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Abstract: Adenylate Cyclase Toxin (ACT or CyaA) is one of the important virulence factors secreted
by Bordetella pertussis, the bacterium causative of whooping cough. ACT debilitates host defenses
by production of unregulated levels of cAMP into the cell cytosol upon delivery of its N-terminal
domain with adenylate cyclase activity (AC domain) and by forming pores in the plasma membrane
of macrophages. Binding of soluble toxin monomers to the plasma membrane of target cells and con-
version into membrane-integrated proteins are the first and last step for these toxin activities; however,
the molecular determinants in the protein or the target membrane that govern this conversion to an ac-
tive toxin form are fully unknown. It was previously reported that cytotoxic and cytolytic activities of
ACT depend on membrane cholesterol. Here we show that ACT specifically interacts with membrane
cholesterol, and find in two membrane-interacting ACT domains, four cholesterol-binding motifs
that are essential for AC domain translocation and lytic activities. We hypothesize that direct ACT
interaction with membrane cholesterol through those four cholesterol-binding motifs drives insertion
and stabilizes the transmembrane topology of several helical elements that ultimately build the ACT
structure for AC delivery and pore-formation, thereby explaining the cholesterol-dependence of the
ACT activities. The requirement for lipid-mediated stabilization of transmembrane helices appears to
be a unifying mechanism to modulate toxicity in pore-forming toxins.

Keywords: bacterial toxins; RTX toxins; pore-forming toxins; lipid-protein interactions

1. Introduction

Pore Forming Toxins (PFTs) constitute a very particular group of proteins that are
secreted as soluble monomers and target the plasma membrane of eukaryotic cells where
become membrane-embedded proteins to exert their lytic effect [1–4]. This means that
hydrophobic regions of the toxin that are initially protected from the aqueous medium
must be exposed once in contact with the membrane to allow their insertion into the lipid
bilayer and subsequent pore formation [1–4]. This transition from a water-soluble structure
to a distinct membrane-associated protomer involves structural rearrangements of the
protein in the membrane environment. Membrane lipids are important regulators that
can influence the process of proteins insertion in two ways, indirectly, by modulating
the biophysical properties of the lipid bilayer such as fluidity, phase segregation, bilayer
thickness, tension, etc., which may affect protein structure and function [5–7], or directly,
through specific lipid-protein interactions [8–10].

Adenylate cyclase toxin (ACT, CyaA, or AC-Hly) is a 1706 residue-long pore-forming
leukotoxin secreted by pathogenic Bordetellae and plays a key role in virulence [11–13].
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ACT belongs to the family of Repeats-in-ToXin (RTX) protein toxins exhibiting cyto-
toxic/cytolytic pore-forming activity [14,15] and consists of an N-terminal enzymatic
adenylate cyclase (AC) domain of ≈400 residues that is fused by an “AC to Hly linker
segment” of about 100 residues so-called translocation region (TR), to a pore-forming RTX
hemolysin (Hly) moiety of approximately 1200 residues. The Hly hemolysin moiety itself
consists of a hydrophobic pore-forming domain (HD), a fatty acyl-modified domain in
which two conserved Lys residues are covalently acylated, an RTX calcium-binding domain
and a C-terminal secretion signal [14,15].

Cytotoxicity by ACT on target cells results from the generation by its AC domain
of unregulated levels of cAMP in the target cell cytosol and the permeabilization of the
plasma membrane by oligomeric pores formed by its RTX hemolysin domain [15]. Hly
mediates cell binding of ACT to the target membrane and then delivers the enzymatic
AC domain into the cytosol of host cells, where the AC binds calmodulin and catalyzes
the conversion of intracellular ATP to cAMP, thereby subverting cellular signalling [16,17].
Besides elevating cAMP, ACT exhibits a modest haemolytic activity due to its capacity to
form cation-selective pores that permeabilize cellular membrane and eventually provoke
osmotic cell lysis [18–20].

Numerous studies have highlighted the importance of various amino acid residues
and/or the contribution of distinct domains of the ACT polypeptide for the translocation
of the AC domain and for the lytic activity [21–27]. However, a description at molecular
level of the individual steps followed by the ≈40 kDa AC domain polypeptide to cross the
membrane or by the Hly domain to form oligomeric lytic pores is still missing.

Two ACT regions, the translocation region (TR) located between amino acids ≈400 to
500 and the hydrophobic domain (HD) that extends from residues ≈500 to 700, have been
directly implicated in AC domain translocation and pore formation [21–28]. Upon mem-
brane binding, several amphipathic/hydrophobic α-helices (HI to HV) of the hydrophobic
domain insert into the plasma membrane building the pore structure [21–27]. AC domain
translocation requires, apart from the HD insertion, the interaction with the membrane
of other two long α-helices outside the pore-forming domain, predicted to form between
residues ≈413 to 434 and ≈454 to 484 (translocation region) [28,29]. So far, it is unknown
whether all these helical elements insert spontaneously into the membrane or whether their
embedding into the lipid bilayer may require assistance from membrane lipids.

At that regard, it was reported in previous studies that AC translocation depends
on membrane cholesterol content, in the sense that a decrease of cholesterol yielded a
significant decrease in the capacity of ACT to translocate the AC domain across cell mem-
brane [30]. More recently, we found that presence of cholesterol in the membrane enhances
the lytic capacity of ACT on erythrocytes and artificial membranes by promoting toxin in-
sertion and oligomerization [31]. Similar results were reported for the HlyA toxin, showing
that incorporation of cholesterol into phospholipid bilayers promoted the irreversible inser-
tion of the toxin into the membrane, which increased the toxin lytic activity [32]. Moreover,
three other pore-forming toxins of the same RTX family, the Aggregatibacter actinomycetem-
comitans leukotoxin LtxA, the Escherichia coli hemolysin HlyA, and the Kingella kingae RtxA
cytolysin were previously shown to specifically bind cholesterol [33–35], suggesting that
requirement of cholesterol might be other common identity sign shared by the RTX toxins.

Here we decided to investigate whether the cholesterol dependence of the lytic and
translocation activities of ACT is due to direct, specific binding of ACT to membrane
cholesterol, and to explore the possible molecular determinants. With this aim we took
a closer look at two types of cholesterol binding motifs, the so-called cholesterol recogni-
tion/interaction amino acid consensus (CRAC) motif with the L/V-X(1–5)-Y/F-X(1–5)-R/K
pattern, and the reverse CARC motif with the R/K-X(1–5)-Y/F-X(1–5)-L/V pattern [36–38].
CRAC and CARC sites have been identified in transmembrane segments of several mem-
brane proteins, such as G-protein coupled receptors, but also in membrane-interacting
segments of several bacterial toxins and viral proteins that interact with cholesterol [39–42].
Moreover, in the aforementioned three RTX toxins (LtxA, HlyA and RtxA), CRAC sites have
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been identified in their pore-forming domains and for two of them, LtxA and RtxA, the
interaction with cholesterol has been experimentally demonstrated [33–35]. Single residue
substitutions in the central aromatic residue (Tyr or Phe) of CRAC and CARC motifs have
been found to strikingly reduce or eliminate protein-cholesterol interactions in different
cholesterol-binding proteins, affecting consequently protein activity in membranes.

We have constructed several site-directed mutants to examine the role of four poten-
tial CRAC and CARC motifs (CARC415, CRAC485, CRAC521 and CARC532) that could be
predicted in the sequence of the membrane-interacting translocation region and hydropho-
bic domain of ACT, as possible molecular determinants of ACT-cholesterol interaction.
By using site-directed mutants and functional studies, we show that the four motifs are
functional cholesterol-binding sites and essential for the AC domain translocation and for
the lytic activity on erythrocytes. We hypothesize that binding to cholesterol through these
sites drives the insertion and proper transmembrane topology of α-helices in the ACT pore
forming and translocation domains necessary for ACT activity.

2. Results
2.1. Specificity in the Interaction of ACT with Cholesterol

To corroborate that cholesterol dependence of the lytic and translocation activities of
ACT is due to direct binding of ACT to membrane cholesterol, and not, to indirect effects
of the sterol on the physical state of the phospholipid bilayer, we performed different
experiments. First, we quantified ACT binding to liposomes of different lipid compositions:
pure dioleylphosphatidylcholine (DOPC), DOPC:Chol (3:1 molar ratio) and DOPC:Erg (3:1
molar ratio).

Data depicted in Figure 1 show that binding of ACT to pure lipid vesicles was notably
greater in presence of cholesterol relative to the pure phospholipid liposomes, and that
ergosterol (ergosta-5,7,22-trien-3β-ol), an analogue of cholesterol, could not reproduce
this effect.
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Figure 1. Binding of full length ACT to vesicles of different lipid composition. Membrane association
of ACT to lipid bilayers of different lipid composition as measured by flotation assays using large
unilamellar vesicles composed of DOPC, DOPC:Chol (1:1 molar ratio) or DOPC:Ergosterol (1:1 molar
ratio). Details on the flotation assay methodology are provided in the Experimental Procedures
section. The mean and standard deviations of three independent experiments are shown. Statistical
differences are based on One-way ANOVA test with Dunnett’s T3 multiple comparisons; [ns] non-
significant p ≥ 0.05 and ** p ≤ 0.01.

In other set of experiments, the toxin (100 nM) was preincubated with increasing
concentrations of free cholesterol for 30 min at RT and was then further incubated with
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erythrocytes in the presence of free cholesterol, and haemolysis was measured. As shown
in Figure 2, free cholesterol at concentrations above 5 µM had a notable inhibitory effect on
the toxin-induced erythrocyte lysis, suggesting that ACT may recognize and directly bind
to membrane cholesterol.
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Figure 2. Effect of ACT preincubation with free cholesterol on ACT-induced haemolytic activity. ACT
(100 nM) was preincubated for 30 min at RT in the presence of free cholesterol (0–25 µM). Then sheep
erythrocytes at a density of 5 × 108 cells/mL were added and the mixture was further incubated for
180 min at 37 ◦C. Haemolytic activity was measured as decrease of turbidity at 700 nm and expressed
as haemolytic percentages (calculated as detailed in the Experimental Procedures section). Data
represented in the figure correspond to the mean of three independent experiments ± SE.

This idea was reinforced by other experiment in which ACT (50 nM) was first pre-
incubated with liposomes of different lipid composition (DOPC, DOPC:Chol (3:1 molar ratio)
and DOPC:Erg (3:1 molar ratio), at two different final lipid concentrations (0.1 and 1 mM), and
then assayed for haemolysis. The rationale of the experiment is that the more toxin is bound
first to the liposomes, the less will remain unbound to bind then to the erythrocytes, and so the
lower will be the haemolysis observed. Data in Figure 3 illustrate this process, showing that
the cholesterol-containing liposomes are the most effective in binding ACT molecules, since it
is this incubation, which yields the lower percentage of haemolysis. It is also shown that the
reduction in haemolysis induced by the presence of ergosterol in the liposomes is very similar
to the induced by the DOPC vesicles, consistent with the similar, lower ACT binding to these
two cholesterol-free liposomes (Figure 1).

DOPC/Chol mixtures are completely miscible in all proportions up to the solubility
limit of Chol, which is approximately 66%. Above that concentration, Chol precipitates as
monohydrate crystals coexisting with DOPC/Chol membrane [43]. Therefore, the mixtures
used in these assays, which have 25% cholesterol (DOPC/Chol 3:1, molar ratio), have a
single phase, type Ld. Excluded therefore, a possible effect of cholesterol on the physical
state of the lipids as effector of the increased ACT binding, we confirmed thus a specific
ACT-cholesterol interaction.

2.2. Potential Cholesterol-Recognition Motifs Can Be Identified in the Sequence of the
Membrane-Interacting Translocation Region and Hydrophobic Domain of ACT

Five helical elements (HI502–522, HII527–550, HIII571–592, HIV607–627 and HV678–698) in
the hydrophobic domain extending from residues≈500–700 are believed to insert into the
cell membrane, building the ACT pore structure [21–27]. Other two helices out of the
pore-forming domain, h1 (residues 418–439) and h2 (residues 454–484), that constitute the
translocation region, interact with the lipid bilayer for AC domain translocation [28,29].
Thus, we performed our search for potential cholesterol-binding CRAC and CARC motifs
in the sequence of these membrane-interacting ACT domains. For that the EMBROSS:
fuzzpro software program (http://emboss.bioinformatics.nl/cgi-bin/emboss/fuzzpro,

http://emboss.bioinformatics.nl/cgi-bin/emboss/fuzzpro
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accessed on 24 February 2020) was run. Sequences given as a search pattern were: [LV]-
X(1,5)-Y/F-X(1,5)-[RK], [RK]-X(1,5)-Y/F-X(1,5)-[LV].
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of different lipid compositions (DOPC, DOPC:Chol 3:1 and DOPC:Erg 3:1 molar ratio) at different
total lipid concentrations (0–1000 µM). Then sheep erythrocytes at a density of 5 × 108 cells/mL
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The analysis revealed eight putative cholesterol-binding motifs (Table 1). Four of the
motifs identified were CRAC motifs with central Tyr tyrosine residues (Y632, Y658, Y725
and Y738) located at the end of the pore-forming domain, near the HIV and HV helices. In
a previous study, other group reported that CRAC-disrupting substitutions of those four
tyrosine residues had no impact on toxin activities, concluding that the four Tyr-containing
CRAC motifs are not involved in cholesterol binding [44]. Thus, we focused our study on
the other four motifs identified to check whether they were the molecular determinants of
cholesterol interaction by ACT.

Table 1. Cholesterol-recognition motifs identified in the sequence of the membrane-interacting
translocation region and hydrophobic domain of ACT.

Pattern Amino Acids Sequence

[L/V]-X(1,5)-Y-X(1,5)-[R/K] HYDROPHOBIC
DOMAIN

626–638 LVQQSHYADQLDK

653–661 LLAQLYRDK

721–728 LANDYARK

732–741 LGGPQAYFEK

[L/V]-X(1,5)-F-X(1,5)-[R/K]

TRANSLOCATION
REGION 481–487 LMTQFGR

HYDROPHOBIC
DOMAIN 518–527 VSGFFRGSSR

[R/K]-X(1,5)-F-X(1,5)-[L/V]

TRANSLOCATION
REGION 413–420 RSFSLGEV

HYDROPHOBIC
DOMAIN 527–534 RWAGGFGV

Two of the motifs are at the translocation region: CARC415 motif (residues 413–420,
RSF415SLGEV) is located at the N-terminus of the long α-helix h1, and CRAC485 motif
(residues 481–487, LMTQF485GR) is located at the C-terminus of the second α-helix, h2.
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The other two motifs are localized at the pore-forming domain, CRAC521 motif (residues
518–527, VSGF521FR) localizes at the C-terminus of the first α-helix, HI, and CARC532 motif
(residues 527–534, RWAGGF532GV) is located at the N-terminus of the second α-helix, HII
(see Figure 4).
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Figure 4. Schematic drawing of the ACT polypeptide chain with the identified four potential
cholesterol-recognition motifs. ACT is a 1706-residue-long polypeptide that consists of an N-terminal
adenylate cyclase enzyme domain (AC domain, residues 1 to ≈400) (in green) that is fused by
an “AC to Hly linker segment” of about 100 residues (in orange) so-called translocation region
(residues≈400–500) to a pore-forming RTX haemolysin (Hly) moiety of approximately 1200 residues
(different blue tones). The RTX haemolysin moiety in turn, contains a hydrophobic pore-forming
domain comprising residues 500 to 700, constituted by five alpha-helices (dark blue-coloured five
cylinders), an acylated domain between residues 800 and 1000, where the posttranslational acylation
at two lysine residues (K860 and K983, two orange arrows) occurs, a typical calcium-binding repeats
domain (in light blue) organized in five blocks (I to V) and a C-terminal secretion signal (last≈100
residues). Two predicted α-helices in the translocation region, namely, h1 and h2 (in orange), and
three of the five predicted amphipathic/hydrophobic helices of the pore-forming domain, namely
HI, HII and HIII (in dark blue) have been depicted below with greater detail. Blue or red spots have
been used in the scheme below to specify the location of each one of the four potential cholesterol-
recognition motifs identified in this study (CARC415, CRAC485, CRAC521 and CARC532). Sequences
of each one of the motifs are specified on the right side of the scheme. The respective N-terminal
leucine/valine or arginine, the central phenylalanine (F415, F485, F521 and F532) and the C-terminal
arginine or valine residues of the predicted CRAC and CARC motifs are specified. The four motifs
are also indicated with blue and red arrows in the schematic drawing of the ACT structure.

2.3. Point Mutation of the Central Phe Residue in the CRAC and CARC Motifs Have a
Differentiated Effect on the ACT-Induced Haemolysis

To determine whether these four CRAC/CARC motifs could be molecular determi-
nants of the ACT-cholesterol interaction and thereby of the cholesterol dependence of the
lytic and translocation activities of ACT, we selectively mutated key aromatic amino acid
residues in these motifs. Mutations in the central Tyr or Phe residues in CRAC and CARC
motifs have been shown to strikingly reduce or eliminate protein-cholesterol interactions
in different cholesterol-binding proteins, affecting consequently protein activity in mem-
branes. We constructed four single mutant proteins with alanine, Ala substitutions in the
central phenylalanine, Phe residues 415, 485, 521 and 532 of the respective motifs. Then we
checked firstly the effect of these mutations on the toxin-induced haemolysis.
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Figure 5 shows the raw traces of the kinetics recorded from a representative experiment
of haemolysis induced by wild type ACT (50 nM) or by each one of the mutant toxins
(50 nM), namely F415A, F485A, F521A and F532A mutants.
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Figure 5. Effect of Ala substitutions in the central Phe residues of the potential cholesterol-binding
sites CRAC415, CARC485, CRAC521 and CARC532 on the kinetics of the ACT-induced haemolysis.
Raw traces of the kinetics recorded from a representative experiment of the haemolysis induced
by intact ACT (50 nM) or by each one of the four mutant toxins (50 nM). A suspension of sheep
erythrocytes (5 × 108 cells/mL) was incubated with each protein for 180 min at 37 ◦C, recording
the scattering changes measured at 700 nm at every second. Then the haemolysis percentage was
calculated as detailed in the Experimental Procedures section and depicted in the figure. The traces
shown correspond to a representative experiment from three experiments performed independently.

From haemolytic kinetics such as the observed in Figure 5, data at 180 min were
represented in Figure 6A. In addition, the t1/2 values (time required to induce 50% haemol-
ysis) were plotted in Figure 6B. As observed in the figures, the effect of the mutations was
different depending on the location of the CRAC/CARC sites in the ACT structure. The
individual substitutions of Phe by Ala, in the respective CRAC521 and CARC532 motifs
(F521A and F532A) at the HD, induced a prominent inhibitory effect in the lytic activity
of the mutant toxins, in both cases slowing down the erythrocytes lysis (Figure 6A) and
reducing to the half the maximum haemolysis extent after 180 min of incubation (Figure 6B).
In contrast, the Phe→Ala substitutions in the CARC415 and CRAC485 motifs (F415A and
F485A) led to a faster and a greater lytic activity of the respective mutant toxins. This was
reflected in the significantly greater maximum haemolysis values obtained after 180 min
incubation (Figures 5 and 6A), and in the lower t1/2 values (time in minutes required to
induce 50% haemolysis) (Figure 6B).

To determine whether such mutations had any effect on toxin binding to lipid bilayers
we performed a control experiment. Data represented in Figure 7 indicated that the binding
percentage was similar for the four mutant toxins relative to the intact ACT. This allowed us
to rule out that the inhibition in the lytic activity caused by the F521A and F532A mutations
was due to a lower protein binding. Similarly, we could discard a greater binding as possible
cause of the observed increment in the haemolysis percentage observed for the F415A,
F485A mutant toxins. These binding data suggested that ACT association is mediated likely
by multiple binding sites, and so that individually, none of the mutated CRAC/CARC sites
avoided overall ACT binding to the membrane.

We explored further the effect on the ACT lytic capacity of double alanine substitutions
in the two central phenylalanine residues of the two CRAC/CARC pairs (F415A-F485A and
F521A-F532A mutants). The F521A-F532A double mutation reduced approximately to the
half the maximum haemolysis percentage with respect to ACT (Figure 8). This reduction
was similar to the observed for the single F521A or F532A mutations, indicating that the
double mutation had no additive effect, and suggesting that it is enough the loss of one
of both cholesterol-binding sites at the pore-forming domain to hinder formation of ACT
pores. By contrast, the F415A-F485A double mutation had a clear additive effect, inducing
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a more potent increment of the maximum haemolysis, doubling the effect induced by either
of the two single mutants, F415A or F485A (Figure 8).
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Figure 6. Effect of Ala substitutions in the central Phe residues of the potential cholesterol-binding
sites CRAC415, CARC485, CRAC521 and CARC532 on the (A) maximum haemolytic percentage, and
(B) t1/2 of the ACT-induced haemolysis. Haemolysis induced by 50 nM of intact ACT or by each one
of the four mutant toxins was assayed with a suspension of sheep erythrocytes (5 × 108 cells/mL)
incubated with each protein for 180 min at 37 ◦C. Data represented in the figure correspond to the
mean of three independent experiments ± SE. p-values for the plot in the left subpanel * p = 0.0444
(ACT/F415A); * p = 0.0262 (ACT/F485A); **** p < 0.0001; p-values for the plot in the right subpanel
* p = 0.0202 (ACT/F485A); * p = 0.047 (ACT/F521A); *** p = 0.0008.
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Figure 7. Quantification of the binding of ACT or ACT mutants to lipid bilayers. Membrane par-
titioning as measured by flotation assays using large unilamellar vesicles composed of DOPC:Chol
(3:1 molar ratio). Details on the flotation assay methodology are provided in the section of Experimental
Procedures. Bound % data correspond to the mean of three independent experiments ± SE.
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Figure 8. Effect of double Ala substitutions in the central Phe residues of the potential cholesterol-
binding sites F415A-F485A and F521A-F532A on the maximum haemolytic percentage. Haemolysis
induced by 50 nM of intact ACT or by each one of the mutant toxins was assayed with a suspen-
sion of sheep erythrocytes (5 × 108 cells/mL) incubated with each protein for 180 min at 37 ◦C.
Data represented in the figure correspond to the mean of three independent experiments ± SE.
The one-way ANOVA (Brown–Forsythe test) with Dunnett multiple comparisons test was used to
determine whether there is a significant difference between the mean values of our independent
groups (** if p ≤ 0.01 and **** if p ≤ 0.0001).

Together, we had thus evidence that the four motifs explored are real, functional
cholesterol-binding sites. Our results probed that cholesterol recognition through the
CRAC521 and CARC532 motifs is involved and necessary for the pore-forming activity of
ACT, very likely by driving the transmembrane insertion of two of the α-helices, HI and
HII, of the pore-forming domain, that form part of the pore structure. The data suggest
as well that interaction of h1 and h2, the two α-helices of the translocation region, with
membrane cholesterol hinders the ACT lytic activity, since by preventing the interaction
of the CARC415 and CRAC485 motifs with the sterol the haemolysis induced by the toxin
is enhanced.

2.4. Substitutions by Ala of the Central Phe in 415, 485, 521 and 532 Positions, in the Respective
Cholesterol-Recognition Motifs of ACT, Inhibit Prominently AC Domain Translocation

To determine whether the four CRAC/CARC motifs identified have any role in
AC domain delivery, we measured in J774A.1 cells the effect on cAMP production of
the Ala substitution in the central Phe residues 415, 485, 521 and 532 of the respective
mutant proteins. As reflected in Figure 9, relative to intact ACT, the four single mutations
F415A, F485A, F521A and F532A, prominently impacted the capacity by the respective
mutant proteins to deliver the AC domain into the cytosol of the J774A.1 macrophages.
Production of cAMP by all these mutants was indeed reduced drastically in a range of
toxin concentrations between 25–200 ng/mL, with a greater inhibition observed for the
F521A and F532A mutants. These results indicated that interaction with cholesterol through
the four CRAC/CARC sites is necessary and instrumental to translocate the AC domain
into the target cells and suggests that both the TR and the pore-forming domain must be
inserted into the membrane for AC delivery.
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Figure 9. Point Ala substitutions in the central Phe residue of the potential cholesterol-binding
sites CRAC415, CARC485, CRAC521 and CARC532 prominently decrease AC domain translocation.
Translocation of AC domain was assessed by determining the intracellular concentration of cAMP
(pmol/mg protein), generated in J774A.1 cells (1 × 105 cells/mL) suspended in 20 mM Tris-HCl,
pH = 8.0 buffer, supplemented with 150 mM NaCl and 2 mM CaCl2. Cells were treated for 30 min
at 37 ◦C with different concentrations (25–200 ng/mL) of intact ACT, or the corresponding mutant
toxin. Data represent the mean ± SD of at least three independent experiments.

3. Discussion

Insertion and assembly of PFT have been the subject of growing investigations to
understand protein conversion from water-soluble forms to stable membrane-integrated
structures [1–4], especially considering the resemblance of their mechanism of action to
proteins of the vertebrate immune system, or to amyloid proteins [45,46]. Cholesterol, an
essential component of the plasma membrane of eukaryotic cells, has been reported to have
a crucial role in facilitating structural rearrangements of proteins upon association with
the lipid bilayer [37]. In this study, we have made two major observations: first, we find
that ACT specifically binds to membrane cholesterol; and second, we reveal the existence
of four functional cholesterol-binding motifs in key membrane-interacting ACT domains,
that may be molecular determinants of such cholesterol binding, thereby explaining the
cholesterol-dependence of ACT cytotoxicity.

It was known that ACT lytic activity and AC delivery to target cell cytosol are modu-
lated by the concentration of cholesterol in the cell membrane [30,31], but not whether this
was due to direct binding to cholesterol, or to indirect effects of the sterol on the physical
state of the phospholipid bilayer. Here we clarify this question by showing that ACT
specifically recognizes cholesterol in membranes (Figures 1–3). Further, we identify four
cholesterol-binding motifs that are not conserved in the other toxins of the RTX family
for which a specific interaction with cholesterol has been reported [33–35]. This may be
related to the singularity of ACT of having an N-terminal domain with adenylate cyclase
catalytic activity, besides the homologous C-terminal RTX haemolysin domain. Indeed,
two of the identified motifs, the CARC415 and CRAC485 sites, are localized in two α-helices
(h1 and h2) constituting the translocation region (see Figure 4), a segment adjacent to the
AC domain that is not present in the rest of the RTX toxins and is necessary for AC delivery
into target cells [28]. The other two motifs identified, the CRAC521 and CARC532 sites,
localize in the first two helices (HI and HII) of the pore-forming domain, adjacent to the
translocation region (see Figure 4), that insert into the lipid bilayer for building functional
ACT pores [21–27]. Up to now, it was unknown whether insertion of these helices into
the lipid bilayer is a thermodynamically spontaneous process or requires assistance from
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membrane lipid components. Neither was clear, which the exact topology of these helices
is in the active ACT form.

Computer-assisted analysis of the ACT amino acid sequence for transmembrane
helices using common prediction programs (not shown), as well as abundant mutational
data by others [23,24,27] converge all on the prediction of an intramembrane location of
the hydrophobic HII helix (residues 528–552) whereas predictions for HI helix are not
unanimous. HI (residues 500–522) is amphipathic and presents two negatively charged Glu
residues (E509 and E516) in the middle of its sequence, which could impose an energetic
penalty, making transmembrane insertion of HI helix less favourable. The Philius algorithm
(https://topcons.cbr.su.se/, accessed on 20 February 2021) predicts HI and HII to be both
transmembrane, HI inserting with Nout→Cin topology and HII with Cout→Nin topology
(not shown). According to this prediction the C-terminal CRAC521 of HI and the N-terminal
CARC532 of HII would be placed in a membrane environment, both facing the cytosolic side
of the plasma membrane, and five residues R523GSSR527 connecting both helices, would be
outside the membrane (see Figure 10).
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Figure 10. Schematic representation of the proposed membrane topology for HI and HII helices of
the pore-forming domain of ACT. Proposed topology for the HI and HII helices as predicted by the
algorithm Philius (https://topcons.cbr.su.se/, accessed on 20 February 2021); the two cholesterol
recognition motifs identified in this study, CARC532 and CRAC521 motifs, are represented by blue and
purple cylinders, respectively, and the central aromatic residue of each site (F521 and F532) is high-
lighted in red. Cholesterol molecules are represented by orange-coloured penta-hexagonal figures.
More details are explained in the Discussion section. Original picture created with BioRender.com.

The ability of the CRAC/CARC sites to bind to cholesterol would be given by the
structural characteristics of cholesterol, with a flat α-face and a rough β-face where the
aliphatic groups are located (two methyl groups and an iso-octyl group), and by the
characteristics of the CRAC/CARC sequences. In the linear CRAC/CARC sequences, the
side chain of hydrophobic residues such as leucine and valine, can intercalate with the
aliphatic chains of the rough face of cholesterol, being particularly well suited to contact
with this β face of cholesterol through van der Waals forces [37]. The side chain of the central
residue (Y/F) can interact with the α-face of cholesterol through CH-π interactions [47];
the positively charged Arg residues would locate their long non-polar aliphatic side chain
within the apolar membrane, and the basic positively charged group emerging at the
interface of the membrane [48]. Our data showing that single substitutions of the Phe
residues 521 and 532 by Ala in the CRAC521 and CARC532 motifs cause a potent inhibition
of the ACT activity (Figures 6, 8 and 9) are fully consistent with the notion that these two
central aromatic residues are buried within the membrane and participate in cholesterol
binding. These data thus provide experimental support to the aforementioned Phillius
prediction that places both HI and HII in transmembrane location and suggest that binding
to membrane cholesterol through the CRAC521 and CARC532 motifs is involved in the
stabilization of HI and HII within the lipid bilayer and conferring the adequate membrane
topology for both haemolysis and AC translocation.

Recently the ACT segment linking the AC domain to the RTX haemolysin moiety
(residues 400–500) and constituted by two α-helices (h1 and h2) was reported to be nec-
essary for AC translocation, since deletion of residues 375–485 within ACT totally abrogated
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the toxin’s ability to increase intracellular cAMP in target cells. However, so far, it was not
clear whether both h1 and h2 interact with the membrane for translocation or only h2 [49].
Using two synthetic peptides corresponding to each one of the helices, one group recently
noted that only the peptide mimicking h2 binds to membranes containing anionic lipids,
adopting an α-helical structure oriented in plane with respect to the lipid bilayer, whereas the
peptide mimicking h1, does not interact [49]. Our results with the two mutants in the central
Phe residue of the CARC415 and CRAC485 motifs (F415A and F485A mutants) identified in the
translocation region have been very revealing at this regard (Figures 6, 8 and 9). They show
for one side that both substitutions (individually or combined in a double mutant) cause a
prominent inhibition of the ACT capacity to generate cAMP in target cell cytosol, and for other
side, augment simultaneously the toxin lytic capacity. This suggests that in cholesterol-rich
membranes such as the eukaryotic plasma membrane, binding to cholesterol through the
CARC415 and CRAC485 motifs drives h1 and h2 to embed into the membrane, and further,
that this insertion is essential for AC translocation. This is consistent with a previous study
showing that a monoclonal antibody 3D1, which binds to an epitope (amino acids 373 to 399)
at the distal end of the catalytic domain of ACT, blocks AC delivery and causes an increase in
the haemolytic activity of three to four folds [50]. By contrast, our data seems to disagree with
the view that only h2 interacts with the membrane [49]. The apparent discrepancy may be
due to that none of the two peptides used by the aforementioned group contained in their
sequence the corresponding cholesterol-recognition motif CARC415 and CRAC485.

Having established the membrane topology of the HI and HII helices of the pore-
forming domain (Figure 10) and basing on the data with the CARC415 and CRAC485

mutants that support an intramembrane insertion of h1 and h2 helices, the topology of
these last two helices can be delineated. h2 would insert with Cout→Nin orientation and h1
with Nout→Cin orientation. In this case, thus the CARC415 and CRAC485 motifs would be
both facing the extracellular side, binding to cholesterol molecules in the exofacial side of
the membrane. The transmembrane topology of the h1-h2-HI-HII α-helices, as proposed
here is schematically depicted in Figure 11. Given that functional ACT lytic pores, besides
the aforementioned HI and HII helices, involve the insertion into the membrane of the
helices HIII to HV of the pore-forming domain [21,22,27,44], a membrane topology can be
reasonably proposed for these last ones by extension of HI-HII topology, getting this way a
more complete picture of the putative topology of the set of helical elements involved in
AC translocation and in building the ACT pore structure (Figure 12).

Interestingly, from this resultant membrane topology it emerges that ACT molecule
would adopt one single conformation to accomplish both AC transport and lytic activity,
challenging the previously assumed model of conformational duality of ACT [21,22,27].
That model postulated that two toxin conformers in equilibrium would be involved in ACT
activities, one ACT conformer leading to the direct AC transport across the lipid bilayer,
and other one, leading to pore formation [21,22,27].

For long, ACT pores have been regarded as too small (0.6–0.8 nm in diameter) for
the passage of even an unfolded polypeptide chain [19]. This directly led to discard the
possibility that the pore formed by this toxin might serve to transport the AC domain to
the target cytosol [19]. Contrasting with the small pore view, our laboratory has recently
revealed that the ACT pores are of proteolipidic nature, involving lipid molecules besides
segments of the protein lining the pore walls [20]. As consequence of this more dynamic
structure of the ACT pore, it is anticipated that its hydrophilic lumen may be wider than
previously believed. From the conjunction of these two points, single transmembrane
topology (Figure 12) and wider ACT pore [20], a plausible mechanism for AC translocation
emerges by which the 400-residue-long AC polypeptide would be transported to the cytosol
of the target cell directly through the hydrophilic “hole” formed by the ACT pore. We
hypothesize that cholesterol-mediated anchoring to the membrane of the h1-h2 helices
would allow the N-terminal AC domain to be close to the pore structure (helices I–V). This
spatial proximity from the pore could allow interactions to be stablished between residues of
the AC domain and residues at the pore entrance, guiding the AC polypeptide to penetrate
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into the pore. Membrane potential, reported to be necessary for translocation [51], might
then provide energy required for pulling down the polypeptide along the pore lumen. Then
as the AC polypeptide leaves the pore and exits to the cytosol by its N-terminus it might
be recognized by calmodulin. Reasonably, any mutation that affects cholesterol binding,
and hence insertion of the helices, will have a deleterious effect on AC translocation, in full
consonance with our present results. On other side, preventing the insertion of the h1-h2
helices into the membrane would also avoid the approaching of the AC domain to the pore
structure, which could make the steric hindrance at the pore entrance to disappear, allowing
a free ion flux, which would be experimentally detected as a greater haemolysis. This is
fully consistent with the observed here for the F415A and F485A mutants, an increase in
lytic activity in parallel to the inhibition of the AC domain translocation. The “pore model”
for AC translocation proposed here may thus explain why ACT is apparently weakly
haemolytic relative to other RTX pore-forming toxins, such as Escherichia coli α-haemolysin,
which do not possess an equivalent N-terminal domain [18,19]. Supporting this idea that
in native conditions the presence of the AC domain somehow blocks the ion flux through
the ACT pore, others previously observed that the elimination of the AC domain plus
residues of the translocation region from the ACT polypeptide made the mutant toxins to
exhibit a lytic potency comparable to the RTX toxins [52,53]. Future work will be needed to
further prove this effect and map interactions between the AC domain and residues at the
pore entrance.
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We believe that our study adds new relevant insights to a field with scarce structural
and mechanistic information and may thus inspire other investigators to raise new ques-
tions that can pave the way for understanding the mechanisms of cytotoxicity by ACT and
other RTX toxins, and hopefully to have a 3D structure of ACT on lipid bilayers.

In this study, we unveil that direct ACT interaction with membrane cholesterol through
four cholesterol-binding motifs we identify in ACT sequence is instrumental for stabilizing
the proper transmembrane topology of a set of helices forming part of the translocation
and pore-forming domains necessary for ACT activity. To our best knowledge, the here
presented model of membrane topology accounts for all available experimental data and
suggests a plausible mechanism by which ACT can translocate the AC domain on tar-
get cells, at the cost of sacrificing the lytic potency. Given the relevance of the specific
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cholesterol-recognition sites in ACT activity, it can be anticipated that targeting the here
identified four CRAC/CARC motifs could be a new therapeutic option for inhibiting
cholesterol binding and hence reducing the toxicity of ACT on cells.
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4. Materials and Methods
4.1. Expression and Purification of Intact ACT

ACT was expressed in Escherichia coli XL-1 blue cells (Stratagene) transformed with
pT7CACT1 plasmid, kindly provided by Dr. Peter Sebo (Institute of Microbiology of the
ASCR, v.v.i., Prague, Czech Republic) and purified as described by Karst et al. [54].

4.2. Construction, Expression and Purification of the ACT Mutants F415A, F485A, F521A
and F532A

The variants of ACT F415A, F485A, F521A and F532A were cloned, expressed and
purified from E. coli. cyaA DNA was amplified from genomic DNA by PCR and cloned
in pET-15b (GenScript Biotech, 2288 EG Rijswijk, The Netherlands) using AsuII and NcoI
enzymes to generate plasmid pME14. Site-directed mutagenesis according to Agilent
protocol was performed on pME14 to replace Ala codons for Phe in 415, 485, 521 and
532 residues. All plasmid inserts were sequenced to confirm accuracy of PCR and mutage-
nesis. For protein expression, E coli. BL21 transformed with pME14 plasmid was grown
in LB with 100 µg mL−1 ampicilin to A600 = 0.6–0.8 and protein expression was induced
by 4 h growth in 1 mM isopropyl-β-D-thiogalactopyranoside. Protein purification was
performed according to the method described in Karst et al., (2014) [54]. Concentrations
of purified ACT proteins were determined by the Bradford assay (Bio-Rad, Hercules, CA,
USA) using bovine serum albumin as standard. All toxins purified by this method were
more than 90% pure as judged by SDS-PAGE analysis (not shown).

4.3. Haemolysis Assay

Haemolysis assays were performed on 96-well plates. Briefly, serial dilutions of ACT
(starting at 50 nM) in assay buffer (20 mM Tris pH 8.0, 150 mM NaCl, 2.0 mM CaCl) were
prepared, onto which an equal volume of erythrocytes at a density of 5 × 108 cells/mL
were added, and the mixtures incubated at 37 ◦C for 180 min under constant stirring. At the
end of the incubation time, the plates were centrifuged (2000× g, 10 min, 4 ◦C) and the su-
pernatant scattering was measured at 700 nm. Alternatively, time course experiments were
performed recording continuously the scattering signal at 700 nm. The blank (0% haemoly-
sis) corresponded to erythrocytes incubated in buffer without toxin and 100%, and 100%
haemolysis was obtained by adding Triton X-100 (0.1%) to the erythrocyte suspension.



Int. J. Mol. Sci. 2022, 23, 8703 15 of 18

4.4. Cell Culture

J774A.1 macrophages (ATTC, number TIB-67) were grown at 37 ◦C in DMEM (Sigma
Aldrich, St. Louis, MO, USA) containing 10% (v/v) heat inactivated FBS (Thermo Fisher
Scientific, USA), 6 mM L-glutamine (Thermo Fisher Scientific, Waltham, MA, USA), 0.2%
(v/v) MycoZap Prophylactic (Lonza, Switzerland) and Penicillin-Streptomycin (Sigma
Aldrich, USA) (100 U/mL and 100 µg/mL respectively) in a 90% humidified atmosphere
with 5% CO2.

4.5. Measurement of cAMP

cAMP produced in cells was measured upon incubation of different ACT concentra-
tions (25–200 ng/mL) with J774A.1 cells (5 × 105 cells/mL) for 30 min at 37 ◦C. cAMP
production was calculated by the direct cAMP ELISA kit (Enzo Lifesciences, Farmingdale,
NY, USA). Absorbance at 405 nm was measured for determinations.

4.6. Measurement of ACT or Mutant Toxins Binding to Lipid Membranes Determined by
Flotation Assays

Membrane association of ACT or ACT variants was assayed by flotation assay using
large unilamellar vesicles (LUVs). LUVs were prepared following the extrusion method of
Hope et al. [55]. Phospholipids and cholesterol were mixed in chloroform and dried under a
N2 stream. Traces of organic solvent were removed by 2 h vacuum pumping. Subsequently,
the dried lipid films were dispersed in buffer and subjected to 10 freeze-thaw cycles prior to
extrusion 10 times through 2 stacked polycarbonate membranes with a nominal pore size
of 100 nm (Nuclepore, Inc., Pleasanton, CA, USA). Phospholipid concentration of liposome
suspensions was determined by phosphate analysis [56]. Liposome size was determined by
Dynamic Light Scattering in Zetasizer Nano ZS (Malvern Panalytical Ltd., Malvern, UK).
Vesicle flotation experiments in sucrose gradients were subsequently performed following
the method described by Yethon et al. [57]. In brief, 750 nM ACT and 1.5 mM LUVs (DOPC
and DOPC.Chol 3:1 molar ratio, with 0.5% Rhodamine) are incubated for 30 min at 37 ◦C,
under stirring. 125 µL of each sample was adjusted to a sucrose concentration of 1.4 M
in a final volume of 300 µL and subsequently overlaid with 400 µL and 300 µL layers
of 0.8 and 0.5 M sucrose, respectively. The gradient was centrifuged at 436,000× g for
180 min in a TLA 120.2 rotor (Beckman Coulter, Brea, CA, USA). After centrifugation, four
250 µL fractions were collected. The material adhered to the tubes was collected into a
fifth fraction by washing with 250 µL of hot (100 ◦C) 1% (w/v) SDS. The different fractions
were run on SDS-PAGE, and the presence of ACT was probed by Coomassie. Liposomes
were monitored by measuring rhodamine fluorescence. The values displayed on the right
correspond to the percentages of protein found co-floating with vesicles, calculated by
densitometry. Densitometry of the bands was performed by using ImageJ software, and
the percentage of binding to vesicles was calculated from the band intensities measured in
the vesicle-floating fractions, relative to the sum of the intensities measured in all fractions.
The results displayed are representative of at least two replicates.
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