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a b s t r a c t 

Background and Objective: Accurate segmentation of electron microscopy (EM) volumes of the brain is 

essential to characterize neuronal structures at a cell or organelle level. While supervised deep learning 

methods have led to major breakthroughs in that direction during the past years, they usually require 

large amounts of annotated data to be trained, and perform poorly on other data acquired under simi- 

lar experimental and imaging conditions. This is a problem known as domain adaptation, since models 

that learned from a sample distribution (or source domain) struggle to maintain their performance on 

samples extracted from a different distribution or target domain. In this work, we address the complex 

case of deep learning based domain adaptation for mitochondria segmentation across EM datasets from 

different tissues and species. Methods: We present three unsupervised domain adaptation strategies to 

improve mitochondria segmentation in the target domain based on (1) state-of-the-art style transfer be- 

tween images of both domains; (2) self-supervised learning to pre-train a model using unlabeled source 

and target images, and then fine-tune it only with the source labels; and (3) multi-task neural network 

architectures trained end-to-end with both labeled and unlabeled images. Additionally, to ensure good 

generalization in our models, we propose a new training stopping criterion based on morphological pri- 

ors obtained exclusively in the source domain. The code and its documentation are publicly available at 

https://github.com/danifranco/EM _ domain _ adaptation . Results: We carried out all possible cross-dataset 

experiments using three publicly available EM datasets. We evaluated our proposed strategies and those 

of others based on the mitochondria semantic labels predicted on the target datasets. Conclusions: The 

methods introduced here outperform the baseline methods and compare favorably to the state of the art. 

In the absence of validation labels, monitoring our proposed morphology-based metric is an intuitive and 

effective way to stop the training process and select in average optimal models. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Supervised learning has achieved great success in computer vi- 

ion leading to the development of robust algorithms that have 

een successfully applied in diverse research areas. The generaliza- 

ion capability and reliability of these algorithms are based on the 
Abbreviations: DA, Domain adaptation; DL, Deep learning; SSL, Self-supervised 

earning; EM, Electron microscopy. 
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ssumption that the data used to train them and the data used to 

est them are drawn from the same distribution or domain . Thus, 

hen the training data is not representative enough of the tar- 

et population, there is a drop in the algorithm’s performance [1] . 

his performance gap is highly significant when the data acquisi- 

ion changes (i.e., protocol, instrument) even for a similar target 

omain. In the particular case of biomedical imaging, data distri- 

utions are highly biased due to the variety of acquisition tech- 

iques and protocols. Therefore, a significant number of annota- 

ions is usually required to ensure a good representation of the 

opulation. 
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Nevertheless, collecting and annotating these datasets is ex- 

remely expensive in both time and human resources [2] . For that 

eason, the field of domain adaptation has emerged to tackle both 

ssues: the reduction of the domain gap difference and the gener- 

tion of annotated data. The purpose of domain adaptation is to 

earn from labeled data in a source domain to perform well on a 

ifferent, but related target domain without any annotation [3] . 

Aiming to reduce source and target domain dissimilarity, many 

ethods have been proposed to create synthetic source images, 

nd therefore, increase the heterogeneity of the data [4] . Some of 

hese approaches generate new images from random noise with- 

ut any other conditional information for Computed Tomogra- 

hy (CT) data [5,6] , Magnetic Resonance (MR) [6–8] or chest X- 

ays [9,10] . Other methods of synthetic data generation aim to 

reate new training samples using target domain samples and la- 

eled source domain knowledge [3] . A large amount of this cross- 

odality synthesis work has been proposed for adapting MR data 

o CT [11,12] , CT to MR [13,14] and MR to Positron Emission To-

ography (PET) [15,16] . 

Additionally, image generation can be constrained by the ap- 

earance of the anatomical structures and segmentation maps. 

any approaches have been presented in the literature that gen- 

rate image-mask pairs, for instance, implementing domain adap- 

ation from CT to MR [17] , generating synthetic samples to solve a 

egmentation task [18–21] or for one-shot segmentation [22–24] . 

In the particular case of Electron Microscopy (EM) volumes of 

he brain, its accurate segmentation is essential to characterize the 

eural structures present in the volume. Several recent works have 

een presented in the literature that use domain adaptation to seg- 

ent neuronal structures [25–27] , vesicles [28] , mitochondria [29–

2] and whole-cell organelles [33] . For the specific task of mito- 

hondria segmentation, domain adaptation methods have been in- 

roduced to handle the limited availability of labeled data [34–36] . 

In this work, we address the complex case of domain adapta- 

ion for mitochondria segmentation across EM datasets from differ- 

nt tissues and species. We assume the absence of target domain 

nnotations to simulate a real scenario. More specifically, we com- 

are three deep learning based strategies to improve mitochondria 

egmentation in the target dataset based on 1) style transfer be- 

ween domains, 2) self-supervised learning, and 3) multi-task neu- 

al network architectures. To demonstrate the potential of these 

hree strategies, we employed a cross-domain thorough study be- 

ween three publicly available datasets for mitochondria segmen- 

ation. The same initial conditions and basic architectural design 

hoices are maintained across all strategies, which are also com- 

ared with the same supervised baseline methods. 

In brief, our main contributions are as follows: 

• We have presented state-of-the-art style transfer as a solution 

for domain adaptation for mitochondria segmentation in EM 

volumes. 

• We introduce a self-supervised approach based in a pre- 

training step using both datasets without annotations and a fi- 

nal fine-tuning with only source annotations. 

• We have performed a cross-dataset analysis of state-of-the-art 

deep multi-task networks for EM datasets in the context of do- 

main adaptation and propose a novel architecture based on one 

of them. 

• As a stopping criterion, we propose a new metric to ensure a 

good generalization towards the target domain based on the 

morphology of the resulting mitochondria segmentation. 

. Related work 

The work presented here focuses on domain adaptation and 

tyle transfer methods for EM image analysis. By domain and style, 
2

e refer to the intrinsic feature space and characteristics of a par- 

icular dataset and the distribution from where it is drawn. Do- 

ain adaptation can be seen as a particular type of transfer learn- 

ng where instead of trying to transfer the knowledge from task A 

n domain A to task B in domain B, the tasks are kept the same

hile the domains are different. On the other hand, style trans- 

er is mainly focused on adapting the domain from one dataset to 

nother. 

Existing domain adaptation methods can be divided depend- 

ng on the label availability during the training process. Thus, 

hey can be supervised, if both source and target domain la- 

els are available; semi-supervised, if source labels and some 

arget labels are available; and unsupervised, if only source la- 

els are available while target data is entirely unlabeled [37] . 

oreover, methods can also be categorized based on the learn- 

ng model used, i.e., either shallow (usually relying on prede- 

ned image features and traditional machine learning models) 

r deep (if they use deep learning architectures). In this paper, 

e focus on the strategy known as deep unsupervised domain 

daptation. 

One particular way of addressing this problem is by style trans- 

er. For instance, the Cycle Generative Adversarial Networks (Cy- 

leGAN) [38] approach is becoming an effective method in medical 

mage synthesis. Many variations have been presented addressing 

ross-domain style transfer problems targeting different sources 

nd target types of data, such as from MR to CT [17,39–41] , trans-

erring the stain style for histopathological images [42–44] or cre- 

ting target-style data pairs, image and mask, without using any 

nnotation [45–47] . 

More recent approaches to address style transfer exploit con- 

rastive learning [48] , where models are trained without labels to 

earn which data samples are similar or different. Similarity is de- 

ned in an unsupervised way, by using different data augmen- 

ation techniques to create similar examples to the original im- 

ge and then maximizing a similarity function (e.g., mutual infor- 

ation) during training. Following this idea, Contrastive Unpaired 

ranslation (CUT) [49] compares unpaired image patches and as- 

ociates similar patches to each other while disassociating them 

rom others. This way, the model learns to pay attention to the 

ommonalities between domains. For instance, a patch containing 

 mitochondrion will have a high similarity with a patch in a dif- 

erent tissue containing mitochondria, or at least a higher value 

han if it is compared with a patch showing other organelles. Thus, 

 generator learns to change the style of input images to match a 

arget style. 

Another way to address this domain problem is by using self- 

upervised learning (SSL), which consists in establishing a pretext 

ask using unlabeled related images that do not require to be an- 

otated by an expert to initially train the model. Then, the model 

s used as the starting training point for the downstream (segmen- 

ation) task. The main advantage is that the pretext examples (or 

seudo-labels) are automatically generated from existing raw data, 

ot being conditioned to the number of available expert-reviewed 

mages. Therefore, during the pre-training step, models can lever- 

ge from all available images to learn useful feature representa- 

ions. 

In the computer vision literature, related to natural images, the 

sefulness of this self-supervised pre-training step has been widely 

xplored for several tasks. Namely, the coloring of a grayscale im- 

ge [48,50,51] , the restoration of a distorted or deteriorated im- 

ge [52–55] , the prediction of the transformation performed in an 

mage [56] or even, the re-ordering of pieces or frames of im- 

ges [57,58] and videos [59] . However, there is hardly any work 

pplying this methodology to microscopy images. The published 

orks mostly focus on reducing the number of annotated im- 

ges required for training thanks to a good network initializa- 
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Fig. 1. Architecture of our Attention U-Net [32] used for mitochondria semantic segmentation. 
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ion achieved by pre-training with denoising [60–63] , jigsaw solv- 

ng [64,65] and image restoration [66] . 

Finally, another approach is based on multi-task deep neural 

etwork architectures that receive both source and target sam- 

les as input. In this case, apart from solving the downstream task 

or the source (labeled) data, the model aims to exploit the fea- 

ures of the target domain to learn the feature shift between do- 

ains. Among these types of unsupervised and semi-supervised 

omain adaptation methods, we find the Y-Net [35] , used for the 

egmentation of EM images. Its architecture consists of an encoder- 

ecoder such as a U-Net [67] , coupled with a second decoder in an

utoencoder strategy. While one decoder is trained for segmenta- 

ion, using the images with available labels, the second decoder is 

rained to reconstruct all available images, including the unlabeled 

nes, in an unsupervised manner. Since both decoders share the 

ame encoder, the features learned by the autoencoder are used for 

egmentation too. Consequently, the model works with unlabeled 

target domain) data features. Following this idea, in combination 

ith adversarial losses, similar models such as Domain Adaptive 

ulti-Task Learning network (DAMT-Net) [36] have been proposed. 

his network builds on top of the Y-Net architecture and adds two 

iscriminators during training, following a Generative Adversarial 

etwork (GAN) approach. The first discriminator uses the predicted 

egmentation, while the second discriminator uses the final feature 

aps of the network. 

. Methods 

To address the problem of domain adaptation between differ- 

nt EM datasets, we present different approaches that reduce the 

omain shift. Firstly, a cross-domain baseline is introduced using 

table state-of-the-art models [32] trained only on source domains. 

ext, a simple histogram matching between domains is added as 

re-processing prior to the use of the baseline models. Finally, 

ore sophisticated domain adaptation approaches are presented 

ased on (1) a modern style-transfer technique, (2) self-supervised 

retext tasks, and (3) state-of-the-art domain adaptation multi- 

ask deep neural networks. 

.1. Cross-dataset baseline 

As a reference method to compare our results with, we use our 

ecent stable 2D Attention U-Net model [32] trained on the labeled 

ource domain and tested directly on the target domain (without 

ny adaptation method). This network is a modified version of the 

-Net [67] including attention gates [68] in the skip connections 

hat has proven to produce consistently robust results in the seg- 

entation of mitochondria on EM volumes [32] . Its architecture is 

hown in Fig. 1 . 
3

.2. Histogram matching 

A straightforward approach to make the images of one domain 

ook closer to the images of another domain is histogram match- 

ng. Most commonly, this technique is applied to one source image 

o that its histogram matches the histogram of a target image [69] . 

ere instead, we use as target histogram the mean histogram of 

he target domain images, so the histogram of all source images 

re transformed to match it. 

Some images of our datasets present zero-padding surrounding 

he tissue, which provokes an artificial high pick at the zero value 

n their histograms. Since we are only interested in matching the 

istogram of the tissue part of the images, we modified the ac- 

ual number of zeros with linear regression using the first bins of 

he original histogram. We set the value to zero in the absence of 

nitial values or when predicting a negative number. This process 

s done for both target and source histograms. Some example im- 

ges processed with this histogram matching method can be seen 

n Fig. 2 . 

.3. Style transfer approach 

As described in the previous section, domain adaptation can be 

onsidered a style-transfer problem. In particular, we were moti- 

ated by the success of the recent Contrastive Unpaired Translation 

CUT) method [49] for the problem of unpaired image-to-image 

ranslation. Therefore, we tested it on our EM datasets for mito- 

hondria segmentation and re-analyzed the cross-domain perfor- 

ance of our supervised baseline networks on the translated tar- 

et datasets. 

In order to learn the translation between source and target 

mages, this method randomly crops the images to patches of 

12 × 512 pixels and maximizes the mutual information between 

he input and output patches using a contrastive learning frame- 

ork. This way, corresponding patches (positives) are mapped to- 

ether in feature space and far from other patches (negatives). Re- 

ults of this method are shown in Fig. 3 . All cross-dataset styliza- 

ion results can be found in Section S1. 

Following the recommendations of the original paper, we used 

he default hyperparameter setting as provided in their public im- 

lementation, which corresponds with training the method for 400 

pochs, with Adam as optimizer and a learning rate of 2 e − 4 . 

.4. Self-supervised approach 

As an alternative approach, we propose a self-supervised frame- 

ork where we leverage from the use of two sequential training 

teps: (1) an initial generative self-supervised step including both 
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Fig. 2. Examples of histogram matching between source and target domain images. When using a dataset such as Kasthuri++ containing padding (non-tissue) pixels, regular 

histogram matching methods fail and need to be corrected to focus only on tissue intensities. From left to right: original full-size images from the Kasthuri++ and VNC 

datasets; four zoomed areas of both images (in red, blue, yellow and green), with their corresponding (Original) pixel values, followed by their histogram-matched versions 

using the full histogram (Regular hist. matching) and our proposed method to predict the zero values and avoid using padding pixels (Proposed hist. matching). For the red 

and blue examples, Kasthuri++ is the source domain and VNC is the target domain, while the opposite occurs for the yellow and green examples. 

Fig. 3. Stylization made by the CUT [49] method using Lucchi++ images as source and the VNC dataset as reference (target) style. From left to right: Original Lucchi++ 

sample; its stylized result with the appearance of VNC; and a VNC image sample (green box). Blue and red boxes show zoomed areas from the source and stylized images. 
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source and target) datasets without annotations, and (2) a fully- 

upervised fine-tuning step using only the source images and their 

abels. A summary of our self-supervised workflow is depicted in 

ig. 4 . 

Super-resolution pretext task . In this pretext task, our Atten- 

ion U-Net is trained to enhance the resolution of images from 

oth the source and target datasets. This first step aims to reach a 

ood starting point to solve the downstream task (i.e., supervised 

itochondria segmentation). The input images are synthetically 

enerated low-resolution images, while the ground truth is formed 

y the (high-resolution) original ones. To generate the synthetic in- 

ut images, the original images are distorted with normally dis- 

ributed Gaussian noise with μ = 0 and σ = 0 . 1 as a fraction of

he dynamic range of the image. Next, the images are downsam- 

led by a factor of two in both axes and then upsampled by the 

ame factor to simulate a process where the original resolution is 

orsened. For both downsampling and upsampling, bilinear inter- 

olation is used. 

Source supervised training . Once the model has been pre- 

rained, the encoder gets frozen. Then, the rest of the network 

bottleneck and decoder) are fine-tuned with the available source 

mage annotations to perform semantic segmentation. The source 

mages are pre-processed so their histogram matches that of the 

arget domain. The idea behind freezing the encoder is to enforce 

a

4 
he model to remember features learnt during the previous super- 

esolution step from the target dataset. Thus, allowing for a better 

eneralization and performance in the unlabeled target dataset. 

It is worth noting that during the super-resolution step, all 

vailable source and target images are used to train the model. 

hat is because the input-label pairs are automatically generated 

rom the raw data but no annotations are used. In the second step, 

nly the training subset from the source dataset and its annota- 

ions are used to fine-tune the model. 

During the pre-training step, the network is run for 200 epochs, 

ollowing a one-cycle learning rate policy [70] with a maximum 

earning rate of 5 e − 4 , and Adam optimizer. Next, the fine-tuning 

tep is carried out for 60 epochs, using as well a one-cycle learn- 

ng rate scheduler with a maximum learning rate of 1 e − 4 and 

dam optimizer. In both cases, the optimal batch size was found 

o be 1. All training images were randomly cropped to patches of 

56 × 256 pixels, from which 10% was used for validation. A more 

etailed description of the hyperparameters can be found in Table 

3.1 as well as all combinations tested. 

.5. Multi-task neural networks 

Following the idea behind Y-Net [35] , we have built a similar 

rchitecture taking as a base model the previously mentioned At- 
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Fig. 4. Diagram of our self-supervised workflow for domain adaptation. From top to bottom: a) The source dataset is adjusted to the target image histogram and cropped into 

patches of 256 × 256 pixels; b) crops from both datasets are used to generate low-resolution samples by undersampling them and adding Gaussian noise; c) our Attention 

U-Net is pre-trained by learning to super-resolve the generated patches to their original versions; d) the encoder of the model is frozen and the rest of the network is 

fine-tuned for the mitochondria segmentation task using only source training patches and their corresponding binary masks; e) the model is evaluated on the target test 

dataset. 
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ention U-Net [32] . We refer to this network as Attention Y-Net. 

n short, the architecture consists of the classical encoder-decoder 

etup, where a new second decoder is placed. We can see the ar- 

hitecture as the combination of the Attention U-Net and an au- 

oencoder, where both parts share the same encoder. The architec- 

ure is illustrated in Fig. 5 . 

The network is trained using a loss function ( L ) made of two

erms: a segmentation term based on the binary cross-entropy be- 

ween the predicted and ground truth masks ( L BCE ), and a recon- 

truction term based on the mean squared error between the pre- 

icted and the original grayscale images ( L MSE ), as given by 

 = αL MSE + (1 − α) L BCE , (1) 

where the weight α is a numeric value between 0 and 1. For those 
5 
mages without available labels (binary masks), the L BCE value will 

e 0. 

In its original work, the training of the Y-Net [35] was proposed 

n two sequential steps. First, the network is trained unsupervised 

o perform only reconstruction ( α = 1 ). Then, the model is fine- 

uned to perform segmentation with the available labels ( α = 0 ). 

owever, we have experienced instability in this step. Namely, 

uite often, the predicted reconstruction of the network was a flat 

rey-value image. Therefore, we propose a new additional step be- 

ore the unsupervised pre-training, which combines both tasks us- 

ng all the available data. We set α = 0 . 98 , which was experimen-

ally found to help balancing both loss terms. 

With our additional pre-training step, the network consistently 

utputs improved results, out of the local minimum achieved with 
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Fig. 5. Architecture of the proposed Attention Y-Net used for domain adaptation. The architecture is formed by one encoder and two decoders: one for image reconstruction 

(without skip connections) and one for segmentation (with skip connections and attention gates). 
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he flat grey-value image. Next, we freeze the network encoder 

blue blocks in Fig. 5 ). Otherwise, the network forgets the tar- 

et domain features in the next step. Experimentally, we observed 

hat the network performs better if we let the bottleneck and the 

wo decoders unfrozen. Remarkably, as observed with the self- 

upervised approach, the performance of the whole process was 

reatly enhanced thanks to the use of histogram matching after 

he first step. 

The first step was carried out for 50 epochs. We used an initial 

earning rate of 1 e − 3 that got reduced when reaching plateaus, 

tochastic gradient descent (SGD) as optimizer and a patience of 7 

pochs over the monitored validation loss. In the second training 

tep, we train for 40 epochs (with a patience of 6). We use a learn-

ng rate of 2 e − 4 , and a “reduce on plateau” scheduler once again,

ut this time with Adam optimizer. Finally, in the last training step, 

e train for 100 epochs (the different stop criteria will be anal- 

sed later). We follow a one-cycle learning rate policy [70] with a 

aximum learning rate of 2 e − 4 , and use Adam as optimizer. For

ll training steps, the optimal batch size was found to be 1. The 

nput to the model consists of 10 0 0 random cropped patches of 

56 × 256 pixels, from which 10% is used for validation. This train- 

ng configuration was empirically found. A more detailed descrip- 

ion of the hyperparameters as well as all combinations tested can 

e found in Table S3.2. 

. Experimental results 

.1. EM Datasets 

All the experiments performed in this work are based on the 

ollowing publicly available datasets: 

EPFL Hippocampus or Lucchi dataset [71] . The original volume 

epresents a 5 × 5 × 5 (μm ) 3 section of the CA1 hippocampus re- 

ion of a mouse brain, with an isotropic resolution of 5 × 5 × 5 nm

er voxel. The volume of 2048 × 1536 × 1065 voxels was acquired 

sing scanning electron microscopes (SEM), specifically with fo- 

used ion beam scanning electron microscopy (FIB-SEM). The mi- 

ochondria of two sub-volumes formed by 165 slices of 1024 ×
68 pixels were manually labeled by experts, and are used as the 

fficial training and test partitions. In particular, we used a more 

ecent version of the labels [30] after two neuroscientists and a 

enior biologist re-labeled mitochondria by fixing misclassifications 

nd boundary inconsistencies. 
6 
Kasthuri++ dataset [30] . This is a re-labeling of the dataset 

y Kasthuri et al. [72] . The volume corresponds to a part of the 

omatosensory cortex of an adult mouse and was acquired us- 

ng scanning electron microscopes (SEM) as Lucchi++, but specif- 

cally with serial section electron microscopy (ssEM). The train and 

est volume dimensions are 1463 × 1613 × 85 voxels and 1334 ×
553 × 75 voxels, respectively, with an anisotropic resolution of 

 × 3 × 30 nm per voxel. 

VNC dataset [73] . This dataset represents a 4 . 7 × 4 . 7 × 1 (μm ) 3 

erial section transmission electron microscopy (ssTEM), acquired 

sing transmission electron microscopy (TEM), of the Drosophila 

elanogaster third instar larva ventral nerve cord, with an 

sotropic resolution of 4 . 6 × 4 . 6 × 45 − 50 nm per voxel. Two vol-

mes of 1024 × 1024 × 20 voxels were acquired, but only one of 

hem was labeled. For that reason and following common practice, 

e use only the later and split the data volume along the x axis 

nto two subsets with equal size ( 20 × 512 × 1024 voxels) that con- 

titute our training and test partitions. 

For fair comparison with other published work, only the train- 

ng set labels of the source datasets are used during the supervised 

r fine-tuning steps of our approaches, while the quantitative eval- 

ation is performed only on the test set of the target datasets. 

.2. Evaluation metrics 

Since our downstream task is semantic segmentation, we eval- 

ate all methods using the Jaccard index of the positive class or 

oreground intersection over union ( IoU F ), defined as 

oU F = 

T P 

T P + F P + F N 

(2) 

here TP are the true positives, FP the false positives and FN the 

alse negatives. As a convention, the positive class is foreground 

nd the negative class, background. This way, IoU F values range 

rom 0 to 1, where 0 represents no overlap at all between the 

round truth and the predicted mitochondria masks, and 1 means 

 perfect overlap. 

.3. Stopping criterion 

An intrinsic issue of unsupervised domain adaptation methods 

s blindly deciding when to stop their respective optimization pro- 

esses since no labels are available from the target domain sam- 

les to guide us in such optimization. This problem is common to 
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Fig. 6. Example of connection between average solidity S and IoU F values: (a) Average value of S (shaded area represents its standard deviation) as function of the epochs 

run for the style-transfer method. The source S value is depicted with a dashed line. (b) Average IoU F value (shaded area represents its standard deviation) as function of the 

same epochs. Values are calculated over the output of ten style-transfer model executions using Kasthuri++ and VNC as source and target domains, respectively. 

Table 1 

Cross-dataset domain adaptation methods evaluation. Results are shown based on the mean IoU F value ( ± standard deviation) obtained in the test partition of the target 

datasets under the three possible stopping criteria: (1) performance on the validation partition of the source dataset, (2) maximum number of epochs (experimentally 

found for each method), and (3) the proposed average solidity metric. The best results of each column are shown in bold. CLAHE and HM refer to the use of contrast 

limited adaptive histogram equalization [74] and histogram matching as pre-processing methods, respectively. 

Source: Lucchi + Source: Kasthuri + Source: VNC 

Stop criteria Method Kasthuri + VNC Lucchi + VNC Lucchi + Kasthuri + 

Source val set Baseline [32] 0.017 ±0.008 0.009 ±0.010 0.000 ±0.000 0.095 ±0.013 0.351 ±0.101 0.288 ±0.050 

Baseline [32] + CLAHE 0.620 ±0.051 0.249 ±0.021 0.433 ±0.085 0.121 ±0.045 0.586 ±0.016 0.534 ±0.065 

Baseline [32] + HM (ours) 0.679 ±0.043 0.265 ±0.028 0.268 ±0.048 0.111 ±0.011 0.531 ±0.019 0.454 ±0.035 

Attention Y-Net + HM (ours) 0.668 ±0.020 0.402 ±0.040 0.704 ±0.045 0.252 ±0.048 0.536 ±0.022 0.389 ±0.041 

DAMT-Net [36] 0.279 ±0.078 0.469 ±0.054 0.569 ±0.088 0.324 ±0.038 0.491 ±0.102 0.162 ±0.042 

DAMT-Net [36] + HM 0.226 ±0.037 0.489 ±0.040 0.438 ±0.094 0.274 ±0.080 0.371 ±0.123 0.170 ±0.049 

DAMT-Net [36] + CLAHE 0.299 ±0.099 0.497 ±0.029 0.547 ±0.088 0.346 ±0.047 0.545 ±0.039 0.221 ±0.085 

Last epoch Style transfer (ours, [49] ) 0.515 ±0.011 0.586 ±0.009 0.569 ±0.003 0.551 ±0.006 0.638 ±0.014 0.654 ±0.026 

SSL + HM (ours) 0.568 ±0.165 0.327 ±0.135 0.511 ±0.145 0.138 ±0.043 0.582 ±0.237 0.237 ±0.191 

SSL + CLAHE (ours) 0.254 ±0.159 0.149 ±0.113 0.456 ±0.189 0.153 ±0.077 0.205 ±0.156 0.162 ±0.111 

SSL + HM + CLAHE (ours) 0.578 ±0.160 0.187 ±0.084 0.421 ±0.177 0.166 ±0.061 0.270 ±0.139 0.116 ±0.091 

Attention Y-Net + HM (ours) 0.669 ±0.019 0.388 ±0.026 0.719 ±0.024 0.232 ±0.024 0.540 ±0.014 0.404 ±0.016 

DAMT-Net [36] 0.261 ±0.039 0.455 ±0.066 0.581 ±0.057 0.295 ±0.040 0.449 ±0.082 0.169 ±0.055 

DAMT-Net [36] + HM 0.258 ±0.062 0.422 ±0.169 0.416 ±0.078 0.276 ±0.072 0.380 ±0.077 0.187 ±0.118 

DAMT-Net [36] + CLAHE 0.284 ±0.047 0.482 ±0.050 0.440 ±0.135 0.319 ±0.100 0.488 ±0.061 0.233 ±0.100 

Solidity Style transfer (ours, [49] ) 0.703 ±0.009 0.605 ±0.032 0.572 ±0.044 0.509 ±0.034 0.608 ±0.017 0.560 ±0.032 

Style transfer (ours, [49] ) + CLAHE 0.768 ±0.020 0.671 ±0.009 0.529 ±0.051 0.146 ±0.165 0.581 ±0.017 0.572 ±0.078 

SSL + HM (ours) 0.685 ±0.092 0.394 ±0.102 0.572 ±0.109 0.136 ±0.027 0.694 ±0.022 0.278 ±0.171 

SSL + CLAHE (ours) 0.204 ±0.164 0.165 ±0.164 0.477 ±0.168 0.170 ±0.073 0.253 ±0.150 0.186 ±0.088 

SSL + HM + CLAHE (ours) 0.649 ±0.093 0.152 ±0.069 0.510 ±0.177 0.177 ±0.043 0.249 ±0.105 0.083 ±0.084 

Attention Y-Net + HM (ours) 0.713 ±0.029 0.397 ±0.013 0.728 ±0.031 0.310 ±0.067 0.508 ±0.030 0.416 ±0.026 

Attention Y-Net + CLAHE (ours) 0.729 ±0.017 0.420 ±0.041 0.635 ±0.049 0.350 ±0.025 0.545 ±0.031 0.516 ±0.094 

Attention Y-Net + HM + CLAHE (ours) 0.731 ±0.047 0.396 ±0.023 0.678 ±0.029 0.360 ±0.017 0.551 ±0.030 0.565 ±0.020 

DAMT-Net [36] 0.223 ±0.091 0.441 ±0.140 0.608 ±0.070 0.224 ±0.073 0.502 ±0.048 0.180 ±0.063 

DAMT-Net [36] + HM 0.230 ±0.038 0.497 ±0.059 0.655 ±0.037 0.308 ±0.035 0.551 ±0.045 0.172 ±0.114 

DAMT-Net [36] + CLAHE 0.244 ±0.043 0.506 ±0.037 0.625 ±0.066 0.291 ±0.100 0.554 ±0.053 0.288 ±0.097 
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b

ll our proposed approaches, either to select the number of styl- 

zation iterations or to fix the number of epochs to train our self- 

upervised or multi-task models. For that reason, we have selected 

 stopping criterion using morphological priors extracted from the 

ource labels. More specifically, we calculate the average solidity S 

f each mitochondrion in the image as: 

 = 

1 

N 

N ∑ 

n =1 

solidity (n ) (3) 

here N is the total number of objects (in our case mitochondria 

nstances) in the image and solidity (n ) is the ratio of pixels in the

th object to pixels of the convex hull of that object. In practice, 

ach instance is found by the connected components algorithm on 

he binarized outputs of the models. 

The main advantage of the average solidity is that it is agnostic 

f the dataset resolution and easy to implement. As a criterion, we 

an monitor the S value of the predictions in the target dataset and 
7

top optimizing our domain adaptation methods when it moves 

way from the objective S value (measured in the source domain). 

o select the best model, one can simply take the model produc- 

ng test masks with the S value that is closest to the objective one. 

oreover, to increase the robustness of this criterion, we discard 

ery tiny objects (with less than ten pixels) for all datasets. 

An example of the connection between the S values of test 

redictions and their respective segmentation results expressed in 

erms of IoU F is shown in Fig. 6 . One can observe that the range of

pochs where the test S values are closer to the objective S (cal- 

ulated in the source domain) in Fig. 6 a correspond, overall, to the 

pochs with higher IoU F values in Fig. 6 b. The same plots for all

ethods and cross-dataset experiments can be found in Section S2. 

.4. Cross-dataset results 

All the methods proposed here were applied to all the possi- 

le source-target combinations of the three EM datasets introduced 
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Fig. 7. Cross-dataset segmentation results using average solidity as stopping criterion for all learning based methods. From top to bottom: segmentation results when using 

Lucchi++, Kasthuri++ and VNC as target datasets. From left to right: image sample from the target dataset, two crops of that sample (in red and blue), their corresponding 

ground-truth (GT) binary masks, and probability maps produced by each method (Style-transfer, SSL, Attention Y-Net and DAMT-Net). The white scale bar represents 500 nm. 
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5

n Section 4.1 . Moreover, for a more detailed evaluation and com- 

arison with the state of the art, we executed as well the same 

xperiments using the publicly available implementation of DAMT- 

et [36] . As it is an extended practice on EM image processing, 

e also tested all methods on the same image data after prepro- 

essing them using contrast limited adaptive histogram equaliza- 

ion (CLAHE) [74] . Notice CLAHE is a contrast equalization method, 

hus not intended to match two intensity distributions. However, 

ts effect on the image contrast may bring the histogram of our 

atasets closer to each other. 

To ensure the robustness of the proposed training configu- 

ations and hyperparameters, each experiment was repeated ten 

imes using exactly the same setup. A full description of the search 

f hyperparameters for each approach can be found in Section S3. 

The best results based on the average IoU F of the predicted 

itochondria in the corresponding target test images for each 

ethod are shown in Table 1 . Furthermore, we explored the im- 

act of stopping the model training by each of the following cri- 

eria: (1) monitoring the IoU F value of the source validation set 

and also selecting the best model based on that value); (2) leaving 

he model train for a fixed number of epochs; and (3) monitoring 

he average solidity values of the target test set (and selecting the 

odel that better approaches the known source average solidity 

alue). 

First, although expected, it is worth mentioning that all tested 

ethods outperform the baseline in all cases, demonstrating the 

eed for a domain adaptation strategy that allows addressing the 

omain shift problem. Secondly, we can observe an evident boost 

n performance by simply applying either our histogram match- 

ng method to the target images or CLAHE as preprocessing for all 

mages, and re-using the baseline models for inference. Interest- 

ngly, on one of the source-target combinations (Lucchi++ as source 

nd Kasthuri++ as target) these strategies provide very good seg- 

entation results ( IoU F = 0 . 679 and 0.620 respectively), but they 

erform poorly ( IoU = 0 . 268 and 0.249) on the opposite experi-
F f

8 
ent (Kasthuri++ as source and Lucchi++ as target). This reflects 

n asymmetric aspect of the problem and the need for solutions 

hat learn more than just simple histogram image features. More- 

ver, these results show our proposed methods generally perform 

avourably to the state of the art, represented by DAMT-Net [36] . 

n particular, our style-transfer based approach provides consistent 

esults across all datasets, followed by our proposed multi-task At- 

ention Y-Net. 

Finally, the choice of the stopping criterion seems to play 

n important role improving the segmentation results depend- 

ng on the dataset combination. Although the monitoring of the 

ource validation results is a good indicator of the performance 

n the target domain by the multi-task networks (DAMT-Net 

nd Attention Y-Net), we observe their segmentation can be im- 

roved by either leaving the training converge (with a maximum 

umber of epochs) or by monitoring the target average solidity 

nstead. 

Some qualitative results of the learning-based methods are 

hown in Fig. 7 , where the probability maps of mitochondria 

asks produced by each method are displayed side by side for the 

ame sample images. More specifically, the predictions shown were 

btained using average solidity as stopping criterion. In agree- 

ent with the quantitative results of Table 1 , we can observe 

ost methods predict reasonable masks when Lucchi++ is used 

s the target dataset (where the IoU F values are in the range of 

0 . 5 − 0 . 7 ), but present different levels of performance when pre-

icting the mitochondria of the two other datasets used as target. 

emarkably, all methods except our style-transfer approach strug- 

le with the VNC/Kasthuri++ and Kasthuri++/VNC combinations, 

uggesting a larger domain shift between those two datasets. 

. Conclusions and discussion 

In this paper, we address the problem of domain adaptation 

or the challenging task of semantic segmentation of EM volumes. 
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ore specifically, we propose three novel solutions that built on 

op the deep-learning based state of the art by means of (1) un- 

upervised style transfer to transform the target domain images 

nto the “style” of the source domain and then reuse robust mod- 

ls trained on annotated data; (2) self-supervised learning to pre- 

rain our segmentation models without annotations and then fine- 

une them using the source labels; and (3) a multi-task deep ar- 

hitecture able to learn from both labeled and unlabeled data. All 

ethods have been evaluated under the same setups using three 

ublicly available EM datasets of different modalities (FIB-SEM, 

sEM and ssTEM) and each of their possible source-target combi- 

ations. In addition, we propose a novel unsupervised metric to 

void blindly selecting the best model during training. 

First of all, quantitative and qualitative results prove that 

earning-based methods are needed to deal with the domain shift 

n five out of the six cross-dataset experiments. Only in one com- 

ination (Lucchi++ as source domain and Kasthuri++ as target do- 

ain) an ad-hoc histogram matching method has been able to re- 

uce the shift at the level of the learning approaches. 

Regarding the proposed approaches, the style-transfer based 

ethod produces segmentation results with consistently medium- 

igh IoU F values ( ∼ 0 . 5 − 0 . 6 ), specially when the stylization is run

or a large number of epochs ( > 200 , see Section S2). The perfor-

ance of our SSL and Attention Y-Net methods also gets stabilized 

fter a fixed number of training epochs (60 and 100, respectively) 

s can be seen in Section S2. However, their results are not as 

onsistent as those of the style-transfer approach, oscillating be- 

ween low ( 0 . 1 − 0 . 2 ) and high ( 0 . 6 − 0 . 7 ) values of IoU F depending

n the specific source and target dataset combination. Neverthe- 

ess, we have been able to estimate the correct number of epochs 

o train the models thanks to the availability of target labels (al- 

hough they are not used at all during training). In a real scenario, 

onitoring the proposed average solidity metric is an intuitive and 

ffective way to stop the training process in the absence of valida- 

ion labels, and select (in average) models of similar or better accu- 

acy. Although other morphological and area measurements were 

nitially tested, the average solidity correlates better with the IoU F 

alue of the test labels. Nevertheless, the performance of this met- 

ic depends on how close its value is the source and target do- 

ains. 

It is also interesting to note that TEM and SEM images are dif- 

erent, with TEM images usually having higher resolution. Conse- 

uently, Lucchi++ and Kasthuri++ datasets (SEM) are -in principle- 

n closer domains compared to VNC (TEM) as reflected by the base- 

ine results in Table 1 . When Lucchi++ or Kasthuri++ are used as 

ources, the results obtained with VNC are clearly lower than with 

asthuri++ and Lucchi++, respectively. However, when VNC is used 

s source, the results obtained with Lucchi++ or Kasthuri++ are 

imilar. As similar discussion is applicable to the figures presented 

n Section S1: going to lower resolution (i.e., from VNC as a source, 

o Lucchi++ or Kasthuri++) in principle, could be easier than the 

pposite (from Lucchi++ or Kasthuri++ as a source, to VNC). Apart 

rom the intrinsic variability due to the modality, we need to ac- 

nowledge also the variability due to the differences in the sam- 

les itself, their preparation and the acquisition protocol. 

In summary, from a practical point of view, the style-transfer 

pproach appears as both the safest and simplest way of address- 

ng the domain shift in EM volumes for semantic segmentation. 

evertheless, using self-supervised or multi-task models may pro- 

ide better results on specific datasets at the cost of more complex 

raining setups and a larger set of hyperparameters. 

The present work is an initial assessment of the three compet- 

ng approaches running under the same conditions and compared 

ith the same supervised baseline methods. In a future work, we 

lan to explore the performance of meaningful combinations of 

he proposed strategies. Namely, the outputs of the style transfer 
9

ethod could be used as inputs or the self-supervised learning and 

he multi-tasks neural network architectures. We expect the com- 

ined strategies to outperform the histogram matching approach. 

Moreover, current initiatives (e.g., volume EM, http://www. 

olumeem.org ) are developing massive databases of heterogeneous 

DEM data. These initiatives promise to facilitate deep-learning- 

ased model building for automated segmentation [75] . In our 

iew, the style-transfer strategies could be more effective when 

re-trained in massive databases of heterogeneous 3DEM data than 

n a small dataset of well-defined characteristics. 

Finally, it is important to highlight that even the best results 

mong all our proposed domain adaptation strategies lie much 

ower than the fully supervised approaches. As a reference, the 

verage IoU F values obtained by our baseline models trained on 

he target annotated images are 0.90 6 6 for Lucchi++, 0.9154 for 

asthurhi++, and 0.8041 for VNC. This leaves plenty of room for 

mprovement and future lines of research. In particular, we will ex- 

lore the use of massive databases of heterogeneous 3D EM data, 

ith the combination of some of our proposed strategies and the 

xploitation of segmentation-specific pretext tasks. 
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