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Abstract: y-Aminobutyric acid (GABA) represents one of the most prolific structural units widely
used in the design of modern pharmaceuticals. For example, 3-substituted GABA derivatives are
found in numerous neurological drugs, such as baclofen, phenibut, tolibut, pregabalin, phenylpirac-
etam, brivaracetam, and rolipram, to mention just a few. In this review, we critically discuss the
literature data reported on the preparation of substituted GABA derivatives using the Michael ad-
dition reaction as a key synthetic transformation. Special attention is paid to asymmetric methods
featuring synthetically useful stereochemical outcomes and operational simplicity.

Keywords: pharmaceuticals; neurological drugs; y-aminobutyric-acid derivatives; asymmetric
Michael addition; chiral auxiliaries; enantioselective organocatalysis; chiral metal—ligand complexes

1. Introduction

Tailor-made amino acids [1] play an indispensable role in the development of modern
pharmaceuticals and drug formulations [2—6]. Thus, over 20% of newly approved small-
molecule drugs contain structural fragments of AAs [7-9]. In particular, y-aminobutyric-
acid (GABA) derivatives bearing [3-alkyl or 3-aryl substituents, which include baclofen [10],
phenibut [11-13], tolibut [14], and pregabalin [15-17], are recognized as an essential class of
marketed pharmaceuticals for the treatment of neurological diseases (Figure 1). Similarly,
piracetam-based GABA derivatives such as phenylpiracetam [18], brivaracetam [19-21],
and rolipram [22] are also developed as pharmaceuticals. Introduction of 3-alkyl or 3-aryl
substituent in the GABA backbone allows for the improvement of the lipophilic character
of these compounds.

Significantly, biological activity of 3-substituted GABA derivatives depends on their
absolute configuration. For example, (R)-enantiomers of Baclofen (antispastic agent and
muscle relaxant) and Phenibut (tranquilizer and anticonvulsant) are considerably more
active than the corresponding (S)-enantiomers, while anticonvulsant activity of Pregabalin
(anti-epilepsy drug) is primarily related to (S)-enantiomer [23]. Consequently, consider-
able efforts were devoted to developing asymmetric synthesis of 3-substituted GABA
derivatives, including chemical and biocatalytic resolution, asymmetric reduction, desym-
metrization, aldol addition, and nucleophilic substitution [24-26]. For the past decade,
the asymmetric Michael addition of carbon nucleophile to «,-unsaturated compound-
bearing nitro or carbonyl groups gained impressive progress, providing straightforward
access to y-nitrocarbonyl compounds as key chiral intermediates that can be converted
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into B-substituted GABA derivatives via subsequent transformation of functional groups.
This review focuses on the application of the asymmetric Michael addition performed with
the use of chiral auxiliaries as well as in the presence of chiral catalysts, especially chiral
metal-free organocatalysts, in synthesis of 3-substituted GABA derivatives.
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Figure 1. Representative (3-substituted GABA derivatives with clinical applications.

2. Michael Addition of Carbonyl Compounds to «,3-Unsaturated Nitroalkenes

The proline-catalyzed asymmetric Michael addition reaction [27] of acetaldehyde
with «,3-unsaturated nitroalkenes attracted considerable attention as synthetically useful
routes to 3-substituted derivatives of GABA. Thus, the addition of acetaldehyde to the
nitroolefins (E)-1 and (E)-2 (Scheme 1) was carried out in the presence of enantiomerically
pure (S)-diphenylprolinol silyl ether 3 as the catalyst [28,29]. After optimization of reaction
conditions, the asymmetric Michael addition proceeded efficiently with 10-20 mol% of
organocatalyst (5)-3 in such solvents as MeCN, DMF/i-PrOH, and 1,4-dioxane to afford
y-nitro aldehydes (S)-4 and (R)-5 in reasonable yield and excellent enantiomeric excess.
Oxidation of y-nitro aldehydes (S)-4 and (R)-5 was successfully performed in aqueous
t-BuOH using NaClO; and NaH;PO,4 with 2-methyl-2-butene as a chlorine scavenger
to afford carboxylic acids (S)-6 and (R)-7 in good to excellent yields [30]. The reduction
of the nitro acid (5)-6 with Raney Ni in MeOH gave, after treatment with aqueous HCl,
(5)-Baclofen 8 as hydrochloride salt in 91% yield. (R)-Pregabalin 9 was also synthesized
by the reduction of the nitro group in (R)-7 under Pd/C in 93% yield. The mechanism of
the asymmetric Michael addition reaction of acetaldehyde with nitroalkenes promoted
by diphenylprolinol silyl ether involves the formation of the enamine as a nucleophile.
Thus, the organocatalyst would react with the acetaldehyde forming anti-enamine with
the double bond oriented away from the diphenylsiloxymethyl group. In this case, the
(diphenylmethyl)trimethylsiloxy group provides the formation of anti-enamine and shield-
ing one face of the enamine double bond. The anti-enamine would add stereoselectively to
the nitroolefin via the acyclic synclinal transition state proposed by Seebach [31] as shown
in Scheme 1.
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Scheme 1. Organocatalytic asymmetric Michael reaction of acetaldehyde with nitroalkenes (E)-1
and (E)-2

In a similar way, the nitro olefin (E)-10 (Scheme 2), easily available from isovanillin
via O-alkylation and Henry condensation, reacted with acetaldehyde in the presence of a
catalytic amount of diphenylprolinol silyl ether (R)-3 (10 mol%) affording corresponding
nitro aldehyde adduct which upon oxidation with oxone and esterification successfully
transformed into ester derivative (R)-11 in 85% yield [32]. The nitroester (R)-11 underwent
intramolecular reductive lactamization under Hj in presence of catalytic amount of Pd/C
to furnish (R)-Rolipram 12 in 93% yield and >99% ee. The present method was also
utilized to prepare enantiomerically pure (S)-Rolipram using (S)-diphenylprolinol silyl
ether-mediated asymmetric Michael addition reaction as the key step. Recently, water-
soluble diarylprolinol silyl ether containing the dimethylamine functionality was found
to be very effective for the Michael additions of the acetaldehyde with nitroolefins. These
reactions took place in brine with good yields and high enantioselectivities for a broad
range of nitroolefins [33-35].

o]
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(R)-3 (10 mol%)

o X NO, 1,4-dioxane © NO
/" - Pd/C _ PUC.H
o 2. oxone, DMF 0

(E)-10

3. TMSCI, EtOH | EtN, EtOAC
(R)-1
85% (over three steps) (R) Rolipram 12
93%

Scheme 2. Synthetic approach of (R)-Rolipram 12 employing the organocatalyzed asymmetric
Michael addition acetaldehyde to nitro olefin (E)-10.

Enantioselective conjugate addition of malonates and their equivalents to nitroolefins
promoted by bifunctional organocatalysts bearing a hydrogen-bonding donor group and
Lewis base (tertiary amine) is considered as one of the most simple and efficient routes
for constructing chiral 3-substituted derivatives of GABA and their lactam analogs, es-
pecially from the perspective of green chemistry. The success of bifunctional organocat-
alysts was based on their ability to increase the reactivity of both nitroolefins and nucle-
ophiles as well as control the approach of nucleophiles to nitroolefins in the transition
state [36,37]. For example, the Michael reaction of nitroalkene (E)-1 (Scheme 3) with diethyl
malonate was performed in the presence of Takemoto thiourea catalyst (R,R)-13 bearing



Molecules 2022, 27, 3797

4 of 39

3,5-bis(trifluoromethyl)benzene and tertiary amino group [38]. The use of 2 equiv of diethyl
malonate in toluene and 10 mol% catalyst loading was required to provide the Michael
adduct (R)-14 in 80% yield with 94% ee. A single recrystallization made it possible to in-
crease the enantiomeric purity of the product (R)-14 to 99% ee. Then, reductive cyclization
of (R)-14 with NaBH,4/NiCl, in methanol gave y-lactam (3S,4R)-15 as thermodynamically
more stable anti-diastereomer [39,40], which after hydrolysis and decarboxylation was
converted into lactam (R)-16 in 84%. Finally, acidic hydrolysis of (R)-16 gave (R)-Baclofen
8 as hydrochloride salt in 94% yield. A high level of enantioselectivity in organocatalytic
Michael addition reaction was achieved as a result of dual activation through deprotonation
of the acidic proton of diethylmalonate by tertiary amino group of the organocatalyst and
the hydrogen-bond formation between the nitro group and the thiourea moiety [41].
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Scheme 3. Enantioselective Michael reaction of (E)-1 with diethyl malonate in the presence of
thiourea (R,R)-13.

Under solvent-free conditions reducing the amount of diethyl malonate from 2 to
1 equiv did not significantly influence both the yield and enantioselectivity of Michael
addition to nitroalkenes promoted by thiourea (R,R)-13 catalysts. Thus, Michael addition
of diethyl malonate to alkyl-substituted nitroalkene (E)-2 (Scheme 4) in the presence of
10 mol% of (R,R)-13 under solvent-free conditions produced the nitro ester (5)-17 in 73%
yield and 88% enantiomeric excess [42]. Hydrogenation of (5)-17 over Raney Ni provided
the pyrrolidin-2-one (35,45)-18 [43] in 72% after crystallization, which was subjected to
ester hydrolysis followed by decarboxylation to give y-lactam (5)-19 in 90% yield and
98% enantiomeric excess. Hydrolysis of y-lactam (S)-19 with 6N HCI gave the enan-
tiomerically pure (S)-Pregabalin 9 hydrochloride in 95% yield. Additionally, treatment of
pyrrolidin-2-one derivative (35,45)-18 with 6N HCI at reflux also directly produced the
(S)-Pregabalin 9 hydrochloride in 92% yield.
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Scheme 4. Enantioselective Michael reaction of (E)-2 with diethyl malonate in the presence of thiourea

(R,R)-13 under solvent-free conditions.

A series of Takamoto-type bifunctional organocatalysts were examined for the asym-
metric Michael addition of malonate derivatives to nitroalkenes and showed very effective
catalytic activity. For example, L-proline-derived bifunctional urea-pyrrolidine organocat-
alyst (S,R)-21 (Scheme 5) was demonstrated to catalyze the enantioselective Michael ad-
dition of diphenyl dithiomalonates to nitrostyrene (E)-20 in toluene as the best solvent
at 25 °C [44]. The reaction performing with 5 mol% of (S,R)-21 was complete in 1.5 h,
affording Michael adduct (R)-22 in 90% enantiomeric excess, which was improved to 98%
after recrystallization from ethanol. Reduction of the nitro group using zinc in acetic acid
and substoichiometric amounts of TiCl; followed by intermolecular cyclization enabled
the formation of the lactam (R)-23 in excellent yields of 90%. Hydrolysis of the lactam
(R)-23 was finally achieved with 6N HCl and the resulting (R)-Phenibut 24 was isolated as
hydrochloride in 85% yield. Additionally, mild basic hydrolysis-decarboxylation of Michael
adduct (R)-22 provided y-nitrothioester (R)-25 in 94% yield, which reduced and cyclized
under the above described conditions (Zn/AcOH/TiCls) to lactam (R)-26 that was isolated
in 82% yield.

O O
O O o
PhSMSPh 1. Zn powder, AcOH, rt )| %
P NO2 PhS SPh . PhS” N
) (S,R)-21 (5 mol%) NO, 2. TiCl3 (10 mol%), rt
(E)-20 toluene, 25 °C Ph Ph
(R)-22 (3S,4R)-23
Ph 94%, 90% ee 90%
N 'Tl after recrystalization 98% ee
Me HN.__N CFs 6N HCI
T H,0 ( 6 equiv) reflux
o Et;N (0.2 equiv) Ph
(S,R)-21 CF4 THF, 60 °C HCI* HZN\/k/COQH
o) o (R)-Phenibut 24
0,
1. Zn powder, AcOH, rt _Ph 85%
NH 2. TiCl3 (10 mol%), rt N
. Gl mol7), NO
Ph Ph 2
(R)-26 (R)-25
82% 94%

Scheme 5. Enantioselective Michael addition of diphenyl dithiomalonates to 3-nitrostyrene (E)-20
catalyzed by L-proline-derived urea (S,R)-21.
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When the addition of cyclohexyl Meldrum'’s acid to aliphatic nitroalkene (E)-2 (Scheme 6)
was carried out with only 0.2 mol% of N-sulfinyl urea catalysis (Ss,R,R)-27 in cyclopentyl
methyl ether (CPME), complete conversion of starting nitroalkene (E)-2 proceeded at 35 °C
for 48 h providing the Michael adduct (5)-28 in 92% ee [45]. Using n-sulfinyl urea catalysis
(Ss,R,R)-27 bearing cyclic tertiary amine was found to be essential for achieving high
conversion and enantioselectivity. Direct hydrolysis/decarboxylation of addition product
(5)-28 without purification led to one mole scale synthesis of y-nitroacid (5)-29 in 90%
overall yield from nitroalkene (E)-2. (S)-Pregabalin 9 could be provided by heterogeneous
catalytic hydrogenation of (S)-29.

Eegle .

0]
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(Se,R.R)-27

~

o
0 0" o
2 equiv TsOH 'H,0 o) [H] 0
27 (0.2 mol%) © O toluene, 90 °C NO; > NH,
CPME, 35 °C, 48 h NO,
(S)-29 (S)-Pregabalin 9
0 (S)-28 90% for 2 steps
)J\Nw full conversion
H 92% ee

N

9

Scheme 6. Catalytic enantioselective addition of cyclohexyl Meldrum’s acid to nitroalkene (E)-2
using N-sulfinyl urea catalysis (Sg,R,R)-27.

Another urea catalyst (5,5)-31 (Scheme 7) containing the pyrrolidine moiety was
designed to catalyze in brine media [46] the enantioselective addition of dithiomalonate
to otherwise unreactive 3-CFs-f3,3-disubstituted nitroalkenes 30 providing corresponding
Michael adducts 32 with a 3-trifluoromethylated quaternary stereocenter [47]. In brine
media the use of 15 mol% of urea catalyst (S,5)-31 as well as the addition of o-xylene as
additive was required for obtaining high yield and enantioselectivity of adducts 32 at 0 °C.
In the absence of cosolvent, the achieved enantioselectivity of Michael adducts 32 was
lower. These results could be explained by enforced hydrophobic interactions between
catalysts and substrates when the reaction was carried out in brine media. Under optimal
conditions, trifluoromethylated nitroalkenes 30 having substituted phenyl and iso-butyl
groups were converted into the corresponding products 32 in 55-97% yields with 67-96% ee.
So-obtained Michael products 32 were further subjected to reductive cyclization to furnish
v-lactam thioesters 33. Hydrolysis of y-lactam thioesters 33 followed by a decarboxylation
provided B-trifluoromethylated analogues of rolipram 34c, phenibut 35a, baclofen 35b, and
pregabalin 35d. The enantiopurity of y-lactam thioester 33d and y-lactams 34a,b could be
improved by recrystallization.

A three-component reaction of aromatic or aliphatic aldehydes, nitromethane and
dimethyl malonate was found to catalyze by mesoporous siliceous material 36 (Scheme 8)
incorporating urea-modified quinidine and propylamine groups in 0-xylene at 70 °C leading
to corresponding Michael adducts in reasonable yield [48,49]. The organic-inorganic hybrid
catalyst 36 enabled access to Michael adducts with modest-to-good enantiomeric excess
(50-70%). After removing the excess nitromethane by distillation, the o-xylene solution of
Michael adducts was subjected to heterogeneous catalytic hydrogenation of the nitro group
followed by cyclization and thermal decarboxylation to give y-lactams with retention of
enantiopurity. Thus, after column chromatography and recrystallization, (R)-Rolipram
12 and precursors of Phenibut (R)-26, Baclofen (R)-16 and Pregabalin (S)-19 were obtained
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in two-pot multicomponent operations with enantiopurity ranging from 81% ee to 97% ee.
The solid hybrid catalyst could be reused three times without loss of activity.

0O O
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Scheme 8. Asymmetric three-component reaction of aldehydes, nitromethane, and malonate.
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Conformationally rigid cyclobutene-ring-derivative squaramide (R,5)-37 (Scheme 9)
was shown to function in a complementary manner to thioureas as an effective hydrogen-
bonding bifunctional organocatalyst for the Michael addition of dimethyl malonate to
aromatic nitroalkene (E)-1 [50,51]. It was supposed that two H-bonds formed between
the squaramide (R,S)-37 organocatalyst, incorporating tertiary nitrogen as Lewis base and
chiral scaffold, and the nitroalkene substrate. Performing the reaction in dichloromethane
as solvent with 5 mol% catalyst loading afforded the Michael product (R)-38 in 84% yield
and 86% ee, albeit in a long reaction time. Polymer-immobilized squaramide was also
effective for the Michael addition of dimethyl malonate to nitroalkene (E)-1, but significant
loss of activity was observed in the second and third cycles. The adduct (R)-38 was further
transformed to (R)-baclofen 8 hydrochloride in 56% overall yield through the procedure
exemplified in Scheme 1.

MeO,C.__CO,Me ~NHz* HCI
CH,(CO,Me)s, :
/@/\/NOQ (S,R)-37 (5 mol%)_ NO, /@/\/COZH
. o CH,Cly, rt, 96 h N cl
Er - (R)-Baclofen 8
(R)-38
Oﬁo 84%, 86% ee overal 56%
NH HN' Q
F3C —N
(R,S)-37
CF3

Scheme 9. Michael addition of dimethyl malonate to -nitrostyrene (E)-1 using squaramide
organocatalysis (R,S)-37.

Squaramide (R,R)-39 (Scheme 10), which possess an piperidine unit, was useful for the
activation of Meldrum’s acid in enantioselective Michael addition to aliphatic nitroalkenes.
The reaction of Meldrum'’s acid and nitroalkene (E)-2 was carried out with catalyst loading
of 5 mol% in dichloromethane as the best solvent to obtain the nitro derivative (S)-40 in
83% yield and 94% enantiomeric excess [52]. Squaramide (R,R)-39 showed higher catalytic
activity and enantioselectivity compared to quinidine-based thioureas organocatalysts [53].
Single-step catalytic hydrogenation and acid-catalyzed deprotection of (5)-40 over Raney
Ni in acetic acid than decarboxylation of the resulting malonic-acid derivative (S)-41 with
6N HCl afforded (S)-Pregabalin 9 hydrochloride in 52% yield for three steps.

@)

HO,C.__CO,H CO,H

N0 Ra-Ni, H2 6N HCI
2 ——
W (R,R)-39 (5 mol%) AcOH rt reflux

(E)-2 cqu2 NH,* HCI
0 0 (S)-Pregabalin 9
0, 0,
FsC 83% 94% ee 70”’ 90%
N\ /N. t
H H
FsC N
(RR-39 ( )

Scheme 10. The Michael addition of Meldrum'’s acid to nitroalkene (E)-2 catalyzed by squaramide
(R,R)-39 catalyst.
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The use of catalyst 42 (Scheme 11A) incorporating squaramide and hydroquinidine
units allowed one to perform an enantioselective Michael addition of malonate to nitroolefin
(E)-2 in brine due to the “hydrophobic hydration effect” [54,55]. Under these conditions,
hydrophobic hydroquinidine-squaramide catalyst 42 directed the reaction towards the
corresponding Michael adduct (5)-43 with high yield and enantioselectivity [43]. After the
extraction of the Michael adduct (S)-43 with methylcyclohexane, catalyst 42 was recoveried
in quantitative yield (>99%) by simple filtration permitted the catalyst recycling. Hydro-
genation of the crude Michael adduct (5)-43 using Raney Ni followed by hydrolysis of
resulting y-lactam (35,4R)-18 with 6N HCl afforded (S)-pregabalin 9 in enantiomerically
pure form after simple recrystallization from 2-propanol/water. The developed proce-
dure in brine media was also applied for the scalable synthesis of enantiomerically pure
(S)-Rolipram 12 (Scheme 11B) from aryl nitroolefin (E)-10 using 10 mol% of hydroquinine-
based squaramide catalyst 44.
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B CH,(CO,Me),
(2 equiv)
(10 mol%)

Ty
MeO brine, rt

(E)}-10

O

iéNH 1. LiOH (aq.)

2. PhMe, reflux

MeO :

S)-Rolipram 12
82%

MeO,C

Q/O

COzMe

)\LNO2

(S)-43
91% ee
not isolated N

l Raney-Ni, H,

OMe

EtOH, rt

(3S5,45)-18
86% after 2 steps

Meoj@/\/

(S)-45
95%, ee 90% ee
after recristallization
81%, >99% ee
Raney-Ni, H, N
MeOH, rt
(0]

MeOzC
NH
MeO :

(3R,45)-46
85%

CF3
NH

Scheme 11. Enantioselective syntheses of (S)-Pregabalin 9 (A) and (S)-Rolipram 12 (B) under “on

water” conditions.

The hydrophobic dihydroquinine-squaramide derivative 44 (Scheme 11B) also demon-
strated its efficiency in brine media for enantioselective Michael addition of the diethyl
dithiomalonates to (E)-a-methyl-B-nitrostyrenes 47 (Scheme 12) [56]. In these cases, a high
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loading of 44 (15 mol%) and lowering the reaction temperature to 0 °C were required for
the reaction to proceed with high enantioselectivities. At the same time, no reaction was
observed when catalyst 44 was used in organic solvents. The resulting adducts (5)-48 could
further be converted into GABA analogs bearing an all-carbon quaternary stereocenter
at the B-position. After the separation of the catalyst, the crude products (5)-48 were
subjected to reduction affording y-lactam thioesters 49, which were hydrolyzed with 6N
HCl into B-methylated analogs of Phenibut (5)-50a and Baclofen (S)-50b as hydrochloride
salts. At the same time, the 3-methylated analog of Rolipram (5)-50c was prepared by basic
hydrolysis and decarboxylation of corresponding y-lactam thioester 49.

o o
EtS SEt o o
Me (2 equiv) Zn povder f 0
)\/Noz 44 (15 mol%) EtS SEt TMSCI EtS
Ar brine, 0 °C '\/’i‘: NO, EtOH Me NH

(E)-47
(S)-48, 92% ee

|
@f
(S)-50a, Ar = Ph, 83%

(S)-50c, 83%, 91% ee 3 steps from (E)-47
4 steps from (E)-47 (S)-50b, Ar = 4-CICgH,, 86%

3 steps from (E)-47

Scheme 12. Enantioselective Michael addition reaction of 3,3-disubstituted nitroalkenes (E)-47 with
dithiomalonate using dihydroquinine-squaramide catalyst.

An enantioselective decarboxylative Michael addition between malonic-acid half-
thioester [57] and -nitroolefins providing access to y-nitro thioester was demonstrated to
catalyze with cinchona-based squaramide [58] and cinchona-based urea [59] organocata-
lysts under mild reaction conditions. Performing the reaction of malonic-acid half-thioester
51 (Scheme 13) and p-nitrostyrene (E)-1 with loading of 5 mol% of bifunctional quinine-
based squaramide 52 as the most active and selective organocatalyst in methyl tert-butyl
ether (MTBE) at 45 °C resulted in addition product (S)-53 in high yield and excellent enan-
tioselecitivity within 22 h [58]. It is noteworthy that using E or Z isomers of the starting
-nitrostyrene 1 afforded the (S)-enantiomer of the Michael adduct 53 with the same ee
value. The nitro thioester (5)-53 was converted with Raney Ni and H3PO, in THF by
intramolecular cyclization and recrystallization into enantiomerically pure y-butyrolactam
(5)-16. Finally, hydrolysis of resulting y-butyrolactam (S)-16 could be performed with 6N
HCl under reflux to deliver the (S)-Baclofen 8 as its hydrochloride salt in 78% yield.

The bifunctional bisalkaloid organocatalyst 54 (Scheme 14) was developed and suc-
cessfully tested for the enantioselective conjugate addition of malonates to nitroalkenes [60].
The best result in terms of reactivity and selectivity was achieved using dimethyl malonate,
1 mol% of organocatalyst 54 in THF at room temperature. Under optimal conditions,
the Michael reaction of dimethyl malonate with 3-nitrostyrene (E)-1 proceeded well to give
the corresponding adduct (R)-38 with excellent yield and enantioselectivity (after recrys-
tallization). The obtained adduct (R)-38 was converted into (R)-Baclofen 8 hydrochloride
according to the synthetic sequence demonstrated in Scheme 3.
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(1.5 equw)

S

(S)-Baclofen 8
78%

52 (5 mol%) W
MTBE, 45°C |,

(S)-53 ;

82%,91% ee CI

Raney-Ni
H, (3 bar)

7" NH,-HCl
2 6NHCI |@ C(O
e
reflux NH

(S)-16
67%, 90% ee
(>99% ee after one
recrystallization)

H3PO,
THF

Scheme 13. Enantioselective Michael addition of malonic-acid half-thioester 51 to B-nitrostyrene

(E)-1. Synthesis of (S)-baclofen 8.

CHy(COMe),  MeO,C

CO,Me

NO, (3 equiv) 1. NiCl,'6H,0, NaBH,
/©/\/ 54 (1mol%) MeOH, rt
cl THF rt 2. NaOH, EtOH

E)1
S (R)-38 3. toluene, reflux (R)-16
98%, 92% ee 88%
87%, >99% ee
after recrystallization 6M HCI
reflux
Et
N
ZW NZN 7 HO,C NH,- HCI
=~
(0] \ / (0]
HO
X
OH
— QNQV Cl
N R)-Baclofen 8
54 Bt e,

Scheme 14. Asymmetric conjugate addition of dimethyl malonate to 3-nitrostyrene (E)-1. Synthesis
of (R)-Baclofen 8 hydrochloride.

The highly stereoselective (>99% ee) conjugate addition of acetophenone to 3-nitrostyrenes
(E)-1 and (E)-20 (Scheme 15) was completed using primary amine-thiourea organocata-
lyst [61] based on (S)-di-tert-butyl aspartate. With the optimal organocatalyst 55, derived
from (1R,2R)-diphenylethylenediamine the Michael addition provided adducts (5)-56 and
(5)-57 at low catalyst loading (5 mol%) in excellent yield [62]. After Bayer—Villiger oxidation
of (5)-56 and (S)-57, corresponding y-nitro esters (5)-58 and (5)-59 could be transformed into
the (S)-Baclofen 8 and (S)-Phenibut 24 according to described above procedures. The enan-
tiomer of 55 was also utilized as organocatalyst for the efficient synthesis of (R)-Baclofen 8.

Catalytic asymmetric version of the Michael addition reaction between malonates
and nitroalkenes was also achieved by using chiral metal—ligand complexes [63,64]. For
example, the highly enantioselective Michael addition of tert-butyl phenyl malonate to the
-nitrostyrene (E)-20 (Scheme 16) was developed in toluene at room temperature using
the easily accessible chiral bis-(cyclohexyldiamine)-based Ni(II) complex 60 (2 mol%) [65].
This process offered a route for the synthesis of 3-nitro derivative (5)-61 in 92% yield and
93% ee (1.8:1 diastereoisomeric ratio). Reduction and cyclization of (5)-61 with the more
reactive ester group afforded the y-lactam (3R,45)-62 as one diastereomer. Final hydrolysis
and decarboxylation of the y-lactam (3R,45)-62 with 6N HCI under reflux produced the
(S)-Phenibut 24 as the hydrochloride salt in quantitative yield. Later, several heteroge-
neous catalysts incorporating chiral bis(cyclohexyldiamine)-based Ni(II) complexes were
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developed for the asymmetric Michael addition of malonates to both aromatic [66,67] and
aliphatic [68-70] nitroalkenes. These catalysts demonstrated good activities, enantiose-
lectivities, reusability, and applicability for the multistep sequential flow synthesis of the
(S)-Pregabalin [69].

/@/\/N02
R

(E)1R =Cl 5 mol% m-CBPA, TFA
E)}-20R=H -
(E) + CHCI it NO, CHzClz. 70°C
o)
)J\ )-56 R = Cl S)-58 R = Cl
Ph 99%, >99% ee 80%
(S)-57 R = H (S)-59 R = H
t-BquC\: s ph 96%, >99% ee 73%
t-BUO\”/-\NJJ\N\\\K‘/Ph R =Cl J l R=H
H H
o) NH,
55 (S)-Baclofen 8 (S)-Phenibut 24

Scheme 15. Michael reaction between acetophenone and (-nitrostyrenes using primary amine-
thiourea organocatalyst 55.

O
O o0 NaBH, 0
X NO2 PhO OBu-t PhO OBu-t NiClys H0 FBUO NH
g W _NO, T
60 (2 mol%) ' MeOH :
toluene, rt
(S)-61 (3R,45)-62
92%, 93% ee, 1.8:1 dr 85%
? ?n 6N HCI
N N

H /", J reflux
AN
O/, . ,O CO,H
'NH r H
N NH,- HCI

N
A
B ‘
. O
(S)-Phenibut 24

>99%

=1
W—Z—W
w2

Scheme 16. Enantioselective Michael additions of tert-butyl phenyl malonate to 3-nitrostyrene (E)-20
catalyzed by diamine—Ni(II) complex 60.

On the basis of mechanistic studies of conjugate addition reactions catalyzed by chiral
nickel(II)-diamine complexes is proposed that the malonate displaces one diamine ligand of
the catalyst generating the chiral enolate I (Scheme 17) [65]. Coordination of the nitroalkene
to the nickel center of I leads to the intermediate II, and subsequent addition of enolate to
the bound nitroalkene affords the 1,4-addition intermediate III. Then intermolecular proton
transfer and displacement of the Michael product with another molecule of the malonate
regenerates chiral enolate I.



Molecules 2022, 27, 3797 13 of 39

Bn
: Br OR1¢
AN
X N0, O/ N
\f "TH o
i “OR
H 1
Bn Bn O O Bn or! Bn O\,? >R
B B R /
Oy R e a
Ni - Ni
. v
'NH L N g o4
| : \ OR?
Bn Bn \ ® Bn
N Bn
60 = 1
BnHN  NH,Bn I = g OR
S
R |
N
R'0,C NO, NH. 0 2
) 4 TOR
CcO R2 Bn O\@/ R
2 @/N
m O H

Scheme 17. Proposed mechanism reaction.

The application of the chiral nickel(II)-diamine catalysts was extended to 1,4-selective
asymmetric addition of malonates to nitroenynes [71]. The 1,4-addition of di-tert-butyl
malonate to nitroenyne 63 (Scheme 18) in the presence of 2 mol% of Ni(II) complex 64 as
the catalyst proceeded regioselectively under mild conditions, affording (3-alkynyl nitro
acid (R)-65 in good yield and high enantioselectivity (91% ee). Enantiomerical purity of
product (R)-65 could be improved to 99% ee by single recrystallization. This protocol
allowed to obtain (3-alkynyl acid (R)-66 after decarboxylation of (R)-65 in the presence of
TsOH under reflux. Reaction of 3-alkynyl acid (R)-66 with oxalyl chloride and MeOH gave
-alkynyl ester (R)-67 in 64% yield, which by reduction of the nitro group followed by the
treatment with di-tert-butyl dicarbonate (Boc),O afforded the N-Boc 3-alkynyl-y-amino
ester (R)-68. The ester (R)-68, as the common intermediate, was converted to the (3-alkynyl-
v-amino acid (R)-69 and (3-alkyny-y-lactam (R)-70 using standard procedures without loss
of enantiomeric purity.

O,H 1. (COCly)

XxNO: +-BuO,C.__CO,Bu-t c ) R
= 64 (2 mol%
Ph (2 mol%) TsOH, benzene DMF, 0 °C
=

63 —_— NO, NO,
+ m-xylen, rt = reflux 2. MeOH
CH,(CO,Bu-t), Ph™  (R)-65 Ph (R)-66
R 80%, 91% ee 83%, 90% ee
1
HN

NH| 7
(50
NH BrHN

CO,H
64R = CH2(4 Br-CGH4) LiOH
MeOH/H,0 =
CO,Me CO,Me Ph R)-69 NHBoc
NO, 1. Zn, HCI/EtOH ] 91%
Z 2. (Boc),, DIPEA = o
Ph (R)-67 THF Ph NHBoc

64%, 90% ee (R)-68 [ AMe; NBoc

48%, 90% ee PhCHa 20°C
’ 3

Ph (R)-70
78%

Scheme 18. Asymmetric synthesis of 3-alkynyl-y-amino acid (R)-69 and 3-alkyny-y-lactam (R)-70.
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(E)-10
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OH

NO,

The catalytic asymmetric decarboxylative 1,4-addition reaction of malonic-acid half-
thioester to nitroalkene (E)-10 (Scheme 19) was realized by employing heterobimetallic
system [72] with transition metal, rare-earth metal, and dinucleating amino-phenol ligand
(5,5)-71. Screening of the transition metal and rare-earth metal combination revealed
that Ni/La/ligand (5,5)-71 catalyst in the presence of phosphine oxide 72 as an achiral
additive gave the best catalytic activity and selectivity delivering the addition product
(5)-73 in 80% yield and 93% ee [73]. The synthetic utility of the asymmetric decarboxylative
1,4-addition reaction was demonstrated by the reduction and cyclization of (5)-73 with Zn
and (CH3)35iCl to (S)-Rolipram 12 in 83% yield.

OMe 0
Ni(OAc),/La(OPr-i)3

fligand (S,S)-71 = 1:1:1 © d
(10 mol%) zn, TMSCI_

72 (20 mol%) ? NO T EOH Tt ! Oj@
e

THF, rt BnS 2

(S)-73 (S)-Rolipram 12
80%, 93% ee 83%

<xr$ o

I Ml
N Ph,yP PPh
H H 2 \(\% 2
OH HO 72
HO

dinucleating amino-phenol (S,S)-71

Scheme 19. Ni-La system for decarboxylative 1,4-addition of malonic-acid half-thioester to ni-
troalkene (E)-10.

Additionally, asymmetric 1,4-addition of dimethyl malonate to -nitrostyrene (E)-1
catalyzed by polymer-supported CaCl,-pyridinebisoxazoline (Pybox) complex [74] was
developed and implemented in continuous-flow synthesis of (S)-Baclofen precursor (3R ,45)-
74 using a series of different heterogeneous catalysts (Figure 2) [75]. In the first step, amine-
modified silica gel/molecular sieves 4A column reactor was used for condensation of p-
chlorobenzaldehyde and nitromethane into 3-nitrostyrene (E)-1 in toluene. Then sequential-
flow enantioselective asymmetric 1,4-addition of dimethyl malonate to (3-nitrostyrene (E)-1
proceeded into the second column reactor with polymer-supported CaCl,-Pybox chiral
catalyst to give adduct (5)-38 with high enantioselectivity (92% ee). Further, the third
column reactor containing dimethylpolysilane (DMPS)-modified Pt catalyst supported
on activated carbon (AC) and calcium phosphate (CP) was successfully employed for
flow chemoselective hydrogenation and intramolecular cyclization of adduct (5)-38 to
give 5 g of lactam (3R,45)-73 in 93-96% overall yield based on nitromethane with 92% ee
during the 69-h process. Finally, (S)-Baclofen 8 was obtained according to the standard
procedure. Slightly modifying the continuous flow system using polymer-supported CaCl,-
Pybox chiral catalyst was also employed in the synthesis of (R)-Phenibut [76] and (R)-
Rolipram [77]. However, the polymer-supported CaCl,-Pybox chiral catalyst demonstrated
poor enantioselectivities in reactions of nitroolefins bearing primary aliphatic substituents.
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R () S
: 0.C. .CO Cat 1: SiO,-NH,/MS4A
@ MeOLCCOMe et 2. ps.caClyPybox
Acetone Cat 3: DMPS-Pt/AC-CP
L
Cat-2
Cat-1 0°C o
75°C MeOQC
Cat-3 NH
100 °C -

(3R,4S)-74
93-96%, 92% ee, 69 h

1. aqg. HCI, reflux
2. aq. NaOH

CO,H

Cl

(S)-Baclofen 8

Figure 2. Sequential flow synthesis of Baclofen precursor (3R 45)-74.

3. Michael Additions of Cyanide or Nitroalkanes to «,3-Unsaturated
Carbonyl Compounds

Asymmetric conjugate addition of cyanide and nitroalkanes to «,(3-unsaturated car-
bonyl substrates was another practical route for the synthesis of 3-substituted GABA
derivatives. For example, the Michael addition of diethylaluminum cyanide to substrate
(R)-75 (Scheme 20) bearing oxazolidinone chiral auxiliary [78] was conducted as the key
step in the synthesis of (5)-Pregabalin 9 from commercially available starting materials [79].
Conjugate addition was performed in toluene at 0 °C to produce addition adduct (4R,3'S)-
76 in satisfactory yield and moderate dr (87:13). The diastereomerically pure (4R,3'S)-76
was provided after purification with column chromatography on silica gel in a 57% yield.
The observed stereoselectivity was attributed to the approach of the diethylaluminum
cyanide mainly from the less hindered Si face opposite to phenyl group in the oxazo-
lidinone auxiliary. The removal of oxazolidinone chiral auxiliary by treating with LiOH
and H,O, in aqueous THF and reduction of the cyano group by hydrogenolysis under
Raney Ni afforded (S)-pregabalin 9 in 95% yield for two steps. Moreover, acetone cyanohy-
drin was also effectively used as cyanide source for diastereoselective conjugate addition
to o, 3-unsaturated oxazolidinone (S)-77 (Scheme 20) [80]. The hydrocyanation of (S)-77
cleanly proceeded with two equivalents of acetone cyanohydrin and 10 mol% of Sm(III)
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isopropoxide as catalyst in toluene to give the addition adduct (45,3'R)-78 in 75% yield and
88:12 dr. The diastereomerically pure product (45,3'R)-78 was chromatographically isolated
in 66% yield. The catalytic hydrogenation of the cyano group with simultaneous cleavage
of oxazolidinone chiral auxiliary over platinum oxide afforded the lactam (R)-79 in 75%
yield and 96% ee, which acidic hydrolysis led to the (R)-Pregabalin 9 as hydrochloride in
95% yield with retention of the enantiomeric purity. A similar route was employed for the
synthesis of (S)-Baclofen 8 using aryl-substituted substrate (5)-80, acetone cyanohydrin and
Sm(Oi-Pr)3 as catalyst (Scheme 20) [80]. Under standard conditions, the diastereomerically
pure nitrile adduct (45,3'S)-81 was obtained in 62% yield. Selective reduction of the cyano
group with such reagents as NaBH, and NiCl, and hydrolysis of resulting lactam (S)-82
provided (S)-Baclofen 8 in excellent yield and enantiomeric purity.

o CN (0]
0 o 1. H,O,, LIOH HNC
Et2AICN THF )\/_\)J\
toluene 0 °C 2. H,, Raney Ni OH
NH,OH, BIOH  5) pregabalin 9
95%
(R)-75 (4R,3'S)-76

66%, 87:13 dr
57% major diastereomer

o)

CN O
NA Ha PO, HN AN HCI_
P P T125°C
Sm(0-iPr); \‘ EtOH
toluene, rt (R)-Pregabalin 9
0, 0,
(4S,3'R)-78 (R)-79 95%, 96% ee
75%, 88:12 dr 75%, 96% ee
66% major diastereomer
(0]
HO CN

(S)—80

M*

O HN
n—4  NaBHj, NiCl,*6H,0

e

(4S,3°S)-81
74%, 84:16 dr
62% major diastereomer

Sm(O-iPr); ¢ MeOH, rt

toluene, rt

(S)-82 ClI
99% ee

HCI*H,N

OH

cl (S)-Baclofen 8

98%, 99% ee
Scheme 20. Diastereoselective Michael addition of cyanide to «,f3-unsaturated oxazolidinones.

Similarly, oxazolidinone as a chiral auxiliary was used to generate a new stereogenic
center in the Michael addition between nitromethane and «,3-unsaturated oxazolidinone
®-75 with Cs,COj as a base providing a diastereomerically pure addition adduct (4R,3’5)-83
in 34% yield after two recrystallizations from isopropanol (Scheme 21) [81]. The oxazo-
lidinone chiral auxiliary was removed by treating (4R,3'S)-83 with alkaline hydrogen
peroxide to give the y-nitroacid (5)-84. (S)-Pregabalin 9 was obtained after hydrogena-
tion of y-nitroacid (5)-84 using Pd/C in 26% overall yield for three steps from ®-75 with
>99% ee.
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after two recrystallization

Scheme 21. Preparation of (S)-Pregabalin 9.

Chiral «,p-unsaturated oxazolidino®(R)-85 (Scheme 22) was successfully used in
tetramethylguanidine (TMG)-catalyzed diastereoselective conjugate addition of nitromethane
with good stereoselectivity (93:7) [82]. The addition product (4R,3'R)-86, after crystallization
from ethyl acetate, was obtained in 78% yield and 99% de. Subsequent synthetic operations
involving elimination of the chiral auxiliary in basic solution, hydrogenation of NO, group
with Raney Ni, and recrystallization from water provided (R)-Baclofen 8 in 65% yield with
99% ee.

O,N

~ NH,

N\

Cl

(4R,3R)-86 (R)-Baclofen 8
78%, 99% de 65%, 99% ee

Scheme 22. Tetramethylguanidine-catalyzed diastereoselective conjugate addition of nitromethane
to «,A-unsaturated oxazolidinone (R)-85.

Synthesis of (S)-Pregabalin 9 (Scheme 23) starting from 2,3-O-isopropylidene-D-glycer-
aldehyde (R)-87 as the chiral source included highly diastereoselective Michael addi-
tion of nitromethane to «,f3-unsaturated ester (S)-88 that produced chiral y-nitroester
derivative (5,5)-89 as crucial step [83]. Initially, Wadsworth-Emmons olefination of
2,3-O-isopropylidene-D-glyceraldehyde (R)-87 with triethyl phosphonoacetate afforded
o,B-unsaturated ester (S)-88 as a mixture of E:Z isomers in ratio 9:1, which underwent
conjugate addition of nitromethane in the presence of TBAF to give, after purification,
Y-nitroester (5,5)-89 in 75% yield. Next, the y-nitroester (S,5)-89 was treated with ammo-
nium formate in the presence of Pd(OH),/C, leading to the reduction of the nitro group
with concomitant cyclization to the y-lactam (5,5)-90 in 85% yield. The corresponding
N-Boc protected y-lactam (S,5)-91 was prepared by reaction with di-(tert-butyl) dicarbonate
in the presence of DMAP and triethylamine. Then chemoselective cleavage of the ketal
was achieved by using 90% aqueous acetic acid to afford diol (S,5)-92 in quantitative yield.
Oxidative cleavage of diol (5,5)-92 with NalO4 and Wittig olefination of resultant aldehyde
(5)-93 with isopropylidenetriphenyl phosphorane afforded (3-isobutenyl y-lactam (R)-94 in
60% yield. Hydrolysis of the y-lactam (R)-94 with 1M LiOH in THF at room temperature
afforded acid (R)-95, which easily hydrogenated in the presence of catalytic Pd(OH),/C
and N-deprotected by acidolysis of the Boc-carbamate with aqueous HCl to provide the
enantiomerically pure (S)-Pregabalin 9 in quantitative yield.
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Scheme 23. Diastereoselective synthesis of (S)-Pregabalin 9 from 2,3-O-isopropylidene-D-glyceral-
dehyde (R)-87.

The enantioselective conjugate addition of nitromethane to «,(3-unsaturated aldehyde
(E)-96 (Scheme 24) was developed employing O-TMS-protected prolinol (R)-97 [84,85] as
organocatalyst. The asymmetric reaction catalyzed with 20 mol% of (R)-97 in the presence
of benzoic acid as an additive in EtOH furnished the Michael adduct (R)-98 in 73-83%
yield with excellent 94-96% ee [30,86]. When the asymmetric addition of nitromethane
to o, 3-unsaturated aldehyde (E)-96 was carried out with 10 mol% loading of (R)-97 and
lithium acetate as an additive in CH,Cl, /MeOH, the Michael adduct (R)-98 was obtained
in 62% yield and 91% ee [87]. The mechanism of this process suggests that organocatalyst
(R)-97 would react with the «,[3-unsaturated aldehyde (E)-96 leading to the iminium ion A
in which one of the enantiofaces is shielded by the large diphenyl(trimethylsilyloxy)methyl
group. Thus, nucleophilic nitronate would attack iminium ion A from the Re face to form
the observed (R)-configurated adduct 98. The presence of benzoic acid, as well as lithium
acetate as additives, could accelerate the generation of the iminium ion A. Successive
synthetic transformation of the y-nitro aldehyde (R)-98 involving oxidation with NaClO, in
the presence of HyO, and KHPOy to y-nitro acid (R)-99 and hydrogenation in the presence
of Raney Ni efficiently provided (R)-Baclofen 8 hydrochloride. In the subsequent study
preparation of (R)-Baclofen 8 from commercially available materials was also accomplished
by employing a one-pot synthetic procedure that involved DBU catalyzed aldol conden-
sation of p-chlorobenzaldehyde and acetaldehyde, O-TMS-protected prolinol mediated
asymmetric Michael addition of nitromethane in the presence of formic acid as an additive,
oxidation, and reduction [88]. The one-pot procedure afforded (R)-Baclofen 8 in 31% overall
yield with high enantioselectivity (93% ee).
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Scheme 24. O-TMS-Protected prolinol (R)-97 catalyzed enantioselective Michael addition of ni-
tromethane with o, 3-unsaturated aldehyde (E)-96.

A one-pot procedure for the synthesis of y-nitroester (5)-100 (Scheme 25) as a key inter-
mediate of the (S)-Baclofen 8 was developed based on the Michael addition of nitromethane
to o, 3-unsaturated aldehyde (E)-96 catalyzed with diphenylprolinol silyl ether (5)-97 in
MeOH, followed by the oxidative esterification using N-bromosuccinimide (NBS) as the
oxidant [89]. The y-nitroester (S5)-100 was obtained in 94% enantiomeric excess. Next, the
Y-nitroester (S)-100 was treated with NaBH,4 in EtOH in the presence of NiCly, leading
to the reduction of the nitro group with accompanying cyclization to the y-lactam (S)-82,
which upon hydrolysis with 6M HCl afforded the (S)-Baclofen 8 as the hydrochloride in
94% yield.

1. (S)-97 (10 mol%) NO,
X-CHO bc0o,H (20 mol%) 1. NaBH,, NiCl, - H,0
o MeOH, rt COMe  EioH, 4°C

(E)-96 . -

MeNO, 67%, 94% ee

H NH,+ HCI
O 6MHCI
— — CO,H
cl cl
(S)-82 (S)-Baclofen 8
88% 94%

Scheme 25. Application of the one-pot process for the formation of y-nitroester (S)-100 in the
synthesis of (S)-Baclofen 8.

Recently, a highly efficient process for continuous flow asymmetric synthesis [90-92] of
Rolipram was developed. This three-step process implied (1) an initial organocatalytic flow
synthesis based on telescoped flow asymmetric conjugate addition, (2) oxidative aldehyde
esterification sequence using in situ-generated persulfuric acid [H,SOs] as oxidant, and
(3) a final nitro reduction and lactamization. The process is initiated by an enantioselective
Michael-type addition of nitromethane with the appropriately substituted cinnamaldehyde
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derivative (E)-101 (Scheme 26) in the presence of cross-linked polystyrene-supported
cis-4-hydroxydiphenylprolinol tert-butyldimethylsilyl (TBS) ether as the chiral catalyst
for the formation of the y-nitroaldehyde (S)-102, which was obtained after adjusting the
reaction conditions in 94% ee and 97% of conversion [93]. Taken into account that the initial
chiral y-nitroaldehyde (S)-102 was labile and could decompose during purification, it was
oxidized efficiently towards the corresponding y-nitroester (5)-103 by the action of the
oxidizing agent persulfuric acid [H,SOs], in situ generated by the reaction of concentrated
sulfuric acid with HyO; in a continuous-flow oxidative esterification. To complete the
flow synthesis of Rolipram, a nitro-reduction was necessary, which was carried out by
treatment of the y-nitroester (S)-103 with trichlorosilane (HSiCl3) in dry CH3CN. It was also
observed that 4 equiv of N,N-diisopropylethylamine (DIEA) and 4 equiv of trichlorosilane
were necessary to achieve quantitative and selective final nitro reduction/lactamization. In
this manner, the enantioselective flow synthesis of (S)-Rolipram 12 was carried out after
4 h run in 83% yield and 94% ee. A similar continuous-flow process was developed for
the asymmetric synthesis of substituted y-nitrobutyric acids as key intermediates in the
synthesis of Baclofen and other GABA derivatives [94].

FLOW

N\%\/O

N
(S)-102 Catalyst H
97% conv.
94% ee

nitro reduction
lactamization O
COZMe )
HSiCl;, MeCN NH

(@] , N02 _— S
- DIEA
MeO FLOW MeO
(S)-103 5 bar, rt (S)-Rolipram 12
97% yield 83% yield
94% ee 94% ee

Scheme 26. Continuous-flow enantioselective synthesis of (S)-Rolipram 12.

Bifunctional squaramide catalyst (5)-104 (Scheme 27) possessing pyrrolidine moiety
was employed in the enantioselective Michael additions of nitromethane to «,3-unsaturated
aldehyde (E)-96 [50]. The organocatalytic reaction in the best conditions provided the
adducts (R)-98 in synthetically valuable yield (64%) with high enantiomeric purity (92% ee).
The enantioselectivity is explained through the formation of an enamine transition state
TS allowing the Re-face attack of nitronate to yield the observed (R)-configurated adducts.
Finally, compound (R)-98 was converted into (R)-Baclofen 8 in oxidation/reduction/acid
hydrolysis sequence.

Primary amine-thiourea catalyst 106 (Scheme 28) synthesized from (1R,2R)-diaminocy-
clohexane and dehydroabietic amine allowed one to perform asymmetric Michael addition
of nitroalkanes to &,[3-unsaturated ketones providing high enantioselectivities for these
Michael acceptors [95]. For example, the Michael addition of nitromethane to alkyl cin-
namyl ketones 105 in toluene as the optimal solvent gave the y-nitro ketones (R)-107 in 98%
ee. It should be noted that excess nitromethane and the use of acetic acid as an additive
shortened the reaction times and increased the yield of the desired products (R)-107 to
83-85%. Compound 105 is activated via hydrogen-bonding interactions between two NH
moieties of the thiourea catalyst 106 and the carbonyl group. Moreover, the amine group of
the catalyst 106 provides the Re face approach of nitromethane in TS leading to formation
of Michael adducts 107 with R-configuration. Subsequent Baeyer-Villiger oxidation then
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reduction of the nitro group gave the y-amino esters (R)-108 in an excellent yield. Finally,
acid hydrolysis of (R)-108 provided the target (R)-Phenibut 24 and (R)-Baclofen 8 in 95%

and 93% yield, respectively.
NO 2 - N OZ

MeNO,, NaOAc 7
/@/\/CHO (S)-104 (5 mol%) /@/\/CHO NaClO,, H,0, /©/\/C02H
o CHoCl/MeOH, 1t KH,PO,, MeCN ¢
(R)-98 (R)-99
64% yield, 92% ee 61%

1. Hy, Raney Ni

0 0 0 0
ot '
FsC /" F3C — ., 2. HCl
3 N ’\.l/ . 3 N —,
H H  HN H,

(R)-8
64%
(overall 25%)

TS

Scheme 27. Squaramide (S)-104-catalyzed enantioselective Michael addition of nitromethane with

o, 3-unsaturated aldehyde (E)-96.

o}
N
O,N
R 106 (10 mol%) Y O 1. m-CPBA, TFA
105a R = H AcOH (10 mol%) ' CH.Cly, reflux
105b R = Cl toluene, 25 °C 2. NiCl, - 6H,0
+
NaBH,, EtOH, 0 °C
MeNQZ (R)-107a R = H, 83%, 98% ee
(15 equiv.) (R)-107b R = Cl, 85%, 98% ee

HCI * HoN

)\ i
o :
/@/\)‘\ 6M HCI, 100 °C oH
R

(R)-Phenibut 24 R = H, 95%

(R)-108a R = H, 82% for two steps
(R)-Baclofen 8 R = Cl, 93%

(R)-108b R = ClI, 83% for two steps

NH
o '3

e)
| CH5NO,
Re-face attack

TS

Scheme 28. Enantioselective Michael addition of nitromethane to alkyl cinnamyl ketones and its

application in syntheses of (R)-Phenibut 24 and (R)-Baclofen 8.
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Enantioselective conjugate addition of nitromethane to &, 3-unsaturated thioamide 109
(Scheme 29) was promoted by a mesitylcopper/(R)-DTBM-Segphos precatalyst exhibiting
dual functions to activate both pronucleophile and electrophile. The reaction was carried
out at 5 mol% precatalyst loading in n-hexane/toluene solvent system at room temperature
affording y-nitrothioamide (R)-110 in 92% yield with high enantioselectivity 99% ee [96].
Initially, deprotonation of nitromethane with chiral phosphine ligand /mesitylcopper de-
livering Cu-nitronate and subsequent coordination of thioamide 109 generated complex
A (Scheme 29). Then, enantioselective C-C bond formation gave the intermediate Cu-
thioamide enolate B, which as a soft Lewis acid/hard Brensted base cooperative catalyst
promoted proton exchange with nitromethane to give the addition adduct (R)-110 with
simultaneous regeneration of complex A. Transformation of the y-nitrothioamide (R)-110
to y-nitrothioester (R)-111 was achieved in high yield by in situ S-alkylation and hy-
drolysis with Mel/TFA in wet THE. Finally, y-nitrothioester (R)-111 was converted into
(R)-Baclofen 8 by standard hydrolysis and reduction, highlighting the synthetic utility of
the present protocol.

Cl
precatalyst
(R)-DTBM-Segphos
S mesitylcopper ,Cu’k _
NN 5 mol% HS’ \O\N*O S Y
©2 n-hexane/toluene )l\/\ L J\/’\/NOZ
rt MezN R CH2 MezN
109 Cl A (R)-110
+ 0 0
MeNO, 92%, 99% ee
5 equiv
,Cu*
O s R Mel, TFA
z 1 '
( O A A No, 109 MeNO2 4y omHE
o PAr, Me,N
rt
PAr * B
<O O 2 Cu : Cu/chiral phosphine complex
0 Cl Cl
Ar = 3,5—(t—Bu)2-4-MeOC6H2
(R)-DTBM-Segphos 1. NaOH, THF,MeOH, 0 °C
O < 0 <
: 2. Raney Ni, H, B
NO
HO)J\/\/NO2 MeS)J\/\/ 2
(R)-Baclofen 8 (R)-111
83% 94%

Scheme 29. Catalytic asymmetric conjugate addition of nitromethane to o, 3-unsaturated thioamide 109.

4. Michael Addition of Organometallic Reagents to «,3-Unsaturated
Carbonyl Compounds

I'-Lactams are widely used as starting materials for numerous syntheses, since this
backbone can be readily converted into other functional groups through many conven-
tional organic transformations. In particular, a large number of enantioselective syntheses
have been reported that use y-unsaturated lactams as substrates for obtaining compounds,
possessing a C-4 chirality, of biological or synthetic interest. In this context, the group of
Lin, Feng et al. in 2011 [97,98] described an enantioselective synthesis of 3-substituted
v-lactams 113 (Scheme 30) by asymmetric 1,4-addition of arylboronic acids to N-Boc-
protected «,(3-unsaturated y-lactams 112, a process that takes place in the presence of
rhodium complexes (i.e., [RhCI(CyHy),]2) as catalysts and using the chiral bicyclo [3.3.0]di-
ene 114 as ligand. The designed chiral diene ligands were easily prepared by the same
group in a three-step sequence [99]. An additive such as Et3N or KHF;, depending on
the nature of the starting arylboronic acid, was necessary for this reaction. The process
worked well, and excellent chemical yield and enantioselectivity were obtained in all the
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cases. However, in the case of arylboronic acids with electron-withdrawing substituents, a
prolonged reaction time was required to reach the same high level of enantioselectivity and
chemical yield.

0 [RhCI(C,H,),],/114 0 Ph 4
Boc. (3 mol% Ph) Boc. :
N\i/> + ArB(OH), N\i/> Chiral diene =
% EtsN or KHF, , -
toluene/H,0, 60 °C Ar H ph
112 113 114

Scheme 30. Rhodium-catalyzed asymmetric 1,4-addition reaction of arylboronic acids to «,f3-
unsaturated y-lactams 112.

This methodology was applied in the concise synthesis of some bioactive compounds
such as the (R)-Baclofen 8 hydrochloride and the (R)-Rolipram 12 (Scheme 31). In the first
synthesis, the corresponding chiral 3-substituted y-lactam (R)-113a was converted into
(R)-Baclofen 8 in two-step by treatment with TFA, which underwent deprotection of Boc, fol-
lowed by acid hydrolysis of (R)-115 with 6N HCI. In the second case, (R)-Rolipram 12 was
isolated directly after deprotection of (R)-113b with TFA in CH,Cl, at room temperature.
A high chemical yield was obtained in either case.

Cl
0
Boc. : 7 TFA :) 6N HCI
HN
CHCly, rt B 100 °C :
HO,C._~_NH,HCI
(R)-113a Cl (R)-115 Cl (R)-Baclofen 8
99% ee 99% 94%
0
Boc., TFA HN
o) o)
OMe OMe
(R)-113b (R)-Rolipram 12
99% ee >99% ee

Scheme 31. Synthesis of (R)-Baclofen 8 and (R)-Rolipram 12.

In the same year, Liao et al. [100] reported a conceptually similar procedure in a
process, which implies a rhodium-catalyzed addition of arylboronic acids to y-phthalimido-
substituted «,[3-unsaturated esters 116 (easily prepared from 4-bromobut-2-enoate and
phthalimide potassium salt) (Scheme 32) in the presence of chiral bis-sulfoxide ligand
(R,R)-117 [101]. The process afforded p-substituted GABA derivatives 118 under mild
conditions, with high yields and enantioselectivities (up to 96% ee), and using a Rh/(R,R)-
1,2-bis(tert-butylsulfinyl)benzene complex [(R,R)-117/RhCl]; as catalyst.
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Br

CO,R

ArB(OH),
Potassium ? COR  [(R,R)-117/RhCI] O Ar. CO,R
phthalimide J=/ (2.5 mol%) J—/
_phthalimide N R Y
DMF, rt CH,Clo/H,0 (10:1)
0 KOH (50 mol%), 40 °C o

Scheme 32. Rh-catalyzed asymmetric 1,4-addition of arylboronic acids to alkyl y-phatalimidocr-
otonates 116.

This methodology has been successfully applied in the synthesis of the optically pure
(5)-Baclofen 8 and (S)-Rolipram 12. In the first case, a simple acidic hydrolysis (6N HCI) of
(5)-118a (Scheme 33), afforded (S)-Baclofen 8 in 93% yield; and in the latter case, starting
from the corresponding addition product (S)-118b, a two-step procedure that implies that
treatment with aqueous hydrazine followed by reflux with EtzN in toluene provided the
target (S)-Rolipram 12 in 78% yield.

N 6N HCI el
0 . CO,H
CO,Et reflux

0]

Cl

(S)-118a (S)-Baclofen 8
93%
(@)
HN
Q N 1. NH,NH,/THF Q
¢ COzEt 2. Et3N, toluene o
reflux
OMe
(S)-118b (S)-Rolipram 12
78%

Scheme 33. Synthesis of (S)-Rolipram 12 and (S)-Baclofen 8.

Another variant for the enantioselective synthesis of these two important y-aminobutyric
acid analogues was reported by Helmchen and coworkers [102], who studied the 1,4-asymmetric
addition of arylboronic acids to 4-amino-2,3-enoic acid ethyl ester derivatives 119 (Scheme 34)
in a process catalyzed by Rh(I) complexes and in the presence of chiral BINAP ligands.
Different reaction conditions were studied, in particular the nature of the protecting groups,
the base, and the ligand for preparation of adducts 120. The best results were obtained
when the base was Cs,COs3, the ligand (S)-BINAP, Boc as protecting group, a temperature
of 100 °C, and [Rh(acac)(CyHy),] as catalyst. Under these conditions and using the appro-
priate substituted arylboronic acid, (R)-Rolipram 12 and (R)-Baclofen 8 were obtained in
good chemical yields and enantioselectivity.
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* 0]
PGHN
1 Rh(acac)(CoHy)2 OF
PGHN/\/YO Rj@/B(OH)z BINAP, base t
+
OEt R2 Dioxane/H,0 10:1 R!
R2
119 120

_2stps _ Ry.Rolipram 12

(R)-Baclofen 8

120a PG = Boc, R! = O-c-Pentyl, R> = OMe

2 st
120b PG = Boc, R' = H, R2 = Cl _2Seps

Scheme 34. Enantioselective synthesis of (R)-Rolipram 12 and (R)-Baclofen 8 via Rh-catalyzed
conjugate addition of arylboronic acids.

In 1997, Alvarez-Builla et al. [103] developed a quite simple and stereoselective strat-
egy for obtaining (R)-Rolipram 12 (Scheme 35) starting from L-glutamic acid. The process
was initiated by a conjugate Michael addition of a suitable arylcuprate to a modified py-
roglutamic derivative (5)-121. The authors indicated that the steric hindrance provided
by the bulky silyloxy group in the protected alcohol (S)-121 (R = CHOSiPhyt-Bu) was
responsible for the final stereoselectivity observed. The addition product was transformed
into (R)-Rolipram 12 by an initial deprotection of the adduct (25,3R)-122 with triethylammo-
nium fluoride (TEAF), followed by oxidation of the alcohol to carboxylic acid (25,3R)-123
with the Jones reagent, and final simultaneous decarboxylation and deprotection of the

Boc group.
R“‘q\A\O (6}
O\ Boc MeO
0]

0 n-BuLi, CuBr-SMe, (S)-121 R = CH,0SiPh,t-Bu

MeO MeO
THF, 35°C Me3SiCl, -78 °C ‘ o
B CuLi tBuPh,SiOH,C" N
2

r Boc
(2S,3R)-122
(0] (]
MeO N-Methylmorpholine/ MeO
1. TFAF/THF, rt Isobutyl chloroformate
2. Jones Reagent N-Hydroxy-2-thiopyridone/ o
WSN TEA/THF/-15 °C N
HOC™ Boc H
(2S,3R)-123 (R)-Rolipram 12

Scheme 35. Stereoselective synthesis of (R)-Rolipram 12 from L-glutamic acid.

The Michael reaction of unsaturated pyroglutamate derivative 124 (Scheme 36) pro-
tected as a 5-methyl-2,7,8-trioxabicyclo [3.2.1]octane ester with Grignard-cuprate containing
4-chlorophenyl group in the presence of trimethylsilyl chloride took place in good yield
to give the adduct (4R,55)-125. The stereoselectivity of the reaction can be explained by
attacks of the organocuprate reagent at 3-C of the C=C double bond from the less-hindered
face [104]. The ester (4R,55)-125 underwent HCl-promoted methanolysis accompanying
deprotection of the Boc group to give corresponding methyl ester (25,3R)-126 in good
yield. Subsequent benzyl protection of lactam nitrogen followed by base hydrolysis of
the methyl ester (2S,3R)-127 yielded pyroglutamic acid (25,3R)-128. Decarboxylation and
debenzylation produced pyrrolidin-2-one (R)-129, which finally hydrolyzed by treatment
with 6N HCl into (R)-Baclofen 8 hydrochloride [105].
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Scheme 36. Preparation of (R)-Baclofen 8 using Michael addition to unsaturated pyroglutamate
ester (S)-124.

An earlier route reported by Meyers [106] in 1993 allowed the asymmetric synthesis
of (R)-Rolipram, as part of a more general study, by conjugate addition of cyanocuprates
to bicycle chiral o,f-unsaturated lactams. Once the appropriate starting aryl lactam
130 (Scheme 37) had been prepared in three steps from y-ketocarboxylic acids [107], the sub-
sequent treatment with the appropriate cyanocuprate (—78 °C, THF) gave 131 in good yield
a product derived from the conjugate addition to the exo (p) face of the C=C double bond.
Removal of the x-carboxy function was carried out easily by hydrogenolysis followed by
heating in toluene, affording 132 in good yield (79%) and excellent diastereoselectivity. The
cleavage of the bicyclic system was accomplished in two steps, first by treatment with an
excess of calcium metal in liquid ammonia, followed by final reduction using acidic sodium
cyanoborohydride to afford the target (R)-Rolipram 12 in good yield. Other examples, i.e.,
R = Me, n-Bu, Ph were also reported in this relatively general study.

Ph
H H
R
H,N  OH Ph o RCucNLi  Ph o
© N -78°C, THF A/N
3 steps CO,Bn ’ CO,Bn
130 131
90%
i CL
Ph o R
¢ 1. Ca, NH 0
Pd/C, H, 5 N 3

: ~0
—= 5 OMe R= OMe
2. NaCNBH,
132

HN
79%, dr 99:1
(R)-Rolipram 12
62% 2 steps

Scheme 37. Asymmetric route to (R)-Rolipram 12 by addition of cuprates to chiral bicyclic lactam 130.
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MeOOCHO

5. Miscellaneous Types of Michael Addition

One of the first enantioselective syntheses of (R)-Rolipram was developed by Langlois
et al. in 1997 [108], who reported a stereoselective conjugate addition of cyanide by means
of AIEt,CN to an activated «,f3-unsaturated oxazoline (R)-133 (Scheme 38), which was
obtained in four steps starting from isovanillin and (R)-phenylglycinol as chiral auxiliary. In
the process, strict control of the temperature (18 °C) was necessary to obtain an incomplete
conversion (ca 50%), as at higher temperatures (i.e., 35 °C), the formation of by-products
was mainly observed. Under these conditions, a mixture of two diastereoisomers, separated
by flash chromatography, was obtained in 49% yield and a ratio of 63:37. The cyano group
of the pure major diastereoisomer (R,R)-134 was selectively reduced with NaBH4-NiCl,
to the amidine (R,R)-135, which after alkaline hydrolysis (2N NaOH, 95% EtOH) and
recovery of the chiral auxiliary was converted into (R)-rolipram 12 in 55% yield from the
nitrile (R,R)-134.

NG
4 steps 0 OMe  AIEt,CN = OMe
[ S~ P
0

P N tquene/CHZCIJ PR N o
(R)-133© (R,R)-134 :
NaBH,4
NiCl,
OMe

HO
@O 1. 2N NaOH/EtOH \L N Q
N 2. SOClleeOH Ph\\‘ N 4 o
- |
2 ] 3. Et3N, toluene H

(R)-Rolipram 12 (R,R)-135 OMe
55%

@)
=

Scheme 38. Synthesis of (R)-rolipram 12 using oxazolidines as chiral auxiliary.

Among the different nucleophiles used for the enantioselective conjugate addition to
unsaturated olefins, the x-carbanions derived from «,x-dithioacetals, which are known as
synthetic chameleons, stand out for their relevance in the synthesis of a large number of prod-
ucts of biological importance. From the initial work of Koga and coworkers in 1985 [109],
numerous studies have been reported emphasizing the significance of this strategy in the
preparation of a large number of compounds of synthetic interest. On the other hand,
electron-deficient alkenes such as nitroalkenes are important synthetic feedstocks in the
construction of complex and chiral molecules in the presence of an array of stoichiometric
and catalytic ligands. In this sense, in 2015 Benaglia, Gaggero et al. [110] reported the
first enantioselective organocatalytic conjugate addition of 2-carboxythioesters-1,3-dithiane
136 (Scheme 39) to different nitroalkenes, particularly styrene derivatives, under mild
conditions and in the presence of cinchona bifunctional derivatives as organocatalysts.
Solvents such as toluene, room temperature, and cinchona derivative 137 (20 mol%) pro-
vided the best results in terms of chemical yield and enantioselectivity. Unfortunately,
alkyl nitroalkenes did not react under the described reaction conditions. Conversion of the
addition products 138 into 3-nitro esters 139 was carried out in two steps by reaction first
with NBS in acetone, followed by treatment with silver trifluoroacetate. This strategy was
applied to the synthesis of the (S)-Baclofen 8 and other derivatives of synthetic value.
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136 O 137 (20 mol%) S __S 1. NBS/acetone
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137 NH, - HCI
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50%

Scheme 39. Organocatalytic 1,3-dithiane addition to styrene nitroalkenes. Synthesis of 3-nitro esters
and (S)-Baclofen 8.

The stereochemical outcome was explained through the model depicted in Scheme 40,
in which the nitroolefin is activated both by the hydrogen atom in the N-H section of
the thiourea moiety and the ion pair formed between the charged quinuclidine nitrogen
and the nucleophile. The thioester attack on the nitroalkene Si face occurs as shown in
Scheme 40.

MeO
CF3

Scheme 40. Proposed stereoselection model.

Quite recently, Nakamura et al. reported [111] a general and improved method for
the catalytic enantioselective conjugate addition of «,x-dithioacetonitrile derivatives with
aromatic and aliphatic 3-nitroalkenes as electron-deficient alkenes, with the process being
catalyzed by chiral bis(imidazoline)-palladium pincer-type complexes. In that study, the
nature of the starting o, x-dithioacetal plays a crucial role in the success of the process. In
addition, «,x-dithioacetonitriles are a recognized class of synthetic intermediates [112] as
they can behave as cyanomethyl and cyanocarbonyl anion equivalents in their reactions
with electron-deficient alkenes. After an exhaustive study with a variety of nitroolefins,
1,3-dithiane derivatives, catalysts, and reaction conditions, the authors concluded that
the best results were obtained by reacting 1,3-dithiolane-2-carbonitrile 140 (Scheme 41) as
o, a-dithioacetonitrile (1.5 equiv) with a variety of aromatic and aliphatic nitroalkenes in
the presence of 5 mol% of the chiral palladium pincer complex Phebim-Pd complex 141 and
Ag(acac) (5 mol%) at room temperature and ethyl acetate as solvent. The reaction afforded
the conjugate addition products 142 with high yield and enantioselectivities (up to 98% ee).
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s 141 (5 mol%) S. S
Ag(acac) (5 mol%)
N2 ()\ NC NO,
s~ "CN ACOEt, rt R
R = Ar, Alkyl 140 142
47-99%, up to 98% ee
AC\ {\C 15 examples
N | | N
Mes! M
es 3/N—--Pd--—N\)— es
! =
Mes Br Mes
141
Phebim-PdBr

Scheme 41. Enantioselective reaction of «,x-dithioacetonitrile 140 with nitroalkenes.

The process is quite general, being effective with electron-withdrawing, electron-rich,
heteroaryl, and naphthyl aromatic nitroalkenes. Moreover, the reaction with aliphatic
nitroalkenes also gave the corresponding products in good yields and enantioselectivity.
It is noteworthy that many other different x-acetonitrile carbanion equivalents such as
acetonitrile, phenylthioacetonitrile, cyanoacetic acid, etc., were not effective, thus indicating
the essential role of the nitrile and the dithiolane groups in the global process. The proposed
mechanism for this reaction is depicted in Scheme 42. The palladium acetylacetonate-
complex I was initially formed by an exchange reaction of Ag(acac) with Phebim-PdBr
141. This complex coordinated next with the cyano group of 140 to afford a new cationic
complex II, which was deprotonated by acetylacetonate to give the Pd-ketenimide complex
III. Then, the reaction of ITI with nitroalkenes took place to afford complex IV, which finally
gave the protonated final addition product 142 and subsequent regeneration of the catalyst.
This mechanism was corroborated by DFT calculations and ESI-MS spectroscopic analysis.
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Scheme 42. Plausible reaction mechanism for the reaction of «,x-dithioacetonitrile 140 with ni-
troalkenes using Phebim-PdBr 141.
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This methodology was applied to the synthesis of y-lactams, and particularly to the
(R)-Rolipram 12 (Scheme 43). Thus, the previously obtained addition product (R)-142a
reacted first with InCl3-4H,O and acetaldoxime to provide the corresponding amide (R)-143,
whose nitro group was reduced with Fe/NH,Cl. Finally, the reductive desulfurination of
the y-lactam 144 with NiCl,-6H,O/NaBHy, afforded (R)-Rolipram 12 [113].

S
N ( CONH;

InCl3-4H50 (30 mol%) S Fe (10 equiv)
NO, acetaldoxime (3.0 equiv) NO,  NH,CI (10 equiv)
toluene/THF, 100°C 100 EtOH/H,0, 100 °C

D

(R)-142a (95% ee)

92% 97% ee

O

30
S NiCl, -6H,0 (5 equiv) NH
NaBH, (15 equiv)
MeOH/THF, 0 °C to rt

(R)-144 (R)-Rolipram 12

85%,

96% ee 53%, 95% ee
Scheme 43. Synthesis of optically active (R)-Rolipram 12.

In comparison with the enolate equivalents derived from «-carbon carbonyl com-
pounds, the corresponding “inert” B-carbons of saturated carbonyl derivatives (3-sp®)
have been far less studied in their behavior than nucleophiles [114]. In this context, Chi
et al. [115] reported in 2013 an interesting 3-carbon catalytic activation of simple saturated
esters using N-heterocyclic carbenes (NHC) as organocatalysts in enantioselective reactions
with various electrophiles such as enones, trifluoroketones, and hydrazones (Scheme 44).

(0]
OR' NHC NHC* Electrophiles Enones
cat —___= _ Trifluoroketones
R R Hydrazones

Nucleophilic —carbon
Scheme 44. 3-Carbon activation of saturated carboxylic esters.

After checking different reaction conditions including solvent, temperature, and achi-
ral and chiral triazolium organocatalysts, the authors concluded that the best results in
terms of efficiency (chemical yield and selectivity) were obtained by using the bulky chiral
triazolium salt A (20 mol%) as organocatalyst in the reaction with enones as electrophiles,
acetonitrile as solvent, room temperature, and in the presence of an excess of DBU as
base, which was necessary to achieve the two key deprotonation steps. In this way, chiral
cyclopentenes were obtained, as shown in Scheme 45. The usefulness of this strategy was
also demonstrated in their reaction with other electrophiles such as trifluoroketones and
hydrazones affording fluorinated y-lactones and nonfluorinated y-lactams, respectively.
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The nature of the solvent depends on the electrophile, with toluene being the solvent of
choice in the case of trifluoroketones and ethyl acetate for hydrazones. The process took
place, in general, with moderate-to-good chemical yields, moderate diastereoselectivity,
and good enantioselectivity, obtaining the best results with 3-(hetero)aryl substituted esters

(Scheme 45).
R2
R2 _O A (20 mol%)
DBU (150 mol%) ‘
+ > R1\
= MeCN, rt, 4A MS
R R
25 examples (8-81%)
er up to 97:3 _
0 BF,
0] N
0 A (20 mol%) A (o) = \N+ Ph
r _
B OAr + )J\ DBU (150 mol%)‘ o N/
Ar™ CF3  toluene, 0 °C, 4A MS 3
R R
8 examples (29-80%) A
Ar o) elr_lup to 95:5
H\f A (20 mol%) Ar}J/N\ 0
N DBU (150 mol%) N
H CO,Et EtOAc, rt, 4A MS EtO,C
R
10 examples (55-78%)
er up to 97:3

Scheme 45. Reactivity of the ester 3-carbon with different electrophiles.

This methodology was used for the synthesis of bioactive molecules and building
blocks of synthetic interest. Thus, chiral cyclopentenes are starting materials for optically
enriched 1,2-diols and amino alcohols. y-Butyrolactones are the key unit in the synthesis
of some natural products, and y-lactams have been used in the preparation of some
pharmaceuticals such as (S)-Baclofen 8 and (R)-Rolipram 12 as shown in Scheme 46.

Boc. O ArOCHN O )
N 1. Sml,, EtOH N Sml,, EtOH HN
HOH,C 2. LiBH,, THF EtO,C! N, EtO,C
Ar Ar Ar
ll Ar = 3-O-C-C5Hg-4-MeO-CGH3 ll Ar = p-Cl-C6H4
(R)-Rolipram 12 (S)-Baclofen 8

Scheme 46. Application to the synthesis of bioactive molecules.

To explain the above-mentioned results, the authors proposed the catalytic cycle
outlined in Scheme 47. The initial addition of the NHC catalyst to the ester I provides a
new NHC-bounded ester intermediate II, which after deprotonation forms the enolate
intermediate III bearing a nucleophilic x-carbon. Deprotonation of the 3-CHs of enolate
ITI, favored among others by the electron-withdrawing nature of the triazolium moeity,
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leads to intermediate IV. Next, the 3-carbon nucleophilic center of IV undergoes a Michael
addition with enones to give the cyclopentane intermediate VII, via a cascade process
involving an H* transfer and an aldol reaction (V to VII). Finally, lactone formation and
decarboxylation provided the target cyclopentene product IX.

DBU-H* \N/\\N
DBU ¢ 0L <N+
SN / \
<N H m
(@) N + ~
\ ArOH R pB-CH
deprotonation
R
Oy OAr
\_// \N/\\N
B HO \N/+
| \
R I N _
- ‘N— Ester
/N\./_ B-carbon activation R v
(0] Ph
Michael
Ph addition =
(0]
Ph
Ph 0 . -
x Lactone 0 ph\N/\\N Ph N/\\NH
\Vj formation — - =~/
m N . e N+
Ph \ |
-CO; R © Ph
Vil - R V
Ph & Ph NN J
Aldol ) Q \N\+ H*
Ph addition | transfer
BR Ph
IX R Vi

Scheme 47. Plausible mechanism for the catalytic ester 3-activation.

Recently, the conjugate addition of NH,-unprotected tert-butyl glycinate 145 (Scheme 48)
to o, B-unsaturated esters 146 using chiral pyridoxal (5)-147 as a carbonyl catalyst and
DBU as the most appropriate base was found to produce chiral pyroglutamic-acid esters
148 after in situ lactamization with low diastereoselectivities but high enantioselectivities
(81-97% ee) for both trans- and cis-diastereomers, which could be separated by column
chromatography [116]. Moreover, a Lewis acid such as LiOTf was a necessary additive
for the reaction. Under the optimal reaction conditions, aromatic, heteroaromatic, and
alkyl «,3-unsaturated esters underwent asymmetric 1,4-conjugated addition and subse-
quent lactamization providing corresponding pyroglutamic-acid esters 148 in good yields
with similar selectivities. Hydrolysis of the mixture of trans- and cis-diastereomers 148a
(Scheme 48) using 2M HCI and subsequent decarboxylation afforded Rolipram 12 without
loss of enantioselectivity.
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S)-147 H
0 fomal  tBu0C, K FBUOC N
HN">CoBut + S AL 0+ o)
R OMe DBU, LiOTf, MeCN
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SoUS Bu0,C.,_{ §
N~ 10 )
5 o 1. 2M HClI, 60 °C o
| X X0 2. =
Ne on MeO - N || Av MeO
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(S)-147 (1:1.4 trans/cis 83%/91% ee) SH 51%, 90% ee

Scheme 48. Enantioselective synthesis of pyroglutamic-acid esters from NH,-unprotected glycinate
using carbonyl catalysis.

The authors propose for conjugate addition of NH,-unprotected tert-butyl glycinate
145 to o, 3-unsaturated esters 146 plausible pathway presented on Scheme 49. Condensa-
tion of chiral pyridoxal (5)-147 with tert-butyl glycinate 145 gives Schiff base 149. After
deprotonation of Schiff base 149 with DBU asymmetric 1,4-conjugated addition of the
carbon anion 150 to o, 3-unsaturated ester 146 produces adduct 151, which is hydrolyzed
to form y-amino ester 152 and regenerates the pyridoxal catalyst (5)-147. Finally, y-amino
ester 152 undergoes in situ intramolecular cyclization to pyroglutamic-acid esters 148. Since
N,N-propyl groups of the amide substituent in pyridoxal (5)-147 catalyst shield up the side
of the pyridine ring, the &, 3-unsaturated ester 146 approaches the enolate anion in TS from
direction opposite to the amide side chain, affording (2R,3S) configuration of pyroglutamic-
acid esters 148 (R = Ar). At the same time, the epimerization of trans- and cis-isomers
occurring under the basic reaction conditions results in observed low diastereoselectivity
of reaction.

- MeOH

H CO2But
H, N
R H,N" >CO,Bu-t
Iﬁ 5 X 145
o) H ‘CO,Bu-t N = H,0
48 )-147

(- SSUSN

H, ,CO,Bu-t

0
/<‘/\C02Me |\ \N/\COQBu-t
151 NP Son
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A
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Z OH
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0
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R OMe
146

Scheme 49. Proposed reaction mechanism.
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6. Conclusions

This review highlights the role and significance of the asymmetric Michael addition
reactions as key transformations in the synthesis of 3-substituted GABA derivatives used
as pharmaceuticals for the treatment of central nervous system disorders. As it follows
from the discussed above data, preparation of 3-substituted GABA derivatives via asym-
metric Michael addition reactions is a rather mature science, allowing access to this class
of compounds in desired structural variety and on a large scale. In particular, consid-
erable achievements have been made in organocatalytic conjugate addition reactions of
carbon nucleophiles (malonates, aldehydes, ketones, nitroalkanes, and amino-acid deriva-
tives) to electron-deficient alkenes as well as their synthetic applications. Numerous chiral
prolinol-, (thi)ourea-, squramide-, and cinchona alkaloid-based organocatalysts developed
for Michael addition reactions allow enantioselective transformations with a variety of
nucleophiles under mild reaction conditions, yielding y-nitrocarbonyl compounds with
the desired stereochemistry that can be readily reduced and hydrolyzed into 3-substituted
GABA derivatives. Bifunctional organocatalysts bearing a hydrogen-bonding donor group
are frequently employed in these types of transformations, and in many cases high catalytic
activity and enantioselectivity were achieved with low catalyst loading. Metal-catalyzed
asymmetric Michael reactions are also widely applied in synthesis of 3-substituted GABA
derivatives, providing high reactivity and stereoselectivity. In addition, organocatalysts
and chiral metal complexes can be immobilized and reused without loss of catalytic activity
showing a great potential for syntheses on large scale and continuous-flow multi-step
preparation of 3-substituted GABA derivatives. Although much progress was made in the
preparation of 3-substituted GABA derivatives using organo- and metal-catalyzed asym-
metric Michael addition reactions, there is still opportunities for improvement of existing
catalytic systems and the introduction of new catalysts with the systematic studies on the
reaction mechanisms. Furthermore, the reported stereochemical data of the enantioselective
reactions discussed in this review still ignore the study of the SDE-properties [117,118] of
enantiomerically enriched GABA derivatives. Regretfully, SDE properties of y-amino acids
have never been reported so far. On the other hand, it has been unambiguously demon-
strated that chiral amines [119,120], «-[121,122], and 3-amino acids [123] persistently show
a significant magnitude of SDE under a variety of transformations. As a result of the SDE
ignorance, the reported values of stereochemical outcome can be recorded with sizable
mistakes leading to erroneous presentation synthetic value of the corresponding reactions.
Studying the SDE-properties of chiral molecules is an important issue in laboratory practice
and drug development [124-126]. In particular, the current standards in administering
chiral drugs as pure enantiomers emphasize the importance of the SDE phenomenon in the
reliable and safe preparation of chiral GABA-containing pharmaceuticals [127,128].

During the revision process of this review, two interesting related reports on synthesis
of a-substituted GABA derivatives [129] and synthesis of (S)-(+)-homo-3-proline [130]
were cited, which were suggested by the referee.
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