5P 1om (2 1ozl 35 ) )
J = — el (a/p(),0) _ T(Ot=Sd
= | G0 o | IO

Re(C)=p1—on

ﬂm(<)<t2\logt\
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—(log(Q log|b—§;D
1 t (1)
S ST (-
2T 20 log |22 6]
Ze(()=(a1—F1) ’
—Clog(Zlog‘b—”D
1 t p(t)
- — / CP( ) tiCF(C)dC = J1,1 + J1,2 + J173 (5.30)
2im 20 log |52 500 |

%E(C):,@I*OQ

Im(O)Z ot
In the third integral in the right hand side of (5.30) we use (5.17) and
|t_<| — e_(;gl—oq)logt, | ( )| < C _ﬁ

to obtain

7r\CI

ge(—ﬂog(”‘)g%D)t—cr(g)‘ < CeltlosM)|cle-

p(t) " J1a| < CeltlosD) / [Cle™ 5 d¢ < Celtios M) ™ wios

|C|Zm
from where it follows that p(t)~'J1 3 — 0 as t — 0 uniformly for Ze(o)/p(t) in compact
subsets of (0,2), |o| € (g9, M), log M € (0,t~9).

The first integral in the right hand side of (5.30) is estimated using Lemma (5.3). By
(5.11),

il < har(®) / ID()t¢] |dc]
Re(C)=p1—a1

fm(()_m
The term J3 is bounded using (5.12),
|| <C (tp(t)%** + ce—a/fo/p“)) e(tlog M) / (1+1¢e =" |dc|

Re(Q)=p1—a1 s
s SIMO<B

and therefore, uniformly for |o| € (g0, M), log M € (0,t~7).
. -1 _
lim p(t)™"|J2| = 0

In order to bound J3 we use the properties of the function B(s) in Proposition 2.3 and
Proposition 2.5. It follows from Proposition 2.3 that for Ze(s) € (0,2), |B(s)| > 0. Then,
for all constant R > 0 there exists C'r > 0 such that

|B(s)| > Cr Vs, |s| < R.
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On the other hand, by Proposition (2.5),
|B(s)| > Cllog]|s||, Vs, |s| >R

Then, for Ze(s) on any compact subset of (0, 2), the function | B(s)| is uniformly bounded
from below by a positive constant. It follows, for |¢| > &o/t2, and ¢ small,

oF o/ p(E), | |9F B(ﬁ) ~
bjwmmof“<mumfkwgwmw@ﬂEC%:5HW<

+ea'a/p<t>) log |/ p(t)]||e= 4L ¢~ (Br—en) log e

C(1+1¢)

<0|210g|0/p ()]
(5 e

1 +¢)) 1 e—a'wp(t)) (log M + t~1)e~ "5 e(Br—an)l log

e3(t! Jrlog;&:o)

[=lI<]
4
)

1 +¢)) (p(t 244 4 ema 60/p(t)> (log M + t~1)e~ % e(B1—an)llogt] =

and

|Js| < C (p(t)Zt*4 + e*‘lls"/p(t)> (log M +t*1)e*JTLL / (1+|¢e e

Re(()=p1—a1
Fm(¢)>%

|7]

< € (o)t + e/ (log M + 1)~
Therefore, uniformly for |o| € (o, M), log M € (0,t~7),
. _1 -
lim p(t)™"|J3] = 0.

Proceeding similarly with 0U/0¢, since for 8 € (0,2) such that § —1 < ¢ < f3,

P& Q=C1D(¢ + 1)dc (5.31)
Re(C)=B—Ze(s)

0

217r

it follows,

7 (ar () = o _/ ( ) I eac

from where (5.27) is deduced with the same arguments used to obtain (5.25). O
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Lemma 5.5.

H (t, L) = 7tp(t) exp <2tlog
20

i (v5m) = o (+70)

Proof. The integral in (5.26) can be computed adding the residues of the integrand at

l)

the poles ( = —n of the Gamma function,
o p(t) -~ (=" ( < D)
H(t,— | = nexp | nlog | 2log | —
( P(t)) 2olog|b‘7/p(t |n2::0 n! p(t)
tp(t) bo
=— —2tlog |—| | -
% exp( tlog PO
On the other hand,
o plt) & (—1ne ( <
Hi(t,— ) = n+1)exp | (n+1)log 210g—
(5) oo 2] 2 Ve () )
exp (7215 log ‘% ) p(t) . o | texp (f ) p(t)
B 20 T o8 MI 20
S PR B
ot \Upt) )
Proposition 5.6.
-1 2t . 2
MT(H))X) = ——F( 2t) sin(mt)| X | sign(X).
Proof. If we call X = p(t)Y,
MY H))(X) = QL / H(t,s)e "M ds
i
Re(s)=a1

2m1p(t> / HQ%) e de

Re(o)=a1p(t)
b
_OD =Y 4o
p(t)

t
- / o lexp (—Zt log
dim
we deform the integration contour to Ze(o) = 0, and change variables bv — v,

Ze(o)=a1p(t)
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L /U_le(_%log)%be_“’yda = t /v_le<_2t10g|ﬁ|)e_w%dv
dim T

Re(c)=0 R

Then, after the change of variables v = p(t)w, dv = p(t)dw,

t
—/v_lexp (—Qtlog
4

R

. t .
LD e~ dy = in /v_l exp (—2tlog |w|) e~
R

p(H)Y
b

(1) dw

2t
= —ZT(—2t)sin(nt)| X [*sign(X). O
™

Proof of Proposition 3.11. We use (3.50) to write the left hand side of (3.65) as,

XA X) = XX (XA X))

(5.32)

1 -1 1-2t v—1 / ou —sX
= — X X — ¢ .
2i7rt | X s (t,8)e*"ds
Zr(s)=o1
For X = p(t)Y,
U o 1 U [ o\ _.y
—(t tds = — | {,—= 7rd
/ g5 (13)e s = e ds (’p(t)) cw
Zr(s)=o1 Ze(o)=a1p(t)
aU g —_oY
— | t, —= Ydo=L+ 1L+ 1 .
8S<7p(t)>e o 1+ 2+3 (533)
Fe(0) =0 p(t)
1 ou o
Iy = — —_— — Je Y .34
kT oin / 0s (t7 p(t)) € do (5.34)
Fe(o)=arp(t)
oceDy,

Dy = B.,(0), D2 = Bp(1y(0) \ Bz (0), D3 = Bayy(0)°  (5.35)

where log M (t) = t=3/2. On D; and D3 we use (2.33) of Proposition 2.10,

oU o -1
OU (4 T \| < cvpe—2tloslbo/om) (1
‘%(mmﬂ—Te i

9

—1
< —2t—1
t» < Ctp(t)|o| 2,

ag

p(t)

< Cte—Ztlog\bv\e2tlog(p(t)) (1 +

from where,

L] < Cto(t)eo,  |Ts] < Cp(t)M (1), (5.36)
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On DQ,

Iy =11+ 129

i [ () )

Ze(o)=a1p(t)

oc€Dy
I ! / H(t,Z )eYa
= — e o
227 oin " p(t)
Fe(0)=a1p(t)
o€Dy

The first integral is estimated as

wis [ [ egi) )

Ze(o)=a1p(t)
oc€D>

and by Lemma 5.4: 7yrr(lJ p(t) o] = 0. (5.37)
—

We write the second as

1 o o
T o H v —oY < H v —oY
o (t’ p<t>) o\ sc| | (t’ p<t>) e o)t

FKe(o)=aip(t) Pe( )E:[t)xlp(t)
o 1
+C / H (t, i) e Vdo (5.38)
p(t)
Ze(o)=arp(t)
oc€Ds3

and the expression of H(t) gives, by calculations similar to those giving (5.36),

/ H (t, %) e~ do| < Ctp(t)eo (5.39)
Fe(o)=a1p(t)
oeDy
H (t, %) =Y do| < Ctp(t)M(t)~2 (5.40)
p
Re(o)=a1p(t)
o€Ds3

It follows from (5.33) and (5.36)—(5.40) that for all €g > there exists 7 small enough such
that, for all t € (0,7) and all Y > 0,
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<C(eo+t ' M(t)*

t @) (|| + | Is] + T2 + |22 — p(8) (2 TH(H ) (p(1)Y)]) <

and then, uniformly on ¥ € R,

lim ¢~ p(8) ™ (|0] + |Fs| + [Taa] + |Ta.2 — p(&) (2~ (H®) (p(D)Y)]) = 0. (5.41)

t—0

Therefore, since for X = p(t)Y

/ a—U(t, s)e”Nds = p(t) (I} + I + I3)

0s
Re(s)=a

= p(t) L+ Is + Loy + (L2 — p(t) (A H(H(1)(X))) + (4~ H(H(1))(X)
and,

X X2 / %—Z(t, s)e Nds =t ' XX Hp(t) T (I + I 4 o+
Re(s)=aq

+ (Top = p(t)~HH (X)) (X)) + ¢ X X2 = (H(1)(X)
and by (5.41) we deduce,

1-2t —1
[ 2 e g g KL HO)0
—

=1
Os t—0 tX
Ze(s)=o

uniformly for X in bounded subsets of R. Property (3.60) follows for ¢ sufficiently small,
and then for ¢ € (0,1). The same arguments give (3.63) and then (3.61). O

5.3. Linearization: the equation (1.15)

When R(p,p1,p2) — R(p1,p,p2) — R(p2, p1,p) is written in terms of the function 2
defined in (1.10) and only linear terms in  are kept, the result is

no(1 + ng) G%Et) =n.(t)Lr (1)) (5.42)
L, () z/(%(k,k’)ﬂ(t,k’) — ¥V (k,KQ(t, k) k' 2dk’, (5.43)
0
| . rmf(k— k)
SnCan*Q%(k’ k) = [ kk'

x no(W(k))[1 + no(W(E))IL +no(w(k) — w(k))] + (k < k’)}
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— o mo(w(k) + w(k))L+ no(wk[L+no(w k), (5.44)
78,%;”1_2 V(k k') = %no(w(k))[l + no(w(E N1 + no(w(k) — w(k))]
+ Mne (W(E N1+ no(wEN][L 4 no(w(k') —w(k))]  (5.45)

kK’

where k = |p| and k' = |p/|. The functions % (k, k') and ¥ (k, k') have a non integrable
singularity along the diagonal k = k’. However, these singularities cancel each other
when the two terms are combined as in (5.43) as far as it is assumed that, for all ¢ > 0,
Q(t) € C*(0,00) for some a > 0. But the integrand (% (k, k")t k') — ¥ (k, E)Q(t, k))
can not be split as for the linearized Boltzmann equations for classical particles ([7]).
However, an explicit calculation shows that, for all k£ > 0,

L, (w

3

/ (k,KK'? =¥ (k, k' )k*) K'?dk’ = 0 (5.46)
0

from where we deduce, for all k£ > 0,

/ (%(k k )ﬁﬂ(t k) — ”V(k,k’)Q(t,k)) k24K = @L,S(w)(k) ~0.

We may then write,

Liy(0) = ne®) [ (@ (kK)AEK) = ¥ (kK )SAt, k) K2
0

QLK) Q(t k)

=ne(t) | %k, k:)( k;2 ) )k’2k’2dk’

and the linearized equation reads,

77,0(1 -+ TL())

Vi (t,K)  Q(tk)
/ U (k < P = E2K2dE . (5.47)
0

Use of the change of variables (1.10)-(1.11) in (5.47) yields equation (1.12) for the func-

tion u.
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5.4. From (1.1) to (1.20)

If w is a regular function, the right hand side of the equation (1.1) may be written,

7 (u(y) — u(x)) K (z,y)dy) = 70 /y 2)dzK (z,y)dy

0 0 =z

=— %(2’)/ (z,y)dydz —I—/ )/OOK(x,y)dydz
0 2

:/%(z)H (f) dz (5.48)
0

x
1 (%) = 1o [ Ky - tocecs [ Koy (5.49)
z 0

where an explicit integration of the two integrals in the right hand side of (5.49) gives
(1.21), and then, the right hand side of equation (1.20).
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