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� Reduced PCA by randomization saves
computing time and RAM memory.

� The numerical accuracy of reduced
models is as reliable as the full
models.
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� Two reduced models tested in this
manuscript with outstanding results.
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Large amount of information in hyperspectral images (HSI) generally makes their analysis (e.g., principal
component analysis, PCA) time consuming and often requires a lot of random access memory (RAM) and
high computing power. This is particularly problematic for analysis of large images, containing millions
of pixels, which can be created by augmenting series of single images (e.g., in time series analysis). This
tutorial explores how data reduction can be used to analyze time series hyperspectral images much
faster without losing crucial analytical information. Two of the most common data reduction methods
have been chosen from the recent research. The first one uses a simple randomization method called
randomized sub-sampling PCA (RSPCA). The second implies a more robust randomization method based
on local-rank approximations (rPCA). This manuscript exposes the major benefits and drawbacks of both
methods with the spirit of being as didactical as possible for a reader. A comprehensive comparison is
made considering the amount of information retained by the PCA models at different compression de-
grees and the performance time. Extrapolation is also made to the case where the effect of time and any
other factor are to be studied simultaneously.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
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1. Introduction

1.1. Series of hyperspectral images

Since its appearance in the early '70s in remote sensing [1e3],
hyperspectral imaging (HSI) has spread to various fields of appli-
cation, including, among others, pharmaceutical research and
production [4,5], food science and safety [6], forensic science [7,8]
or biomedical science [9]. Regardless of the spectroscopic sensor
used (Near Infrared, Middle Infrared, Raman, among others), the
rapid dissemination of HSI is mostly due to the feasibility of
acquiring an entire spectrum for every single pixel in which the
depicted area of a sample is divided and the availability of Che-
mometric methods to analyze such amount of information [10].

A hyperspectral image is generally represented by a three-way
data array X (M x N x l), where each slice of the three-way data
array corresponds to an image with the spatial dimensions being
(M x N) at each wavelength (l) (Fig. 1). The true potential of such
datasets is normally exploited with dedicated algorithms [11],
where unsupervised and supervised methodologies are imple-
mented for exploration, regression, resolution or classification
purposes [12].

There are situations where the sample under study changes over
time (or over another factor like, e.g., pH) or where many images
need to be analyzed together to compare them with the scientific
aim of unraveling patterns occurring between the different nature
of the samples. In order to perform this analysis, a common action
is the concatenation/augmentation of the three-way data arrays, as
shown in Fig. 1a, to generate an enormous three-way data array.
The augmentation procedure and further analysis of all the samples
under the umbrella of the same model allow obtaining surface
patterns related to the spectral evolution considering all the vari-
ance sources of the augmented three-way data array
simultaneously.

One of the most common methodologies to analyze the
augmented three-way data array is the well-known unsupervised/
2

exploratory analytical method Principal Component Analysis (PCA).
PCA requires a previous step of unfolding the three-way data array
into a matrix X (MNIJxl), where each entry in X is the reflection of
one pixel at the corresponding wavelength [13] (Fig. 1a). Here,MNIJ
is the total number of pixels in the augmented three-way data array
(product of spatial dimension of one image to the number of fac-
tors, I, and to the number of time points, J, in the series). The
unfolded final matrix X can contain from hudreds of thousdands to
several millions of rows (which correspond to the pixels in the
three-way data array). Operating with such big matrices might
become a big issue since their analysis normally leads to a lack of
memory problems, depending on the computer used, or too long
calculation times [14]. In order to overcome the abovementioned
limitations, several strategies can be applied.

One of the most powerful strategies, yet not commonly used, is
the use of randomized algorithms to construct an approximate
matrix factorization that, using a small fraction of the information
of X, can provide the same results.
1.2. Randomized algorithms for data reduction

The data reduction is, basically, the compression of X in theMNIJ
direction into XR, which is then factorized to generate a low-rank
matrix approximation of the original X [23,25]. That is, the major
aim and, at the same time, the major difficulty in the data reduction
operations is that the space represented by XR must retain all the
relevant information (variance) from X [15]. The most important
applications of data reduction are 1) the decrease of the total
memory needed to store a sample [24], and 2) the ability to select a
representative subset of pixels to perform a model with the
assurance that the model performed in the subset sample is as
representative as possible of the information in the whole three-
way data array.

To exemplify how data reduction can benefit the analysis of
large datasets, we will use the most popular deterministic method
to explain the major sources of variance in the samples, principal



Fig. 1. Graphical representation of a) Full (conventional) PCA model and a b) RSPCA model retaining important representative information from the original dataset (red squares
representing the selected pixels and being compiled to form XR). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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component analysis (PCA) [16]. As we will explain later, the most
straightforward way of defining PCA is that it factorizes X into the
product of two sub-matrices, the so-called scores (T) and loadings
(P):

X ¼ TPT þ E Eq. 1

Where E represents the residual matrix (i.e., a matrix containing
variation in X, which is not captured by the PCA model). Analo-
gously, the reduced matrix XR can also be factorized as follow:

XR ¼ TRPR
T þ ER Eq. 2

As defined earlier, the target of data reduction is to achieve that
X and XR span the same variance space so that the loadings of the
full model (PT) and the reduced model (PR

T) are as similar as

possible. If this is achieved, it will be possible to calculate scores (bT)
using the original data (X) and the loadings from the reduced data
(PR

T):

bT ¼XPR Eq. 3

Consequently, bT will contain the same information (or as close
as possible) as in T but calculated from a reduced dataset, saving
time and computing effort.

PCA algorithms used in Chemometrics have been optimized for
the cases when the number of observations is smaller than the
number of variables [17], not being the case of HSI data. In this
context, randomness is shown as one simple, fast, efficient and a
less complex option to obtain a low-rank approximation matrix of
original HSI data [13,17e20]. The literature offers several alterna-
tives to obtain themost accurateXRmatrix. One popular example is
3

to solve deterministic problems by random sampling with the
Monte Carlo method and its adaptations [21,22]. Options like the
performance of wavelets transformation for compressing the data
before SVD [23], or modelling subspaces of PCA that evolve with
time [15] have been also tested with very optimal compression
results. Another solution is to perform random projections to
obtain a low-rankmatrix [24e26]. This probabilistic method begins
with the projection of the original data to a set of randomly taken
vectors generating a much smaller matrix, with linearly indepen-
dent columns [17] (equation (2)). Then, the matrix is factorized, and
the resultant singular vectors are back-projected to the original
data space [13] (Eq. (3)). These methods turn out to be faster and
more robust than deterministic methods, and they have been quite
useful for solving clustering and classification chemometric prob-
lems [27].
1.3. Objectives of this tutorial

Whichever strategy to be followed, there is always a funda-
mental issue to solve, that is how to be sure that the reduced data is
as representative as the original data and, still, be able to perform
the PCA analysis in a shorter time or with less requirement of
computing power. This tutorial explores two randomized ap-
proaches [28,29]: (1) The one proposed by Halko et al. [19] (called
from now on as randomized PCA - rPCA), and (2) the randomized
subsampling PCA (RSPCA) reported by Cruz-Tirado et al. [30].
Recently, Kucheryavskiy [17] reported a dedicated work to explore
the impact of conventional PCA algorithms (eigenvectors of
variance-covariance matrix, singular value decomposition (SVD)
and Nonlinear iterative partial least squares (NIPALS)) on the
randomization of hyperspectral images. Their results show that the
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SVD algorithm is computationally more stable. Therefore, we will
use SVD as a basis to calculate the full and reduced PCAmodels. The
results obtained using both randomization algorithms will be
compared to corresponding full PCA models using the percentage
of variance explained, the correlation coefficients of the loadings,
the variance of the residuals between the scores of different
models, and the CPU-processing time.

Although both algorithms are compared, regardless of other
literature approaches, this manuscript does not intend to conclude
the superiority of one of them over the other. On the contrary, the
manuscript intends to introduce both methods to a reader, under-
lining pros and cons of each one for PCA decomposition of large sets
of three-way data array. A more detailed theoretical description of
the methods, such as proof, mathematical calculations, stability,
etc., can be found in the references by Halko et al. [19] and by Cruz-
Tirado et al. [30]. Besides, the major intention of this tutorial paper
is to encourage researchers to adopt randomization strategies in
their analysis. For this purpose, the complete MATLAB code of both
approaches is provided in the appendixes, together with a com-
plete demonstration code in the supplementary material.

This paper is organized as follows. First, a brief description of
reduced PCA using the SVD algorithm for computational experi-
ments is presented. Next, we describe how the two selected
methods for data reduction work. The next section introduces the
data sets used for testing the algorithms: (1) Time series Near
Infrared hyperspectral images (NIR-HSI) of stored chia seeds and
(2) Time series NIR-HSI of stored enzymatically treated bread. The
description is followed by a section, where we compare exhaus-
tively the results obtained for the Full PCA and the two randomized
alternatives presented here. The manuscript ends with the con-
clusions and two appendices with the complete Matlab code for
RSPCA and rPCA. Moreover, the manuscript includes supplemen-
tary material with extra figures and a complete Matlab code to
demonstrate the application of the randomized methods.
2. Theory

PCA [26] is, arguably, one of the most popular and effective
chemometric tool to explore HSI and other high dimensional
datasets. PCA aims at extracting the major sources of variance (i.e.
latent information), called principal components (PCs), which are
orthogonal (not correlated) to each other. The orientation of every
PC in the original variable space is defined by a unit vector, which is
called loading. The coordinates of data points, being projected to
such vector are known as scores.

Following the nomenclature in Fig. 1, T is the score matrix with
dimensions MNIJ x A, where A is the number of principal compo-
nents (PCs), and PT is the loading matrix (A x l), where l is the
number of variables (wavelength). The superscript T in the loadings
denotes the transpose of the matrix. E (MNIJ x l) accounts for the
residual variation which is not captured by the PCA model. In HSI,
the scores are refolded to the original dimensions of the image (M x
N) to form the corresponding chemical maps at I and J conditions.

As mentioned before, we used the SVD algorithm for computing
PCA, which despite being slower for large data sets, is computa-
tionally more stable [17]. SVD algorithm factorizes matrix X to a
form shown in equation (4):

X¼USVT Eq. 4

Where U (left singular vector) and VT (right singular vector) display
orthonormal bases for the column and row space of matrix X,
respectively. S is a diagonal matrix containing the singular values. It
4

should be noted that VT is the matrix, identical to PCA loadings, PT.
Then, the score matrix, T, can be computed as in equation (5):

T ¼ US Eq. 5

At this point, it is important to keep in mind that the main hy-
pothesis of randomized algorithms is that for the unfoldedmatrix X
(MNIJ x l), where the number of observations, MNIJ, is very large,
there is a subset of observations XR that has the same (or as similar
as possible) variance pattern as the original data.

2.1. Randomized subsampling PCA (RSPCA)

RSPCA assumes that the values of the augmented three-way
data array are randomly distributed and, therefore, selection of a
random subsets of pixels will capture the main variability di-
rections of the augmented three-way data array, so the subsets can
be used for computation of loadings. Thus the subsampled matrix,
XR, is represented by a random subset of rows of the original matrix
X (Fig. 1b). The subset selection is made using q iterations to assure
that all the sources of variance have been captured and themodel is
properly validated. Given the rank A (number of PCs), the number of
iterations, Q, and the sampled pixels, p (%), the algorithm works as
follow:

For each q iteration:

1. Reshuffle rows of the matrix X
2. Select p% of subsampled pixels (rows of X), to create the matrix

XRq
3. Apply PCA decomposition to XRq (XRq ¼ USVT , PRq ¼ V)

4. Calculate the scores in the original space cTq ¼ XPRq

In order to assure that the predicted loadings PRq have been
calculated a representative number of times to obtain representa-

tive values for cTq, the number of Q iterations must be carefully
chosen. Then, the final scores are calculated as a mean component-
wise value:

bT ¼
PQ

q¼1
cTq

Q
Eq. 6

This procedure is simple, and since the selection is random, it
does not require much time or much computing power. Moreover,
the sign ambiguity can be easily controlled from each iteration by
fixing the starting point in the SVD calculations. Nevertheless, this
assumption poses several important concerns like obtaining the
most appropriate percentage of pixels to be chosen (p) or the
number of iterations to be performed to assure that the random
selection covers all sources of variance properly (Q).

2.2. Randomized PCA (rPCA)

As Kucheryavskiy et al. [17] stated, random projections might
not be the optimal solution for capturing directions with large
variance, which is essential in the exploratory analysis of hyper-
spectral images. rPCA does not calculate a reduced XR per se.
Instead, it finds a low-rank alternative matrix, B, with much fewer
rows than original matrix X, but being a good approximation. To
find B, we need to compute an approximate orthonormal basis, Q,
for the range of input matrix X, in such a way that:

X¼QQTX Eq 7

The low-rank matrix B can be then calculated as follows:
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B¼QTX Eq. 8

The low dimensional matrix B will have the same number of
columns as the original X. However, the number of rows will
correspond to the number of columns in Q. Therefore, it is desired
thatQ contains as few numbers of columns as possible, but being an
accurate approximation to input matrix X. Ideally, the number of
columns in Q should correspond to the number of principal com-
ponents (PCs), A. However, in reality the exact rank of the matrix X
is not known and A does not always reflect the effective rank, so the
number of columns is taken as a bit larger value (A þ p) where p is
an oversamling parameter.

Then, we need to obtain a set of sample vectors Y ¼ fy1…yAþpg,
which will span the range of the original matrix X. This can be
achived by ya ¼ Xwa ða ¼ 1…:A þ pÞ, where fwag conforms a
matrix W of a linearly independent set of vectors. Here is the point
where randomization can help. If we create the matrixW as a set of
fully random values, e.g. taken from N(0, 1), then the chance that
the columns ofWwill be linearly dependent is negligible small [17].
Finally, Q, can be computed by using QR decomposition of matrix Y.
In brief the algorithm looks as follows:

1. Generate matrix W (l x (A þ p)) using random values from N(0,
1)

2. Compute a set of sample vectors Y ¼ XW
3. Find Q as an orthonormal basis for Y using QR decomposition:

Y ¼ QR
4. Find matrix B using equation 8
5. Apply PCA decomposition method to B (B ¼ USVT, PR ¼ V)

6. Calculate the scores of the original pixels bT ¼ XPR

This algorithm can bemodified by substituting Y¼XWwith Y¼
(XXT)qXW, where q is a small number, usually 1 or 2. This will make
Fig. 2. a) Full experimental design for the chia seeds dataset.

5

the computation a bit longer but will increase the numerical sta-
bility of the algorithm especially in case when X has a large rank
with slow decay of singular spectrum.

The literature has shown empirically that even a relatively small
value, e.g., p ¼ 5 or 10, will work perfectly [27]. However, in this
case, we varied the oversampling parameter, p, to evaluate its
impact on B and, consequently, on the results obtained from the
PCA. In this paper, the rank A was fixed to 5, the parameter q to 1,
while the oversampling parameter p varied from 15 to 400.
2.3. Calculations

The results obtained with both algorithms will be compared to
the results obtained with the full PCA model considering the per-
centage of explained Variance, the correlation coefficient between
the loadings, the Variance of the scores, and the CPU-processing
time. All the calculations were carried out in MATLAB 2020a
(Mathworks, Natick, USA) environment on a Lenovo laptop (model
ideapad320, China), core i5 7th generation, 2.5 GHz, 4 GB RAM and
1 TB storage.

Hyperspectral Image pre-processing and handling have been
performed using HYPER-Tools v.3 [31] (freely available at https://
www.hypertools.org/; last accessed March 2022). Both algo-
rithms, RSPCA and rPCA were run using in-house codes written in
MATLAB. They are included in the appendices of this manuscript.
3. Data sets

The two datasets used for this tutorial are good examples of
cases where the spectral evolution of samples is monitored with
time and an extra factor. Both datasets are available upon request
(josemanuel.amigo@ehu.eus) or, alternatively, freely available at
https://www.hypertools.org/(last accessed March 2022).
b) Full experimental design for the bread staling dataset.

https://www.hypertools.org/
https://www.hypertools.org/
mailto:josemanuel.amigo@ehu.eus
https://www.hypertools.org/
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3.1. Chia seeds

The chia dataset focuses on studying the evolution of the
multivariate accelerated shelf-life (MASLT) of chia seeds stored at
different temperatures. The MASLT test was performed seven times
(0, 9, 30, 45, 60, 90 and 180 days) and at three different storage
temperatures (25, 35 and 45 �C). Moreover, three replicates were
measured for each temperature and time (Fig. 2a). Further details
about the experimental setup and the final results are published
elsewhere [30]. The whole experiment consisted of 63 hyper-
spectral images, where the changes of chia seeds with time, storage
temperature and replicates are to be studied. Each hyperspectral
image has 301 � 121 pixels measured at 164 wavelengths in the
near infrared spectral range. The final augmented three-way data
array had a dimension of 2709 � 847 � 164 (2 294 523 pixels
measured at 164 wavelengths, generating a total of 376 301 772
data points). The spectra were pre-processed using standard
normal variate (SNV) method.
3.2. Bread samples

The bread dataset aims at studying how the staling of white
bread affects the behavior of thewhole crumb surface and how that
mechanism is interrupted/changed by the addition of maltogenic
a-amylases. The effect of adding enzymes in the staling with time
has been published elsewhere [37e39]. The experiment comprises
control bread (CR) and bread containing different enzymes (EZ1
and EZ2) being stored during six periods (1, 4, 7, 10, 14 and 21 days).
Two samples were studied for each bread at each storage time, and
three replicates per sample were measured (see Fig. 2b for details).
The whole experiment resulted in 108 hyperspectral images
measured in near infrared. Each image had spatial dimensions of
144 � 106 pixels, measured at 142 wavelengths. The final
augmented three-way data array X had dimensions of
Fig. 3. Loading plots for PC1 to PC5 for conventional PCA, rPCA (p ¼ 15, q ¼ 1, A ¼ 5) and RSPC
coefficients obtained between the loadings of the full PCA model and the loadings obtaine
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2592 � 636 � 142 (1 648 512 pixels measured at 142 wavelengths,
generating a total of 234 088 704 data points). The hyperspectral
images were pre-processed as follow: (1) backgroundwas removed
by contrasting at wavelength 1400 nm, (2) spatial binning of a sub-
window of 4 � 4 pixels was applied to remove surface defects and
minimize the surface roughness and, (3) Savitzky-Golay second
derivative (window size of 11 points and second polynomial
degree).
4. Results

4.1. Chia seeds

The loadings plots for the first five PCs obtained from the chia
seeds dataset are displayed in Fig. 3. Both randomized methods
were performed using A ¼ 5, rPCA was carried out with values of
p ¼ 15 (equivalent to a total of 20 pixels) and q ¼ 1 (only one
iteration); while RSPCA was performed using p ¼ 0.0177% (equiv-
alent to a total of 400 pixels) and q ¼ 1 (only one iteration). At first
glance, the results denote that both methods perform with an
outstanding similarity to the Full PCA model for the first three PCs.
The explained variance for the first three PCs (Table 1) and the
Pearson's correlation coefficients between the loadings of the
reduced models and the Full PCA (Fig. 1f and Table 1) were
extremely similar.

Instead, more differences were found in the PC4 and PC5 for the
RSPCA model. As can be appreciated, they differ greatly from those
obtained with the Full PCA and the rPCA model. Despite this
observation, the percentage of variance explained by PC4 and PC5
in the three models (Table 1) is very similar. This observation
should not be taken as an indication that the explained variance
indicates that PC4 and PC5 are explaining the same information of
the sample. Instead, a comprehensive observation of the scores
surfaces is needed to understand the differences between the three
A (p ¼ 0.0177%, q ¼ 1, A ¼ 5) obtained from analysis of chia seed samples. f) Correlation
d for rPCA and RSPCA.



Table 1
Figures of merit of comparing the scores and loadings obtained by the Full PCA, rPCA and RSPCA models for both datasets.*Percentage of explained variance for each PC.
**Pearson's correlation coefficient between the loading of the reduced model and the Full model. *** mean squared difference between the scores of the reduced model and
the Full model.

Chia dataset

Full PCA rPCA RSPCA

% var % var* Loadings CC** Scores var*** % var Loadings CC Scores var

PC1 42.4 42.4 1.000 6.0E-16 42.8 0.999 4.0E-04
PC2 26.8 26.8 1.000 4.0E-14 25.6 0.999 9.0E-04
PC3 12.3 12.3 1.000 7.0E-12 13.1 0.996 4.0E-04
PC4 11.2 11.2 1.000 4.0E-11 11.3 0.113 1.0E-01
PC5 7.4 7.4 1.000 2.0E-10 7.3 0.029 5.0E-02

Bread dataset
Full PCA rPCA RSPCA
% var % var Loadings CC Scores var % var Loadings CC Scores var

PC1 44.4 44.4 1.000 2.0E-22 43.7 0.997 1.0E-11
PC2 26.2 26.2 1.000 9.0E-21 27.7 0.993 3.0E-11
PC3 13.8 13.8 1.000 3.0E-18 13.3 0.991 2.0E-11
PC4 8.4 8.4 1.000 4.0E-17 7.4 0.889 4.0E-11
PC5 7.3 7.3 1.000 1.0E-15 5.9 0.881 6.0E-11

Fig. 4. PC1-5 scores sufaces for chia dataset using the full PCA, rPCA (p ¼ 15, q ¼ 1, A ¼ 5) and RSPCA PCA (p ¼ 0.0177%, q ¼ 1, A ¼ 5).
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models in the loadings.
The scores maps for the first five PCs are shown in Fig. 4.

Regarding the analytical results, PC1 clearly shows the time and
storage-related changes in the Chia seeds, acknowledging the re-
sults obtained elsewhere [30]. At this point, it is important to
remember that the scores of all the pixels have been calculated
using the loadings obtainedwith thematrix B from rPCA (20 pixels)
and the subsampled matrix XR obtained from RSPCA (400 pixels).

At first sight, the scores surfaces obtained for the reduced
models in the first three PCs show similar information compared to
those obtained with the full model, while slight differences are
seen in PC4 and PC5. This observation indicates the suitability of
both methods to capture large sources of variance in the dataset,
7

allowing the extraction of the same analytical answers concerning
the variability of the samples with storage time and temperature.
Nevertheless, for a comprehensive analysis of the results, the
quantification of the small differences between the models is
needed. For that reason, Fig. 5 shows the differences obtained be-
tween the scores surfaces of the reduced models and the full model
for all the pixels. The differences in the surface of the scores are
displayed in Fig. S01. Moreover, the variance of the difference is
calculated in Table 1.

Numerically speaking, rPCA gives the exact same solution as the
solution given by the Full PCA model, where the differences be-
tween both models (Table 1) can be ascribed to negligible calcu-
lation errors in the precision of the numbers.



Fig. 5. PC scores values for the Full model (red) and the difference between the PC values obtained with the reduced models and the Full models (black). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Percentage of the mean squared difference between the scores obtained with the full model and the ones obtained with the reduced models as a function of the percentage
of sampled pixels for (B) rPCA and (C) RSPCA in chia seeds hyperspectral images.
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As said before, RSPCA model gives similar, yet not the same,
results as the Full PCA model for the major sources of variance.
Nevertheless, looking at PC4 more concisely (Fig. 3d, i, Fig. 4d and i,
Figs. 5d and 9d), it can be seen that the Full PCA model and rPCA
explain a small artifact coming from the measurements (vertical
lines in the middle of the surface ascribed to a small artifact in the
sensor). Instead, the PC4 obtained by RSPCA explains small surface
features that might be ascribed to any physicochemical behaviour
of the samples and not to the small artifact of the sensor.

Even being so little in error, these differences denote that a pure
and simple random method like RSPCA is less sensitive to pixels
8

containing very small portions of variance in the dataset. This fact
might be compensated by sampling more XR pixels or increasing
the number of iterations. The percentage of the mean squared
difference between the scores obtained with the full model and the
ones obtained with the reduced models has been calculated with
the increase of the amount of sampled pixels (Fig. 6). The first
observation is that the numerical stability of the rPCA model in-
creases with the number of sampled pixels. This observation does
not hold for the RSPCA model, where PC2 shows certain instability
and dependency on the number of sampled pixels. Nevertheless, it
is important to remark that the score variance for PC1 is almost zero



Fig. 7. Loading plots for PC1-3 for conventional PCA, rPCA (p ¼ 15, q ¼ 1, k ¼ 5) and RSPCA (p ¼ 0.0246%, q ¼ 1, k ¼ 5) obtained from analysis of bread samples.
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for both reduced models. Moreover, the differences observed in the
models with the increasing number of sampled pixels are, in gen-
eral, very small.

Concerning the number of iterations (Fig. S02 of the supple-
mentary material), neither the increase in the number of iterations
nor the increase in the sampled pixels did not improve the results
of obtained by RSPCA.

4.2. Bread staling

The loadings plot obtained from the PCA analysis for the bread
hyperspectral images is shown in Fig. 7 and Table 1. Randomization
Fig. 8. PC1-5 scores sufaces for bread staling samples for the Full PCA model
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by rPCA was performed with values of p ¼ 15, q ¼ 1 and A ¼ 5.
RSPCA used values p ¼ 0.0246% (400 pixels), q ¼ 1 and A ¼ 5.
Differently to what it was observed in the previous case, now the
loadings obtained for the five first PCs in the two reduced models
are extremely similar to the loadings of the Full PCA model, with
correlation coefficients of 1 in the case of rPCA and higher than 0.88
in the case of RSPCA.

In this case, the nonexistence of spectral artifacts makes the
variation of pixel intensities more homogeneous and, therefore, it is
easier in terms of probability to obtain a subspace of XR that is
much more representative of the variance space of X than in the
previous case. This excellent result is extremely important since,
, rPCA (p ¼ 15, q ¼ 1, k ¼ 5) and RSPCA PCA (p ¼ 0.0246%, q ¼ 1, k ¼ 5).



Fig. 9. PC scores values for the Full model (red) and the difference between the PC values obtained with the reduced models and the Full models (black). (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. Percentage of the mean squared difference between the scores obtained with the full model and the ones obtained with the reduced models as a function of the percentage
of sampled pixels for (B) rPCA and (C) RSPCA in chia seeds hyperspectral images.
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according to the analytical results found in the literature [32], the
first three PCs contain substantial physico-chemical information.
Therefore, all three must be studied to understand the dynamics of
the bread being staled.

With the high similarity obtained for the loadings, it is expected
that the similarity in the scores surfaces obtained by the three
models will be high. The score maps obtained for the three models
(Fig. 8) and the differences between the scores obtained with the
reduced models and the Full PCA model (Fig. 9 and Fig. S03)
demonstrate that assessment to a large extent.

Only very small variations were observed in the scores surfaces
obtained by RSPCA in PC5, where a small artifact in the
10
measurement of some lines has not been properly captured. The
stability studies by increasing the number of sampled pixels
(Fig. 10) and the number of iterations (Fig. S02) show that in this
case, the differences in the models can be ascribed to a negligible
numeric difference (in the range of 10�14 for rPCA and 10�8 for
RSPCA), certifying the stability of the reduced models.

4.3. Computing performance

Once the performance of the reduced models in terms of dif-
ferences with the Full PCA model has been thoughtfully evaluated
and understood, it is essential to evaluate their computing



Fig. 11. CPU-processing time for PCA decomposition analysis for conventional and randomizes approaches for (a) chia seeds and (b) bread as a function of percentage of sampled
pixels.

Fig. 12. Variation of CPU-processing time and % explained variance as a function of the number of iterations to obtain the subsampled matrix using RSPCA. (a) Chia seeds time series
hyperspectral images and (b) bread time series hyperspectral images.
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performance. Fig. 11 shows the evolution of the CPU-processing
time as a function of the percentage of sampled pixels and the
number of iterations.

In both cases, the CPU-processing time using RSPCA was much
lower than Full PCA (20 s for Chia seeds and 10 s for bread) and
rPCA. This is due to the simplicity of RSPCA. It can be observed that
at a certain moment, with the increase in oversampling (p), the
CPU-processing time using rPCA randomization exceeds the time
consumed by the Full PCA models. In contrast to RSPCA, the CPU-
processing time in rPCA increases with the number of sampled
pixels. Nevertheless, this fact is not very relevant since rPCA does
not depend on the number of sampled pixels but on the effective
rank of X. Therefore, if the effective rank is 5 then 15e20 elements
in B will be efficient regardless the size of the image.

The CPU-processing time increases linearly with the number of
iterations for RSPCA (Fig. 12a and b). This increase of CPU-
processing time is linearly correlated to the number of iterations.
In the time spent by the conventional PCA model, RSPCA can
perform around 30 iterations. This is, indeed, an optimal PCA vali-
dation strategy since, as shown elsewhere [30], the repeated pre-
dicted values of each pixel give an account of the performance of
RSPCA.
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5. Conclusions

This tutorial paper shows how two randomization methods like
rPCA and RSPCA can be extraordinarily powerful to reduce
computing time in large hyperspectral datasets. The two alterna-
tives chosen for illustrating the performance of randomization
methods clearly represent the wide variety of alternatives that the
reader can find in the literature. The two methods reported here
assume that the expected/observable changes in the time series
hyperspectral images occur with enough importance/variance to
capture it by explorative models like PCA easily. rPCA works by
matrix triangulation, being quite efficient, using an extremely low
number of sampled pixels and only one iteration. RSPCA works by
iteratively random selection of a subset of pixels. Despite its
simplicity, RSPCA has also demonstrated its usefulness in capturing
the major sources of variance in time series hyperspectral images,
performing in a much faster manner than rPCA.

Objectively speaking, the scores and loadings correlation with
the full model for both data sets was greater than 0.999 for rPCA.
The CPU-processing time was significantly lower for RSPCA than
the conventional PCA and rPCA. rPCA always showed slightly better
performance, even using an extremely small number of pixels (20
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in rPCA and 400 in RSPCA). Nevertheless, rPCA only needed one
iteration to give a perfectly fixed solution.

Both approaches preserve the orthogonality of the obtained
principal components, accounting for inner products with differ-
ence at the range of the accuracy of the mathematical operations
(i.e. between 1e-16 and 1e-17). This is an important observation
since orthogonality is one of th main features of PCA models.

In general, it can be said that when an accurately numeric option
is needed, rPCA has clearly demonstrated its extraordinary power.
By selecting only a very small portion of the pixels, rPCAwas able to
capture the exact same variance space as the Full PCA model. This
also includes small portions of variance that could be ascribed to
unwanted effects, like in the first case presented here. With a little
bit more risk, pure random alternatives like RSPCA might be a
plausible alternative to filter out small variance artifacts, always
bearing in mind that the number of iterations in RSPCA can be
increased to obtain a more reliable model with no excessive cost of
the computing time implied.

At this point it is important to highlight that the data reduction
strategy to be adopted in certain scenarios strictly depends on the
objective of the study to be conducted. Also, it must be remarked
that it is not only important to select one strategy, but also consider
how the data reduction is made in the cases when the samples
follow an specific design and a certain number of random pixels at
certain designed features want to be used. Randomization and
subsampling randomization have been demonstrated to be excel-
lent options when aiming at PCA compression/modelling. Never-
theless, these alternatives might not be optimal for other situations
or model application, like in Multivariate Curve Resolution (MCR)
scenarios [33].

The two examples shown in this paper focus on hyperspectral
time series analysis. Nevertheless, the randomization strategies can
also be applied when there is a need to compare different samples.

Observing the outstanding results obtained with the randomi-
zation strategies, the reader is strongly encouraged to try them.
Therefore, a complete Matlab code for their implementation can be
found in the appendices. Moreover, a complete code for a simulated
example using both randomization methods and a comparison
with a Full PCA model has been included in the supplementary
material.
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Appendixes

The following Matlab codes do NOT take into consideration the
pre-processing steps. The data is mean centered. This can be
changed as normalization step.
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Appendix 1

Matlab code (functions) for RSPCA. It includesmean centering as
normalization step and study of reproducibility of the
ranzomization.

Appendix 2

Matlab code (functions) for rPCA.
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