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Abstract
We study the optimal Bernoulli routing in a multiclass queueing system with a dedicated
server for each class as well as a common (or multi-skilled) server that can serve jobs of all
classes. Jobs of each class arrive according to a Poisson process. Each server has a holding
cost per customer and use the processor sharing discipline for service. The objective is to
minimize the weighted mean holding cost. First, we provide conditions under which classes
send their traffic only to their dedicated server, only to the common server, or to both. A fixed
point algorithm is given for the computation of the optimal solution. We then specialize to
two classes and give explicit expressions for the optimal loads. Finally, we compare the cost
of multi-skilled server with that of only dedicated or all common servers. The theoretical
results are complemented by numerical examples that illustrate the various structural results
as well as the convergence of the fixed point algorithm.

Keywords Bernoulli routing · Parallel-servers · Multi-skilled servers

1 Introduction

1.1 Motivation

We investigate the performance of amulti-skilled queueing system formed by parallel servers
with Processor Sharing (PS) queues. Jobs of different classes of customers arrive to the system
following a Poisson process. There is one dedicated server for each class of customer and one
multi-skilled server that can execute jobs of all classes. Furthermore, we assume that jobs
are assigned to the servers according to the Bernoulli policy. Our goal is to find the optimal
load balancing so as to minimize the weighted mean number of jobs in the system.

The main application of our model comes from wireless networks. Consider a region
divided in different subregions. Each dedicated server models an antenna that provides ser-
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vice to a unique subregion and the multi-skilled server models a central antenna that provides
service to all the subregions. Using the results of this article, one can determine how the traffic
of each subregion must be shared between the antenna of that region and the central one in
order to minimize the performance of the system. This architecture has been previously con-
sidered by Taboada et al. (2017) in a different context where dedicated servers (or microcells
in their model) can be switched on and off so as to minimize the weighted sum of the mean
delay and the mean power consumption in the system.

1.2 Related work

Load balancing has been widely investigated in different contexts. In data centers, for exam-
ple, various policies depending upon the information available to the dispatcher have been
proposed. In general, optimal policies for the typical performance measures such as mean
processing times are not easy to determine albeit in some specific cases. For example, when
no information on the state of the servers is available, the optimal Bernoulli routing policy
was determined in Altman et al. (2011) for mono-skilled servers only. For FCFS servers, a
policy based on Sturm sequences (Gaujal et al. 2006) are known to be optimal. With more
information on the server state, a number of heuristics such as Join the Shorter of d queues
(Mitzenmacher 2001; Vvedenskaya et al. 1996) and Join the Shortest Queue (Graham 2000)
have been analyzed in the large server asymptotic case. In addition, there are various pull-
based policies such as Join the Idle Queue (Lu et al. 2011) that are known to work well in
practice. Another important routing policy is the Size Interval Task Assignment (Harchol-
Balter et al. 1999)where jobs of different sizes are executed in different servers and, therefore,
the service requirement of incoming tasks need to be known. This policy has been further
studied in Feng et al. (2005) and the author in Harchol-Balter (2000) presented a variation
of this policy in which the size of jobs does not need to be known.

Load balancing has also been investigated for balancing energy costs in data centers using
Energy Packet Networks model (Fourneau 2020), whereas in Liu et al. (2015) it is considered
that data centers are located in different geographical zones. The above works are mostly
concerned with mono-skilled or homogeneous servers.

In networks with multi-skilled agents or servers, skill-based routing policies have been
proposed and investigated (Koole et al. 2003; Wallace and Whitt 2005). These works are
mainly oriented towards call-center architectures with Erlang-B or Erlang-C type of queues.
An illustrative example is an overflow-type policy, where each incoming call has a list of
agents ordered by priority, with highest priority given to mono-skilled ones, and is routed to
the first available agent of this list. If no agent is available, the call can be queued or blocked
depending on the architecture. These routing policies are usually difficult to analyze and
the cited works are interested in approximations for the various performance measures for a
given policy. In these models, obtaining the optimal policy analytically is not easy. We refer
to Chen et al. (2020) for a recent survey on multi-skilled systems.

Multi-skilled queues appear also in the analysis of redundancy systems (Gardner et al.
2015; Bonald et al. 2017) in which incoming requests can be sent simultaneously to a subset
of queues. We do not investigate the redundancy aspect.

The network topology we consider makes our model different from Altman et al. (2011)
in which all servers can execute all type of tasks.
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1.3 Contributions

The main contributions of the article are summarized as follows:

• We provide a necessary and sufficient condition for the stability of the system.
• We show that the optimization problem in terms of probabilities can be reformulated in

terms of the loads of the servers, which is a convex problem with linear constraints. We
also show that if there are routing probabilities that satisfy the original problem (that
we will call (PROB-OPT)), then it is possible to find loads that satisfy the reformulated
problem (that we will call (LOAD-OPT)).

• We fully characterize the optimal loads on the servers for two classes of customers. For
more than two customers, we provide in Proposition 2 conditions under which each class
of traffic satisfies one of the following: (i) it sends all its traffic to its dedicated server,
(ii) it sends all its traffic to the multi-skilled server and (iii) it shares its traffic among the
multi-skilled and its dedicated server.

• Using the result of Proposition 2, we present a fixed-point algorithm whose convergence
ensures that the optimal loads on the servers are achieved. This algorithm starts with an
initial condition of the set of servers (according to one of the three possible traffic sharing
policies of Proposition 2) and its fixed point is given by the partition of the set of servers.
Providing an analytical proof of this convergence on the partition of the set of servers
seems to be an extremely difficult task. However, we illustrate the convergence of this
algorithm using numerical experiments.

• We compare the performance of our model with the performance of two models. The
first model consists of a system where all the servers are multi-skilled and we show the
existence of a switching curve, i.e., when the arrival rate of one of the traffic increases,
the model whose performance is better changes. The second model consists of a system
with no sharing, that is, all the servers are dedicated or mono-skilled, and we provide
conditions on the arrival rates such that the performance of the no-sharing model is larger
than the performance of our model.

• Wedelve into the comparisonof the aforementionedmodels usingnumerical experiments.
First, we show the uniqueness of the switching curve when we compare our model with
a system where all the servers are multi-skilled. We also observe that, in a system formed
by servers with equal capacity and different (but not extremely large) holding costs, the
region where our model outperforms the all-sharing system is very large.

1.4 Organization

In the next section, we describe the network model and define the optimization problem.
Section 3 gives the stability condition and presents an equivalent problem in terms of loads
on the servers. In Sect. 4, the main results on the structure of the optimal policy are provided
for the model under consideration. We compare in Sect. 5 the performance of our model
with the performance of models with other network topologies. We present our numerical
experiments in Sect. 6. Finally, we discuss our main conclusions in Sect. 7.
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Fig. 1 The model under study in
this article

2 Model description

2.1 Notation

We consider a server farmwith Processor Sharing (PS) queues and an input traffic of different
classes. Let K = {1, 2, . . . ,C} be the set of classes. We assume that jobs of class i ∈ K
arrive to the system according to a Poisson process and have generally distributed service
times1. Let ηi be the traffic intensity of jobs of class i. The class of a job defines the set of
servers that can be assigned to this job (Fig. 1).

We consider a system with C + 1 servers. Let S = {0, 1, . . . ,C} be the set of servers.
For a server j ∈ S, we denote by r j the capacity or speed of Server j (i.e., the amount of
traffic that can be served per unit of time) and by c j its holding cost. We denote by Si the set
of servers that can execute jobs of class i and, for A ⊂ K, SA = ∪i∈ASi . For j = 1, . . . ,C ,
Server j executes jobs of class j , i.e., they are dedicated servers. On the other hand, Server
0 executes jobs of all the classes, i.e., it is a multi-skilled server.

For i = 1, . . . ,C , we denote by pi the probability that a class i job is executed in its
dedicated server, i.e., Server i . For j = 1, . . . ,C , the load of Server j is defined as follows

ρ j (p) = η j p j

r j
, (1)

whereas for Server 0 as

ρ0(p) =
∑

j∈K η j (1 − p j )

r0
. (2)

1 Since our goal is to analyze the mean number of jobs and, in a M/G/1-PS queue, the mean number of jobs
depends on the arrival rate and on the service time requirements only through the intensity, we do not specify
the arrival rate of each class
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2.2 Problem formulation

For a given routing strategy p = (pi ), the mean number of jobs of server j is denoted by
E[N j (p)]. In this article, we aim to find the routing matrix that minimizes the total cost of
the system. More specifically, we analyze the following optimization problem:

min
p

∑

j∈S
c jE[N j (p)] (PROB-OPT)

0 ≤ pi ≤ 1, for all i ∈ K; (3)

ηi pi < ri , for all i ∈ K ; (4)
∑

i∈K
ηi (1 − pi ) < r0. (5)

The first constraint ensures that pi ’s are probabilities. The second and third constraints
ensure that all the servers are stable, that is, that the total incoming traffic into a server is
smaller than its service capacity.

3 Preliminary results

We first study the existence of a feasible solution of (PROB-OPT). This is the same as
characterizing the conditions under which the system can be stabilized. In the following
proposition, we provide this result.

Proposition 1 (Stability) The system under consideration can be stabilized if and only if

r0 +
∑

i∈A

ri >
∑

i∈A

ηi , ∀A ⊂ K. (6)

Proof See “Appendix A”. ��
Since servers are M/G/1-PS queues, we know from Thm 3.8 and Thm 3.9 of Kelly (1979)

that the probability of being n jobs in Server i is ρn
i (1 − ρi ). Therefore, it follows directly

that E[N j (p)] = ρ j
1−ρ j

and, as a consequence, we can reformulate (PROB-OPT) in terms of
the loads on the servers as follows:

min
æ

∑

j∈S
c j

ρ j

1 − ρ j
(LOAD-OPT)

∑

i∈K
ηi = r0ρ0 +

∑

j∈K
r jρ j ; (7)

0 ≤ ρ j < 1, for all j ∈ S; (8)
∑

i∈A

ηi ≤ r0ρ0 +
∑

j∈A
r jρ j , ∀A ⊂ K. (9)

We now show that the optimization problems we have considered so far are related. More
precisely, we show that, if there are routing probabilities that satisfy (PROB-OPT), then it is
possible to find loads that satisfy (LOAD-OPT).
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Lemma 1 Let p be a routing strategy that satisfies (3)–(5). Then, for all j ∈ S, ρ j (p) also
satisfies the constraints of (LOAD-OPT).

Proof First, we observe that, if (3)-(5) are satisfied, using (1) and (2), it follows that 0 ≤
ρ j < 1 for all j ∈ S.

We now show that
∑

i∈K ηi = r0ρ0 + ∑
j∈K r jρ j in the following way:

r0ρ0 +
∑

j∈K
r jρ j =

∑

i∈K
ηi (1 − pi ) +

∑

i∈K
ηi pi =

∑

i∈K
ηi ,

where the first equality is given using (1) and (2).
Finally, we focus on the constraint

∑
i∈A ηi ≤ r0ρ0 +∑

j∈A r jρ j , ∀A ⊂ K. Using again
(1) and (2), we have for all A ⊂ K that

r0ρ0 +
∑

j∈A

r jρ j =
∑

i∈K
ηi (1 − pi ) +

∑

i∈A
ηi pi ≥

∑

i∈A
ηi (1 − pi ) +

∑

i∈A
ηi pi =

∑

i∈A
ηi .

And the desired result follows. ��
Note that (LOAD-OPT) is a convex problem with linear constraints and has an unique

solution as long as the stability condition in Proposition 1 is verified. Moreover, from the
above lemma, the solution of (PROB-OPT) can be obtained by optimizing directly over the
loads. Then, the optimal routing probabilities can be determined later from (1), once the
optimal load on each server is determined.

Remark 1 Let us remark that we assume that servers are M/G/1-PS queues. However, the
results of this article are also valid if we assume that servers are M/M/1 queues with any
work-conserving queueing discipline (note that the mean number of customers of a server j
in both cases is ρ j/(1 − ρ j )).

4 Analysis of the solution of (LOAD-OPT)

Let δ j =
√

c j /r j
c0/r0

for all j ∈ K. We denote by Cb the set of classes that route traffic to two
servers, by C0 the set of classes that routes all the traffic to Server 0 and by Cd the set of
classes that send all the traffic to its dedicated server.

In the followingproposition,wepresent thefirst result of this section. It gives the conditions
under which a class of traffic belongs to Cb, C0 or Cd .

Proposition 2 Jobs of class i routes traffic to Server 0 if and only if

δi >
1 − ηi

ri

1 − ρ∗
0
,

and all the traffic of class i is routed to Server 0 if and only if

δi ≥ 1

1 − ρ∗
0
,

where ρ∗
0 is the optimal load at Server 0 and is given by

ρ∗
0 = 1 − r0 + ∑

j∈Cb
r j − ∑

j∈Cb∪C0
η j

r0 + ∑
j∈Cb

δ j r j
. (10)
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Besides, if j ∈ Cd the optimal load of Server j is
η j
r j
, if j ∈ Cb the optimal load of Server j

is

ρ∗
j = 1 − δ j (1 − ρ∗

0 ) (11)

and if j ∈ C0 the optimal load of Server j is zero.

Proof See “Appendix B”. ��
The above result leads to this corollary which gives a simple sufficient condition to deter-

mine when a given class will not send all its traffic to the multi-skilled server.

Corollary 1 Let j ∈ S. If δ j < 1, then j /∈ C0.

Proof Since δ j < 1, we have that the condition δ j < 1
1−ρ∗

0
is always satisfied and this implies

that j /∈ C0 according to Proposition 2. ��
From the above corollary, it follows another interesting property that says that, if δ j < 1

for all j ∈ K, then C0 = ∅.
The next result gives an orderingwhich can help identify classes that use both the dedicated

and the multi-skilled server. This can be seen as a way to determine, for a given set of input
parameters (arrival rate, server speeds, holding costs, etc.), the skills for which we need to
train the multi-skilled servers in order for the system to be optimal.

Proposition 3 Let δi ≤ δ j .

(a) If i ∈ C0, then j ∈ C0.
(b) If i ∈ Cb ∪ C0 and

ηi
ri

≤ η j
r j
, then j ∈ Cb ∪ C0.

Proof We first show (a). We consider that i ∈ C0. Since δ j ≥ δi , it follows that δ j ≥ δi ≥
1

1−ρ∗
0
.

Therefore, from Proposition 2, j ∈ C0.
We now show (b). We consider that i ∈ Cb ∪C0. Since

ηi
ri

≤ η j
r j

and δ j ≥ δi , it follows that

δ j ≥ δi ≥ 1 − ηi
ri

1 − ρ∗
0

≥
1 − η j

r j

1 − ρ∗
0
.

Therefore, from Proposition 2, j ∈ Cb ∪ C0. ��
We note that (b) of the above result can be stated as follows: if class j routes all the traffic to
Server j , class i routes all its traffic to Server i when ηi

ri
≤ η j

r j
and δi ≤ δ j . In the following

result, we show that, under similar conditions, the set of classes that send traffic to two servers
can never be {i, j}.
Proposition 4 If δi ≤ δ j < 1 and ηi

ri
≤ η j

r0+r j
, then Cb cannot be {i, j}.

Proof We assume that Cb = {i, j}. For this case, it follows from (10) that

1

1 − ρ∗
0

≥ r0 + r jδ j + riδi
r0 + r j + ri − η j − ηi

,

where the above inequality is an equality if C0 = ∅.
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Since ηi
ri

≤ η j
r0+r j

, we have for class i that

δi >
1 − ηi

ri

1 − ρ∗
0

≥
(
1 − ηi

ri

) r0 + r jδ j + riδi
r0 + r j + ri − η j − ηi

⇐⇒ δi (r0 + r j + ri − η j − ηi )

>
(
1 − ηi

ri

)
(r0 + r jδ j + riδi )

⇐⇒ δi (r0 + r j − η j ) >
(
1 − ηi

ri

)
(r0 + r jδ j )

⇐⇒ δi >
1 − ηi

ri

1 − η j
r0+r j

r0 + r jδ j
r0 + r j

≥ r0 + r jδ j
r0 + r j

⇐⇒ δi > δ j + r0(1 − δ j )

r0 + r j
> δ j ,

which is in contradiction with δi ≤ δ j . ��
Let Ti denote the sojourn time of jobs of class i . We now provide an interesting result

related to the sojourn time of jobs.

Proposition 5 If δi ≤ δ j . Then, ciE[Ti ] ≤ c jE[Tj ].
Proof We know that the sojourn time of jobs of class i and of class j follow an exponential
distribution with rate 1

ri (1−ρ∗
i )

and 1
r j (1−ρ∗

j )
respectively. Therefore,

ciE(Ti ) = ci
ri (1 − ρ∗

i )

= ci
riδi

1

1 − ρ∗
0

=
√
c0
r0

√
ci
ri

1

1 − ρ∗
0

≤
√
c0
r0

√
c j
r j

1

1 − ρ∗
0

= c jE(Tj ).

And the desired result follows. ��

4.1 Charaterization of the solution of (LOAD-OPT) with C = 2

We now focus on the case C = 2. Throughout this article, we refer to this case as the M
model. Without loss of generality, we assume that δ1 ≤ δ2. The goal of this section is to fully
characterize the solution of (LOAD-OPT) with C = 2.

We first note that, from Proposition 3, it can never be given the following cases: (i)
C0 = {1} and Cd = {2} and (ii) C0 = {1} and Cb = {2}. For the remaining cases, we have
the following options:

1. Cd = {1, 2}. In this case, each class sends all its traffic to the dedicated server. Therefore,
ρ∗
i = ηi

ri
for i = 1, 2 and ρ∗

0 = 0. According to Proposition 2 this occurs when

δi ≤ 1 − ηi
ri

, i = 1, 2.
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2. Cd = {1} and Cb = {2}. In this case, all the traffic of class 1 is sent to Server 1 and
the traffic of class 2 is sent to Server 0 and Server 2. As a result, ρ∗

1 = η1
r1

and, from

(10) and (11) we obtain that ρ∗
2 = 1 − δ2

r0+r2−η2
r0+δ2r2

and ρ∗
0 = 1 − r0+r2−η2

r0+δ2r2
. According to

Proposition 2, this case occurs when δ1 ≤ 1− η1
r1

1−ρ∗
0
and 1

1−ρ∗
0

> δ2 >
1− η2

r2
1−ρ∗

0
, i.e.,

δ1 ≤
(
1 − η1

r1

) r0 + δ2r2
r0 + r2 − η2

and

r0 + δ2r2
r0 + r2 − η2

> δ2 >
(
1 − η2

r2

) r0 + δ2r2
r0 + r2 − η2

,

which simplifying gives

δ1 ≤
(
1 − η1

r1

) r0 + δ2r2
r0 + r2 − η2

and
1

1 − η2
r0

> δ2 > 1 − η2

r2
.

3. Cd = {1} and C0 = {2}. In this case, all the traffic of class 1 is sent to Server 1 and the
traffic of class 2 is sent to Server 0. As a result, ρ∗

1 = η1
r1
, ρ∗

0 = η2
r0

and ρ∗
2 = 0. According

to Proposition 2, this case occurs when δ1 ≤ 1− η1
r1

1−ρ∗
0
and δ2 ≥ 1

1−ρ∗
0
, i.e.

δ1 ≤ 1 − η1
r1

1 − η2
r0

and δ2 ≥ 1

1 − η2
r0

.

4. C0 = {1, 2}. In this case, the traffic of both classes is sent to Server 0. Hence, ρ∗
i = 0 for

i = 1, 2 and from (10) that ρ∗
0 = 1− r0−η1−η2

r0
= η1+η2

r0
. According to Proposition 2 and

using that δ1 ≤ δ2, this case occurs when δ1 ≥ 1
1−ρ∗

0
, i.e.,

δ1 ≥ r0
r0 − η1 − η2

.

5. Cb = {1, 2}. In this case, the traffic of class i is sent to Server 0 and Server i , for
i = 1, 2. From (10) and (11), it results that ρ∗

0 = 1 − r0+r1+r2−η1−η2
r0+δ1r1+δ2r2

and, for i = 1, 2,

ρ∗
i = 1 − δi

r0+r1+r2−η1−η2
r0+δ1r1+δ2r2

. Moreover, we conclude from Proposition 2 that this occurs

when, for i = 1, 2, 1
1−ρ∗

0
> δi >

1− ηi
ri

1−ρ∗
0
, which using that δ2 ≥ δ1 gives

δ1 >
(
1 − η1

r1

) r0 + δ1r1 + δ2r2
r0 + r1 + r2 − η1 − η2

and

r0 + δ1r1 + δ2r2
r0 + r1 + r2 − η1 − η2

> δ2 >
(
1 − η2

r2

) r0 + δ1r1 + δ2r2
r0 + r1 + r2 − η1 − η2

.

We simplify the above expressions and we obtain

δ1 >
(
1 − η1

r1

) r0 + δ2r2
r0 + r2 − η2

and

r0 + δ1r1
r0 + r1 − η1 − η2

> δ2 >
(
1 − η2

r2

) r0 + δ1r1
r0 + r1 − η1

.

6. Cb = {1} and Cd = {2}. We observe that this case is symmetric to the case 2 (where
Cb = {2} and Cd = {1}) and using the same arguments, we get the following conditions

1

1 − η1
r0

> δ1 > 1 − η1

r1
and

(
1 − η2

r2

)
δ2 ≤ r0 + δ1r1

r0 + r1 − η1
.
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Fig. 2 Conditions 1–7 determine a partition of the half-plane 0 ≤ δ1 ≤ δ2

7. Cb = {1} and C0 = {2}. In this case, the traffic of class 1 is sent to Server 0 and Server
1, whereas all the traffic of class 2 to Server 0. As a result, we have that ρ∗

2 = 0 and
from (10) and (11), we obtain that ρ∗

0 = 1 − r0+r1−η1−η2
r0+δ1r1

and ρ∗
1 = 1 − δ1

r0+r1−η1−η2
r0+δ1r1

.

According to Proposition 2, we conclude that this case occurs when 1
1−ρ∗

0
> δ1 >

1− η1
r1

1−ρ∗
0

and δ2 ≥ 1
1−ρ∗

0
, i.e.,

δ2 ≥ r0 + δ1r1
r0 + r1 − η1 − η2

> δ1 >
(
1 − η1

r1

) r0 + δ1r1
r0 + r1 − η1 − η2

,

which after some simplification results in

δ2 ≥ r0 + δ1r1
r0 + r1 − η1 − η2

> δ1 >
1 − η1

r1

1 − η2
r0

.

The conditions described in items 1-7 split the feasible half-plane 0 ≤ δ1 ≤ δ2 into, at
most, 7 disjoint regions. A detailed example of such partition is shown in Fig. 2.

4.2 Computation of the solution of (LOAD-OPT) with C > 2

As we saw before, the characterization of the solution of (LOAD-OPT) with C = 2 requires
to distinguish seven different cases. This suggest that the characterization of the solution
of (LOAD-OPT) with an arbitrary number of classes is to be out of reach. However, we
provide a fixed-point algorithm using the result of Proposition 2. The pseudocode of this
algorithm is shown in Algorithm 1. The main idea of this algorithm is that it starts from an
initial partition C0, Cb and Cd that is used to compute ρ0 (see Lines 2 and 19). This value of ρ0
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Algorithm 1 Fixed-point Algorithm to compute the solution of (LOAD-OPT).
1: INITIALIZE traffic intensities: η1, . . . , ηC ;

capacity of the servers: r0, r1, . . . , rC ;
holding costs of the servers: c0, c1, . . . , cC ;
partition of K: C0, Cd and Cb

2: COMPUTE ρ0 using C0, Cd and Cb .
3: SET D0 = Db = Dd = ∅.
4: SET δ j =

√
c j /r j
c0/r0

, j = 1, . . . ,C .

5: while D0 �= C0 or Db �= Cb or Dd �= Cd do
6: SET D0 = C0 and Db = Cb and Dd = Cd .
7: SET C0 = Cb = Cd = ∅.
8: for all i ∈ K do
9: if δi ≥ 1

1−ρ0
then

10: UPDATE C0 = C0 ∪ {i}.
11: else

12: if δi >
1− ηi

ri
1−ρ0

then
13: UPDATE Cb = Cb ∪ {i}.
14: else
15: UPDATE Cd = Cd ∪ {i}.
16: end if
17: end if
18: end for
19: UPDATE ρ0 using C0, Cd and Cb .
20: end while
21: COMPUTE ρ1, . . . , ρC using C0, Cd and Cb .
22: return ρ0, ρ1, . . . , ρC .

is then used to determine the set of classes that belong respectively to C0 (see Line 9-10), to Cb
(see Line 12-13) and to Cd (see Line 14-15). The algorithm stops in the first iteration where
C0, Cb and Cd do not change. When this occurs, according to Proposition 2, the optimal loads
are obtained using (10) and (11) with the resulting partition of the algorithm. Unfortunately,
we did not succeed is showing the convergence of this algorithm. However, as we will see
in the numerical section, we study the converge of this algorithm and, in all the experiments
we have carried out, the convergence is given in a very small number of steps.

We remark that this algorithm can be also used to analyze the economies when including
a multi-skilled server into a system with C dedicated servers. For this purpose, we need to
initiate the algorithm with an initial partition such that Cd = K and C0 = Cb = ∅ and with
some values of η1, . . . , ηC and r1, . . . , rC such that the system with only dedicated servers is
stable. In that case, the output of the algorithm will be one of the following possibilities: (i)
the algorithm stops after the first iteration and (ii) the algorithm does not stop after the first
iteration. In the former case, we can conclude that it is not beneficial to add a multi-skilled
server, whereas in the latter one we can compare the cost at the initial state and the cost when
the algorithm stops to compare the performance of both systems.

5 Performance analysis

We now determine the scenarios in which it is profitable to either train or hire multi-skilled
agents. For this, we compare the value of the objective function when there are only dedicated
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servers to that with also a multi-skilled one, as well as the case in which all the servers are
multi-skilled and can serve all the jobs.

5.1 Comparison with all full-skilled servers system

First, we compare the cost of the model with C dedicated servers and a single full-skilled
server with the cost a system formed by C + 1 servers with the same values of the holding
costs and capacities as Server 0, but all the servers can serve jobs of all the classes. We call
the latter model ASSAC (All Servers Serve All Classes).

Lemma 2 Consider that η j → 0 for all j > 1 and δ1
1− η1

r1

< 1. Then, the cost of the system

with dedicated servers is δ21 times smaller than the cost of the ASSAC model when η1 is small
enough.

Proof In the system with dedicated servers, when δ1
1− η1

r1

< 1 and η j → 0 for all j > 1, all

the jobs of class 1 are executed in Server 1 and the load of the rest of the servers is zero.
Hence, the cost of this system is

∑

j∈S
c j

ρ j

1 − ρ j
= c1

η1
r1

1 − η1
r1

. (12)

In the ASSAC model, the traffic is uniformly shared among all the servers and, therefore,
the cost of this system when δ1

1− η1
r1

< 1 and η j → 0 for all j > 1 is

∑

j∈S
c j

ρ j

1 − ρ j
= c0

η1
r0

1 − η1
(C+1)r0

. (13)

When η1 is small enough, (12) and (13) are approximately c1η1
r1

and c0η1
r0

, respectively.

And the desired result thus follows since ratio of the former and the latter is δ21 . ��
From the above lemma, we have that the optimal cost of the system with dedicated servers

is smaller than that of ASSAC in the considered regime.

Proposition 6 Consider that η j → 0 for all j > 1 and δ1
1− η1

r1

< 1. Then, the optimal cost of

(LOAD-OPT) is smaller than the optimal cost of ASSAC when η1 is small enough.

We now show that the optimal cost of (LOAD-OPT) can be larger than that of ASSAC.
The intuition behind this result is that the stability region of the ASSAC model is wider than
the stability region for the model with one dedicated server. By taking the load close to the
boundary of the stability region of the model with one dedicated server, the cost can be made
to go infinity. For the ASSAC model, however, the availability of spare capacity means that
the cost remains finite.

Proposition 7 Consider that η j → 0 for all j = 2, . . . ,C and η1 → r0 + r1. Then, the
optimal cost of ASSAC is smaller than the optimal cost of (LOAD-OPT).

Proof We first observe that the cost of ASSAC when η j → 0 for all j > 1 and and
η1 → r0 + r1 is given by

c0(C + 1)
r0+r1

(C+1)r0

1 − r0+r1
(C+1)r0

= c0

r0+r1
r0

1 − r0+r1
(C+1)r0

,
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which is clearly finite.
However, for the model with dedicated servers, class-1 jobs are served by Server 0 and

Server 1, whose load tends to one when η1 → r0 + r1. Therefore, its cost tends to infinity. ��
From the above propositions, it follows the existence of a switching curve when δ1 < 1.

In Sect. 6, we study numerically this curve.

5.2 Comparison with no sharing system

We consider a system formed by C + 1 dedicated servers, but Server 0 can only serve jobs
of class 1, whereas for i ≥ 2 Server i can serve only jobs of class i . We call this model as
system without sharing since jobs of different classes are not served in the same server. We
compare the optimal cost of this system with the optimal cost of (LOAD-OPT).

In Proposition 7, we have shown that the optimal cost of (LOAD-OPT) tends to infinity
when η1 → r0 + r1 and η j → 0 for j = 2, . . . ,C , whereas the optimal cost of ASSAC
is finite. In the following result, we show that there is a regime where the optimal cost of
the system without sharing is infinity, where the optimal cost of (LOAD-OPT) is finite. The
intuition is similar here when we note that the stability region of the no-sharing model is
included in that of the model with one shared server.

Proposition 8 Consider that η j → 0 for all j = 1, . . . ,C − 1 and ηC → rC . Then, the
optimal cost of the system without sharing is larger than the optimal cost of (LOAD-OPT).

6 Numerical experiments

In this section, we present the numerical experiments that complement the main theoretical
findings of this article.

6.1 Comparison with ASSAC

We first focus on the performance comparison of Sect. 5.1, where we showed the existence
of a switching curve when δ1 < 1. For C = 2, we analyze the value of the objetive function
of the models under comparison in Sect. 5.1, which are the M model (i.e., the model we
consider in Sect. 4.1) and the ASSACmodel with three servers. In Fig. 3, we fix the values of
the capacities and holding costs and we consider η1 and η2 such that both models are stable,
that is, when ηi < r0 + ri , for i = 1, 2 and η1 + η2 < r1 + r2 + r0. We set r1 = r2 = r0 = 1
and c0 = 20, c1 = 1 and c2 = 2. We represent with ’x’ where the cost of the ASSAC
model is smaller and with a filled ’o’ the region where the value of the objective function
of the M model is smaller. As it can be observed in Fig. 3, the switching curve is unique,
that is, when we increase η1 (or η2) there is a single value where the model that outperforms
changes. Another interesting conclusion of this experiment is that the region where the M
model outperforms is very large.

6.2 Comparison with no-sharing system

In the next set of experiments, we concentrate on the performance comparison of Sect. 5.2.
We compare the value of the objective function of both models for the values of η1 and η2
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Fig. 3 Comparison of optimal costs of Sect. 5.1 when δi < 1 for i = 1, 2

such that both systems are stable, i.e., η1 < r0 + r1 and η2 < r2 considering the same values
of the parameters as in Fig. 3. As we said in Sect. 5.2, the stability region of the system
without sharing is smaller than that of the M model. This implies that M model outperforms
the systemwithout sharingwhen η2 → 1. This phenomenon can be clearly observed in Fig. 4.
We are also interested in comparing these models out of the boundary. For this purpose, we
present in Fig. 5 a zoomed version of Fig. 4. From this illustration, we conclude that the
performance of both models is very similar when η1 ∈ (0, 2) and η2 ∈ (0, 0.8).

6.3 The solution of (LOAD-OPT) for C > 2

We now study the Algorithm 1 since, as we said before, its convergence ensures that the
solution of (LOAD-OPT) is obtained. We first consider a system with C = 5 classes of
traffic and the values of the parameters presented in Table 1.We have chosen these parameters
since the solution of (LOAD-OPT) for these values satisfies that Cd = {3}, C0 = {4} and
Cb = {1, 2, 5}, i.e., all the sets of the partition are non-empty.

We consider three different initial conditions: first, all the classes belong to Cd (see solid
line in Fig. 6); second, classes 1, 3 and 4 belong to Cd , whereas classes 2 and 5 to Cb (see
dashed line in Fig. 6); and finally, classes 1, 2, 3 and 4 belong to Cd and class 5 to Cb (see
dotted line in Fig. 6).

We illustrate in Fig. 6 the evolution of the loads of each server over the iterations of the
algorithm. In the upper line of Fig. 6 we show the loads of Server 0, Server 1 and Server 2,
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Fig. 4 Ratio of the optimal costs under comparison in Sect. 5.2 (η1 ∈ (0, 2) and η2 ∈ (0, 1))

Fig. 5 Ratio of the optimal costs under comparison in Sect. 5.2 (η1 ∈ (0, 2) and η2 ∈ (0, 0.8))
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Table 1 Parameters of the system
considered in Sect. 6.3

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5

r j 25 34 38 39 13 27

c j 5 10 11 6 86 14

η j 28 33 20 12 24

Fig. 6 Convergence of the fixed-point algorithm presented in Sect. 4.2. The x-axis represents the iterations of
the algorithm and the y-axis the load of each server

whereas in the bottom line the loads of Server 3, Server 4 and Server 5. We observe that,
when the algorithm converges, the load of Server 4 is zero, which means that, for this case,
ρ∗
4 = 0. We also see that, for Server 3, the initial load in the scenario that is represented by

the solid line (that is, the scenario where all the classes send all the traffic to its dedicated
server) equals to the load when the algorithm converges. This means that, for class 3, we
have that ρ∗

3 = η3
r3
.

It is important to remark that, as we can also observe in Fig. 6, the algorithm converges
to the same values for the three different initial partitions under consideration. We have
also started the system with other initial partitions and the obtained results confirmed that the
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Fig. 7 Minimum and maximum number of iterations until convergence for systems of different size

algorithm always converges. Another interesting property of this algorithm is that the number
of iterations required to reach the convergence is very small. Indeed, when the initial partition
of K is such that all the classes belong to Cd , the algorithm converges after 12 iterations.
Moreover, for the rest of the cases, the algorithm converges for a less number of iterations.
When the initial partition of K is such that classes 1, 3 and 4 belong to Cd and classes 2 and
5 to Cb, it converges after 2 iterations and when the initial partition of K is such that classes
1, 2, 3 and 4 belong to Cd and class 5 to Cb, it converges after 3 iterations.

We now present further numerical work we have performed to analyze the convergence of
Algorithm 1 for larger systems. For this set of experiments, we consider that the number of
dedicated servers, C , varies from 10 to 200 with step 10. For each case we run our algorithm
10 times where, in each run, the parameters of the system are randomly chosen (but satisfying
the stability condition); the results are depicted in Fig. 7, where the blue bars represent the
minimum number of iterations required for convergence and the yellow bars the difference
up to themaximum. Themain conclusions of these experiments are twofold: first, we observe
that the algorithm converges in all the cases; and second, that the number of iterations required
to converge varies between 2 and 6 in all the cases. This means that the convergence of this
algorithm is very fast even for large systems with 200 dedicated servers.

7 Conclusions

We study the optimal Bernoulli routing in a system with C dedicated servers and a single
multi-skilled server. We first provide a necessary and sufficient condition for the stability of
the system.We then reformulate this problem as a optimization problem in terms of the loads
of the system andwe show the equivalence of both problems.We provide structural properties
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on the solution of the derived problem, which allows us to fully characterize the optimal loads
of the system when C = 2 and also to present a fixed point algorithm whose convergence
ensure that the optimal loads are obtained. We compare the performance of this system with
optimal loads with a system where all the servers are multi-skilled and also with a system
where all the servers are dedicated. Finally, we explore numerically the convergence of the
fixed point algorithm and show that, in all the considered cases, the algorithm converges in
a very few number of steps.

For future work, we are interested in generalizing the results of this article to systems with
a more complex topology. Besides, we think that an interesting extension of the performance
analysis of this work would be to consider other popular load balancing policies such as
Power of Two and Join the Shortest Queue.
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A Proof of Proposition 1

We first show that if there exists a subset A ⊂ K such that
∑

i∈A ηi > r0 + ∑
i∈A ri , then

the system is not stable.
We know from (1) and (2) that

r0ρ0 +
∑

i∈A

riρi =
∑

i∈K
ηi (1 − pi ) +

∑

i∈A

ηi pi

=
∑

i∈A

ηi +
∑

i∈K\A
ηi (1 − pi )

≥
∑

i∈A

ηi

> r0 +
∑

i∈A

ri .

Therefore, we have obtained that r0ρ0 + ∑
i∈A riρi > r0 + ∑

i∈A ri , which requires that, at
least, the load of one server is larger than one, i.e., that the system is not stable.

Let ε > 0 small.We now show that, if (6) holds, then the system is stable. For this purpose,
we define the following routing strategy: for all i ∈ K such that ηi < ri , pi = 1 − ε and for
all i ∈ K such that ηi ≥ ri , pi = ri

ηi
(1 − ε). For this choice, it is clear that ρ j < 1 for all

j ∈ K. We now focus on Server 0 and we aim to show that

∑

i∈K
ηi (1 − pi ) < r0.
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We denote by K∗ the set of classes such that ηi ≥ ri . Hence, the above expression is
satisfied if and only if

∑

i∈K\K∗
ηiε +

∑

i∈K∗
ηi (1 − pi ) < r0

Hence,

∑

i∈K\K∗
ηiε +

∑

i∈K∗
ηi

(

1 − ri
ηi

(1 − ε)

)

< r0 ⇐⇒
∑

i∈K\K∗
ηiε +

∑

i∈K∗
(ηi − ri (1 − ε)) < r0 ⇐⇒

∑

i∈K\K∗
ηiε +

∑

i∈K∗
(ηi − ri + riε) < r0

We know from (6) that
∑

i∈K∗(ηi−ri ) < r0 and, therefore, the above inequality is satisfied
if and only if

ε

⎛

⎝
∑

i∈K\K∗
ηi +

∑

i∈K∗
ri

⎞

⎠ < r0 −
∑

i∈K∗
(ηi − ri ).

In other words, the desired result follows if we choose ε > 0 such that

ε <
r0 − ∑

i∈K∗(ηi − ri )
(∑

i∈K\K∗ ηi + ∑
i∈K∗ ri

) .

B Proof of Proposition 2

In the following result, we provide a property that will be useful to show the result of
Proposition 2.

Lemma 3 Let C̃ ⊆ K. Then,
∑

i∈C̃
ηi = r0ρ0 +

∑

j∈C̃
r jρ j ⇐⇒ Cb ∪ C0 ⊆ C̃ .

Proof To simplify the notation,wewrite D = Cb∪C0. If D = ∅, thenρ0 = 0 andρ j = η j/r j
for j = 1, 2, . . . ,C , which implies clearly that

∑
i∈A ηi = ∑

j∈SA ρ j r j for all A ⊂ K.
We now focus on the case D �= ∅. We know that

ρ j < η j/r j , ∀ j ∈ D and ρ j = η j/r j , ∀ j ∈ K \ D. (14)

We now observe that K = D
⋃

(K \ D) and therefore from (7)
∑

i∈D
ηi +

∑

i∈K\D
ηi = r0ρ0 +

∑

i∈D
riρi +

∑

i∈K\D
riρi .

From ρ j = η j/r j , ∀ j ∈ K \ D, it follows that
∑

i∈D
ηi +

∑

i∈A

ηi = r0ρ0 +
∑

j∈D
r jρ j +

∑

j∈A

r jρ j , ∀A ⊆ K \ D. (15)
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Therefore, for any C̃ ⊆ K such that D ⊆ C̃ the constraint (9) is satisfied as an equality.
Besides, we now show that for any subset that does not contain D, the constraint (9) is
satisfied as an inequality. For all B ⊂ D, (15) can be written as follows:
∑

i∈B
ηi +

∑

i∈D\B
ηi +

∑

i∈A

ηi = r0ρ0 +
∑

j∈B
r jρ j +

∑

j∈D\B
r jρ j +

∑

j∈A

r jρ j , ∀A ⊆ K \ D,

which, by ρ j < η j/r j ∀ j ∈ D, gives that
∑

i∈B
ηi +

∑

i∈A

ηi = r0ρ0 +
∑

j∈B
r jρ j +

( ∑

j∈D\B
r jρ j −

∑

i∈D\B
ηi

)

+
∑

j∈A

r jρ j

< r0ρ0 +
∑

j∈B
r jρ j +

∑

j∈A

r jρ j , ∀A ⊆ K \ D.

And the desired result follows. ��
We now prove the result of Proposition 2.

Proof The Lagrangian corresponding to (LOAD-OPT) is

L(ρ, ν, ζ , γ, ξ) = c0ρ0
1 − ρ0

+
C∑

j=1

c jρ j

1 − ρ j
+

C∑

j=0

ν j (−ρ j ) +
C∑

j=0

ζ j (ρ j − 1)

+ γ
( C∑

i=1

ηi − r0ρ0 −
C∑

j=1

r jρ j

)

+
∑

A⊂K
A �=∅

ξA

(∑

i∈A

ηi − r0ρ0 −
∑

j∈A

r jρ j

)

Given that the optimization problem is convex, ρ∗, ν∗, ζ ∗, γ ∗, ξ∗ is a solution of (LOAD-
-OPT) if it satisfies Karush-Kuhn-Tucker conditions:

0 ≤ ρ∗
j ≤ 1, ∀ j = 0, 1, . . . ,C (16)

c0
(1 − ρ∗

0 )
2 − ν∗

0 + ζ ∗
0 − r0

(
γ ∗ +

∑

A⊂K
A �=∅

ξ∗
A

) = 0 (17)

c j
(1 − ρ∗

j )
2 − ν∗

j + ζ ∗
j − r j

(
γ ∗ +

∑

A⊂K
j∈A

ξ∗
A

) = 0, ∀ j = 1, 2, . . . ,C (18)

ν∗
j ≥ 0, ζ ∗

j ≥ 0, γ ∗ ∈ R, ξ∗
A ≥ 0, ∀ j = 0, 1, . . . ,C, ∀A ⊂ K, A �= ∅ (19)

ν∗
j ρ

∗
j = 0, ζ ∗

j (ρ
∗
j − 1) = 0, ∀ j = 0, 1, . . . ,C (20)

C∑

i=1

ηi = r0ρ
∗
0 +

C∑

j=1

r jρ
∗
j (21)

∑

i∈A

ηi ≤ r0ρ
∗
0 +

∑

j∈A

r jρ
∗
j , ∀A ⊂ K, A �= ∅ (22)
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ξ∗
A

(∑

i∈A

ηi − r0ρ
∗
0 −

∑

j∈A

r jρ
∗
j

)
= 0, ∀A ⊂ K, A �= ∅. (23)

We observe that the objective function tends to infinity when ρ j → 1, which implies that
ρ∗
j < 1, ∀ j = 0, 1, . . . ,C and, as a consequence of this and from (20), ζ ∗

j = 0, ∀ j =
0, 1, . . . ,C . Furthermore, from Lemma 3 and (23), we conclude that ∀A ∈ K that does not
contain Cb ∪ C0, its multiplier verifies that ξ∗

A = 0, because for those subsets the constraint
(9) is satisfied as an inequality.

For Server 0, we know that ρ∗
0 = 0 if C0 ∪ Cb = ∅ and ρ0 > 0 otherwise. This clearly

implies that ν∗
0 ≥ 0 if C0 ∪ Cb = ∅ and ν∗

0 = 0 otherwise. For all j ∈ K, we know that
ρ∗
j = η j/r j if j ∈ Cd , whereas ρ∗

j < η j/r j otherwise. This clearly implies that ν∗
j = 0

if j ∈ Cd . We also know that ν∗
j = 0 if j ∈ Cb because, in this case, ρ∗

j > 0, whereas if
j ∈ C0, we have that ν∗

j ≥ 0.
We first prove this result when Cb ∪ C0 = ∅. For this case, the load of Server 0 is zero

and, thus, it is enough to show that δ j < 1 − η j/r j . From (17) and (18), we get that

c0 − ν∗
0 − r0

(
γ ∗ +

∑

A⊂K
A �=∅

ξ∗
A

) = 0 (24)

c j
(1 − η j/r j )2

− r j
(
γ ∗ +

∑

A⊂K
j∈A

ξ∗
A

) = 0, ∀ j = 1, 2, . . . ,C . (25)

From (24) and since ν∗
0 ≥ 0, it results that

ν∗
0 = c0 − r0

(
γ ∗ +

∑

A⊂K
A �=∅

ξ∗
A

) ≥ 0 ⇐⇒ c0
r0

≥ γ ∗ +
∑

A⊂K
A �=∅

ξ∗
A,

From (25), we obtain that

γ ∗ +
∑

A⊂K
j∈A

ξ∗
A = c j

r j

1

(1 − η j/r j )2
, ∀ j = 1, 2, . . . ,C .

Therefore,

c j
r j

1

(1 − η j/r j )2
= γ ∗ +

∑

A⊂K
j∈A

ξ∗
A ≤ γ ∗ +

∑

A⊂K
A �=∅

ξ∗
A ≤ c0

r0
,

which gives the desired condition, i.e., δ j ≤ 1 − η j/r j , ∀ j = 1, 2, . . . ,C .

We focus on the case C0 �= ∅ or Cb �= ∅. We note that (17) and (18) can be written as
follows:

c0
(1 − ρ∗

0 )
2 − r0

(
γ ∗ +

∑

A⊂K
Cb∪C0⊆A

ξ∗
A

) = 0 (26)

c j − ν∗
j − r j

(
γ ∗ +

∑

A⊂K
Cb∪C0⊆A

ξ∗
A

) = 0, ∀ j ∈ C0 (27)

c j
(1 − η j/r j )2

− r j
(
γ ∗ +

∑

A⊂K
Cb∪C0⊆A

j∈A

ξ∗
A

) = 0, ∀ j ∈ Cd . (28)
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c j
(1 − ρ∗

j )
2 − r j

(
γ ∗ +

∑

A⊂K
Cb∪C0⊆A

j∈A

ξ∗
A

) = 0, ∀ j ∈ Cb. (29)

We aim to show that, for all j ∈ C0, δ j ≥ 1
1−ρ∗

0
, and for all j ∈ Cb

1
1−ρ∗

0
> δ j >

1−η j /r j
1−ρ∗

0
.

For the first condition, we observe that from (26) and (27), it follows that, for all j ∈ C0,

γ ∗ +
∑

A⊂K
Cb⊆A

ξ∗
A = c0

r0

1

(1 − ρ∗
0 )

2 = c j
r j

− ν∗
j

r j
,

which, using that ν∗
j ≥ 0, gives that

δ j ≥ 1

1 − ρ∗
0
.

We now show the second condition, i.e., 1
1−ρ∗

0
> δ j >

1−η j /r j
1−ρ∗

0
for all j ∈ Cb. From (26)

and (29), it follows that, for all j ∈ Cb,

γ ∗ +
∑

A⊂K
Cb∪C0⊆A

ξ∗
A = c0

r0

1

(1 − ρ∗
0 )

2 = c j
r j

1

(1 − ρ∗
j )
2 (30)

⇐⇒ 0 = c j
r j

1

(1 − ρ∗
j )
2 − c0

r0

1

(1 − ρ∗
0 )

2 (31)

⇐⇒ δ j = 1 − ρ∗
j

1 − ρ∗
0
, (32)

which gives that

ρ∗
j = 1 − δ j (1 − ρ∗

0 ),

as desired.
Using the last expression and that, for j ∈ Cb, 0 < ρ∗

j < η j/r j , the desired result follows,
i.e.,

1

1 − ρ∗
0

> δ j = 1 − ρ∗
j

1 − ρ∗
0

>
1 − η j/r j
1 − ρ∗

0
.

To finish, we compute the loads of all the servers. First, for j ∈ Cd , we have clearly that
ρ∗
j = η j

r j
. Besides, we use that for all j ∈ Cb, ρ∗

j = 1− δ j (1− ρ∗
0 ), and from the expression

(7), it follows that

C∑

i=1

ηi = r0ρ
∗
0 +

C∑

j=1

r jρ
∗
j ⇐⇒

C∑

i=1

ηi = r0ρ
∗
0 +

∑

j∈Cb

r j (1 − δ j (1 − ρ∗
0 )) +

∑

i∈Cd

ηi .

And rearranging both sides of the above expression, we obtain that

ρ∗
0 = 1 − r0 + ∑

j∈Cb
r j − ∑

i∈Cb∪C0
ηi

r0 + ∑
j∈Cb

δ j r j
.
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And the desired result follows. ��
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