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Abstract—Predictions of the ampacity of overhead lines can be 

framed in a general context that aims to make electric grids highly 

efficient and reliable. In this paper, a methodology is presented 

that provides ampacity forecasts, which are valid for both the very 

short term, such as a few minutes or hours, and longer terms, up 

to 24 hours ahead. The former can be useful for grid operations, 

while the latter may be valuable in electricity markets. A time 

series methodology and mesoscale weather forecasts have been 

combined in machine learning algorithms for producing reliable 

ampacity forecasts for a span located in complex terrain. In a prior 

step, the developed algorithms made point forecasts, but finally, a 

computationally inexpensive algorithm produces probabilistic 

forecasts. These probabilistic forecasts are nonparametric, as they 

are not based on predefined probability distributions, and they 

demonstrate how a low risk in overhead lines is closely related to 

the reliability of ampacity forecasts. 

Index Terms—Energy efficiency, power distribution, power 

system management, smart grids, wind energy integration. 

I. INTRODUCTION

OWADAYS, most electric grids are still operated under the

supposition of a constant ampacity of their lines, as 

measured by the so-called static thermal rating. The same 

weather conditions are assumed for every hour of the day, every 

day of the year or season, and for entire regions where multiple 

overhead lines are located. This static rating may be seen as a 

conservative estimation whose calculation is based on the 

assumption of low-convective cooling due to wind, high air 

temperatures and solar radiation [1]. If the current and weather 

conditions are steady, the conductor is supposed to be in 

thermal equilibrium, and thus, its thermal state can be defined 

[2] [3] as in (1), where PJ stands for Joule effect heating, PS

represents solar radiation heating, PC denotes convection

cooling, and PR represents radiative cooling. Evaporative

cooling is usually neglected due to its small weight in the

overall thermal balance, although it was analyzed in [4].

𝑃𝐽 + 𝑃𝑆 = 𝑃𝐶 + 𝑃𝑅 (1)

However, if the thermal capacity of overhead lines must be 

used efficiently, it is necessary to account for variations in the 

weather conditions, leading to the concept of the dynamic 

thermal rating (also called the dynamic line rating). The 

dynamic rating varies over time and over space. Thus, it varies 
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along a line and may be different for lines with similar 

characteristics. Therefore, a large portion of the thermal 

capacity of lines can be made available when the weather 

conditions are favorable, and they can be operated safely when 

the conditions are unfavorable. 

The methods for the dynamic calculation of ampacity can be 

divided into two main categories. The ambient-adjusted 

dynamic line rating (DLR-AA), which is only based on air 

temperature variations, enables the dynamic adjustment of 

multiple lines in a region for the same temperature when air 

temperature gradients are small [5]. On the other hand, for 

dynamic line ratings with real-time monitoring (DLR-RTM), 

variations in other weather magnitudes are also considered, and 

a larger portion of the thermal capacity of the lines is made 

available because of the important impact of forced convection 

cooling on conductor ampacity [1] [5]. In the latter case, 

ampacity is estimated at particular line locations, but the total 

thermal capacity of a line is limited each time by a different 

span and can be calculated as the minimum along the line [6]. 

There are different approaches for real-time ampacity 

calculation (DLR-RTM) [7] [8]: 

1) Direct measurement of weather conditions

2) Conductor temperature measurement

The current, conductor temperature, solar radiation, and air

temperature are measured, and then, the perpendicular

effective (PE) wind speed is calculated.

3) Sag or tension measurement

Sag can be related to the average temperature of the

conductors along a line section or span.

The dynamic rating of a line can be estimated in real time

from the measurements obtained by devices distributed along it 

or predicted for different time horizons. Ampacity predictions 

are useful for grid operations, but such calculations must rely 

on a real-time monitoring system, which ensures that the 

maximum allowable conductor temperature (MACT) is not 

exceeded [5]. If it is exceeded, this situation may lead to risk 

due to insufficient clearances along a line, premature aging of 

conductors, or the annealing of the aluminum conductor 

strands. In recent years, a few companies have made their grid 

operations dynamic [9] [10] [11], although only the company in 

[11] makes ampacity forecasts.

When ampacity is forecasted more than a few hours ahead,

weather forecasts are needed. However, the resolution of 
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mesoscale wind forecasts makes their adaptation to the 

orography and conditions of overhead lines necessary. This 

paper proposes a methodology for forecasting the ampacity of 

overhead lines that explores time horizons short enough for grid 

operations and horizons long enough for day-ahead electricity 

markets. This demonstrates how, even though they reduce 

errors to a minimum, point forecasts lead to risks. Otherwise, 

high-reliability probabilistic forecasts ensure that when a 

probability level is selected, safety is guaranteed up to this level 

while the potential thermal capacity of overhead lines is 

unlocked beyond the static rating. 

II. STATE OF THE ART FORECASTING METHODS

The existing studies on overhead line ampacity forecasting 

are based on direct measurements or forecasts of weather 

conditions from numerical weather prediction (NWP) models. 

In many of them, algorithms for the individual prediction of 

each weather magnitude (wind speed and direction, air 

temperature, and solar radiation) are described. These 

individual predictions are used as inputs for a thermal model to 

calculate ampacity forecasts for different time horizons. 

Nevertheless, the various weather magnitudes are mutually 

correlated, and sometimes their effects on overhead conductors 

cancel each other. The magnitudes with the largest influence on 

the temperatures of conductors is wind speed, followed by air 

temperature and solar radiation; and other factors, such as rain 

and moisture, are usually neglected [3]. At high wind speeds, 

the cooling of conductors is dominant, while at low wind 

speeds, air temperatures and solar radiation can raise conductor 

temperatures considerably [1]. Therefore, in a different 

approach [12] [13], the thermal model for the conductor can be 

directly used to produce ampacity “observations” from local 

measurements of the weather magnitudes or raw ampacity 

“forecasts” from NWP model outputs, which are inputs for 

statistical models used to forecast ampacity. 

Many of the methods found in the literature make point 

forecasts and produce a single value as the ampacity forecast 

for each time point in the future. They try to minimize the error 

independent of its sign; the sign is positive for ampacity 

forecasts above observational values, which means that the 

MACT is exceeded, or negative. However, there is always 

uncertainty inherent to each forecast, and it can be expressed as 

a probability, in the form of prediction intervals, or as 

prediction quantiles. Therefore, probabilistic ampacity 

forecasts allow for the selection of a particular risk level and 

thus the heating level of conductors. 

Probabilistic forecasts can be parametric or nonparametric 

(empiric). The parametric approach is based on the assumption 

of a certain probability distribution and defined by the 

parameters of its probability density function (PDF). In some 

cases, a Gaussian distribution is assumed, but wind speed is 

usually modeled as an asymmetric Weibull distribution, and 

wind direction is modeled with the Von Mises distribution. 

Ampacity forecasts are then estimated from the forecasts of the 

weather magnitudes via simulations based on the Monte Carlo 

method [14] [15] [16]. Otherwise, in nonparametric 

approaches, no assumptions about the shape of the probability 

distributions are made beforehand, and empiric prediction 

intervals or quantiles are calculated [12] [13]. 

On the other hand, the prediction of wind speed or the power 

output of wind turbines [17] can be classified based on the 

following: 

1) Statistics of local measurements

2) Weather forecasts (NWP models)

3) Physical approach (NWP models + terrain model)

4) Statistical approach (NWP models + local measurements)

5) Combination of the physical and statistical approaches

Despite some aspects that must be taken into account [18],

there is a correlation between line ampacity and wind power 

output; the closer an overhead line is from a wind farm, the 

higher the correlation [19]. Therefore, ampacity prediction can 

be similarly classified based only on local measurements or 

based on NWP models. 

A. Measurement-based ampacity prediction

Most of these prediction models use series of past

measurements of various weather magnitudes to forecast each 

of these magnitudes individually; however, solar radiation is 

usually modeled with a Fourier series as a function of the 

position of the sun. Typically, measurement-based forecasts 

have a time horizon of one hour, and longer horizons have 

yielded poor results [20] [21]. Ampacity forecasts based on an 

autoregressive (AR) air temperature model, considering a low, 

constant PE wind speed, are described in [21], whereas AR 

models for air temperature and wind direction and transfer 

function models for wind speed and the Nusselt number are 

preferred in [20]. A different approach is proposed in [14], 

where AR models with Bayesian inference are used to estimate 

the parameters of the probability distribution of the forecast for 

each weather variable. All these individual probabilistic 

forecasts are combined to make probabilistic forecasts of 

conductor temperatures. In [22], air temperature and wind 

speed are decomposed in the north and east directions and 

forecasted by AR and VAR (vector autoregressive) models and 

their heteroscedastic counterparts, AR-CH and VAR-CH. 

There are also some cases based on artificial neural networks 

(ANNs), which make point forecasts, and these include a finite 

impulse response neural network trained with the back-

propagation algorithm [23], a multilayer perceptron trained 

with the Levenberg Marquardt algorithm [24], and a gated 

recurrent unit network [25]. On the other hand, a different 

methodology, not based on time series, is presented in [26] [27], 

where the uncertainty of the forecasts is quantified as empiric 

quantiles calculated by using quantile regression and quantile 

regression forests (QRFs) with a set of weather measurements. 

B. NWP-based ampacity prediction

NWP-based ampacity forecasts have a typical time horizon

of 24 to 48 hours imposed by the scale of the NWP model. 

Although mesoscale resolution weather forecasts are directly 

used in some proposals [28], some kinds of physical or 

statistical adjustments are necessary to achieve a reduced risk 

of exceeding the MACT. This is due, at least in part, to the 

resolution of mesoscale models, which are not enough to 

account for the local effects of wind [17]. To avoid this issue, 
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in [29], a conservative ampacity prediction is made that takes 

air temperature forecasts into account but uses static values for 

wind and solar radiation. Thus, a reduced risk is achieved, but 

in return, only a minor portion of the thermal capacity of 

overhead lines is made available when small convective cooling 

is considered. 

As stated before, a physical model accounts for the effects of 

orography. Weather forecasts can be interpolated as functions 

of distance and wind speed corrected for terrain rugosity by a 

“wind profile power law”, as in [15] [30]. Probabilistic 

forecasts (average, standard deviation, maximum, and 

minimum), which are calculated from weather point forecasts 

of each weather magnitude, are also possible [15]. In addition, 

by using computational fluid dynamics (CFD) software, a 

resolution of a few meters for wind forecasts can be achieved 

[31]. 

The statistical approach, on the other hand, is intended to 

adjust mesoscale weather predictions to different locations of 

an overhead line. In [11] [32], mesoscale weather forecasts are 

processed with statistical tools and reinforcement learning that 

use input measurements from Ampacimon devices and weather 

stations. In [33] [34], weather forecasts are adapted to local 

measurements by different types of interpolation. In [35], past 

measurements and weather forecasts are used as inputs for a 

multivariate regression model, whose features are selected by 

principal component analysis. In [16], 20 scenarios of a weather 

forecast ensemble are processed. Probabilistic forecasts are 

made for each weather variable, where the model parameters 

are estimated by the expectation maximization algorithm, with 

local measurement training data. In [36], hourly ampacity 

forecasts are made for selected spans, and these are considered 

critical for determining the overall ampacity of a line. Weather 

point forecasts and measurements are used as inputs for an 

extended Kalman filter-based ANN to make probabilistic 

forecasts of the weather variables. Ampacity averages and 

standard deviations are calculated by Taylor´s expansion series. 

In [12], interpolated weather forecasts and measurements are 

used to make ampacity forecasts up to 27 hours ahead. One-

year series are used to train several forecasting models: 

generalized linear models, multivariate adaptive regression 

splines, random forests, and quantile regression forests, with the 

latter being the only one that produces probabilistic forecasts. 

In [13], probabilistic ampacity forecasts, up to 24 hours in 

advance, are made for several locations on a line. This work 

centers on the selection of a forecast’s optimal quantile, which 

minimizes power generation costs due to a reduced 

transmission capacity. Forecasts are generated by a model 

based on a QRF, with recent observations and interpolated 

weather forecasts as inputs. In [37], the forecasts are extended 

up to 42 hours ahead with additional models: a quantile linear 

regression, mixture density neural network, and kernel density 

estimator. 

III. CASE STUDY

The methodology for the prediction of ampacity proposed in 

this paper uses local weather measurements and forecasts. To 

develop this methodology, available measurements from a pilot 

line property of the Iberdrola utility and weather forecasts for 

the location of the line are used. 

A. Pilot line

The pilot line is a 30-kV distribution line across complex

terrain located in Basque Country in Spain, with aluminum core 

steel reinforced (ACSR) conductors of type 147-AL1/34-ST1A 

(LA-180). The MACT assumed by Iberdrola for this line is 75 

°C. The measurement instruments, including cup and ultrasonic 

anemometers, an air temperature sensor, and a solar radiation 

sensor, were installed on one of the supports of the line for 

almost three years. A datalogger registered these measurements 

each minute and sent them by GPRS to a server. 

Weather forecasts for the region where the line is located 

were produced from a high-resolution limited-area model 

(HIRLAM) with 0.05° spatial resolution. At this latitude, the 

distance between mesh nodes is 4 km (longitude) and 5.5 km 

(latitude). The model forecasts wind speed and direction at a 10 

m height, air temperature at 2 m, and solar radiation at surface 

level. The forecasts for nodes near the pilot installation were 

interpolated to obtain forecasts for this location by the Spanish 

National Weather Agency (Agencia Estatal de Meteorología, 

AEMET). The model runs every 6 hours (at 00:00, 06:00, 

12:00, and 18:00 hours), with forecasts up to 36 hours ahead 

and a resolution of 3 hours. 

B. Data analysis and preprocessing

Prior to use, the data were processed as follows:

1) Calculation of perpendicular effective wind speed (both

measured and forecasted wind)

2) Time interpolation of the weather forecasts (3-hour to 1-

minute resolution; each run interpolated between the forecasts

for different amounts of times in advance)

3) Calculation of 10-minute average measurements and

weather forecasts

4) Calculation of the “observed” and “forecasted” ampacity

time series with CIGRE´s steady-state thermal model

5) Splitting of data into training (1 year) and test (2 years)

datasets

It was also considered that NWP models run at a certain hour, 

with all data available until that time, but the models require 

several hours for computation. In the case of the HIRLAM 

model run by AEMET, forecasts are available after 4 hours. 

Thus, the most recent run available was selected. This can be 

seen in the example of Fig. 1, where the 4-hour delays are 

marked in red, in-time available data in green, and data used for 

24-hour-ahead ampacity forecasts starting at 12:00 in blue.

Fig. 1. Example of the NWP model output for each run. 
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Data were analyzed before and after being processed. 

Currently, most overhead lines are operated with regard to a 

static rating, which was used as a reference. In the region where 

the pilot line is located, 0.6 m/s PE wind speed, 26 °C air 

temperature, and 1000 W/m2 solar radiation were considered. 

In such conditions, the static rating for the pilot line was 

calculated as 482.3 A. Despite being a conservative rating, it 

exceeds the MACT of the pilot line 11.6 % of time. This value 

is much larger than the 1 % recommended by CIGRE [1]. In the 

same document, it is also recommended to not exceed the 

MACT by 20 °C, and this is not achieved. The percentage of 

time that the static rating exceeds the ampacity observations is 

represented in red in Fig. 2. For other times, represented in light 

yellow, there is no risk, but most of the capacity of the pilot line 

is wasted. 

 
Fig. 2. Static rating of the pilot line. 

The relationship between ampacity and each of the weather 

variables was analyzed. In each case, no simple linear 

relationship, which could lead to the construction of simple 

models for forecasting ampacity, could be observed. The 

dependency of ampacity on recent observations and weather 

forecasts was also analyzed. In Fig. 3, the autocorrelation 

function (ACF) of the ampacity training series (10-minute lags) 

is demonstrated. A certain daily periodicity and an important 

autocorrelation with respect to the most recent hours can be 

observed. The cross-correlation of the observed ampacity for 

the forecasted ampacity training series was 0.53. 

 
Fig. 3. Autocorrelation of ampacity observations. 

IV. POINT FORECASTING 

As stated above, a methodology for the prediction of 

ampacity for time horizons that is useful both for grid 

operations and for electricity markets is proposed in this paper. 

Although it was expected that weather forecasts would be 

needed for 24-hour-ahead ampacity forecasts, an autoregressive 

integrative moving average (ARIMA) model, based only on 

measurements, was also used for comparison purposes. 

Different algorithms were developed based on linear regression 

(LR) and an ANN, both of which produce point forecasts. In a 

further step, explained in the next chapter, an algorithm for 

producing probabilistic forecasts from point forecasts, used to 

reduce the risk of the forecasts, is also proposed. 

A. Measurement-based ampacity forecasting 

ARIMA models allow for the prediction of the evolution of 

a process from recent observations of related magnitudes. The 

observations can be measurements of physical magnitudes such 

as wind speed, air temperature, or solar radiation, or they can 

be derived magnitudes such as ampacity. In this work, the latter 

approach was taken; thus, the ampacity calculated from recent 

weather measurements was used to forecast its future outcomes. 

A model was obtained from the training dataset after a 

procedure of identification, parameter estimation, and 

checking. Once the model was obtained, ampacity was 

forecasted for the test period while keeping the model 

parameters constant over this period. 

Several ARIMA models were identified, and then, the model 

with the lowest Bayesian information criterion (BIC) was 

selected: (1,1,1) x (0,0,0). Their parameters were estimated by 

the maximum likelihood method, leading to (2), where xt is the 

ampacity to be forecasted at time t; xt-1 and xt-2 are ampacity 

observed for the previous 10 and 20 minutes, respectively; and 

at and at-1 are the current and 10-minute lagged forecasting 

errors. 

 𝑥𝑡 = 0.62 𝑥𝑡−1 − 0.38 𝑥𝑡−2 + 𝑎𝑡 + 0.74 𝑎𝑡−1 (2) 

In the forecasting procedure, ampacity is sequentially 

forecasted from the start of the test dataset by using (2) until the 

series is depleted. If at any given time there is not enough 

available data, no forecast is made. 

B. Weather forecast- and measurement-based ampacity 

forecasting 

To reduce the error of the ampacity forecasts that can be 

directly calculated from the NWP model output, a methodology 

with a statistical approach that combines this output with 

observations based on local measurements is proposed. Two 

different models based on machine learning are proposed, 

although both use the same predictors and data. The first model 

is based on LR, and the second is based on a single-layer 

perceptron ANN (SLP-ANN, or SLP). 

The features of both models were selected while taking into 

account, among other factors, the autocorrelations of the 

ampacity observations. The data were normalized between 0 

and 1 and ordered in a matrix used for all time-ahead forecasts, 

thereby providing all necessary data. The following features 

were checked, resulting in 17 out of 18 being significant: 

1) Observations at the current time, and for the previous 10, 

20, and 30 minutes and 1, 2, 4, and 24 hours 

2) Average of observations for the previous 30 minutes and 1, 

2, 4, and 24 hours 

3) AEMET-based forecasts for the next 30 minutes and 1, 2, 4, 

and 24 hours 

A different LR model was trained for each time horizon to 

find the most suitable coefficients. The selection of these 

coefficients was performed to minimize the error in a ten-fold 
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cross-validation procedure. Thus, the training data were split 

into ten subsets, nine of which were used to train the model, and 

the remaining subset was used to calculate the root mean square 

error (RMSE). This procedure was repeated ten times to 

calculate the final error as the averaged RMSE. 

The single-layer perceptron was trained with the back-

propagation algorithm. The selection of this model was due to 

computational capacity limitations, which outweighed the 

necessity for highly complex models. Similar to the LR models, 

a different model was trained for each time horizon, and a cross-

validation process was used to minimize the RMSE. The 

number of neurons in the hidden layer and the weight decay 

parameter that led to a minimum RMSE were also selected. The 

number of neurons was restricted to 20 due to computational 

capacity limitations, and the weight decay was 0.01. 

C. Evaluation of point forecasts 

To evaluate the proposed methods, each forecast for the time 

horizons ranging from 30 minutes to 24 hours using the entire 

test dataset was compared to the corresponding observation. 

The normalized root mean square error (NRMSE) was 

calculated as the RMSE divided by the range of observations. 

The normalized mean absolute error (NMAE) and normalized 

bias (NBias) were obtained by dividing each individual error by 

each individual observation, as in [12] [37]. 

The forecasts obtained by the proposed methods were also 

compared to reference values, such as the static rating or the 

ampacity directly calculated from raw NWP model outputs 

(AEMET). In Fig. 4 and Fig. 5, it can be observed how the LR 

and SLP models induced small errors for short time horizons, 

as they depend on recent observations, and outperformed the 

static rating and AEMET, even for long time horizons. It is 

worth mentioning that AEMET produced the same error level 

and a large positive bias for any amount of time ahead. In fact, 

this positive bias means that the ampacity forecasts were 

generally above the observations, and if NWP model forecasts 

were directly applied to forecast ampacity, it could potentially 

lead to large MACT exceedance. The LR and SLP models also 

outperformed the ARIMA model, mainly for the longest 

horizons, as they benefit from weather forecasts. The errors of 

the LR and SLP models were similar to those found in [23] [12] 

[37], with NMAEs close to 10 % for 1- or 2-hour-ahead time 

horizons and below 15 % for longer horizons. Although the 

single layer perceptron model is more complex and requires 

much more computational time than the LR model, the results 

obtained by both methods were similar, with comparable error 

levels. 

 
Fig. 4. NMAE of ampacity point forecasts. 

The percentage of forecasts that exceeded observations was 

also counted, and this value can be viewed as the percentage of 

MACT exceedances over time if any precaution, such as a real-

time monitoring system, is not taken. For all the time horizons 

evaluated, AEMET reaches a 78 % exceedance level, and this 

produces a high risk of the conductors overheating. With the 

LR, SLP, and ARIMA models, the observations exceeded the 

MACT 50 % to 55 %. This means that more than half the time, 

the MACT of conductors could be exceeded and this fact agrees 

with an NBias close to zero. However, it is shown below how 

with probabilistic forecasts, the level of overprediction can be 

selected, leading to safer ampacity forecasts. 

 
Fig. 5. NBias of ampacity point forecasts. 

V. PROBABILISTIC FORECASTING 

The uncertainty associated with forecasting can be expressed 

as probabilistic forecasts. In a parametric approach, a PDF for 

each ampacity forecast cannot be directly calculated from the 

forecasts of the weather magnitudes. This adds some difficulty, 

as computationally demanding simulations, such as those based 

on the Monte Carlo method, are necessary. Otherwise, in a 

nonparametric approach, ampacity forecasts are less 

computationally demanding. No assumptions about the shapes 

of probability distributions are made beforehand, and empiric 

prediction intervals can be calculated. These intervals may be 

asymmetric and not centered on point forecasts. It is possible to 

express probabilistic forecasts in the form of quantiles, defined 

as the probability τ that the forecasts 𝑋̂𝑡+ℎ|𝑡
𝜏  exceed the 

observations 𝑋𝑡+ℎ, as in (3). This provides the grid operator 

with a direct evaluation and selection of the level of risk that 

each particular line exceeds the MACT, as opposed to the static 

rating or point forecasts with fixed risks that in some particular 

cases may be too high. 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRD.2021.3059804

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

 𝑃(𝑋̂𝑡+ℎ|𝑡
𝜏 > 𝑋𝑡+ℎ) = 𝜏 (3) 

In this work, empiric quantiles of the errors of the ampacity 

point forecasts for the training dataset are proposed. The errors 

are assumed to be constant over time, so probabilistic forecasts 

can be easily calculated by subtracting the error quantiles from 

each point forecast in the test dataset. TABLE I and TABLE II 

show the error quantiles calculated for 1 h- and 24 h-ahead point 

forecasts, respectively. 

 
TABLE I 

ERROR PERCENTILES FOR 1 H-AHEAD POINT FORECASTS (A) 

Percentile LR SLP ARIMA AEMET 

25 57.5 55.6 59.0 187.1 

10 102.8 99.5 114.2 264.4 

5 129.6 125.9 152.6 310.9 
2.5 154.2 148.6 186.2 349.0 

1 184.8 180.2 229.8 391.6 

0.5 206.6 203.9 263.9 415.8 

 
TABLE II 

ERROR PERCENTILES FOR 24 H-AHEAD POINT FORECASTS (A) 

Percentile LR SLP ARIMA AEMET 

25 74.6 70.8 85.9 183.9 

10 126.3 120.3 175.7 264.4 

5 155.8 149.3 235.3 315.7 
2.5 180.8 174.4 297.0 361.1 

1 208.3 204.4 385.5 412.5 

0.5 227.7 227.5 451.4 447.6 

 

Fig. 6 shows an example of 24 h-ahead forecasts produced 

from the LR model with empiric quantiles for a two-day period. 

It can be observed how the point forecasts try to match the 

observations and minimize the mean error but overpredict 

ampacity near half of the time. Probabilistic forecasts allow for 

the selection of quantiles that overpredict ampacity for a small 

fraction of the total points. 

 

 
Fig. 6. 24 h-ahead probabilistic ampacity forecasts from the LR model. 

VI. RESULTS 

Some recommendations about the safe operation of overhead 

lines are given in [1], and these are valid when the weather 

conditions (static or dynamic) are considered during ampacity 

calculations. Among these recommendations is that the average 

temperature of each line section should never exceed the 

MACT by 10 °C or more than 1 % of the time. Additionally, 

the local conductor temperature should never exceed the 

MACT by 20 °C. Safety criteria related to the conductor sag 

should also be considered. 

The quality of the forecasts has been evaluated following 

some of these recommendations. Good reliability ensures that 

when a forecast quantile is selected, the percentage of 

temperature exceedances can be known beforehand. The 

sharpness of the ampacity forecasts is related to the efficiency 

of the lines, and this was also investigated. The sharper these 

forecasts are, the shorter the distance from each low percentile 

to the median is, and the larger the forecasted ampacity will be. 

Therefore, a large thermal capacity will be unlocked, provided 

that the forecasts are reliable enough to avoid unnecessary risk. 

To quantify reliability, the percentage of forecasts that 

exceeded their corresponding observations over the whole test 

period was calculated for each quantile. The closer to the 

quantile this value is, the more reliable the forecasts are. In this 

manner, it is possible to quantify the risk of overprediction for 

each quantile and each time horizon. In Fig. 7 and Fig. 8, the 

quantiles are represented on the X axis, and the proportion of 

forecasts that exceed the observations is on the Y axis. Perfectly 

reliable forecasts are represented by the diagonal line, for which 

forecasts for the quantile τ exceed observations at the same 

proportion τ. The reliability of the probabilistic forecasts 

calculated from the point forecasts of the LR, SLP, ARIMA, 

and AEMET models are compared in Fig. 7 and Fig. 8. It can 

be observed how the reliability is better for smaller quantiles 

(0.5, 1, and 2.5), with values closer to the diagonal line. The 

reliability is worse for larger quantiles, independent of the time 

horizon chosen, although this tendency is clearer for longer 

time horizons. These results improve upon the results found in 

[36], with a frequency of 4.1 % for the 2nd percentile. 

 
Fig. 7. Reliability of 1-hour-ahead ampacity forecasts. 
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Fig. 8. Reliability of 24-hour-ahead ampacity forecasts. 

In [12] [37], both reliability and sharpness, as well as 

measures of the quality of probabilistic forecasts, such as the 

continuous ranked probability score (CRPS) or quantile score 

(QS), are used. However, the forecasting algorithms do not 

specifically seek a good quality level for the lowest quantiles, 

which have the lowest risk and would probably be selected 

during grid operations or in electricity markets. On the other 

hand, indicators such as the CRPS evaluate the whole range of 

probability in the same manner and are given in amperes, and 

this makes comparisons to other lines of different thermal 

capacities difficult. 

In this paper, only the ampacity forecasts for low percentiles 

were calculated because they are the safest, and the distribution 

of the calculated nonparametric forecasts is not symmetric. 

Therefore, an indicator that accounts for the sharpness of 

forecasts in the form of the average distance from each 

percentile forecast to the median is defined as in (4), which 

evaluates this distance as a percentage of the low half 

distribution of observations. In contrast with the literature, in 

this paper, it is calculated as a percentage, and this allows for 

the comparison of the results to those of different lines. 

 width =
∑ (𝑥̂𝑃50,𝑖 − 𝑥̂𝑃𝑛,𝑖)

𝑁
𝑖=1

𝑁 ⋅ (𝑥𝑃50 𝑡𝑟𝑎𝑖𝑛 − 𝑥𝑃0.5 𝑡𝑟𝑎𝑖𝑛)
∙ 100 (4) 

In Fig. 9 and Fig. 10, it can be observed how forecasts from 

the proposed methods, LR and SLP, are much sharper than 

forecasts from the ARIMA and AEMET models and how 1-

hour-ahead forecasts are sharper than forecasts for longer time 

horizons. Although the point forecasts obtained from raw 

weather forecasts, without any statistical adjustment (AEMET), 

are biased and lead to an important risk of ampacity 

overprediction, the proposed methodology for the calculation 

of empiric quantiles compensates for this bias and produces 

probabilistic forecasts with a reliability comparable to the those 

of the forecasts based on the LR and SLP models. However, as 

their sharpness is much smaller (larger distances from the 

lowest quantiles to the median) than those of the LR and SLP 

models, only a small portion of the thermal capacity of 

overhead lines can be unlocked. 

 
Fig. 9. Sharpness of 1-hour-ahead ampacity forecasts. 

 
Fig. 10. Sharpness of 24-hour-ahead ampacity forecasts. 

VII. CONCLUSION 

Among the main contributions of this paper with respect to 

the literature is the development of a methodology and the 

comparison of several models used for producing ampacity 

point forecasts. Some of the models are based on weather 

measurements, while others are based on the adjustment of 

NWP model outputs to the scales of overhead lines. The latter 

approach uses machine learning and compares favorably to the 

literature while making efficient use of computational 

resources. 

Second, but not less importantly, is the contribution to the 

development of a simple method that produces probabilistic 

forecasts from point forecasts. Probabilistic ampacity forecasts 

allow grid operators to select the thermal risk level for a 

particular line and make a more efficient use of the thermal 

capacity of lines than when using the static rating. However, it 

is demonstrated in this paper that the reliability of probabilistic 

forecasts plays a major role in the assessment of risk levels, and 

the methods developed here also compare favorably to the 

literature. This can be of particular importance for critical 

segments of lines in complex terrain, where the wind speed is 

usually low across some spans, leading to large sags. 

Therefore, the main contribution of this paper is the 

development of a methodology that allows day-ahead 

probabilistic forecasts with high reliability for the lowest 

percentiles without compromising efficiency. Additionally, it 

must also be remarked that the proposed methodology was 

tested for time horizons from 30 minutes to 24 hours, and this 

makes it useful not only for grid operation but also for 

electricity markets. 
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