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Country (UPV-EHU); Avda. Lehendakari Aguirre 83; 48015 Bilbao; Spain; Tl: 34 94 601 3852; Fax: 34 94
601 3754; E-mail: ja@alcib.bs.ehu.es.

†Research supported by grant 9/UPV 00038.321-13503/2001 and Basque Government grant PI-1999-70 of
the Departamento de Educación, Universidades e Investigación. I thank the participants in a seminar at the
LSE for helpful and constructive comments.

1



1 Introduction

Uncertainty is nowadays crucial in the modelling of financial time series. In most asset

pricing theories the uncertainty associated with the price of the asset is an important factor

in the determination of the risk premium. This uncertainty has been usually related with

conditional variances which are changing through time trying to accommodate the distinct

behaviour of many financial time series. In particular many financial series such as asset

returns do not have a marked structure in their autocorrelations (in accord with the efficient

market hypothesis) but show a strong persistence in the autocorrelations of some transforms

such as squares or other powers of absolute values.

The seminal works of Engle (1982) and Taylor (1986) established the basis of the two

prominent tendencies used in the modelling of conditional heteroskedasticity. The Autore-

gressive Conditional Heteroskedastic (ARCH) models of Engle (1982) and succeeding exten-

sions consider the conditional variance an exact function of the squares of past observations.

The second tendency is related with the stochastic volatility (SV) models (Taylor, 1986, Har-

vey, Ruiz and Shephard, 1994) in which the volatility component is generated by a stochastic

process so that both the mean and volatility equations have separate error terms.

A large body of research suggests that the volatility of many financial time series displays

strong persistence which cannot be modelled by standard ARCH or SV models. One of the

first attempts to model such a behaviour is the Integrated Generalized ARCH (IGARCH)

model proposed by Engle and Bollerslev (1986). Although the IGARCH class of models

bears much resemblance to the ARIMA for conditional first moments, the analogy is far

from complete. For instance, although not covariance stationary, the IGARCH is strictly

stationary and ergodic (Nelson, 1990). Moreover the autocorrelation function of the squares

is not constant but decreases exponentially (Ding and Granger, 1996). The existence of long

memory in powers of the absolute value of the returns of various asset prices (Ding, Granger

and Engle, 1993) opened a new branch of research which includes this persistence in the

modelling of the conditional variance. Baillie, Bollerslev and Mikkelsen (1996), Bollerslev

and Mikkelsen (1996) and Ding and Granger (1996) proposed the Fractionally IGARCH

(FIGARCH) which are parametric restrictions of the more general model in Robinson (1991).
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More recently Harvey (1998) and Breidt, Crato and de Lima (1998) proposed the Long

Memory in Stochastic Volatility (LMSV) processes which model the log-volatility term as a

Fractional ARIMA.

None of the cited works has paid attention to the possible existence of a stochastic cyclical

behaviour in the volatility of the series which is a relevant characteristic of intraday data

(Andersen and Bollerslev, 1997). For example it is widely accepted a distinct U or inverted J

shape in the volatility of intraday stock returns over the trading day. If some cyclical pattern

is found seasonal dummies are usually employed. I allow for a time evolving seasonality

and consider the possibility of a persistent stochastic seasonality in the volatility in the

form of Seasonal or Cyclical Long Memory (SCLM) as proposed by Arteche and Robinson

(1999). A SCLM volatility is more adequately modelled as a SV process rather than extending

FIGARCH models, and this is the practice I adopt in this paper. SV models moreover has the

advantage of being the natural discrete time analogue of the continuous time models used in

option pricing. In addition their statistical properties are easier to derive than the FIGARCH

case. They have the disadvantage of a difficult evaluation of the exact likelihood. However,

after linearizing the model takes the form of a signal plus noise which simplifies the analysis.

Based on this, Harvey (1998) and Breidt et al. (1998) suggest a Whittle type spectral

quasi maximum likelihood estimation which has a very easy implementation. Recently, and

independently of this work, Deo and Hurvich (2001) considered semiparametric estimation

of the memory parameter in a LMSV model and proposed the Geweke and Porter-Hudak

(1983) estimator based on a log-periodogram regression. Its asymptotic normality relies

on the Gaussianity of the signal or volatility process, which seems quite restrictive in the

series this models focus on. I prefer the more efficient Gaussian semiparametric or local

Whittle estimator which relax this restriction and consequently seems more adequate for the

estimation of the memory parameter of the volatility in financial time series. Although the

main motivation of this paper is the estimation of the persistence of the volatility in LMSV

models I prove the validity of the Gaussian semiparametric estimator not only in these models

but in a more general signal plus noise setup.

The structure of the paper is as follows. Section 2 considers different alternatives for the

modelling of long memory volatility and describes the local long memory in stochastic volatil-
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ity models. Unlike Harvey (1998) and Breidt et al. (1998) only a partial spectral behaviour is

imposed which allows for a wider range of processes. The persistence of an unexpected shock

on the volatility of these series is measured by a single memory parameter (in the standard

long memory case) or a finite number of parameters (under seasonal long memory). Section

3 focuses on the Gaussian semiparametric or local Whittle estimation of the memory param-

eters in a signal plus noise model which includes the LMSV as a particular case. Deo and

Hurvich (2001) argue that this estimator can not be applied under LMSV. This section shows

that under milder conditions than those required by Deo and Hurvich for the log-periodogram

regression, the Gaussian semiparametric estimator is consistent and asymptotically normal

with lower asymptotic variance. Section 4 considers the finite sample behaviour paying es-

pecial attention to the relevance of the bandwidth. I compare an appropriate version of the

approximate optimal mean square error bandwidth of Henry and Robinson (1996) with that

which minimizes the Monte Carlo mean square error. For practical purposes, and due to

the infeasibility of the bandwidth of Henry and Robinson, a data-driven bandwidth is also

proposed. Section 5 shows an application to a series of returns of the Spanish stock index

Ibex 35. Finally Section 6 concludes and proposes further extensions. Technical details are

placed in the Appendix.

2 Long memory in volatility

Consider the discrete time real valued process

xt = σσtεt (1)

where Et−1εt = 0 and V art−1(εt) = 1, where the subindex t− 1 means that the expectations

are conditional on past information, and σ is a positive constant. If σt is an exact function

of information at time t − 1, xt has mean zero and is serially uncorrelated with conditional

variance σ2σ2
t . Robinson (1991) considered σ2

t a function of past squared observations

σ2
t = µ +

∞∑

j=1

θjx
2
t−j .

with the θj allowing for long range dependence. A parametric restriction is
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σ2
t = α0 + β(L)σ2

t + [1 − β(L) − π(d, L)α(L)]x2
t . (2)

where β(L) = β1L + ... +βpL
p, α(L) = 1 +α1L + ... + αqL

q, and α0 is a positive constant. If

π(d, L) = (1 − L)d then (2) represents the FIGARCH of Baillie et al. (1996) and Bollerslev

and Mikkelsen (1996), if π(d, L) ≡ 1 (2) is the GARCH of Bollerslev (1986) and if in addition

β(L) ≡ 0 then (2) is the ARCH model of Engle (1982). Considering the serially uncorrelated

mean zero process zt = x2
t − σ2

t , (2) can be written

π(d, L)α(L)x2
t = α0 + (1 − β(L))zt

where the possibility of long memory in x2
t is more clearly established. Since π(d, 1) = 0 for

the FIGARCH, the variance of xt is infinite for α0 > 0, so that xt is not covariance stationary.

However, as in the IGARCH case, the FIGARCH process is strictly stationary and ergodic

for d ≤ 1.

For this process to be well defined and the conditional variance to be positive almost

surely all the θj must be nonnegative. General conditions on the initial parameters are hard

to establish especially with SCLM in x2
t of the form π(d, L) = (1−L)d0{∏h−1

k=1(1−2L cos ωk +

L2)dk}(1 + L)dh with some dk 6= 0 for k = 1, ..., h, which produces alternation of positive

and negative coefficients in its expansion (Giraitis and Leipus, 1995). Two alternatives that

guarantee positiveness of σ2
t are the modelling of the persistence in log σ2

t as suggested by

Nelson (1991) and Bollerslev and Mikkelsen (1996) in the standard long memory case and

the modelling of σt in (1) instead of σ2
t as in Robinson (1991) and Robinson and Zaffaroni

(1997). These models have the convenient features that the coefficients are not restricted to

be positive. However the statistical analysis and estimation of this class of models is quite

burdensome even in the short memory case.

In this paper I adopt a different approach based on SV models in the lines of those

discussed by Harvey (1998) and Breidt et al. (1998) for parametric LMSV and Deo and

Hurvich (2001) in a semiparametric setup. The local LMSV is defined by (1) and

σt = exp(vt/2) (3)

where the εt are iid with mean zero and variance 1 and vt is a stationary long memory (LM)

process whose spectral density satisfies as λ → 0
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fv(ω ± λ) ∼ Cλ−2d (4)

for some frequency ω, |d| < 1/2, and 0 < C < ∞. The standard local LMSV satisfies (4)

for ω = 0. Recently Arteche and Robinson (2000) have generalized (4) allowing a different

spectral behaviour at frequencies just after and just before some ω 6= 0,mod(π) and proposed

the Seasonal or Cyclical Asymmetric Long Memory (SCALM) process characterized by a

spectral density satisfying as λ → 0+

fv(ω + λ) ∼ C1λ
−2d1

fv(ω − λ) ∼ C2λ
−2d2

(5)

where C1, d1 can be different from C2, d2. Then (4) is a restriction of (5) that imposes

C1 = C2 = C and d1 = d2 = d. For simplicity of exposition I focus hereafter on symmetric

LM acknowledging the possibility of SCALM.

If vt is a stationary process distributed independently of εt then xt is both covariance and

strictly stationary (in fact γx(h) = Extxt−h = 0 for h 6= 0). If in addition vt is Gaussian

Exr
t = κrσ

r exp

(
r2

8
γv(0)

)
r = 0, 1, ...,

where κr = Eεr
t and γv(h) = Evtvt+h is the autocovariance of vt (γv(0) is thus its variance).

In particular if εt is N(0, 1) we have Ext = Ex3
t = 0, V ar(xt) = σ2 exp(γv(0)/2) and

Ex4
t = 3σ4 exp(2γv(0)) so that xt is white noise with kurtosis 3 exp(γv(0)). The excess

kurtosis in these models can thus be caused by a large variance of vt or by a thick tailed

distribution of εt (e.g. a t distribution). Leverage effects in the form of an asymmetric

response of the volatility to positive and negative shocks can be introduced by an appropriate

correlation between mean and volatility equation errors.

Taking logs of the squares of xt in (1) with (3) we have

yt = log x2
t = µ + vt + ξt (6)

where µ = log σ2 + E log ε2
t and ξt = log ε2

t − E log ε2
t is iid with zero mean and variance σ2

ξ .

For example if εt ∼ N(0, 1) then ξt is a centered log χ2
1 variable with E log ε2

t = −1.27 and

σ2
ξ = π2/2. Apart from the constant µ, yt takes the form of a signal plus noise model where
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the signal is a LM process uncorrelated with the noise which in this case is (non-Gaussian)

iid. The autocovariance function of yt is

γy(h) = Eytyt+h = γv(h) + σ2
ξ Ih=0 (7)

where Ih=0 = 1 if h = 0 and 0 otherwise1 and the autocovariances of yt coincide with those of

the signal vt. Although the local specification in (4) does not restrict the parametric form of

vt at frequencies far from ω, it is interesting for practical and illustrative purposes to briefly

describe some relevant parametric LM models. The GARMA (0,0) process is defined by

(1 − 2L cos ω + L2)dvt = ut with ut white noise with variance σ2
u, and its autocovariance of

order h is

γv(h) =
σ2

u

2
√

π
Γ(1 − 2d){2 sin ω}0.5−2d{P 2d−0.5

h−0.5 (cos ω) + (−1)hP 2d−0.5
h−0.5 (− cos ω)} (8)

where Γ(z) and P b
a(z) are the gamma and associated Legendre functions respectively (Chung,

1996). If ω = 0 (8) reduces to

γv(h) = σ2
u

(−1)hΓ(1 − 4d)

Γ(h − 2d + 1)Γ(1 − h − 2d)

(Hosking, 1981) and for ω = π/2

γv(h) =
σ2

u

2

Γ(1 − 2d)

Γ(1 − d − h
2 )Γ(1 − d + h

2 )
{1 + (−1)h}

(Arteche and Robinson, 2000). Correspondingly the spectral density of yt is

fy(λ) = fv(λ) +
σ2

ξ

2π
for − π ≤ λ ≤ π (9)

where if vt is a GARMA(0,0) process

fv(λ) =
σ2

u

2π
2−2d| cos λ − cos ω|−2d (10)

and expressions for ω = 0 and ω = π/2 are easily obtained from (10). Perhaps the more

general parametric LM model is that used by Chan and Wei (1988), Robinson (1994), Chan

and Terrin (1995) and Giraitis and Leipus (1995) which has the form

1As shown in Harvey et al. (1994) independence between vt and εt is not strictly needed for this result to
hold.
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(1 − L)d0{
h−1∏

k=1

(1 − 2L cos ωk + L2)dk}(1 + L)dhvt = ut (11)

where the ωk can be any frequency between 0 and π and ut is a short memory process with

continuous and positive spectrum. (11) allows for different cyclical behaviour across different

frequencies. If only d0 6= 0 then (11) is the fractional ARIMA of Granger and Joyeux (1980)

and Hosking (1981). If there is only one dk 6= 0 for k 6= 0 then (11) represents the Gegenbauer

or GARMA process of Gray, Zhang and Woodward (1989) and Chung (1996). The spectral

density of vt satisfies (4) for ω = 0, ω1, ..., ωh−1 and π and the asymptotic behaviour of the

autocovariances is

γv(j) = Evtvt+j =

∫ π

−π
fv(λ) cos(jλ)dλ ∼ K

h∑

k=0

j2dk−1 cos(jωk) (12)

as j → ∞ for some finite constant K (Giraitis and Leipus, 1995 and Arteche and Robinson,

2000). Thus the autocovariances show not only the slow hyperbolic decay typical of long

memory but, for ωk 6= 0, also oscillations of amplitude depending on the ωk. There exist

other LM processes non nested in (11) which similarly satisfy (4). For example the seasonal

fractional noise of Jonas (1983) or Carlin and Dempster (1989) is characterized by lag-j

autocorrelations

ρx(j) =
1

2

(∣∣∣∣
j

S
+ 1

∣∣∣∣
2d+1

− 2

∣∣∣∣
j

S

∣∣∣∣
2d+1

+

∣∣∣∣
j

S
− 1

∣∣∣∣
2d+1

)

and a spectral density satisfying (4) at ωs = 2πs/S for s = 0, 1, ..., [S/2].

3 Gaussian semiparametric estimation

Maximum likelihood estimation and statistical inference are hard to implement in stochastic

volatility models even under short memory log-volatility due to the existence of separate

errors in the mean and log-volatility equations. A less efficient technique, the method of mo-

ments, has been suggested by Melino and Turnbull (1990) and Taylor (1986). Its efficiency

reduces substantially under log-volatility persistence of the form of a nearly non-stationary

AR (Jacquier, Polson and Rossi, 1994). Harvey et al. (1994) proposed a quasi-maximum like-

lihood method based on the Kalman filter in short memory stochastic volatility models. For
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long memory the Kalman filter requires truncation in the AR expansion of vt which can lead

to a loss of relevant information under strong persistence. Jacquier et al. (1994) developed a

Bayesian technique based on Markov chain simulation in an autoregressive stochastic volatil-

ity model. This method is computationally intensive and it is not known how it performs

with long memory stochastic volatility.

The form of the spectral density in (9) led Harvey (1998) and Breidt et al. (1998) to

propose spectral estimation strategies which are computationally simple. They are based on

the frequency domain quasi-maximum likelihood estimation proposed by Whittle (1953) and

analysed in a long memory context by Fox and Taqu (1986), Giraitis and Surgailis (1990),

Heyde and Gay (1993) and Dahlhaus (1994). Cheung and Diebold (1994) found that this

estimate has a similar finite sample efficiency to exact maximum likelihood, especially when

the mean of the process is unknown since it does not require mean correction. The estimates

are obtained by minimizing

L(β) =
1

2πn

∑{
log f(λj) +

Iy(λj)

f(λj)

}
, (13)

where f(λ) is the spectral density of the series under analysis, the sum is for j = 1, ..., [n/2]

for n the sample size and [·] denoting the integer part, except those j where f(λj) = 0 or ∞;

λj = 2πj/n are Fourier frequencies and

Iy(λ) = |Wy(λ)|2, Wy(λ) =
1√
2πn

n∑

t=1

yt exp(−itλ)

are the periodogram and discrete Fourier transform of yt, t = 1, 2, ..., n, at frequency λ. The

properties of this estimate depends on a correct specification of the spectral density. To

avoid the possible inconsistency of the estimates of the memory parameters due to spectral

misspecification at frequencies far from those of interest, Robinson (1995b) in the standard

long memory case and Arteche and Robinson (2000) under SCLM adopted an idea first

suggested by Kunsch (1987) and proposed a narrow frequency band version of (13) such that

the estimates of C and d, C̃ and d̃, are obtained by minimizing

Q(C, d) =

′∑{
log C|λj|−2d +

|λj |2d

C
Iyj

}
(14)
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where Iyj = Iy(ω + λj),
∑′ runs for j = ±1, ...,±m if ω 6= 0, π and due to the symmetry

of the periodogram for j = 1, ...,m if ω = 0, π, and m < [n/2] is the bandwidth parameter

which goes to infinity more slowly than n. SCALM can be allowed in Q but a trimming of

frequencies close to ω is then required (Arteche and Robinson, 2000). Concentrating C out

of the objective function, the estimate d̃ is the argument that minimizes

R(d) = log C̃(d) − 2d

δωm

′∑
log |λj | (15)

over a compact set Θ = [∆1,∆2], where δω = 1 if ω = 0, π and 2 otherwise and

C̃(d) =
1

δωm

′∑
|λj|2dIyj .

Only (4) is imposed on the form of the spectral density. Far from ω f(λ) can be bounded,

unbounded or zero and only integrability for covariance stationarity is assumed. Under some

mild conditions (for example Gaussianity is not required) these estimates are consistent and

have a normal asymptotic distribution (Robinson, 1995b and Arteche and Robinson, 2000).

In the signal plus noise and stochastic volatility models the spectral density of yt (fy(λ) in

(9)) inherits the asymptotic behaviour of fv(λ) if the memory parameter of interest is positive

so that fy diverges at ω as in (4). In the negative memory case fy(ω±λ) ∼ σ2
ξ/2π+Cλ−2d as

λ → 0 so that (4) does not hold and the minimization of (15) is not directly applicable. Thus

I focus on the (empirically more relevant) positive and stationary memory case 1/2 > d > 0.

The linearized local LMSV model in (6) is a particular case of a signal plus noise so that

the estimation of the memory parameter of the volatility can be generalized to the estimation

of the memory parameter of the signal in such models. To permit this generalization I do not

restrict ξt to be iid but allow weak dependence as stated in Assumption A.1. In the results

derived hereafter independence between vt and ξt is also imposed.

A.1: ξt =
∑∞

j=0 θjzt−j , zt ∼ iid(0, σ2
ξ ), Ez4

t = µ4 < ∞ and
∑∞

j=0 |θj|j1/2 < ∞.

Assumption A.1 guarantees that the spectral density of ξt is positive and bounded away

from zero and include the white noise as a particular case. Under a dependent ξt, xt in (1)

is no longer a martingale difference as the local LMSV assumes, but may show a persistent

dependence due to the vt term.
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The assumption A.2 imposes an upper bound in the bandwidth.

A.2:

1

m
+

m1+4d

n4d
(log m)2 → 0 as n → ∞.

Assumption A.2 requires the proportion of frequencies used in the estimation go to zero faster

the lower d is. If m ∼ nθ then A.2 entails θ < 2d/(1 + 2d). Assumption A.2 is coherent with

Assumption A.4’ in Robinson (1995b) since in the signal plus noise model in (6) the spectral

density of yt is

fy(ω ± λ) ∼ Cλ−2d(1 + O(λmin(α,2d)))

under A.1, where α represents the degree of smoothness of the spectral density of vt in

Assumption A.1’ in the Appendix. If α ≥ 2d the degree of spectral smoothness of yt is

2d and A.2 is equivalent to Assumption A.4’ in Robinson (1995b). Not surprisingly A.2 is

the condition imposed by Deo and Hurvich (2001) to obtain the asymptotic normality of

the Geweke and Porter-Hudak estimator. However the Gaussian semiparametric estimator

requires milder assumptions on the noise since in Deo and Hurvich (2001) ξt is white noise

with finite eighth moment whereas A.1 weakens significantly that condition. In addition

Gaussianity of vt is not needed for consistency and asymptotic normality of d̃.

Theorem 1 Let yt be defined in (6) and vt be a LM process with 0.5 > d > 0. Under

assumption A1’-A4’ in the Appendix and if ξt satisfies assumption A.1 then d̃
p→ d as n → ∞.

Assumption A.1’-A.4’ are those required for consistency of a fully observable long memory

process as imposed in Robinson (1995b) and Arteche and Robinson (2000) for SCLM. The

conditions in vt are a local specification of fv around ω and linearity with finite second

conditional moments of the innovations. For a symmetric SCLM vt the condition on m is

m−1 + mn−1 → 0 as n → ∞. For SCALM a trimming of the frequencies closest to ω is

needed as explained in Arteche and Robinson (2000).

Breidt et al. (1998) showed the consistency of the parametric Whittle estimation in

standard LMSV models but no asymptotic distribution was provided. However, the local

Whittle estimator is asymptotically normal not only in local LMSV but also in more general

signal plus noise models, as stated in Theorem 2.
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Theorem 2 Let yt be defined in (6) and vt be a LM process with 0.5 > d > 0. Under

Assumptions A.1’, A.5’-A.7’ in the Appendix, A.1 and A.2
√

4δωm(d̃ − d)
d→ N(0, 1) as

n → ∞.

Again the assumptions in the Appendix correspond to those required for the asymptotic

normality of d̃ in Robinson (1995b) and Arteche and Robinson (2000) for an observable

long memory series and no further comment is needed. The proofs of both theorems are

based on Robinson (1995b) and Arteche and Robinson (2000) and are briefly described in

the Appendix. The additional conditions required in vt are basically finite fourth conditional

moments of the innovations and

1

m
+

m1+2α

n2α
(log m)2 → 0 as n → ∞. (16)

Deo and Hurvich (2001) proved the asymptotic normality of the estimator based on the

log periodogram regression in a more restrictive setup. In particular they assume ω = 0 and

fv1(λ) =

∣∣∣∣2 sin

(
λ

2

)∣∣∣∣
−2d

g(λ)

such that g′(0) = 0 and the second derivative of g() is bounded around zero. Therefore fv1

satisfies Assumption A.1’ for ω = 0 and α = 2. Since d < 1/2 assumption A.2 implies (16)

and the asymptotic normality of d̃ is established in this case under the same restrictions on

m imposed by Deo and Hurvich (2001). The advantages of d̃ rest on the milder restrictions

on vt and ξt and its greater efficiency with a lower asymptotic variance.

Remark 1: Similar results, although with a more restrictive bandwidth m, are obtained

for a LM ξt. The Appendix shows that if fξ(ω ± λ) ∼ Cζλ
−2c as λ → 0 for Cζ a positive

constant and c < d, the asymptotic distribution of d̃ in theorem 2 remains valid as long as

m1+4(d−c)/n4(d−c) log2 m → 0 as n → ∞.

Remark 2: Giraitis, Robinson and Samarov (1997) obtained an optimal rate of conver-

gence of semiparametric estimators of the memory parameter based on the local smoothness

of the spectral density at the origin. An equivalent rate is expected at any other frequency

ω as in Assumption A.1’. Under Assumption A.1’ the signal pus noise model in (6) satisfies

fy(ω ± λ) = Cλ−2d(1 + O(λα∗

)) as λ → 0+ (17)
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where α∗ = min(α, 2d). For these models the optimal rate of convergence as defined in

Giraitis et al. (1997) is n−r for r = α∗/(2α∗ + 1) and in view of Assumptions A.2 and A.7’

this rate is possibly achieved by the Gaussian semiparametric estimator, although a rigorous

proof is needed.

Remark 3: Statistical inference on the memory parameters of the signal can be readily

performed in this local Whittle quasi-maximum likelihood context. Tests of spectral symme-

try d1 = d2 against SCALM have been proposed by Arteche and Robinson (2000). Similar

tests on the relationship of memory parameters across different frequencies have been intro-

duced by Arteche (2002). The results in Theorem 2 and the Appendix suggest that these

techniques remain valid for long memory signal plus noise models for memory parameters in

the interval (0,0.5).

4 Finite samples and optimal bandwidth

The asymptotic properties of the Gaussian semiparametric estimator do not rely on the

magnitude of the variance of ξt. For example the asymptotic variance does not depend on

unknown parameters and is not affected by the magnitude of the variances of the signal and

noise. However the finite sample performance will highly depend on the relation between

these two variances; the spectral pole in vt is harder to detect the larger σ2
ξ is relative to the

variance of vt. This effect of the added noise can be minimized by an adequate choice of the

bandwidth m.

To analyse the finite sample performance of the Gaussian semiparametric estimate in a

signal plus noise model I generate series of the form

yt = vt + ξt (18)

for (1 − L)dvt = ut and ξt = log ε2
t , for εt and ut independent variables. I focus on standard

long memory at zero frequency because this is the empirically more relevant and popular

case. εt is standard normal in every case, corresponding to LMSV, and two different ut are

considered: ut = zt and φ(L)ut = zt with φ(L) = 1 − 0.6L and zt white noise normal with

zero mean and variances σ2
z = 1, 0.1 and 0.05. I have also tried t5 innovations which have

13



bounded moments only to the fourth order, but the results do not differ from those with

normal zt and are not included. The smaller variances are closer to the values that have been

empirically found when a LMSV model is fitted to many financial time series (see Jacquier

et al., 1994, Breidt et al,. 1998 and Pérez and Ruiz, 2001, among others). For each of these

processes three different d’s are considered, 0.15, 0.30 and 0.45. I generate vt using the Davies

and Harte (1987) algorithm for the independent normal ut and the truncated AR expansion

of vt in the other cases. Since LMSV models are usually applied to financial series which are

generally quite large I just consider a sample size of 8192 observations and get the Gaussian

semiparametric estimates of d using the observable data yt. The estimates are obtained by

a simple golden section search to the first derivative of R(d) over d ∈ [0.001, 0.499]. For each

situation I compare sample bias and mean square errors for 1000 replications. Following Henry

and Robinson (1996) I consider an optimal bandwidth mopt which minimizes an approximate

mean square error (mse) of d̃ and compare it with the bandwidth m∗ that minimizes a Monte

Carlo mse. The bandwidth mopt focuses on the local specification of the spectrum of vt

fv(λ) = Cλ−2d(1 + Eβλβ + o(λβ)).

The parametric long memory processes used in the literature comply β ≥ 1. For example

β = 2 in fractional ARIMA process and β = 1 for the parametric SCLM processes described

in Arteche and Robinson (1999). In particular the generated vt comply β = 2 and C = σ2
z/2π

for ut white noise and C = σ2
z/(2πφ(1)2) for the AR(1) ut. Thus as λ → 0+

fy(λ) = Cλ−2d

(
1 +

σ2
ξ

2πC
λ2d + O(λ2)

)
,

for 0 < d < 0.5 and according to Henry and Robinson (1996) the bandwidth which minimizes

an asymptotic approximation to the mse of the Gaussian semiparametric estimate is

mopt =

(
(2d + 1)4

16d3g2(2π)4d

) 1

1+4d

n
4d

1+4d ,

where g = σ2
ξ/2πC. In this expression it is clear the influence of the variance of ξt on

the performance of the estimator. The larger σ2
ξ with respect to C the more difficult is to

detect the long range dependence of the series so that only frequencies very close to the origin

contain a valuable information. The bandwidth mopt is infeasible since depends on unknowns.
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Estimation of nuisance parameters such as g is then required to get a plug-in version of mopt

as suggested by Henry and Robinson (1996). However the properties of these estimates are

not known and incorrect estimates distort significantly the estimation of mopt. Instead I

found more adequate to minimize the objective function over a sensible set of bandwidths so

that

m̂ = arg min
m

R(m, d̃(m)).

Figure 1 shows sample bias and mse for the nine situations considered corresponding to

ut = zt normal white noise and different d and σ2
z , for bandwidths m = 1, 2, ..., 150. The

bias is large and negative and tends to increase with m, being larger the smaller σ2
z is. The

mean square error also increases as σ2
z decreases and it gets minimal for a small number of

frequencies, smaller the lower σ2
z is. A similar behaviour can be observed in figure 2 which

shows bias and mse for the AR(1) ut for bandwidths m = 1, 2, ..., 600, although in this case

the positive bias caused by the AR(1) term tends to compensate the negative bias due to the

added noise. Table 1 shows the bandwidth m∗ that minimizes the Monte Carlo mse, mopt

(between round brackets) and the mean of the m̂ (between square brackets) for the different

scenarios. Table 2 shows the mean square errors obtained with those bandwidths. Under

white noise ut, m̂ gives a smaller mean square error than the infeasible mopt in six out of

nine cases and in five of them when ut is AR(1). The choice of the bandwidth m̂ tends to

work worse for the higher memory parameter. It need also to be mentioned that, although

m̂ has a good performance in mean, in many cases it gives a bandwidth quite far from the

mean value, so that it is not a very reliable method to get an optimal m, and it is preferable

to try different bandwidths.

I also implemented the variant of the log-periodogram regression of Geweke and Porter-

Hudak (1983) as proposed by Robinson (1995a) and Arteche and Robinson (2000) and justi-

fied for local LMSV processes by Deo and Hurvich (2001). The Monte Carlo results (available

upon request) for the series analysed in this section show higher mse´s in every situation and

no lower bias than the Gaussian semiparametric estimate.
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Figure 1: Bias and mse of Gaussian semiparametric estimates (ut white noise normal).
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Figure 2: Bias and mse of Gaussian semiparametric estimates (ut » AR(1))
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Table 1: Optimal bandwidths m∗ (mopt) [m̂]

ut ∼ N(0, σ2
z ) ut ∼ AR(1)

\ σ2
z

d \ 1 .1 .05 1 .1 .05

.15 68 (24) 30 (1) 29 (1) 599 (236) 48 (13) 33 (6)
[37] [13] [12] [434] [127] [56]

.3 93 (40) 13 (5) 11 (3) 599 (213) 55 (26) 42 (14)
[118] [41] [25] [573] [501] [411]

.45 93 (70) 23 (14) 20 (8) 582 (260) 64 (50) 45 (31)
[143] [123] [99] [594] [584] [565]

Table 2: MSE with optimal bandwidths m∗ (mopt) [m̂]

ut ∼ N(0, σ2
z ) ut ∼ AR(1)

\ σ2
z

d \ 1 .1 .05 1 .1 .05

.15 .010 (.012) .015 (.025) .015 (.024) .000 (.002) .011 (.018) .013 (.034)
[.011] [.018] [.019] [.001] [.012] [.014]

.3 .011 (.014) .044 (.052) .051 (.058) .000 (.002) .017 (.021) .027 (.034)
[.012] [.049] [.056] [.000] [.028] [.043]

.45 .006 (.006) .036 (.042) .058 (.066) .001 (.001) .008 (.009) .015 (.017)
[.007] [.063] [.090] [.001] [.032] [.058]

5 Persistence in the volatility of IBEX35

This section analyses the persistence of the volatility of the Spanish stock index Ibex35 com-

posed of the 35 more actively traded stocks. The frequency of the series is half-hourly and

covers the period 1-10-93 to 22-3-96. The returns are constructed by first differencing the log-

arithm of the transaction prices of the last transaction every 30 minutes, omitting incomplete

days. After this modification we get the series of intra-day returns xt, t = 1, ..., 7260. The

periodogram (in all the figures the periodogram is not evaluated at the origin so that global

demeaning is not considered) of the series in Figure 3 shows no distinctive pattern which is in

accord with the martingale difference hypothesis imposed by market efficiency. However the

periodogram of yt = log(xt − x̄)2,where x̄ =
∑

xt/7260, in Figure 4 exhibits marked peaks at

the origin and seasonal frequencies which reflect long run persistence and a strong seasonal

behaviour. The strong seasonality can also be seen in the inverted J shape of the sample

means of the 12 half-hourly intraday series, sa =
∑604

i=0 ya+12i/605 for a = 1, ..., 12, in Table

3.
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Table 3: Intra-day sample means za

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

-2.15 -4.51 -5.21 -5.28 -5.59 -5.70 -5.68 -5.11 -5.17 -4.70 -4.07 -4.01

Since in the considered period the Spanish market opened at 11:00 and closed at 17:00

there are 12 observations per day so that the seasonal frequencies are ωh = πh/6, h =

1, 2, ..., 6. The peaks in the periodogram are exactly at those and no neighbouring frequencies

which suggests deterministic seasonality in the form of seasonal dummies (Arteche, 2002).

This first impression is corroborated by the periodogram of the deseasonalized -by regression

on seasonal dummies- series in Figure 5 which shows no evidence of seasonality.

However, it is remarkable the power concentration around zero frequency, suggesting the

possibility of standard long memory. Figure 6 shows Gaussian semiparametric estimates at

zero frequency for m = 6, ..., 600. The higher values are obtained for smaller m. The low

estimates obtained for higher bandwidths could be explained by the negative bias produced

by an added noise as in the LMSV models.

6 Conclusion and extensions

The analysis of long memory in higher than first moments is gaining great importance es-

pecially in financial time series where often the raw series is not autocorrelated but there

are some proxies of its volatility, such as squares, which show strong persistence. This paper

adopts a local specification of the long memory in stochastic volatility model of Harvey (1998)

and Breidt et al. (1998) and justify the estimation of the volatility memory parameter by

means of the Gaussian semiparametric or local Whittle estimator. In fact, the consistency and

asymptotic normality of the Gaussian semiparametric estimate is proved in a more general

signal plus noise model. The conditions needed for consistency and asymptotic normality

are milder than those required in Deo and Hurvich (2001) for the estimator based on the

log-periodogram regression. For example Gaussianity is not necessary which is a convenient

relaxation taking into account the characteristics of financial time series where these models
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Figure 3: Periodogram of xt (Ibex35 returns)
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Figure 4: Periodogram of yt = log(xt ¡ x)2
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Figure 5: Periodogram of deseasonalized yt:
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Figure 6: Gaussian semiparametric estimates at zero.
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are more adequate. Moreover the Gaussian semiparametric estimate is more efficient asymp-

totically -with a lower asymptotic variance- and in finite samples -with a lower Monte Carlo

mean square error-.

The added noise has a distorting effect on the estimates of the memory parameter of the

signal. A suitable choice of the bandwidth is important to lessen its impact. A relevant topic

for further research is the proposal of reliable data-driven approximations to an optimal

bandwidth. Plug-in methods as those proposed by Henry and Robinson (1996) seem not

adequate for two main reasons. First the infeasible mopt is obtained by a heuristic asymptotic

approximation to the true mse and it differs significantly from the bandwidth that minimizes

a Monte Carlo mse. Secondly mopt depends on d and nuisance parameters C and σ2
ξ and it is

not clear how to obtain good estimates of these parameters. I have proposed a simple method

based on a direct minimizing of the objective function. Although it works quite well in mean,

extreme values are quite frequent and further research in this topic seems worthwhile. A

related topic of interest is the reduction of the high bias of the estimates of the memory

parameter in signal plus noise models.

Further research can also focus on multivariate extensions of LMSV models and its esti-

mation and the analysis of common long-range components and cointegrating relationships

between the volatility of different series.

Appendix: Technical Details

Assumptions for consistency:

A.1’: For α ∈ (0, 2],

fv(ω ± λ) = Cλ−2d(1 + O(λα)) as λ → 0+,

where C ∈ (0,∞), 0 < d < 0.5.

A.2’: In a neighbourhood (−δ, 0) ∪ (0, δ) of ω fv(λ) is differentiable and, as λ → 0+,
∣∣∣∣

d

dλ
fv(ω ± λ)

∣∣∣∣ = O(λ−1−2d)

A.3’: vt−Ev1 =
∑∞

j=0 αjεt−j and
∑∞

j=0 α2
j < ∞ where E[εt|Ft−1] = 0, E[ε2

t |Ft−1] = 1 for

t = 0,±1,±2, ..., Ft is the σ-field generated by εs, s ≤ t, and there exists a random variable

ε such that Eε2 < ∞ and for all η > 0 and some κ < 1, P (|εt| > η) ≤ κP (|ε| > η).
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A.4’: As n → ∞,

m

n
+

1

m
→ 0.

Assumptions for asymptotic normality:

A.5’: In a neighbourhood (−δ, 0) ∪ (0, δ) of ω, α(λ) =
∑∞

k=0 αke
ikλ is differentiable and

d

dλ
α(ωi ± λ) = O

( |α(ω ± λ)|
λ

)
as λ → 0+.

A.6’: Assumption A.3’ holds and

E(ε3
t |Ft−1) = µ3 and E(ε4

t |Ft−1) = µ4, t = 0,±1, ...,

for finite constants µ3 and µ4.

A.7’: As n → ∞
1

m
+

m1+2α(log m)2

n2α
→ 0.

Proof of Theorem 1 : The proof of the consistency is based on the proof of Theorem 1 in

Arteche (2000) and Robinson (1995b) noting that

Iyy(λ) = Ivv(λ) + Iξξ(λ) + Ivξ(λ) + Iξv(λ) (A.1)

where

Irp(λ) = Wr(λ)Wp(λ) =
1

2πn

n∑

t=1

n∑

s=1

rtps exp(iλ(s − t)), r, p = v, ξ,

are periodograms and cross-periodograms between vt and ξt. Thus the only difference in the

proof of the consistency with respect to Theorems 1 in Robinson (1995b) and Arteche (2000)

comes out from the presence of Iξξ(λ) + Ivξ(λ) + Iξv(λ) and we have only to prove that the

terms involving Iξξ(λ), Ivξ(λ) and Iξv(λ) are asymptotically negligible. Note that

Iyy(ω + λj)

gj
− 1 =

Ivv(ω + λj)

gj
− 1 +

Iξξ(ω + λj)

gj
+

Ivξ(ω + λj)

gj
+

Iξv(ω + λj)

gj

where gj = C|λj|−2d. By Theorem 10.3.2 in Brockwell and Davis (1991)

Iξξ(ω + λj) = Op(1) (A.2)
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under assumption A.1, and the terms involving Iξξ(ω +λj)/gj are all op(1). Since |Ivξ(λ)|2 =

Ivv(λ)Iξξ(λ) we get from Theorem 5 in Arteche and Robinson (2000)

Ivξ(ω + λj)

gj
= Op

([ |j|
n

]d
)

(A.3)

and the terms involving Ivξ(ω + λj)/gj and Iξv(ω + λj)/gj are Op((m/n)d) = op(1) for

d > 0.The consistency thus follows directly from the corresponding theorems in Robinson

(1995b) and Arteche (2000).

Proof of Theorem 2 : The proof of the asymptotic normality follows from Theorem 2 in

Robinson (1995b) and Theorem 2 in Arteche (2000). As n → ∞,

p lim
d2R(d̄)

dd2
= 4A.4 (19)

√
mδω

dR(d)

dd
=

2√
δωm

′∑
qj

Iyy(ω + λj)

gj
(1 + op(1))A.5 (20)

=
2√
δωm

′∑
qj

Ivv(ω + λj)

gj
(1 + op(1))A.6 (21)

d→ N(0, 4)A.7 (22)

where |d̄ − d| ≤ |d̃ − d| and qj = log |j| − (δωm)−1
∑′ log |j|. The result in (A.4) comes from

similar operations to those in the proof of the consistency. The equality in (A.5) and the

convergence in (A.7) come directly from Robinson (1995b), formula (4.11), and formulae (3.9)

and (3.10) in Arteche (2000). Finally the equality in (A.6) comes from (A.1) and (A.2) so

that

1√
δωm

′∑
qj

Iξξ(ω + λj)

gj
= Op

(
log m

m
1

2
+2d

n2d

)
= op(1) (A.8)

under assumption A.2, and the fact that

1√
δωm

′∑
qj

Ivξ(ω + λj)

gj
= op(1). (A.9)

To prove (A.9) it is sufficient to show that

E

[
1√
δωm

′∑
qj

Ivξ(ω + λj)

gj

]2

= o(1) (A.10)
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which implies (A.9) since EIvξ(λ) = 0 for all λ. The left hand side of (A.10) is

1

δωm

′∑

j

qj

gj

′∑

k

qk

gk
E(WvjW ξjWξkW vk) (A.11)

where

Wvj =
1√
2πn

n∑

t=1

vt exp(−it(ω + λj))

W vj is its complex conjugate and the rest of discrete Fourier transforms are defined similarly.

By independence of v and ξ(A.11) is equal to

1

δωm

′∑

j

q2
j

gj
E

(
Ivv(ω + λj)

gj

)
EIξξ(ω + λj)A.12 (23)

+
1

δωm

′∑

j

′∑

k 6=j

qj

gj

qk

gk
E(WvjW vk)E(W ξjWξk)A.13 (24)

Now (A.12) is

O



[m

n

]2d 1

δωm

′∑

j

q2
j

[
1 +

log |j|
|j| +

( |j|
n

)α]



= O

([m
n

]2d
log m

)
= o(1)

under assumption A.2, because of (A.2), Theorem 5 in Arteche and Robinson (2000) and

1

δωm

′∑

j

q2
j = 1 + O

(
log2 m

m

)
.

Regarding (A.13), we have

E(W ξjWξk) =
σ2

ξ

2πn

n∑

t=1

exp(it(λj − λk)) = 0 for k 6= j

if ξt is white noise and, E(W ξjWξk) = o(1) for j 6= k under assumption A.1 so that (A.13) is

op


 1

m

′∑

j

′∑

k<j

qj√
gj

qk√
gk

log |j|
|k|


 = op


(log m)3

mn2d

′∑

j

|j|d
′∑

k<j

|k|d−1


 = op

(
(log m)3

[m
n

]2d
)

which is op(1) under assumption A.2 and because of Theorem 5 in Arteche and Robinson

(2000). Thus (A.9) holds and the proof is completed.

If ξt were LM with spectral density function satisfying

fξ(ω ± λ) = Cζλ
−2c(1 + O(λβ)) and

∣∣∣∣
d

dλ
fξ(ω ± λ)

∣∣∣∣ = O(λ−1−2c) as λ → 0+
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for β ∈ (0, 2] and 0 < c < d we get from Theorem 5 in Arteche and Robison that

E

∣∣∣∣
Iξξ(ω + λj)

gj

∣∣∣∣ ≤ cte

( |j|
n

)2(d−c)

and the right hand side of (A.8) is in this case

Op

(
log m

m
1

2
+2(d−c)

n2(d−c)

)
.

Similarly we get by Theorem 5 in Arteche and Robinson (2000)

1

δωm

′∑

j

q2
j

gj
E

(
Ivv(ω + λj)

gj

)
EIξξ(ω + λj) = O

([m
n

]2(d−c)
log2 m

)

1

δωm

′∑

j

′∑

k 6=j

qj

gj

qk

gk
E(WvjW vk)E(W ξjWξk) = O

([m
n

]2(d−c) log4 m

m

)
.
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